1
|
Coelho LA, Gonzalez CLR, Tammurello C, Campus C, Gori M. Hand and foot overestimation in visually impaired human adults. Neuroscience 2024; 563:74-83. [PMID: 39521320 DOI: 10.1016/j.neuroscience.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Previous research has shown that visual impairment results in reduced audio, tactile and proprioceptive ability. One hypothesis is that these issues arise from inaccurate body representations. Few studies have investigated metric body representations in a visually impaired population. We designed an ecologically valid behavioural task in which visually impaired adults haptically explored various sized gloves or shoes. They were asked to indicate if they perceived each clothing item as bigger than the size of their hand or foot. In the post-hoc analyses we fit psychometric curves to the data to extract the point of subjective equality. We then compared the results to age/sex matched controls. We hypothesized the blind participants body representations should be more distorted. Because previous research has shown that females are more likely to overestimate body size, we predicted sex differences in the sighted participants. However, because blind adults have no exposure to visual ideals of body size, we predicted that there would be no sex differences. Our results showed thatblind participants overestimated their hands and feetto a similar degree. Sighted controls overestimated their hands significantly more than their feet. Taken together, our results partially support our hypothesis and suggest that visual deprivation, even for short periods result in hand size overestimation.
Collapse
Affiliation(s)
- Lara A Coelho
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy.
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Faculty of Kinesiology, University of Lethbridge, Canada
| | - Carolina Tammurello
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Claudio Campus
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy
| | - Monica Gori
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy
| |
Collapse
|
2
|
Pardhan S, Raman R, Moore BCJ, Cirstea S, Velu S, Kolarik AJ. Effect of early versus late onset of partial visual loss on judgments of auditory distance. Optom Vis Sci 2024; 101:393-398. [PMID: 38990237 DOI: 10.1097/opx.0000000000002125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
SIGNIFICANCE It is important to know whether early-onset vision loss and late-onset vision loss are associated with differences in the estimation of distances of sound sources within the environment. People with vision loss rely heavily on auditory cues for path planning, safe navigation, avoiding collisions, and activities of daily living. PURPOSE Loss of vision can lead to substantial changes in auditory abilities. It is unclear whether differences in sound distance estimation exist in people with early-onset partial vision loss, late-onset partial vision loss, and normal vision. We investigated distance estimates for a range of sound sources and auditory environments in groups of participants with early- or late-onset partial visual loss and sighted controls. METHODS Fifty-two participants heard static sounds with virtual distances ranging from 1.2 to 13.8 m within a simulated room. The room simulated either anechoic (no echoes) or reverberant environments. Stimuli were speech, music, or noise. Single sounds were presented, and participants reported the estimated distance of the sound source. Each participant took part in 480 trials. RESULTS Analysis of variance showed significant main effects of visual status (p<0.05) environment (reverberant vs. anechoic, p<0.05) and also of the stimulus (p<0.05). Significant differences (p<0.05) were shown in the estimation of distances of sound sources between early-onset visually impaired participants and sighted controls for closer distances for all conditions except the anechoic speech condition and at middle distances for all conditions except the reverberant speech and music conditions. Late-onset visually impaired participants and sighted controls showed similar performance (p>0.05). CONCLUSIONS The findings suggest that early-onset partial vision loss results in significant changes in judged auditory distance in different environments, especially for close and middle distances. Late-onset partial visual loss has less of an impact on the ability to estimate the distance of sound sources. The findings are consistent with a theoretical framework, the perceptual restructuring hypothesis, which was recently proposed to account for the effects of vision loss on audition.
Collapse
Affiliation(s)
| | | | | | | | - Saranya Velu
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya Eye Hospital, Chennai, India
| | | |
Collapse
|
3
|
Senna I, Piller S, Martolini C, Cocchi E, Gori M, Ernst MO. Multisensory training improves the development of spatial cognition after sight restoration from congenital cataracts. iScience 2024; 27:109167. [PMID: 38414862 PMCID: PMC10897914 DOI: 10.1016/j.isci.2024.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/04/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Spatial cognition and mobility are typically impaired in congenitally blind individuals, as vision usually calibrates space perception by providing the most accurate distal spatial cues. We have previously shown that sight restoration from congenital bilateral cataracts guides the development of more accurate space perception, even when cataract removal occurs years after birth. However, late cataract-treated individuals do not usually reach the performance levels of the typically sighted population. Here, we developed a brief multisensory training that associated audiovisual feedback with body movements. Late cataract-treated participants quickly improved their space representation and mobility, performing as well as typically sighted controls in most tasks. Their improvement was comparable with that of a group of blind participants, who underwent training coupling their movements with auditory feedback alone. These findings suggest that spatial cognition can be enhanced by a training program that strengthens the association between bodily movements and their sensory feedback (either auditory or audiovisual).
Collapse
Affiliation(s)
- Irene Senna
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, 89069 Ulm, Germany
- Department of Psychology, Liverpool Hope University, Liverpool L16 9JD, UK
| | - Sophia Piller
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, 89069 Ulm, Germany
| | - Chiara Martolini
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Elena Cocchi
- Istituto David Chiossone per Ciechi ed Ipovedenti ONLUS, 16145 Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Marc O. Ernst
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
4
|
Goicke S, Denk F, Jürgens T. Auditory Spatial Bisection of Blind and Normally Sighted Individuals in Free Field and Virtual Acoustics. Trends Hear 2024; 28:23312165241230947. [PMID: 38361245 PMCID: PMC10874137 DOI: 10.1177/23312165241230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Sound localization is an important ability in everyday life. This study investigates the influence of vision and presentation mode on auditory spatial bisection performance. Subjects were asked to identify the smaller perceived distance between three consecutive stimuli that were either presented via loudspeakers (free field) or via headphones after convolution with generic head-related impulse responses (binaural reproduction). Thirteen azimuthal sound incidence angles on a circular arc segment of ±24° at a radius of 3 m were included in three regions of space (front, rear, and laterally left). Twenty normally sighted (measured both sighted and blindfolded) and eight blind persons participated. Results showed no significant differences with respect to visual condition, but strong effects of sound direction and presentation mode. Psychometric functions were steepest in frontal space and indicated median spatial bisection thresholds of 11°-14°. Thresholds increased significantly in rear (11°-17°) and laterally left (20°-28°) space in free field. Individual pinna and torso cues, as available only in free field presentation, improved the performance of all participants compared to binaural reproduction. Especially in rear space, auditory spatial bisection thresholds were three to four times higher (i.e., poorer) using binaural reproduction than in free field. The results underline the importance of individual auditory spatial cues for spatial bisection, irrespective of access to vision, which indicates that vision may not be strictly necessary to calibrate allocentric spatial hearing.
Collapse
Affiliation(s)
- Stefanie Goicke
- Institute of Acoustics, Technische Hochschule Lübeck (University of Applied Sciences Lübeck), Lübeck, Germany
- Research Unit for ORL—Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Florian Denk
- German Institute of Hearing Aids, Lübeck, Germany
| | - Tim Jürgens
- Institute of Acoustics, Technische Hochschule Lübeck (University of Applied Sciences Lübeck), Lübeck, Germany
| |
Collapse
|
5
|
Koehler H, Croy I, Oleszkiewicz A. Late Blindness and Deafness are Associated with Decreased Tactile Sensitivity, But Early Blindness is Not. Neuroscience 2023; 526:164-174. [PMID: 37385331 DOI: 10.1016/j.neuroscience.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Perceptual experience is shaped by a complex interaction between our sensory systems in which each sense conveys information on specific properties of our surroundings. This multisensory processing of complementary information improves the accuracy of our perceptual judgments and leads to more precise and faster reactions. Sensory impairment or loss in one modality leads to information deficiency that can impact other senses in various ways. For early auditory or visual loss, impairment and/or compensatory increase of the sensitivity of other senses are equally well described. Investigating individuals with deafness (N = 73), early (N = 51), late blindness (N = 49) and corresponding controls, we compared tactile sensitivity using the standard monofilament test on two locations, the finger and handback. Results indicate lower tactile sensitivity in people with deafness and late blindness but not in people with early blindness compared to respective controls, irrespective of stimulation location, gender, and age. Results indicate that neither sensory compensation nor simple use-dependency or a hindered development of the tactile sensory system is sufficient to explain changes in somatosensation after the sensory loss but that a complex interaction of effects is present.
Collapse
Affiliation(s)
- Hanna Koehler
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Biomagnetic Center, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany.
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany; Department of Psychotherapy and Psychosomatic Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anna Oleszkiewicz
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Psychology, University of Wrocław, ul. Dawida 1, 50-527 Wroclaw, Poland
| |
Collapse
|
6
|
Oleszkiewicz A, Schmidt P, Smith B, Spence C, Hummel T. Effects of blindness and anosmia on auditory discrimination of temperature and carbonation of liquids. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Finocchietti S, Esposito D, Gori M. Monaural auditory spatial abilities in early blind individuals. Iperception 2023; 14:20416695221149638. [PMID: 36861104 PMCID: PMC9969445 DOI: 10.1177/20416695221149638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023] Open
Abstract
Early blind individuals can localize single sound sources better than sighted participants, even under monaural conditions. Yet, in binaural listening, they struggle with understanding the distances between three different sounds. The latter ability has never been tested under monaural conditions. We investigated the performance of eight early blind and eight blindfolded healthy individuals in monaural and binaural listening during two audio-spatial tasks. In the localization task, a single sound was played in front of participants who needed to localize it properly. In the auditory bisection task, three consecutive sounds were played from different spatial positions, and participants reported which sound the second one was closer to. Only early blind individuals improved their performance in the monaural bisection, while no statistical difference was present for the localization task. We concluded that early blind individuals show superior ability in using spectral cues under monaural conditions.
Collapse
Affiliation(s)
| | - Davide Esposito
- Davide Esposito, Unit for Visually Impaired
People, Italian Institute of Technology, 16131, Genoa, Italy.
| | | |
Collapse
|
8
|
Cappagli G, Cuturi LF, Signorini S, Morelli F, Cocchi E, Gori M. Early visual deprivation disrupts the mental representation of numbers in visually impaired children. Sci Rep 2022; 12:22538. [PMID: 36581659 PMCID: PMC9800586 DOI: 10.1038/s41598-022-25044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022] Open
Abstract
Several shreds of evidence indicate that visual deprivation does not alter numerical competence neither in adults nor in children. However, studies reporting non-impaired numerical abilities in the visually impaired population present some limitations: (a) they mainly assessed the ability to process numbers (e.g. mathematical competence) rather than represent numbers (e.g. mental number line); (b) they principally focused on positive rather than negative number estimates; (c) they investigated numerical abilities in adult individuals except one focusing on children (Crollen et al. in Cognition 210:104586, 2021). Overall, this could limit a comprehensive explanation of the role exerted by vision on numerical processing when vision is compromised. Here we investigated how congenital visual deprivation affects the ability to represent positive and negative numbers in horizontal and sagittal planes in visually impaired children (thirteen children with low vision, eight children with complete blindness, age range 6-15 years old). We adapted the number-to-position paradigm adopted by Crollen et al. (Cognition 210:104586, 2021), asking children to indicate the spatial position of positive and negative numbers on a graduated rule positioned horizontally or sagittally in the frontal plane. Results suggest that long-term visual deprivation alters the ability to identify the spatial position of numbers independently of the spatial plane and the number polarity. Moreover, results indicate that relying on poor visual acuity is detrimental for low vision children when asked to localize both positive and negative numbers in space, suggesting that visual experience might have a differential role in numerical processing depending on number polarity. Such findings add knowledge related to the impact of visual experience on numerical processing. Since both positive and negative numbers are fundamental aspects of learning mathematical principles, the outcomes of the present study inform about the need to implement early rehabilitation strategies to prevent the risk of numerical difficulties in visually impaired children.
Collapse
Affiliation(s)
- G. Cappagli
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People (UVIP), Istituto Italiano di Tecnologia, Via Melen 83, 16100 Genova, Italy ,grid.419416.f0000 0004 1760 3107Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - L. F. Cuturi
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People (UVIP), Istituto Italiano di Tecnologia, Via Melen 83, 16100 Genova, Italy ,grid.10438.3e0000 0001 2178 8421Department of Cognitive, Psychological, Pedagogical Sciences and of Cultural Studies, University of Messina, Messina, Italy
| | - S. Signorini
- grid.419416.f0000 0004 1760 3107Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - F. Morelli
- grid.419416.f0000 0004 1760 3107Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | - M. Gori
- grid.25786.3e0000 0004 1764 2907Unit for Visually Impaired People (UVIP), Istituto Italiano di Tecnologia, Via Melen 83, 16100 Genova, Italy
| |
Collapse
|
9
|
Martolini C, Amadeo MB, Campus C, Cappagli G, Gori M. Effects of audio-motor training on spatial representations in long-term late blindness. Neuropsychologia 2022; 176:108391. [DOI: 10.1016/j.neuropsychologia.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/16/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
10
|
Sabourin CJ, Merrikhi Y, Lomber SG. Do blind people hear better? Trends Cogn Sci 2022; 26:999-1012. [PMID: 36207258 DOI: 10.1016/j.tics.2022.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
For centuries, anecdotal evidence such as the perfect pitch of the blind piano tuner or blind musician has supported the notion that individuals who have lost their sight early in life have superior hearing abilities compared with sighted people. Recently, auditory psychophysical and functional imaging studies have identified that specific auditory enhancements in the early blind can be linked to activation in extrastriate visual cortex, suggesting crossmodal plasticity. Furthermore, the nature of the sensory reorganization in occipital cortex supports the concept of a task-based functional cartography for the cerebral cortex rather than a sensory-based organization. In total, studies of early-blind individuals provide valuable insights into mechanisms of cortical plasticity and principles of cerebral organization.
Collapse
Affiliation(s)
- Carina J Sabourin
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Biological and Biomedical Engineering Graduate Program, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Yaser Merrikhi
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephen G Lomber
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Biological and Biomedical Engineering Graduate Program, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Psychology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
11
|
Senna I, Piller S, Gori M, Ernst M. The power of vision: calibration of auditory space after sight restoration from congenital cataracts. Proc Biol Sci 2022; 289:20220768. [PMID: 36196538 PMCID: PMC9532985 DOI: 10.1098/rspb.2022.0768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Early visual deprivation typically results in spatial impairments in other sensory modalities. It has been suggested that, since vision provides the most accurate spatial information, it is used for calibrating space in the other senses. Here we investigated whether sight restoration after prolonged early onset visual impairment can lead to the development of more accurate auditory space perception. We tested participants who were surgically treated for congenital dense bilateral cataracts several years after birth. In Experiment 1 we assessed participants' ability to understand spatial relationships among sounds, by asking them to spatially bisect three consecutive, laterally separated sounds. Participants performed better after surgery than participants tested before. However, they still performed worse than sighted controls. In Experiment 2, we demonstrated that single sound localization in the two-dimensional frontal plane improves quickly after surgery, approaching performance levels of sighted controls. Such recovery seems to be mediated by visual acuity, as participants gaining higher post-surgical visual acuity performed better in both experiments. These findings provide strong support for the hypothesis that vision calibrates auditory space perception. Importantly, this also demonstrates that this process can occur even when vision is restored after years of visual deprivation.
Collapse
Affiliation(s)
- Irene Senna
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| | - Sophia Piller
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marc Ernst
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Lombera EN, Guevara MA, Vergara RO. Is source elevation an auditory distance cue? A preliminary study. Perception 2022; 51:3010066221114589. [PMID: 35989643 DOI: 10.1177/03010066221114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work was to evaluate whether the angular elevation of a sound source could generate auditory cues which improve the auditory distance perception in a similar way to that previously reported by visual modality. For this purpose, we compared ADP curves obtained with sources located both at the listeners' ears and at ground level. Our hypothesis was that the participants can interpret the relation between elevation and distance of ground-level sources (which are linked geometrically) so we expected them to perceive their distances more accurately than those at ear level. However, the responses obtained with sources located at ground level were almost identical to those obtained at the height of the listeners' ears, showing that, under the conditions of our experiment, auditory elevation cues do not influence auditory distance perception.
Collapse
Affiliation(s)
- Esteban N Lombera
- 28235Laboratorio de Acústica y Percepción Sonora, CONICET, Universidad Nacional de Quilmes, Argentina
- 28242Departamento de Ciencia y Tecnología, Universidad Nacional de Tres de Febrero, Argentina
| | - Manuel A Guevara
- 28242Departamento de Ciencia y Tecnología, Universidad Nacional de Tres de Febrero, Argentina
| | - Ramiro O Vergara
- 28235Laboratorio de Acústica y Percepción Sonora, CONICET, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
13
|
Mortazavi M, Aigner K, Antono JE, Gambacorta C, Nahum M, Levi DM, Föcker J. Intramodal cortical plastic changes after moderate visual impairment in human amblyopia. iScience 2022; 25:104871. [PMID: 36034215 PMCID: PMC9403333 DOI: 10.1016/j.isci.2022.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 10/28/2022] Open
|
14
|
Bae EB, Jang H, Shim HJ. Enhanced Dichotic Listening and Temporal Sequencing Ability in Early-Blind Individuals. Front Psychol 2022; 13:840541. [PMID: 35619788 PMCID: PMC9127502 DOI: 10.3389/fpsyg.2022.840541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Several studies have reported the better auditory performance of early-blind subjects over sighted subjects. However, few studies have compared the auditory functions of both hemispheres or evaluated interhemispheric transfer and binaural integration in blind individuals. Therefore, we evaluated whether there are differences in dichotic listening, auditory temporal sequencing ability, or speech perception in noise (all of which have been used to diagnose central auditory processing disorder) between early-blind subjects and sighted subjects. The study included 23 early-blind subjects and 22 age-matched sighted subjects. In the dichotic listening test (three-digit pair), the early-blind subjects achieved higher scores than the sighted subjects in the left ear (p = 0.003, Bonferroni’s corrected α = 0.05/6 = 0.008), but not in the right ear, indicating a right ear advantage in sighted subjects (p < 0.001) but not in early-blind subjects. In the frequency patterning test (five tones), the early-blind subjects performed better (both ears in the humming response, but the left ear only in the labeling response) than the sighted subjects (p < 0.008, Bonferroni’s corrected α = 0.05/6 = 0.008). Monosyllable perception in noise tended to be better in early-blind subjects than in sighted subjects at a signal-to-noise ratio of –8 (p = 0.054), the results at signal-to-noise ratios of –4, 0, +4, and +8 did not differ. Acoustic change complex responses to/ba/in babble noise, recorded with electroencephalography, showed a greater N1 peak amplitude at only FC5 electrode under a signal-to-noise ratio of –8 and –4 dB in the early-blind subjects than in the sighted subjects (p = 0.004 and p = 0.003, respectively, Bonferroni’s corrected α = 0.05/5 = 0.01). The results of this study revealed early-blind subjects exhibited some advantages in dichotic listening, and temporal sequencing ability compared to those shown in sighted subjects. These advantages may be attributable to the enhanced activity of the central auditory nervous system, especially the right hemisphere function, and the transfer of auditory information between the two hemispheres.
Collapse
Affiliation(s)
- Eun Bit Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Hyunsook Jang
- Division of Speech Pathology and Audiology, Research Institute of Audiology and Speech Pathology, Hallym University, Chuncheon, South Korea
| | - Hyun Joon Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, South Korea
| |
Collapse
|
15
|
Setti W, Cuturi LF, Cocchi E, Gori M. Spatial Memory and Blindness: The Role of Visual Loss on the Exploration and Memorization of Spatialized Sounds. Front Psychol 2022; 13:784188. [PMID: 35686077 PMCID: PMC9171105 DOI: 10.3389/fpsyg.2022.784188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Spatial memory relies on encoding, storing, and retrieval of knowledge about objects’ positions in their surrounding environment. Blind people have to rely on sensory modalities other than vision to memorize items that are spatially displaced, however, to date, very little is known about the influence of early visual deprivation on a person’s ability to remember and process sound locations. To fill this gap, we tested sighted and congenitally blind adults and adolescents in an audio-spatial memory task inspired by the classical card game “Memory.” In this research, subjects (blind, n = 12; sighted, n = 12) had to find pairs among sounds (i.e., animal calls) displaced on an audio-tactile device composed of loudspeakers covered by tactile sensors. To accomplish this task, participants had to remember the spatialized sounds’ position and develop a proper mental spatial representation of their locations. The test was divided into two experimental conditions of increasing difficulty dependent on the number of sounds to be remembered (8 vs. 24). Results showed that sighted participants outperformed blind participants in both conditions. Findings were discussed considering the crucial role of visual experience in properly manipulating auditory spatial representations, particularly in relation to the ability to explore complex acoustic configurations.
Collapse
Affiliation(s)
- Walter Setti
- Unit for Visually Impaired People (U-VIP), Italian Institute of Technology, Genoa, Italy
- *Correspondence: Walter Setti,
| | - Luigi F. Cuturi
- Unit for Visually Impaired People (U-VIP), Italian Institute of Technology, Genoa, Italy
| | | | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
16
|
Tonelli A, Togoli I, Arrighi R, Gori M. Deprivation of Auditory Experience Influences Numerosity Discrimination, but Not Numerosity Estimation. Brain Sci 2022; 12:brainsci12020179. [PMID: 35203942 PMCID: PMC8869924 DOI: 10.3390/brainsci12020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Number sense is the ability to estimate the number of items, and it is common to many species. Despite the numerous studies dedicated to unveiling how numerosity is processed in the human brain, to date, it is not clear whether the representation of numerosity is supported by a single general mechanism or by multiple mechanisms. Since it is known that deafness entails a selective impairment in the processing of temporal information, we assessed the approximate numerical abilities of deaf individuals to disentangle these two hypotheses. We used a numerosity discrimination task (2AFC) and an estimation task, in both cases using sequential (temporal) or simultaneous (spatial) stimuli. The results showed a selective impairment of the deaf participants compared with the controls (hearing) in the temporal numerosity discrimination task, while no difference was found to discriminate spatial numerosity. Interestingly, the deaf and hearing participants did not differ in spatial or temporal numerosity estimation. Overall, our results suggest that the deficit in temporal processing induced by deafness also impacts perception in other domains such as numerosity, where sensory information is conveyed in a temporal format, which further suggests the existence of separate mechanisms subserving the processing of temporal and spatial numerosity.
Collapse
Affiliation(s)
- Alessia Tonelli
- U-VIP, Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
- Correspondence:
| | - Irene Togoli
- Cognitive Neuroscience Department, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50121 Florence, Italy;
| | - Monica Gori
- U-VIP, Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| |
Collapse
|
17
|
Partial visual loss disrupts the relationship between judged room size and sound source distance. Exp Brain Res 2021; 240:81-96. [PMID: 34623459 PMCID: PMC8803715 DOI: 10.1007/s00221-021-06235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Visual spatial information plays an important role in calibrating auditory space. Blindness results in deficits in a number of auditory abilities, which have been explained in terms of the hypothesis that visual information is needed to calibrate audition. When judging the size of a novel room when only auditory cues are available, normally sighted participants may use the location of the farthest sound source to infer the nearest possible distance of the far wall. However, for people with partial visual loss (distinct from blindness in that some vision is present), such a strategy may not be reliable if vision is needed to calibrate auditory cues for distance. In the current study, participants were presented with sounds at different distances (ranging from 1.2 to 13.8 m) in a simulated reverberant (T60 = 700 ms) or anechoic room. Farthest distance judgments and room size judgments (volume and area) were obtained from blindfolded participants (18 normally sighted, 38 partially sighted) for speech, music, and noise stimuli. With sighted participants, the judged room volume and farthest sound source distance estimates were positively correlated (p < 0.05) for all conditions. Participants with visual losses showed no significant correlations for any of the conditions tested. A similar pattern of results was observed for the correlations between farthest distance and room floor area estimates. Results demonstrate that partial visual loss disrupts the relationship between judged room size and sound source distance that is shown by sighted participants.
Collapse
|
18
|
Thaler L, Norman LJ. No effect of 10-week training in click-based echolocation on auditory localization in people who are blind. Exp Brain Res 2021; 239:3625-3633. [PMID: 34609546 PMCID: PMC8599323 DOI: 10.1007/s00221-021-06230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
What factors are important in the calibration of mental representations of auditory space? A substantial body of research investigating the audiospatial abilities of people who are blind has shown that visual experience might be an important factor for accurate performance in some audiospatial tasks. Yet, it has also been shown that long-term experience using click-based echolocation might play a similar role, with blind expert echolocators demonstrating auditory localization abilities that are superior to those of people who are blind and who do not use click-based echolocation by Vercillo et al. (Neuropsychologia 67: 35–40, 2015). Based on this hypothesis we might predict that training in click-based echolocation may lead to improvement in performance in auditory localization tasks in people who are blind. Here we investigated this hypothesis in a sample of 12 adult people who have been blind from birth. We did not find evidence for an improvement in performance in auditory localization after 10 weeks of training despite significant improvement in echolocation ability. It is possible that longer-term experience with click-based echolocation is required for effects to develop, or that other factors can explain the association between echolocation expertise and superior auditory localization. Considering the practical relevance of click-based echolocation for people who are visually impaired, future research should address these questions.
Collapse
Affiliation(s)
- Lore Thaler
- Department of Psychology, Durham University, Science Site, South Road, Durham, DH1 3LE, UK.
| | - Liam J Norman
- Department of Psychology, Durham University, Science Site, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
19
|
Hanenberg C, Schlüter MC, Getzmann S, Lewald J. Short-Term Audiovisual Spatial Training Enhances Electrophysiological Correlates of Auditory Selective Spatial Attention. Front Neurosci 2021; 15:645702. [PMID: 34276281 PMCID: PMC8280319 DOI: 10.3389/fnins.2021.645702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Audiovisual cross-modal training has been proposed as a tool to improve human spatial hearing. Here, we investigated training-induced modulations of event-related potential (ERP) components that have been associated with processes of auditory selective spatial attention when a speaker of interest has to be localized in a multiple speaker ("cocktail-party") scenario. Forty-five healthy participants were tested, including younger (19-29 years; n = 21) and older (66-76 years; n = 24) age groups. Three conditions of short-term training (duration 15 min) were compared, requiring localization of non-speech targets under "cocktail-party" conditions with either (1) synchronous presentation of co-localized auditory-target and visual stimuli (audiovisual-congruency training) or (2) immediate visual feedback on correct or incorrect localization responses (visual-feedback training), or (3) presentation of spatially incongruent auditory-target and visual stimuli presented at random positions with synchronous onset (control condition). Prior to and after training, participants were tested in an auditory spatial attention task (15 min), requiring localization of a predefined spoken word out of three distractor words, which were presented with synchronous stimulus onset from different positions. Peaks of ERP components were analyzed with a specific focus on the N2, which is known to be a correlate of auditory selective spatial attention. N2 amplitudes were significantly larger after audiovisual-congruency training compared with the remaining training conditions for younger, but not older, participants. Also, at the time of the N2, distributed source analysis revealed an enhancement of neural activity induced by audiovisual-congruency training in dorsolateral prefrontal cortex (Brodmann area 9) for the younger group. These findings suggest that cross-modal processes induced by audiovisual-congruency training under "cocktail-party" conditions at a short time scale resulted in an enhancement of correlates of auditory selective spatial attention.
Collapse
Affiliation(s)
| | | | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörg Lewald
- Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Analysis and Validation of Cross-Modal Generative Adversarial Network for Sensory Substitution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126216. [PMID: 34201269 PMCID: PMC8228544 DOI: 10.3390/ijerph18126216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
Visual-auditory sensory substitution has demonstrated great potential to help visually impaired and blind groups to recognize objects and to perform basic navigational tasks. However, the high latency between visual information acquisition and auditory transduction may contribute to the lack of the successful adoption of such aid technologies in the blind community; thus far, substitution methods have remained only laboratory-scale research or pilot demonstrations. This high latency for data conversion leads to challenges in perceiving fast-moving objects or rapid environmental changes. To reduce this latency, prior analysis of auditory sensitivity is necessary. However, existing auditory sensitivity analyses are subjective because they were conducted using human behavioral analysis. Therefore, in this study, we propose a cross-modal generative adversarial network-based evaluation method to find an optimal auditory sensitivity to reduce transmission latency in visual-auditory sensory substitution, which is related to the perception of visual information. We further conducted a human-based assessment to evaluate the effectiveness of the proposed model-based analysis in human behavioral experiments. We conducted experiments with three participant groups, including sighted users (SU), congenitally blind (CB) and late-blind (LB) individuals. Experimental results from the proposed model showed that the temporal length of the auditory signal for sensory substitution could be reduced by 50%. This result indicates the possibility of improving the performance of the conventional vOICe method by up to two times. We confirmed that our experimental results are consistent with human assessment through behavioral experiments. Analyzing auditory sensitivity with deep learning models has the potential to improve the efficiency of sensory substitution.
Collapse
|
21
|
Netzer O, Heimler B, Shur A, Behor T, Amedi A. Backward spatial perception can be augmented through a novel visual-to-auditory sensory substitution algorithm. Sci Rep 2021; 11:11944. [PMID: 34099756 PMCID: PMC8184900 DOI: 10.1038/s41598-021-88595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Can humans extend and augment their natural perceptions during adulthood? Here, we address this fascinating question by investigating the extent to which it is possible to successfully augment visual spatial perception to include the backward spatial field (a region where humans are naturally blind) via other sensory modalities (i.e., audition). We thus developed a sensory-substitution algorithm, the “Topo-Speech” which conveys identity of objects through language, and their exact locations via vocal-sound manipulations, namely two key features of visual spatial perception. Using two different groups of blindfolded sighted participants, we tested the efficacy of this algorithm to successfully convey location of objects in the forward or backward spatial fields following ~ 10 min of training. Results showed that blindfolded sighted adults successfully used the Topo-Speech to locate objects on a 3 × 3 grid either positioned in front of them (forward condition), or behind their back (backward condition). Crucially, performances in the two conditions were entirely comparable. This suggests that novel spatial sensory information conveyed via our existing sensory systems can be successfully encoded to extend/augment human perceptions. The implications of these results are discussed in relation to spatial perception, sensory augmentation and sensory rehabilitation.
Collapse
Affiliation(s)
- Ophir Netzer
- The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benedetta Heimler
- The Baruch Ivcher Institute for Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzeliya, Israel.,Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel.,Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Amir Shur
- The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Behor
- The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzeliya, Israel. .,Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel.
| |
Collapse
|
22
|
Manescu S, Chouinard-Leclaire C, Collignon O, Lepore F, Frasnelli J. Enhanced Odorant Localization Abilities in Congenitally Blind but not in Late-Blind Individuals. Chem Senses 2021; 46:bjaa073. [PMID: 33140091 PMCID: PMC7909301 DOI: 10.1093/chemse/bjaa073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although often considered a nondominant sense for spatial perception, chemosensory perception can be used to localize the source of an event and potentially help us navigate through our environment. Would blind people who lack the dominant spatial sense-vision-develop enhanced spatial chemosensation or suffer from the lack of visual calibration on spatial chemosensory perception? To investigate this question, we tested odorant localization abilities across nostrils in blind people compared to sighted controls and if the time of vision loss onset modulates those abilities. We observed that congenitally blind individuals (10 subjects) outperformed sighted (20 subjects) and late-blind subjects (10 subjects) in a birhinal localization task using mixed olfactory-trigeminal stimuli. This advantage in congenitally blind people was selective to olfactory localization but not observed for odorant detection or identification. We, therefore, showed that congenital blindness but not blindness acquired late in life is linked to enhanced localization of chemosensory stimuli across nostrils, most probably of the trigeminal component. In addition to previous studies highlighting enhanced localization abilities in auditory and tactile modalities, our current results extend such enhanced abilities to chemosensory localization.
Collapse
Affiliation(s)
- Simona Manescu
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
| | - Christine Chouinard-Leclaire
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
| | - Olivier Collignon
- Center of Mind/Brain Sciences of University of Trento, Via Delle Regole, Mattarello, Trentino, Italy
- Institutes for Research in Psychology and Neurosciences, University of Louvain, IPSY - Place du Cardinal Mercier, Louvain-la-Neuve, Belgium
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
| | - Johannes Frasnelli
- Centre de Recherche en Neuropsychologie et Cognition, Département de psychologie, Université de Montréal, Pavillon Marie-Victorin, CP, succursale Centre-Ville, Montréal, Québec, Canada
- Centre d’études avancées en médecine du sommeil, Centre de Recherche de l’Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Québec, Canada
- Department of Anatomy, Université du Québec à Trois-Rivières, boulevard des Forges, Trois-Rivières, Québec, Canada
| |
Collapse
|
23
|
Turgeon C, Trudeau-Fisette P, Lepore F, Lippé S, Ménard L. Impact of visual and auditory deprivation on speech perception and production in adults. CLINICAL LINGUISTICS & PHONETICS 2020; 34:1061-1087. [PMID: 32013589 DOI: 10.1080/02699206.2020.1719207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Speech perception relies on auditory and visual cues and there are strong links between speech perception and production. We aimed to evaluate the role of auditory and visual modalities on speech perception and production in adults with impaired hearing or sight versus those with normal hearing and sight. We examined speech perception and production of three isolated vowels (/i/, /y/, /u/), which were selected based on their different auditory and visual perceptual saliencies, in 12 deaf adults who used one or two cochlear implants (CIs), 14 congenitally blind adults, and 16 adults with normal sight and hearing. The results showed that the deaf adults who used a CI had worse vowel identification and discrimination perception and they also produced vowels that were less typical or precise than other participants. They had different tongue positions in speech production, which possibly partly explains the poorer quality of their spoken vowels. Blind individuals had larger lip openings and smaller lip protrusions for the rounded vowel and unrounded vowels, compared to the other participants, but they still produced vowels that were similar to those produced by the adults with normal sight and hearing. In summary, the deaf adults, even though they used CIs, had greater difficulty in producing accurate vowel targets than the blind adults, whereas the blind adults were still able to produce accurate vowel targets, even though they used different articulatory strategies.
Collapse
Affiliation(s)
| | | | - Franco Lepore
- Department of Psychology, Université de Montréal , Montréal, Canada
| | - Sarah Lippé
- Department of Psychology, Université de Montréal , Montréal, Canada
| | - Lucie Ménard
- Department of Linguistic, UQAM , Montréal, Canada
| |
Collapse
|
24
|
Bertonati G, Tonelli A, Cuturi LF, Setti W, Gori M. Assessment of spatial reasoning in blind individuals using a haptic version of the Kohs Block Design Test. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2020. [DOI: 10.1016/j.crbeha.2020.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Tonelli A, Campus C, Gori M. Early visual cortex response for sound in expert blind echolocators, but not in early blind non-echolocators. Neuropsychologia 2020; 147:107617. [PMID: 32896527 DOI: 10.1016/j.neuropsychologia.2020.107617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Echolocation is a perceptual and navigational skill that can be acquired by some individuals. Regarding blind people, this skill can help them "see" the environment around them via a new form of auditory information based on echoes. Expert human echolocators benefit from using this technique not only in controlled environments but also in their everyday lives. In the current study, we investigate the effect of echolocation on blind people's auditory spatial abilities at the cortical level. In an auditory spatial bisection task, we tested people who are early blinds and early blind expert echolocators, along with sighted people. Our results showed that there is similar early activation (50-90 ms) in the posterior area of the scalp for both early blind expert echolocators and sighted participants, but not in the early blind group. This activation was related to sound stimulation, and it is contralateral to the position of the sound in space. These findings indicate that echolocation is a good substitute for the visual modality that enables the development of auditory spatial representations when vision is not available.
Collapse
Affiliation(s)
- Alessia Tonelli
- UVIP, Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy; Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Claudio Campus
- UVIP, Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- UVIP, Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
26
|
Battal C, Occelli V, Bertonati G, Falagiarda F, Collignon O. General Enhancement of Spatial Hearing in Congenitally Blind People. Psychol Sci 2020; 31:1129-1139. [PMID: 32846109 DOI: 10.1177/0956797620935584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vision is thought to support the development of spatial abilities in the other senses. If this is true, how does spatial hearing develop in people lacking visual experience? We comprehensively addressed this question by investigating auditory-localization abilities in 17 congenitally blind and 17 sighted individuals using a psychophysical minimum-audible-angle task that lacked sensorimotor confounds. Participants were asked to compare the relative position of two sound sources located in central and peripheral, horizontal and vertical, or frontal and rear spaces. We observed unequivocal enhancement of spatial-hearing abilities in congenitally blind people, irrespective of the field of space that was assessed. Our results conclusively demonstrate that visual experience is not a prerequisite for developing optimal spatial-hearing abilities and that, in striking contrast, the lack of vision leads to a general enhancement of auditory-spatial skills.
Collapse
Affiliation(s)
- Ceren Battal
- Institute for Research in Psychology, Institute of Neuroscience, Université Catholique de Louvain.,Center for Mind/Brain Sciences, University of Trento
| | | | | | - Federica Falagiarda
- Institute for Research in Psychology, Institute of Neuroscience, Université Catholique de Louvain
| | - Olivier Collignon
- Institute for Research in Psychology, Institute of Neuroscience, Université Catholique de Louvain.,Center for Mind/Brain Sciences, University of Trento
| |
Collapse
|
27
|
Moro SS, Gorbet DJ, Steeves JKE. Brain Activation for Audiovisual Information in People With One Eye Compared to Binocular and Eye-Patched Viewing Controls. Front Neurosci 2020; 14:529. [PMID: 32508588 PMCID: PMC7253581 DOI: 10.3389/fnins.2020.00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
Blindness caused by early vision loss results in complete visual deprivation and subsequent changes in the use of the remaining intact senses. We have also observed adaptive plasticity in the case of partial visual deprivation. The removal of one eye, through unilateral eye enucleation, results in partial visual deprivation and is a unique model for examining the consequences of the loss of binocularity. Partial deprivation of the visual system from the loss of one eye early in life results in behavioral and structural changes in the remaining senses, namely auditory and audiovisual systems. In the current study we use functional neuroimaging data to relate function and behavior of the audiovisual system in this rare patient group compared to controls viewing binocularly or with one eye patched. In Experiment 1, a whole brain analysis compared common regions of cortical activation between groups, for auditory, visual and audiovisual stimuli. People with one eye demonstrated a trend for increased activation for low-level audiovisual stimuli compared to patched viewing controls but did not differ from binocular viewing controls. In Experiment 2, a region of interest (ROI) analysis for auditory, visual, audiovisual and illusory McGurk stimuli revealed that people with one eye had an increased trend for left hemisphere audiovisual activation for McGurk stimuli compared to binocular viewing controls. This aligns with current behavioral analysis and previous research showing reduced McGurk Effect in people with one eye. Furthermore, there is no evidence of a correlation between behavioral performance on the McGurk Effect task and functional activation. Together with previous behavioral work, these functional data contribute to the broader understanding of cross-sensory effects of early sensory deprivation from eye enucleation. Overall, these results contribute to a better understanding of the sensory deficits experienced by people with one eye, as well as, the relationship between behavior, structure and function in order to better predict the outcome of early partial visual deafferentation.
Collapse
Affiliation(s)
- Stefania S Moro
- Department of Psychology, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| | - Diana J Gorbet
- Centre for Vision Research, York University, Toronto, ON, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Jennifer K E Steeves
- Department of Psychology, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
28
|
Kolarik AJ, Raman R, Moore BCJ, Cirstea S, Gopalakrishnan S, Pardhan S. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Sci Rep 2020; 10:7169. [PMID: 32346036 PMCID: PMC7189236 DOI: 10.1038/s41598-020-64306-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
Blindness leads to substantial enhancements in many auditory abilities, and deficits in others. It is unknown how severe visual losses need to be before changes in auditory abilities occur, or whether the relationship between severity of visual loss and changes in auditory abilities is proportional and systematic. Here we show that greater severity of visual loss is associated with increased auditory judgments of distance and room size. On average participants with severe visual losses perceived sounds to be twice as far away, and rooms to be three times larger, than sighted controls. Distance estimates for sighted controls were most accurate for closer sounds and least accurate for farther sounds. As the severity of visual impairment increased, accuracy decreased for closer sounds and increased for farther sounds. However, it is for closer sounds that accurate judgments are needed to guide rapid motor responses to auditory events, e.g. planning a safe path through a busy street to avoid collisions with other people, and falls. Interestingly, greater visual impairment severity was associated with more accurate room size estimates. The results support a new hypothesis that crossmodal calibration of audition by vision depends on the severity of visual loss.
Collapse
Affiliation(s)
- Andrew J Kolarik
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom. .,Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Rajiv Raman
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.,Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya Eye Hospital, Chennai, India
| | - Brian C J Moore
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.,Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Silvia Cirstea
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.,School of Computing and Information Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Sarika Gopalakrishnan
- Faculty of Low Vision Care, Elite School of Optometry, Chennai, India.,Low Vision Care Department, Sankara Nethralaya Eye Hospital, Chennai, India
| | - Shahina Pardhan
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
29
|
van der Heijden K, Formisano E, Valente G, Zhan M, Kupers R, de Gelder B. Reorganization of Sound Location Processing in the Auditory Cortex of Blind Humans. Cereb Cortex 2020; 30:1103-1116. [PMID: 31504283 DOI: 10.1093/cercor/bhz151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/27/2019] [Accepted: 06/16/2019] [Indexed: 11/12/2022] Open
Abstract
Auditory spatial tasks induce functional activation in the occipital-visual-cortex of early blind humans. Less is known about the effects of blindness on auditory spatial processing in the temporal-auditory-cortex. Here, we investigated spatial (azimuth) processing in congenitally and early blind humans with a phase-encoding functional magnetic resonance imaging (fMRI) paradigm. Our results show that functional activation in response to sounds in general-independent of sound location-was stronger in the occipital cortex but reduced in the medial temporal cortex of blind participants in comparison with sighted participants. Additionally, activation patterns for binaural spatial processing were different for sighted and blind participants in planum temporale. Finally, fMRI responses in the auditory cortex of blind individuals carried less information on sound azimuth position than those in sighted individuals, as assessed with a 2-channel, opponent coding model for the cortical representation of sound azimuth. These results indicate that early visual deprivation results in reorganization of binaural spatial processing in the auditory cortex and that blind individuals may rely on alternative mechanisms for processing azimuth position.
Collapse
Affiliation(s)
- Kiki van der Heijden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Elia Formisano
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands.,Maastricht Center for Systems Biology, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Giancarlo Valente
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Minye Zhan
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Ron Kupers
- BRAINlab and Neuropsychiatry Laboratory, Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar Street, New Haven, CT 06520, USA
| | - Beatrice de Gelder
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands.,Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
30
|
Gori M, Amadeo MB, Campus C. Spatial metric in blindness: behavioural and cortical processing. Neurosci Biobehav Rev 2020; 109:54-62. [PMID: 31899299 DOI: 10.1016/j.neubiorev.2019.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/30/2019] [Accepted: 12/29/2019] [Indexed: 11/29/2022]
Abstract
Visual modality dominates spatial perception and, in lack of vision, space representation might be altered. Here we review our work showing that blind individuals have a strong deficit when performing spatial bisection tasks (Gori et al., 2014). We also describe the neural correlates associated with this deficit, as blind individuals do not show the same ERP response mimicking the visual C1 reported in sighted people during spatial bisection (Campus et al., 2019). Interestingly, the deficit is not always evident in late blind individuals, and it is dependent on blindness duration. We report that the deficit disappears when one presents coherent temporal and spatial cues to blind people. This suggests that they may use time information to infer spatial maps (Gori et al., 2018). Finally, we propose a model to explain why blind individuals are impaired in this task, speculating that a lack of vision drives the construction of a multi-sensory cortical network that codes space based on temporal, rather than spatial, coordinates.
Collapse
Affiliation(s)
- Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano Di Tecnologia, Via E. Melen, 83, 16152 Genova, Italy.
| | - Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano Di Tecnologia, Via E. Melen, 83, 16152 Genova, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università Degli Studi Di Genova, via all'Opera Pia, 13, 16145 Genova, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano Di Tecnologia, Via E. Melen, 83, 16152 Genova, Italy
| |
Collapse
|
31
|
The Cross-Modal Effects of Sensory Deprivation on Spatial and Temporal Processes in Vision and Audition: A Systematic Review on Behavioral and Neuroimaging Research since 2000. Neural Plast 2019; 2019:9603469. [PMID: 31885540 PMCID: PMC6914961 DOI: 10.1155/2019/9603469] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/06/2019] [Accepted: 10/31/2019] [Indexed: 01/12/2023] Open
Abstract
One of the most significant effects of neural plasticity manifests in the case of sensory deprivation when cortical areas that were originally specialized for the functions of the deprived sense take over the processing of another modality. Vision and audition represent two important senses needed to navigate through space and time. Therefore, the current systematic review discusses the cross-modal behavioral and neural consequences of deafness and blindness by focusing on spatial and temporal processing abilities, respectively. In addition, movement processing is evaluated as compiling both spatial and temporal information. We examine whether the sense that is not primarily affected changes in its own properties or in the properties of the deprived modality (i.e., temporal processing as the main specialization of audition and spatial processing as the main specialization of vision). References to the metamodal organization, supramodal functioning, and the revised neural recycling theory are made to address global brain organization and plasticity principles. Generally, according to the reviewed studies, behavioral performance is enhanced in those aspects for which both the deprived and the overtaking senses provide adequate processing resources. Furthermore, the behavioral enhancements observed in the overtaking sense (i.e., vision in the case of deafness and audition in the case of blindness) are clearly limited by the processing resources of the overtaking modality. Thus, the brain regions that were previously recruited during the behavioral performance of the deprived sense now support a similar behavioral performance for the overtaking sense. This finding suggests a more input-unspecific and processing principle-based organization of the brain. Finally, we highlight the importance of controlling for and stating factors that might impact neural plasticity and the need for further research into visual temporal processing in deaf subjects.
Collapse
|
32
|
Shim HJ, Go G, Lee H, Choi SW, Won JH. Influence of Visual Deprivation on Auditory Spectral Resolution, Temporal Resolution, and Speech Perception. Front Neurosci 2019; 13:1200. [PMID: 31780886 PMCID: PMC6851016 DOI: 10.3389/fnins.2019.01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022] Open
Abstract
We evaluated whether blind subjects have advantages in auditory spectral resolution, temporal resolution, and speech perception in noise compared with sighted subjects. We also compared psychoacoustic performance between early blind (EB) subjects and late blind (LB) subjects. Nineteen EB subjects, 16 LB subjects, and 20 sighted individuals were enrolled. All subjects were right-handed with normal and symmetric hearing thresholds and without cognitive impairments. Three psychoacoustic measurements of the subjects’ right ears were performed via an inserted earphone to determine spectral-ripple discrimination (SRD), temporal modulation detection (TMD), and speech recognition threshold (SRT) in noisy conditions. Acoustic change complex (ACC) responses were recorded during passive listening to standard ripple-inverted ripple stimuli. EB subjects exhibited better SRD than did LB (p = 0.020) and sighted (p = 0.003) subjects. TMD was better in EB (p < 0.001) and LB (p = 0.007) subjects compared with sighted subjects. SRD was positively correlated with the duration of blindness (r = 0.386, p = 0.024). Acoustic change complex data for ripple noise change at the Cz and Fz electrodes showed trends toward significant correlations with the behavioral results. In conclusion, compared with sighted subjects, EB subjects showed advantages in terms of auditory spectral and temporal resolution, while LB subjects showed an advantage in temporal resolution exclusively. These findings suggest that it might take longer for auditory spectral resolution to functionally enhance following visual deprivation compared to temporal resolution. Alternatively, a critical period of very young age may be required for auditory spectral resolution to improve following visual deprivation.
Collapse
Affiliation(s)
- Hyun Joon Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea
| | - Geurim Go
- Department of Psychology, Duksung Women's University, Seoul, South Korea
| | - Heirim Lee
- Department of Psychology, Duksung Women's University, Seoul, South Korea
| | - Sung Won Choi
- Department of Psychology, Duksung Women's University, Seoul, South Korea
| | - Jong Ho Won
- Division of ENT, Sleep Disordered Breathing, Respiratory, and Anesthesia, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
33
|
Peter MG, Porada DK, Regenbogen C, Olsson MJ, Lundström JN. Sensory loss enhances multisensory integration performance. Cortex 2019; 120:116-130. [DOI: 10.1016/j.cortex.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
34
|
Sorokowska A, Sorokowski P, Karwowski M, Larsson M, Hummel T. Olfactory perception and blindness: a systematic review and meta-analysis. PSYCHOLOGICAL RESEARCH 2019; 83:1595-1611. [PMID: 29948185 PMCID: PMC6794238 DOI: 10.1007/s00426-018-1035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Anecdotal reports suggest that blind people might develop supra-normal olfactory abilities. However, scientific evidence shows a mixed pattern of findings. Inconsistent observations are reported for both sensory-driven olfactory tasks (e.g., odor threshold) and higher-order olfactory functions (e.g., odor identification). To quantify the evidence systematically, we conducted a review and meta-analysis. Studies were included if they examined olfactory function (i.e., odor threshold, odor discrimination, free odor identification, or cued odor identification) in blind compared with a sighted control group. Articles were identified through computerized literature search. A total of 18 studies focused on olfactory threshold (n = 1227: 590 blind and 637 sighted individuals), 14 studies targeted discrimination (n = 940: 455 blind and 485 sighted), 14 studies measured cued identification (n = 968: 468 blind and 500 sighted), and 7 studies (n = 443: 224 blind and 219 sighted individuals) assessed free identification. Overall, there were no differences in effect sizes between the blind and sighted individuals after correcting the results for publication bias. We additionally conducted an exploratory analysis targeting the role played by three moderators of interests: participants' age, the proportion of women versus men in each of the studies included into meta-analysis and onset of blindness (early blind vs. late-blind). However, none of the moderators affected the observed results. To conclude, blindness seems not to affect cued/free odor identification, odor discrimination or odor thresholds.
Collapse
Affiliation(s)
- Agnieszka Sorokowska
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Institute of Psychology, University of Wroclaw, pl. Dawida 1, 50-527 Wrocław, Poland
| | - Piotr Sorokowski
- Institute of Psychology, University of Wroclaw, pl. Dawida 1, 50-527 Wrocław, Poland
| | - Maciej Karwowski
- Institute of Psychology, University of Wroclaw, pl. Dawida 1, 50-527 Wrocław, Poland
| | - Maria Larsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Frescati Hagväg 9A, 10691 Stockholm, Sweden
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
35
|
Richardson M, Thar J, Alvarez J, Borchers J, Ward J, Hamilton-Fletcher G. How Much Spatial Information Is Lost in the Sensory Substitution Process? Comparing Visual, Tactile, and Auditory Approaches. Perception 2019; 48:1079-1103. [PMID: 31547778 DOI: 10.1177/0301006619873194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensory substitution devices (SSDs) can convey visuospatial information through spatialised auditory or tactile stimulation using wearable technology. However, the level of information loss associated with this transformation is unknown. In this study, novice users discriminated the location of two objects at 1.2 m using devices that transformed a 16 × 8-depth map into spatially distributed patterns of light, sound, or touch on the abdomen. Results showed that through active sensing, participants could discriminate the vertical position of objects to a visual angle of 1°, 14°, and 21°, and their distance to 2 cm, 8 cm, and 29 cm using these visual, auditory, and haptic SSDs, respectively. Visual SSDs significantly outperformed auditory and tactile SSDs on vertical localisation, whereas for depth perception, all devices significantly differed from one another (visual > auditory > haptic). Our findings highlight the high level of acuity possible for SSDs even with low spatial resolutions (e.g., 16 × 8) and quantify the level of information loss attributable to this transformation for the SSD user. Finally, we discuss ways of closing this “modality gap” found in SSDs and conclude that this process is best benchmarked against performance with SSDs that return to their primary modality (e.g., visuospatial into visual).
Collapse
Affiliation(s)
| | - Jan Thar
- Media Computing Group, RWTH Aachen University, Germany
| | - James Alvarez
- Department of Psychology, University of Sussex, Brighton, UK
| | - Jan Borchers
- Media Computing Group, RWTH Aachen University, Germany
| | - Jamie Ward
- Department of Psychology, University of Sussex, Brighton, UK; Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| | - Giles Hamilton-Fletcher
- Department of Psychology, University of Sussex, Brighton, UK; Neuroimaging and Visual Science Laboratory, New York University Langone Health, NY, USA
| |
Collapse
|
36
|
Feierabend M, Karnath HO, Lewald J. Auditory Space Perception in the Blind: Horizontal Sound Localization in Acoustically Simple and Complex Situations. Perception 2019; 48:1039-1057. [PMID: 31462156 DOI: 10.1177/0301006619872062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Jörg Lewald
- Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Germany; Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
37
|
Cuevas I, Plaza P, Rombaux P, Collignon O, De Volder AG, Renier L. Do People who Became Blind Early in Life Develop a Better Sense of Smell? A Psychophysical Study. JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2019. [DOI: 10.1177/0145482x1010400607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a set of psychophysical tests, we compared the olfactory abilities of 8 persons who became blind early in life and 16 sighted persons in a control group who were matched for age, sex, and handedness. The results indicated that those who became blind early in life developed compensatory perceptual mechanisms in the olfactory domain that involve basic sensory processes, such as the detection of odors.
Collapse
Affiliation(s)
- Isabel Cuevas
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Paula Plaza
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Phillippe Rombaux
- Department of Otorhinolaryngology, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200 Brussels, Belgium
| | - Olivier Collignon
- Neural Rehabilitation Engineering Laboratory, Universite catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Anne G. De Volder
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| | - Laurent Renier
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, Avenue Hippocrate, 54, UCL-54.46, B-1200 Brussels, Belgium
| |
Collapse
|
38
|
Cuppone AV, Cappagli G, Gori M. Audio Feedback Associated With Body Movement Enhances Audio and Somatosensory Spatial Representation. Front Integr Neurosci 2018; 12:37. [PMID: 30233334 PMCID: PMC6131311 DOI: 10.3389/fnint.2018.00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
In the last years, the positive impact of sensorimotor rehabilitation training on spatial abilities has been taken into account, e.g., providing evidence that combined multimodal compared to unimodal feedback improves responsiveness to spatial stimuli. To date, it still remains unclear to which extent spatial learning is influenced by training conditions. Here we investigated the effects of active and passive audio-motor training on spatial perception in the auditory and proprioceptive domains on 36 healthy young adults. First, to investigate the role of voluntary movements on spatial perception, we compared the effects of active vs. passive multimodal training on auditory and proprioceptive spatial localization. Second, to investigate the effectiveness of unimodal training conditions on spatial perception, we compared the impact of only proprioceptive or only auditory sensory feedback on spatial localization. Finally, to understand whether the positive effects of multimodal and unimodal trainings generalize to the untrained part, both dominant and non-dominant arms were tested. Results indicate that passive multimodal training (guided movement) is more beneficial than active multimodal training (active exploration) and only in passive condition the improvement is generalized also on the untrained hand. Moreover, we found that combined audio-motor training provides the strongest benefit because it significantly affects both auditory and somatosensory localization, while the effect of a single feedback modality is limited to a single domain, indicating a cross-modal influence of the two domains. Therefore, the use of multimodal feedback is more efficient in improving spatial perception. These results indicate that combined sensorimotor signals are effective in recalibrating auditory and proprioceptive spatial perception and that the beneficial effect is mainly due to the combination of auditory and proprioceptive spatial cues.
Collapse
Affiliation(s)
- Anna Vera Cuppone
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | |
Collapse
|
39
|
Temporal Cues Influence Space Estimations in Visually Impaired Individuals. iScience 2018; 6:319-326. [PMID: 30240622 PMCID: PMC6137691 DOI: 10.1016/j.isci.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/01/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Many works have highlighted enhanced auditory processing in blind individuals, suggesting that they compensate for lack of vision with greater sensitivity of the other senses. Few years ago, we demonstrated severely impaired auditory precision in congenitally blind individuals performing an auditory spatial metric task: their thresholds for bisecting three consecutive spatially distributed sounds were seriously compromised, ranging from three times typical thresholds to total randomness. Here, we show that the deficit disappears if blind individuals are presented with coherent temporal and spatial cues. More interestingly, when the audio information is presented in conflict for space and time, sighted individuals are unaffected by the perturbation, whereas blind individuals are strongly attracted by the temporal cue. These results highlight that temporal cues influence space estimations in blind participants, suggesting for the first time that blind individuals use temporal information to infer spatial environmental coordinates. Blind individuals are not able to perform auditory spatial metric tasks Their deficit disappears when coherent temporal and spatial cues are presented In some cases, blind people use temporal cues to infer spatial coordinates
Collapse
|
40
|
Aggius-Vella E, Campus C, Gori M. Different audio spatial metric representation around the body. Sci Rep 2018; 8:9383. [PMID: 29925849 PMCID: PMC6010478 DOI: 10.1038/s41598-018-27370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vision seems to have a pivotal role in developing spatial cognition. A recent approach, based on sensory calibration, has highlighted the role of vision in calibrating hearing in spatial tasks. It was shown that blind individuals have specific impairments during audio spatial bisection tasks. Vision is available only in the frontal space, leading to a "natural" blindness in the back. If vision is important for audio space calibration, then the auditory frontal space should be better represented than the back auditory space. In this study, we investigated this point by comparing frontal and back audio spatial metric representations. We measured precision in the spatial bisection task, for which vision seems to be fundamental to calibrate audition, in twenty-three sighted subjects. Two control tasks, a minimum audible angle and a temporal bisection were employed in order to evaluate auditory precision in the different regions considered. While no differences were observed between frontal and back space in the minimum audible angle (MAA) and temporal bisection task, a significant difference was found in the spatial bisection task, where subjects performed better in the frontal space. Our results are in agreement with the idea that vision is important in developing auditory spatial metric representation in sighted individuals.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- U-VIP: Unit for Visually Impaired people, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP: Unit for Visually Impaired people, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Monica Gori
- U-VIP: Unit for Visually Impaired people, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
41
|
Hamilton-Fletcher G, Pisanski K, Reby D, Stefańczyk M, Ward J, Sorokowska A. The role of visual experience in the emergence of cross-modal correspondences. Cognition 2018; 175:114-121. [DOI: 10.1016/j.cognition.2018.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/26/2022]
|
42
|
Sorokowska A, Oleszkiewicz A, Sorokowski P. A Compensatory Effect on Mate Selection? Importance of Auditory, Olfactory, and Tactile Cues in Partner Choice among Blind and Sighted Individuals. ARCHIVES OF SEXUAL BEHAVIOR 2018; 47:597-603. [PMID: 29396613 PMCID: PMC5834579 DOI: 10.1007/s10508-018-1156-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 05/30/2023]
Abstract
Human attractiveness is a potent social variable, and people assess their potential partners based on input from a range of sensory modalities. Among all sensory cues, visual signals are typically considered to be the most important and most salient source of information. However, it remains unclear how people without sight assess others. In the current study, we explored the relative importance of sensory modalities other than vision (smell, touch, and audition) in the assessment of same- and opposite-sex strangers. We specifically focused on possible sensory compensation in mate selection, defined as enhanced importance of modalities other than vision among blind individuals in their choice of potential partners. Data were obtained from a total of 119 participants, of whom 78 were blind people aged between 16 and 65 years (M = 42.4, SD = 12.6; 38 females) and a control sample of 41 sighted people aged between 20 and 64. As hypothesized, we observed a compensatory effect of blindness on auditory perception. Our data indicate that visual impairment increases the importance of audition in different types of social assessments for both sexes and in mate choice for blind men.
Collapse
Affiliation(s)
- Agnieszka Sorokowska
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstr. 74, Haus 5, Keller, 01307, Dresden, Germany.
- Institute of Psychology, University of Wroclaw, Wrocław, Poland.
| | - Anna Oleszkiewicz
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstr. 74, Haus 5, Keller, 01307, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | |
Collapse
|
43
|
Gurtubay-Antolin A, Rodríguez-Fornells A. Neurophysiological evidence for enhanced tactile acuity in early blindness in some but not all haptic tasks. Neuroimage 2017; 162:23-31. [PMID: 28843538 DOI: 10.1016/j.neuroimage.2017.08.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 10/19/2022] Open
Abstract
Previous research assessing the presence of enhanced tactile skills in early-blind (EB) population obtained conflicting results. Most of the studies relied on behavioral measures with which different mechanisms leading to the same outcome go unnoticed. Moreover, the scarce electrophysiological research that has been conducted focused exclusively on the processing of microgeometric properties. To clarify the extent of superior tactile abilities in EBs using high-density multichannel electrophysiological recordings, the present study compared the electrophysiological correlates of EBs and sighted controls (CON) in two tactile discrimination tasks that targeted microgeometric (texture) and macrogeometric (shape) properties. After a restricted exploration (haptic glance), participants judged whether a touched stimulus corresponded to an expected stimulus whose name had been previously presented aurally. In the texture discrimination task, differences between groups emerged at ∼75 ms (early perceptual processing stages) whereas we found no between-group differences during shape discrimination. Furthermore, for the first time, we were able to determine the latency at which EBs started to discriminate micro- (EB: 170 ms; CON: 230 ms) and macrogeometric (EB: 250 ms; CON: 270 ms) properties. Altogether, the results suggest different electrophysiological signatures during texture (but not shape) discrimination in EBs, possibly due to cortical reorganization in occipital areas and their increased connectivity with S1.
Collapse
Affiliation(s)
- Ane Gurtubay-Antolin
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute- IDIBELL, 08097, L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08097, Spain.
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute- IDIBELL, 08097, L'Hospitalet de Llobregat, Barcelona, Spain; Dept. of Cognition, Development and Education Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08097, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
44
|
Cambi J, Livi L, Livi W. Underwater Acoustic Source Localisation Among Blind and Sighted Scuba Divers: Comparative study. Sultan Qaboos Univ Med J 2017; 17:e168-e173. [PMID: 28690888 DOI: 10.18295/squmj.2016.17.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/26/2017] [Accepted: 03/09/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Many blind individuals demonstrate enhanced auditory spatial discrimination or localisation of sound sources in comparison to sighted subjects. However, this hypothesis has not yet been confirmed with regards to underwater spatial localisation. This study therefore aimed to investigate underwater acoustic source localisation among blind and sighted scuba divers. METHODS This study took place between February and June 2015 in Elba, Italy, and involved two experimental groups of divers with either acquired (n = 20) or congenital (n = 10) blindness and a control group of 30 sighted divers. Each subject took part in five attempts at an under-water acoustic source localisation task, in which the divers were requested to swim to the source of a sound originating from one of 24 potential locations. The control group had their sight obscured during the task. RESULTS The congenitally blind divers demonstrated significantly better underwater sound localisation compared to the control group or those with acquired blindness (P = 0.0007). In addition, there was a significant correlation between years of blindness and underwater sound localisation (P <0.0001). CONCLUSION Congenital blindness was found to positively affect the ability of a diver to recognise the source of a sound in an underwater environment. As the correct localisation of sounds underwater may help individuals to avoid imminent danger, divers should perform sound localisation tests during training sessions.
Collapse
Affiliation(s)
- Jacopo Cambi
- Department of Ear, Nose & Throat, University of Siena, Siena, Italy
| | - Ludovica Livi
- Department of Ear, Nose & Throat, University of Siena, Siena, Italy
| | - Walter Livi
- Department of Ear, Nose & Throat, University of Siena, Siena, Italy
| |
Collapse
|
45
|
Abstract
Visual information is extremely important to generate internal spatial representations. In the auditory modality, the absence of visual cues during early infancy does not preclude the development of some spatial strategies. However, specific spatial abilities might result impaired. In the current study, we investigated the effect of early visual deprivation on the ability to localize static and moving auditory stimuli by comparing sighted and early blind individuals' performance in different spatial tasks. We also examined perceptual stability in the two groups of participants by matching localization accuracy in a static and a dynamic head condition that involved rotational head movements. Sighted participants accurately localized static and moving sounds. Their localization ability remained unchanged after rotational movements of the head. Conversely, blind participants showed a leftward bias during the localization of static sounds and a little bias for moving sounds. Moreover, head movements induced a significant bias in the direction of head motion during the localization of moving sounds. These results suggest that internal spatial representations might be body-centered in blind individuals and that in sighted people the availability of visual cues during early infancy may affect sensory-motor interactions.
Collapse
|
46
|
Kolarik AJ, Raman R, Moore BCJ, Cirstea S, Gopalakrishnan S, Pardhan S. Partial Visual Loss Affects Self-reports of Hearing Abilities Measured Using a Modified Version of the Speech, Spatial, and Qualities of Hearing Questionnaire. Front Psychol 2017; 8:561. [PMID: 28446890 PMCID: PMC5388775 DOI: 10.3389/fpsyg.2017.00561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
We assessed how visually impaired (VI) people perceived their own auditory abilities using an established hearing questionnaire, the Speech, Spatial, and Qualities of Hearing Scale (SSQ), that was adapted to make it relevant and applicable to VI individuals by removing references to visual aspects while retaining the meaning of the original questions. The resulting questionnaire, the SSQvi, assessed perceived hearing ability in diverse situations including the ability to follow conversations with multiple speakers, assessing how far away a vehicle is, and the ability to perceptually segregate simultaneous sounds. The SSQvi was administered to 33 VI and 33 normally sighted participants. All participants had normal hearing or mild hearing loss, and all VI participants had some residual visual ability. VI participants gave significantly higher (better) scores than sighted participants for: (i) one speech question, indicating less difficulty in following a conversation that switches from one person to another, (ii) one spatial question, indicating less difficulty in localizing several talkers, (iii) three qualities questions, indicating less difficulty with segregating speech from music, hearing music more clearly, and better speech intelligibility in a car. These findings are consistent with the perceptual enhancement hypothesis, that certain auditory abilities are improved to help compensate for loss of vision, and show that full visual loss is not necessary for perceived changes in auditory ability to occur for a range of auditory situations. For all other questions, scores were not significantly different between the two groups. Questions related to effort, concentration, and ignoring distracting sounds were rated as most difficult for VI participants, as were situations involving divided-attention contexts with multiple streams of speech, following conversations in noise and in echoic environments, judging elevation or distance, and externalizing sounds. The questionnaire has potential clinical applications in assessing the success of clinical interventions and setting more realistic goals for intervention for those with auditory and/or visual losses. The results contribute toward providing benchmark scores for VI individuals.
Collapse
Affiliation(s)
- Andrew J Kolarik
- Vision and Eye Research Unit, Postgraduate Medical Institute, Anglia Ruskin UniversityCambridge, UK.,Department of Psychology, University of CambridgeCambridge, UK.,Centre for the Study of the Senses, Institute of Philosophy, University of LondonLondon, UK
| | - Rajiv Raman
- Vision and Eye Research Unit, Postgraduate Medical Institute, Anglia Ruskin UniversityCambridge, UK.,Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya Eye HospitalChennai, India
| | - Brian C J Moore
- Department of Psychology, University of CambridgeCambridge, UK
| | - Silvia Cirstea
- Vision and Eye Research Unit, Postgraduate Medical Institute, Anglia Ruskin UniversityCambridge, UK
| | | | - Shahina Pardhan
- Vision and Eye Research Unit, Postgraduate Medical Institute, Anglia Ruskin UniversityCambridge, UK
| |
Collapse
|
47
|
Cappagli G, Finocchietti S, Cocchi E, Gori M. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children. Front Psychol 2017; 8:467. [PMID: 28443040 PMCID: PMC5385626 DOI: 10.3389/fpsyg.2017.00467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 11/17/2022] Open
Abstract
The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion.
Collapse
Affiliation(s)
- Giulia Cappagli
- Unit for Visually Impaired People, Istituto Italiano di TecnologiaGenova, Italy
| | - Sara Finocchietti
- Unit for Visually Impaired People, Istituto Italiano di TecnologiaGenova, Italy
| | - Elena Cocchi
- Istituto David Chiossone per Ciechi ed IpovedentiGenova, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|
48
|
Finocchietti S, Cappagli G, Gori M. Auditory Spatial Recalibration in Congenital Blind Individuals. Front Neurosci 2017; 11:76. [PMID: 28261053 PMCID: PMC5309234 DOI: 10.3389/fnins.2017.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/02/2017] [Indexed: 11/13/2022] Open
Abstract
Blind individuals show impairments for auditory spatial skills that require complex spatial representation of the environment. We suggest that this is partially due to the egocentric frame of reference used by blind individuals. Here we investigate the possibility of reducing the mentioned auditory spatial impairments with an audio-motor training. Our hypothesis is that the association between a motor command and the corresponding movement's sensory feedback can provide an allocentric frame of reference and consequently help blind individuals in understanding complex spatial relationships. Subjects were required to localize the end point of a moving sound before and after either 2-min of audio-motor training or a complete rest. During the training, subjects were asked to move their hand, and consequently the sound source, to freely explore the space around the setup and the body. Both congenital blind (N = 20) and blindfolded healthy controls (N = 28) participated in the study. Results suggest that the audio-motor training was effective in improving space perception of blind individuals. The improvement was not observed in those subjects that did not perform the training. This study demonstrates that it is possible to recalibrate the auditory spatial representation in congenital blind individuals with a short audio-motor training and provides new insights for rehabilitation protocols in blind people.
Collapse
Affiliation(s)
- Sara Finocchietti
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia Genoa, Italy
| | - Giulia Cappagli
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia Genoa, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
49
|
Gori M, Cappagli G, Baud-Bovy G, Finocchietti S. Shape Perception and Navigation in Blind Adults. Front Psychol 2017; 8:10. [PMID: 28144226 PMCID: PMC5240028 DOI: 10.3389/fpsyg.2017.00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development.
Collapse
Affiliation(s)
- Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia Genoa, Italy
| | - Giulia Cappagli
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia Genoa, Italy
| | - Gabriel Baud-Bovy
- Robotics, Brain and Cognitive Science Department, Istituto Italiano di TecnologiaGenoa, Italy; The Unit of Experimental Psychology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele UniversityMilan, Italy
| | - Sara Finocchietti
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
50
|
Abstract
Valuable insights into the role played by visual experience in shaping spatial representations can be gained by studying the effects of visual deprivation on the remaining sensory modalities. For instance, it has long been debated how spatial hearing evolves in the absence of visual input. While several anecdotal accounts tend to associate complete blindness with exceptional hearing abilities, experimental evidence supporting such claims is, however, matched by nearly equal amounts of evidence documenting spatial hearing deficits. The purpose of this review is to summarize the key findings which support either enhancements or deficits in spatial hearing observed following visual loss and to provide a conceptual framework that isolates the specific conditions under which they occur. Available evidence will be examined in terms of spatial dimensions (horizontal, vertical, and depth perception) and in terms of frames of reference (egocentric and allocentric). Evidence suggests that while early blind individuals show superior spatial hearing in the horizontal plane, they also show significant deficits in the vertical plane. Potential explanations underlying these contrasting findings will be discussed. Early blind individuals also show spatial hearing impairments when performing tasks that require the use of an allocentric frame of reference. Results obtained with late-onset blind individuals suggest that early visual experience plays a key role in the development of both spatial hearing enhancements and deficits.
Collapse
Affiliation(s)
- Patrice Voss
- Cognitive Neuroscience Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute – McGill UniversityMontreal, QC, Canada
| |
Collapse
|