1
|
Gould S, Templin MV. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol Lett 2023; 384:14-29. [PMID: 37454775 DOI: 10.1016/j.toxlet.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Toxicology is an essential part of any drug development plan. Circumnavigating the risk of failure because of a toxicity issue can be a challenge, and failure in late development is extremely costly. To identify potential risks, it requires more than just understanding the biological target. The toxicologist needs to consider a compound's structure, it's physicochemical properties (including the impact of the overall formulation), as well as the biological target (e.g., receptor interactions). Understanding the impact of the physicochemical properties can be used to predict potential toxicities in advance by incorporating key endpoints in early screening strategies and/or used to compare toxicity profiles across lead candidates. This review discussed the risks of off-target and/or non-specific toxicities that may be associated with the physicochemical properties of compounds, especially those carrying dominant positive or negative charges, including amphiphilic small molecules, peptides, oligonucleotides and lipids/liposomes/lipid nanoparticles. The latter of which are being seen more and more in drug development, including the recent Covid pandemic, where mRNA and lipid nanoparticle technology is playing more of a role in vaccine development. The translation between non-clinical and clinical data is also considered, questioning how a physicochemical driven toxicity may be more universal across species, which means that such toxicity may be reassuringly translatable between species and as such, this information may also be considered as a support to the 3 R's, particularly in the early screening stages of a drug development plan.
Collapse
|
2
|
Yu XY, Jin X, Shou ZX. Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices. Drug Deliv 2021; 28:1995-2010. [PMID: 34569401 PMCID: PMC8477964 DOI: 10.1080/10717544.2021.1981492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the second most common and lethal cancer in the world. Chemotherapy is the preferred treatment modality for lung cancer and prolongs patient survival by effective controlling of tumor growth. However, owing to the nonspecific delivery of anticancer drugs, systemic chemotherapy has limited clinical efficacy and significant systemic adverse effects. Inhalation routes, on the other hand, allow for direct delivery of drugs to the lungs in high local concentrations, enhancing their anti-tumor activity with minimum side effects. Preliminary research studies have shown that inhaled chemotherapy may be tolerated with manageable adverse effects such as bronchospasm and cough. Enhancing the anticancer drugs deposition in tumor cells and limiting their distribution to other healthy cells will therefore increase their clinical efficacy and decrease their local and systemic toxicities. Because of the controlled release and localization of tumors, nanoparticle formulations are a viable option for the delivery of chemotherapeutics to lung cancers via inhalation. The respiratory tract physiology and lung clearance mechanisms are the key barriers to the effective deposition and preservation of inhaled nanoparticle formulations in the lungs. Designing and creating smart nanoformulations to optimize lung deposition, minimize pulmonary clearance, and improve cancerous tissue targeting have been the subject of recent research studies. This review focuses on recent examples of work in this area, along with the opportunities and challenges for the pulmonary delivery of smart nanoformulations to treat lung cancers.
Collapse
Affiliation(s)
- Xian-Yan Yu
- Department of Respiratory Medicine, Chun'an First People's Hospital, (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, PR China
| | - Xue Jin
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China
| | - Zhang-Xuan Shou
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
3
|
Lipid-Based Drug Delivery Nanoplatforms for Colorectal Cancer Therapy. NANOMATERIALS 2020; 10:nano10071424. [PMID: 32708193 PMCID: PMC7408503 DOI: 10.3390/nano10071424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is a prevalent disease worldwide, and patients at late stages of CRC often suffer from a high mortality rate after surgery. Adjuvant chemotherapeutics (ACs) have been extensively developed to improve the survival rate of such patients, but conventionally formulated ACs inevitably distribute toxic chemotherapeutic drugs to healthy organs and thus often trigger severe side effects. CRC cells may also develop drug resistance following repeat dosing of conventional ACs, limiting their effectiveness. Given these limitations, researchers have sought to use targeted drug delivery systems (DDSs), specifically the nanotechnology-based DDSs, to deliver the ACs. As lipid-based nanoplatforms have shown the potential to improve the efficacy and safety of various cytotoxic drugs (such as paclitaxel and vincristine) in the clinical treatment of gastric cancer and leukemia, the preclinical progress of lipid-based nanoplatforms has attracted increasing interest. The lipid-based nanoplatforms might be the most promising DDSs to succeed in entering a clinical trial for CRC treatment. This review will briefly examine the history of preclinical research on lipid-based nanoplatforms, summarize the current progress, and discuss the challenges and prospects of using such approaches in the treatment of CRC.
Collapse
|
4
|
Lai Y, Xu X, Zhu Z, Hua Z. Highly efficient siRNA transfection in macrophages using apoptotic body-mimic Ca-PS lipopolyplex. Int J Nanomedicine 2018; 13:6603-6623. [PMID: 30425477 PMCID: PMC6205523 DOI: 10.2147/ijn.s176991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The discovery and development of RNA interference has made a tremendous contribution to the biochemical and biomedical field. However, liposomal transfection protocols to deliver siRNAs to certain types of cells, eg, immune cells, are not viable due to exceedingly low transfection efficiency. While viral delivery and electroporation are two widely adopted approaches to transfect immune cells, they are associated with certain drawbacks such as complexity of preparation, biosafety issues, and high cytotoxicity. We believe amendments can be made to liposomal formulas and protocols to achieve a highly efficient knockdown of genes by liposome-loaded siRNAs. Aim The aim of this study was to use the apoptotic-mimic Ca-PS lipopolyplex to achieve highly efficient siRNA knockdown of genes in the hard-to-transfect macrophages with reduced cytotoxicity and more efficient cellular uptake. Results We devised an anionic liposomal formula containing phosphatidylserine to mimic the apoptotic body, the Ca-PS lipopolyplex. Ca-PS lipopolyplex was proven to be capable of delivering and effecting efficient gene knockdown in multiple cell lines at lowered cytotoxicity. Among the two types of macrophages, namely Ana-1 and bone-marrow derived macrophages, Ca-PS lipopolyplex showed an improvement in knockdown efficiency, as high as 157%, over Lipo2000. Further investigations revealed that Ca-PS promotes increased cellular uptake, lysosomal escape and localization of siRNAs to the perinuclear regions in macrophages. Lastly, transfection by Ca-PS lipopolyplex did not induce spontaneous polarization of macrophages. Conclusion The apoptotic body-mimic Ca-PS lipopolyplex is a stable, non-cytotoxic liposomal delivery system for siRNAs featuring vastly improved potency for macrophages and lowered cytotoxicity. It is speculated that Ca-PS lipopolyplex can be applied to other immune cells such as T cells and DC cells, but further research efforts are required to explore its promising potentials.
Collapse
Affiliation(s)
- Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Xuebo Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Zhenyu Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China,
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China, .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China,
| |
Collapse
|
5
|
Kaur G, Mehta S. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Gharpure KM, Wu SY, Li C, Lopez-Berestein G, Sood AK. Nanotechnology: Future of Oncotherapy. Clin Cancer Res 2016; 21:3121-30. [PMID: 26180057 DOI: 10.1158/1078-0432.ccr-14-1189] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise.
Collapse
Affiliation(s)
- Kshipra M Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chun Li
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
7
|
Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ, Rizvi MA, Kamal MA, Ahmad FJ. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 2015; 8:55-66. [PMID: 26640374 PMCID: PMC4657804 DOI: 10.2147/nsa.s49052] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Considering the challenges associated with conventional chemotherapy, targeted and local delivery of chemotherapeutics via nanoparticle (NP) carriers to the lungs is an emerging area of interest. Recent studies and growing clinical application in cancer nanotechnology showed the huge potential of NPs as drug carriers in cancer therapy, including in lung carcinoma for diagnosis, imaging, and theranostics. Researchers have confirmed that nanotechnology-based inhalation chemotherapy is viable and more effective than conventional chemotherapy, with lesser side effects. Recently, many nanocarriers have been investigated, including liposomes, polymeric micelles, polymeric NPs, solid lipid NPs, and inorganic NPs for inhalation treatments of lung cancer. Yet, the toxicity of such nanomaterials to the lungs tissues and further distribution to other organs due to systemic absorption on inhalation delivery is a debatable concern. Here, prospect of NPs-based local lung cancer targeting through inhalation route as well as its associated challenges are discussed.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India ; Centre de Biophysique Moléculaire(CBM)-CNRS UPR4301, University of Orléans, Orléans Cedex 2, France
| | - Md Rizwanullah
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Mahfoozur Rahman
- Department of Pharmaceutics, Abhilashi College of Pharmacy, Mandi, HP, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | | | - Mohammad A Kamal
- Metabolomics and Enzymology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India ; Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Phase I/II Study of Intrapleural Administration of a Serotype rh.10 Replication-Deficient Adeno-Associated Virus Gene Transfer Vector Expressing the Human α1-Antitrypsin cDNA to Individuals with α1-Antitrypsin Deficiency. HUM GENE THER CL DEV 2014; 25:112-33. [DOI: 10.1089/humc.2014.2513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
9
|
Zarogoulidis P, Chatzaki E, Porpodis K, Domvri K, Hohenforst-Schmidt W, Goldberg EP, Karamanos N, Zarogoulidis K. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomedicine 2012; 7:1551-72. [PMID: 22619512 PMCID: PMC3356182 DOI: 10.2147/ijn.s29997] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regional chemotherapy was first used for lung cancer 30 years ago. Since then, new methods of drug delivery and pharmaceuticals have been investigated in vitro, and in animals and humans. An extensive review of drug delivery systems, pharmaceuticals, patient monitoring, methods of enhancing inhaled drug deposition, safety and efficacy, and also additional applications of inhaled chemotherapy and its advantages and disadvantages are presented. Regional chemotherapy to the lung parenchyma for lung cancer is feasible and efficient. Safety depends on the chemotherapy agent delivered to the lungs and is dose-dependent and time-dependent. Further evaluation is needed to provide data regarding early lung cancer stages, and whether regional chemotherapy can be used as neoadjuvant or adjuvant treatment. Finally, inhaled chemotherapy could one day be administered at home with fewer systemic adverse effects.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu J, Anchordoquy TJ. Effects of moisture content on the storage stability of dried lipoplex formulations. J Pharm Sci 2009; 98:3278-89. [PMID: 19569198 DOI: 10.1002/jps.21846] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study is to investigate the effects of moisture content on the storage stability of freeze-dried lipoplex formulations. DC-Cholesterol: DOPE (dioleoyl phosphatidylethanolamine)/plasmid DNA lipoplexes were prepared at a 3-to-2 DC-Cholesterol(+) to DNA(-) molar ratio and lyophilized prior to storing at room temperature, 40, and 60 degrees C for 3 months. Different residual moistures (1.93%, 1.10%, 1.06%, and 0.36%) were obtained by altering the secondary drying temperatures. In addition to moisture content, lipoplex formulations were evaluated after freeze-drying and/ or storage for particle size, transfection efficiency, accumulation of thiobarbituric acid reactive substances (TBARS), glass transition temperature, DNA supercoil content, and surface area. Lipoplex formulations stored at room temperature for 3 months maintain TBARS concentrations and supercoil contents. At higher storage temperatures, formulations possessing the highest moisture content (1.93%) maintained significantly lower TBARS concentrations and higher supercoil content than those with the lowest (0.36%) moisture content. Curiously, the intermediate moisture contents exhibited marked differences in stability despite virtually identical moisture contents. Subsequent measurements of surface area indicated that the lower stability corresponded to higher surface area in the dried cake, suggesting that there may be an interplay between water content and surface area that contributes to storage stability.
Collapse
Affiliation(s)
- Jinxiang Yu
- School of Pharmacy, University of Colorado Denver, C238-P15, Research 2, 12700 E. 19th Avenue, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
11
|
Abstract
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA–containing therapeutic genes, anti-sense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is “leaky” and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.
Collapse
|
12
|
Abstract
Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.
Collapse
Affiliation(s)
- N Madhusudhana Rao
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
13
|
|
14
|
Stebelska K, Dubielecka PM, Sikorski AF. The effect of PS content on the ability of natural membranes to fuse with positively charged liposomes and lipoplexes. J Membr Biol 2006; 206:203-14. [PMID: 16456715 DOI: 10.1007/s00232-005-0793-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca(2+), indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.
Collapse
Affiliation(s)
- K Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | | | | |
Collapse
|
15
|
Lindner LH, Brock R, Arndt-Jovin D, Eibl H. Structural variation of cationic lipids: minimum requirement for improved oligonucleotide delivery into cells. J Control Release 2005; 110:444-456. [PMID: 16297484 DOI: 10.1016/j.jconrel.2005.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 10/11/2005] [Accepted: 10/13/2005] [Indexed: 01/13/2023]
Abstract
In vivo transfection efficiency (TE) using cationic liposome/oligonucleotide (ODN) complexes is often hampered by interactions with serum components. Novel cationic lipids with different hydroxyethyl or dihydroxypropyl ammonium backbones, esterified hydrocarbon chains and hydroxy substituents have been synthesized and applied in cationic liposome formulations with and without the helper lipid DOPE (1:1, m/m). Their properties for cellular ODN delivery were determined using fluorescently labeled ODNs (F-ODNs). Cationic lipids with hydrocarbon chains esterified to non-glycerol backbones in non-vicinal configuration were completely ineffective in nuclear ODN-delivery. Instead, an increased cytoplasmic localization of F-ODNs was observed. Cationic lipids equipped with only one hydrocarbon were completely incompetent for cellular ODN delivery. In the absence of serum, all cationic lipids tested with hydrocarbon chains in vicinal configuration esterified to a glycerol backbone (the respective N-(1,2-diacyl-dihydroxypropyl)-N,N,N-trimethyl-ammoniumchlorides or N-(1,2-diacyl-dihydroxypropyl)-N(hydroxyethyl)-N,N-dimethyl-ammoniumchlorides as well as N-(1,2-diacyl-dihydroxypropyl)-N(1,2-dihydroxypropyl)-N,N-dimethyl-ammoniumchlorides with lauroyl, myristoyl, palmitoyl, stearoyl and erucoyl chains) were able to transfect cells when combined with DOPE (20-80% nuclear fluorescence). Remarkably, only the analog esterified with two myristoyl chains was equally effective even in the absence of DOPE. By adding hydroxy groups to the N-alkyl residue, TE under serum conditions was improved yielding transfection rates of 55%, 75% and 90% for 0, 1 or 2 substituted hydroxy groups, respectively. For plasmid DNA, different requirements were identified. Again, the analog with two myristoyl chains was most effective but only in the presence of DOPE. However, the addition of hydroxy groups had no influence on the TE in the presence of serum.
Collapse
Affiliation(s)
- Lars H Lindner
- Max Planck Institute for Biophysical Chemistry, Phospholipid Research Group, Goettingen, Germany.
| | - Roland Brock
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Goettingen, Germany
| | - Donna Arndt-Jovin
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Goettingen, Germany
| | - Hansjoerg Eibl
- Max Planck Institute for Biophysical Chemistry, Phospholipid Research Group, Goettingen, Germany
| |
Collapse
|
16
|
Aparicio RM, José García-Celma M, Pilar Vinardell M, Mitjans M. In vitro studies of the hemolytic activity of microemulsions in human erythrocytes. J Pharm Biomed Anal 2005; 39:1063-7. [PMID: 16054795 DOI: 10.1016/j.jpba.2005.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/02/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Hemolytic activity in human erythrocytes as alternative to in vivo testing was used as a potential screening method to evaluate irritant potential of microemulsions for possible application in pharmaceutical and cosmetic formulations. Microemulsions were prepared by mixing surfactants and oil and slowly titrating the mixtures with aliquots of phosphate buffer saline or water. All microemulsions were characterized by dynamic light scattering to determine both the mean droplet size and droplet distribution. Microemulsion droplet size decreased as aqueous component increased. No differences in droplet size were observed between formulations containing phosphate buffered saline or water. The hemolytic activity was measured photometrically by the RBC assay, based in the cell membrane lysis, to estimate the potential irritation of both surfactants and microemulsions selected with water or PBS as aqueous component. The most hemolytic microemulsions corresponded to those containing the surfactant Labrasol, with or without butyl lactate, and no differences were found between the hemolytic activity between these components and microemulsions containing them. The highest hemolytic activity of microemulsions in this study may be attributed to the excipient used in the formulations. We should avoid the use of high amounts of Labrasol and butyl lactate in microemulsions because they may be potential irritants.
Collapse
Affiliation(s)
- Rosa M Aparicio
- Departament de Farmàcia i Tecnologia Farmacèutica, Unitat de Tecnologia Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
17
|
Choi WJ, Kim JK, Choi SH, Park JS, Ahn WS, Kim CK. Low toxicity of cationic lipid-based emulsion for gene transfer. Biomaterials 2004; 25:5893-903. [PMID: 15172502 DOI: 10.1016/j.biomaterials.2004.01.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Cationic liposome has been studied as one of the most promising non-viral gene delivery systems. However, it has major drawbacks such as the formation of large aggregates at higher concentrations and the instability in the serum due to cationic lipid. As an alternative gene delivery system, cationic emulsion was formulated and transfection efficiency was evaluated in vitro and in vivo, in comparison with cationic liposome. Cationic emulsion was prepared with varying compositions of 3 beta [N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol), dioleoylphosphatidyl ethanolamine (DOPE), caster oil and Tween 80. Cationic liposome was prepared with DC-Chol and DOPE. The particle size of all the DNA/lipid complexes varied from 150 to 230 nm. The in vitro transfection efficiency of plasmid DNA was assessed by the expression of green fluorescent protein as a reporter. Of various formulations, cationic emulsion E2 (DC-Chol/DOPE/Castor Oil/Tween 80 = 0.3:0.3:0.3:0.15) and cationic liposome L3 (DC-Chol/DOPE = 0.6:0.3) showed improved transfection. DNA/E2 complexes exhibited higher transfection efficiencies (17.39+/-0.58%) in comparison with DNA/L3 complexes (11.47+/-0.59%). DNA/E2 complexes also showed a better physical stability and a stronger serum resistance than DNA/L3 complexes. Moreover, the cytotoxicity of DNA/E2 complexes was comparable to that of DNA/L3 complexes. When DNA/lipid complexes were intravenously administered, DNA/E2 complexes showed a prolonged circulation in blood and mRNA expression in various tissues compared with DNA/L3 complexes. These results suggest that cationic emulsion E2 could be a potential gene delivery system in clinical approaches because of enhanced in vivo gene transfer with low toxicity.
Collapse
Affiliation(s)
- Woo-Jeong Choi
- National Research Lab for Drug and Gene Delivery, College of Pharmacy, Seoul National University, San 56-1 Shillim-dong Kwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Pinto LMA, Pereira R, de Paula E, de Nucci G, Santana MHA, Donato JL. Influence of liposomal local anesthetics on platelet aggregation in vitro. J Liposome Res 2004; 14:51-9. [PMID: 15461932 DOI: 10.1081/lpr-120039697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We assessed the effect of local anesthetics (LA) from different families such as esters (benzocaine), linear aminoamides (lidocaine) and cyclic aminoamides (bupivacaine) on the platelet aggregation induced by ADP. Liposomal formulations of the three LA, prepared with egg phosphatidylcholine:cholesterol alpha-tocopherol, were also tested. The three LA were able to inhibit platelet aggregation induced by ADP, in the following order: bupivacaine > lidocaine > benzocaine. After encapsulation into liposomes the inhibitory effect increased for all anesthetics studied, showing that aggregation tests could be used to assess the toxicity of new drug formulations.
Collapse
Affiliation(s)
- Luciana M A Pinto
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Wen J, Mao HQ, Li W, Lin KY, Leong KW. Biodegradable polyphosphoester micelles for gene delivery. J Pharm Sci 2004; 93:2142-57. [PMID: 15236461 DOI: 10.1002/jps.20121] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new biodegradable polyphosphoester, poly[[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate] (PCEP) was synthesized and investigated for gene delivery. Carrying a positive charge in its backbone and a lipophilic cholesterol structure in the side chain, PCEP self-assembled into micelles in aqueous buffer at room temperature with an average size of 60-100 nm. It could bind and protect plasmid DNA from nuclease digestion. Cell proliferation assay indicated a lower cytotoxicity for PCEP than for poly-L-lysine and Lipofectamine. The IC50 determined by the WST-1 assay was 69.8, 51.6, and 12.1 microg/mL for PCEP, Lipofectamine, and poly-L-lysine, respectively. PCEP efficiently delivered DNA to several cell lines such as HEK293, Caco-2, and HeLa. The highest efficiency was achieved when PCEP/DNA complex was prepared in Opti-MEM with a +/- charge ratio of 1.5-2. The transfection efficiency did not change significantly when the complex was used 3 days after preparation. The addition of chloroquine to the formulation increased transfection efficiency 10- to 50-fold compared to the complex alone. In vivo studies showed a luciferase expression by PCEP/DNA complexes in muscle increasing with time during 3 months, although the expression level was lower than that by direct injection of naked DNA. In addition to biodegradability and lower toxicity, the PCEP micelle carrier offers structural versatility. The backbone charge density and the side chain lipophilicity are two parameters that can be varied through copolymerization and monomer variation to optimize the transfection efficiency.
Collapse
Affiliation(s)
- Jie Wen
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
20
|
Rakhmanova VA, Pozharski EV, MacDonald RC. Mechanisms of Lipoplex Formation: Dependence of the Biological Properties ofTransfection Complexes on Formulation Procedures. J Membr Biol 2004; 200:35-45. [PMID: 15386158 DOI: 10.1007/s00232-004-0689-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/12/2004] [Indexed: 11/29/2022]
Abstract
Phospholipid-DNA complexes were made of the cationic triester derivative of phosphatidylcholine, EDOPC (1,2-dioleoyl- sn-glycero-3-ethylphosphocholine), by varying conditions of complex formation, in particular, the rate and direction of mixing, as well as by changing the mode of dispersing the lipid (extrusion or vortexing). The biological effects of variations in the formulation procedure were assessed by measuring transfection activity and cell association in cultures of BHK cells. Formulation procedures generally had little effect on cell association, but had marked effects on transfection efficiency. Transfection varied from effectively nil to extremely efficient with what appeared to be modest changes in formulation procedure. Formulation procedures also had significant effects on average sizes and size distributions of lipoplexes as determined by dynamic light scattering. Among the four possibilities of rapid or slow mixing combined with the two possible directions of mixing, slow addition of DNA to lipid gave results that differed significantly from the other three modes. In the case of vortexed lipid, the latter procedure was much less satisfactory than the other three, whereas in the case of extruded lipid, it was the only mode that produced satisfactory transfection. The factors that determine the difference in lipoplex properties can be identified as both geometric and physical. The geometric factor has to do with the symmetries of the participating units. There are three physical factors that are critical: the difference in vesicle stability upon interaction with DNA, the time dependence of interdiffusion of the components relative to that of vesicle rupture, and difference in input concentrations. These factors determine lipoplex size and, as already also shown by others, lipoplex size influences transfection efficiency.
Collapse
Affiliation(s)
- V A Rakhmanova
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | | | | |
Collapse
|
21
|
Choosakoonkriang S, Wiethoff CM, Koe GS, Koe JG, Anchordoquy TJ, Middaugh CR. An infrared spectroscopic study of the effect of hydration on cationic lipid/DNA complexes. J Pharm Sci 2003; 92:115-30. [PMID: 12486688 DOI: 10.1002/jps.10279] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared spectroscopy was used to examine the effect of dehydration on the structure of DNA and cationic lipid/DNA complexes (CLDCs). Information regarding the effect of hydration on the interface between the cationic lipids and DNA was obtained by following subtle but reproducible changes in vibrational bands arising from the DNA bases and phosphate backbone as well as bands from the lipid ester groups within the interfacial region of the bilayer. Dehydration of supercoiled plasmid DNA induces a transition from a B-conformation in solution to a mixed conformation in the dried state. Changes in vibrations of the bases upon drying suggest a change to an A-conformation whereas vibrations from the phosphate moieties suggest A- or C-forms. Vibrational changes in the ribose ring suggest adoption of a C-conformation. When CLDCs composed of either DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) or DDAB (dioctadecyldimethylammonium bromide) cationic lipids with or without equimolar amounts of the helper lipids cholesterol or DOPE (1,2-dioleoylphosphatidylethanolamin) are dried, the DNA is still able to undergo these structural transitions suggesting a nonrigid CLDC structure. The effect of dehydration on these interfacial interactions was found to be dependent on the type of cationic lipid used as well as the type of helper lipid. In addition, this work provides a simple spectroscopic analytical approach that can be used for the characterization of nonviral vectors that has potential pharmaceutical utility.
Collapse
Affiliation(s)
- Sirirat Choosakoonkriang
- The Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lee MJ, Cho SS, You JR, Lee Y, Kang BD, Choi JS, Park JW, Suh YL, Kim JA, Kim DK, Park JS. Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model. Gene Ther 2002; 9:859-66. [PMID: 12080380 DOI: 10.1038/sj.gt.3301704] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Accepted: 02/19/2002] [Indexed: 01/22/2023]
Abstract
We have previously synthesized a new cationic liposome that displays high efficiency and low toxicity, 3 beta[l-ornithinamide-carbamoyl] cholesterol (O-Chol), using solid-phase synthesis. In this study, O-Chol was applied to in vitro and in vivo models of ovarian cancer. Intraperitoneal gene delivery for peritoneal disseminated ovarian cancer in nude mice was achieved using a stable chloramphenicol acetyl transferase (CAT)-expressing ovarian cancer cell line (OV-CA-2774/CAT), which allowed us to quantify the exact tumor burden of organs. When luciferase and beta-galactosidase genes were used as reporter genes, O-Chol showed better efficiency than other commercial transfection reagents such as lipofectin, lipofectAMINE, DC-Chol, and FuGENE 6, both in vitro and in vivo. Moreover, the transfection efficiency of this new cationic lipid reagent remained high in serum-containing medium and under serum-free conditions. Furthermore, in vivo transfection with O-Chol showed high levels of gene expression specific to peritoneal tumor cells. Consequently, the O-Chol:DNA lipoplex appears to offer potential advantages over other commercial transfection reagents because of (1) its higher level of gene expression in vitro and in vivo; (2) its reduced susceptibility to serum inhibition; and (3) its highly selective transfection into tumor cells. These results suggest that the O-Chol:DNA lipoplex is a promising tool in gene therapy for patients with peritoneal disseminated ovarian cancer.
Collapse
Affiliation(s)
- M-J Lee
- School of Chemistry, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Furgeson DY, Cohen RN, Mahato RI, Kim SW. Novel water insoluble lipoparticulates for gene delivery. Pharm Res 2002; 19:382-90. [PMID: 12033368 DOI: 10.1023/a:1015166806366] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The objective was to design and prepare water insoluble lipoparticulates (ISLPs) for efficient gene delivery to lung tissue. METHODS Nona[(ethylenimine)-co-[(2-aminoethyl)-N-choleseteryl-oxycarbonyl-ethylenimine]] (NEACE-T) was synthesized in both its free-base and chloride salt-forms using linear polyethylenimine (PEI, Mw 423) as a headgroup and cholesteryl chloroformate as a hydrophobic lipid anchor resulting in a T-shaped lipononamer. Semitelechelic N(alpha)-cholesteryloxycarbonyl nona(ethylenimine) (st-NCNEI-L) was synthesized similarly resulting in a linear lipononamer. As confirmed by 1H-NMR, the site of conjugation was either a primary amine resulting in a linear configuration (st-NCNEI-L) or a secondary amine resulting in a T-shaped configuration (NEACE-T). ISLPs were prepared by combining NEACE-T or st-NCNEI-L with a co-lipid, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) at 1/1, 1/2, and 2/1 molar ratios and the lipoparticulates were hydrated and filtered. ISLP/p2CMVmIL-12 complexes were characterized for particle size, zeta potential, surface morphology, cytotoxicity, and in vitro transfection efficiency. RESULTS Transgene expression was dependent on the site of cholesterol conjugation, lipononamer:colipid molar ratio, and ISLP/ p2CMVmIL-12 charge ratios. ISLP/p2CMVmIL-12 complexes were nontoxic to murine colon adenocarcinoma (CT-26) cells at 9/1 (+/-) or lower, had a mean particle size of 330-400 nm while the zeta potential varied from 36-39 mV. Atomic force microscopy (AFM) showed the surface morphology to be that of an oblate spheroid with a size comparable to that determined by dynamic light scattering. ISLP/ p2CMVmIL-12 complexes prepared using free-base NEACE-T:DOPE (1/2) at charge ratios of 3/1 and 5/1 (+/-) provided the highest levels of transgene expression, 18 times more than the levels provided by the salt-form. Secreted levels of mIL-12 p70 were 75 times higher for ISLP/p2CMVmIL-12 complexes than naked p2CMVmIL-12 and nearly 4 times higher than PEI 25 kDa/p2CMVmIL-12 complexes. CONCLUSIONS The transfection efficiency of the ISLPs was dependent on the site of cholesterol conjugation, amount of colipid, and charge ratio. The highest levels of transgene expression were provided by NEACE-T:DOPE (1/2)/p2CMVmIL-12 at a 3/1 (+/-) charge ratio.
Collapse
Affiliation(s)
- Darin Y Furgeson
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, Salt Lake City, Utah 84112-5820, USA
| | | | | | | |
Collapse
|
24
|
Hyvönen Z, Plotniece A, Reine I, Chekavichus B, Duburs G, Urtti A. Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:451-66. [PMID: 11118554 DOI: 10.1016/s0005-2736(00)00327-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to find new efficient and safe agents for gene delivery, we have designed and synthesized nine novel single- and double-charged amphiphiles on the base of 1,4-dihydropyridine (1,4-DHP) ring. Some biophysical properties of the amphiphilic dihydropyridines and their complexes with DNA were examined. We investigated the transfer of beta-galactosidase gene into fibroblasts (CV1-P) and retinal pigment epithelial (D 4O7) cell lines in vitro. The structure-property relationships of the compounds were investigated in various ways. The net surface charges of 1,4-DHP liposomes were highly positive (25-49 mV). The double-charged compounds condensed DNA more efficiently than single-charged and the condensation increases with the increasing +/- charge ratio between the carrier and DNA. Double-charged compounds showed also buffering properties at endosomal pH and these compounds were more efficient in transfecting the cells, but transfection efficiency of amphiphiles was cell type-dependent. The length of alkyl chains in double-charged compounds affected the transfection efficacy. The most active amphiphile (compound VI) was double-charged and had two C(12) alkyl chains. At optimal charge ratio (+/- 4), it was 2.5 times more effective than PEI 25 and 10 times better than DOTAP, known efficient polymeric and liposomal transfection agents. Formulation of amphiphiles with DOPE did not change their activities. Our data demonstrate some important effects of amphiphile structure on biophysics and activity. The data also suggest that cationic amphiphilic 1,4-DHP derivatives may find use as DNA delivery system.
Collapse
Affiliation(s)
- Z Hyvönen
- Department of Pharmaceutics, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Piva R, del Senno L, Lambertini E, Penolazzi L, Nastruzzi C. Modulation of estrogen receptor gene transcription in breast cancer cells by liposome delivered decoy molecules. J Steroid Biochem Mol Biol 2000; 75:121-8. [PMID: 11226828 DOI: 10.1016/s0960-0760(00)00181-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is well known that breast carcinomas without estrogen receptor (ER) have a poor prognosis and do not respond to antiestrogenic therapy. In analyzing the question of the lack of ER gene expression, we have considered the possibility to modify the ER gene expression by transfecting ER-negative breast cancer cells with a polymerase chain reaction product mimicking a putative negative regulatory region (--3258/--3157) inside the P3 ER gene promoter. Here we have demonstrated the efficacy of the selected sequence used as a decoy molecule in restoring the ER gene transcription. When this DNA was complexed and delivered by cationic liposomes (PC:DOTAP) a significant increase in the decoy effect was obtained. Breast cancer cells receiving the combination treatment responded substantially better to reactivation of quiescent ER gene than cells that had received DNA with calcium phosphate. This information may be useful for a series of in vitro transfections and also for in vivo application of the decoy strategy that is a potential therapeutic tool to control disease-related genes such as ER gene in breast cancer.
Collapse
Affiliation(s)
- R Piva
- Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Via Luigi Borsari, 46 44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
26
|
Brown MD, Schätzlein A, Brownlie A, Jack V, Wang W, Tetley L, Gray AI, Uchegbu IF. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug Chem 2000; 11:880-91. [PMID: 11087338 DOI: 10.1021/bc000052d] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amino acid homopolymers, poly-L-lysine and poly-L-ornithine, have been modified by the covalent attachment of palmitoyl and methoxypoly(ethylene glycol) (mPEG) residues to produce a new class of amphiphilic polymers-PLP and POP, respectively. These amphiphilic amino acid based polymers have been found to assemble into polymeric vesicles in the presence of cholesterol. Representatives of this new class of polymeric vesicles have been evaluated in vitro as nonviral gene delivery systems with a view to finding delivery systems that combine effective gene expression with low toxicity in vivo. In addition, the drug-carrying capacity of these polymeric vesicles was evaluated with the model drug doxorubicin. Chemical characterization of the modified polymers was carried out using (1)H NMR spectroscopy and the trinitrobenzene sulfonic acid (TNBS) assay for amino groups. The amphiphilic polymers were found to have an unreacted amino acid, palmitoyl, mPEG ratio of 11:5:1, and polymeric vesicle formation was confirmed by freeze-fracture electron microscopy and drug encapsulation studies. The resulting polymeric vesicles, by virtue of the mPEG groups, bear a near neutral zeta-potential. In vitro biological testing revealed that POP and PLP vesicle-DNA complexes are about one to 2 orders of magnitude less cytotoxic than the parent polymer-DNA complexes although more haemolytic than the parent polymer-DNA complexes. The polymeric vesicles condense DNA at a polymer:DNA weight ratio of 5:1 or greater and the polymeric vesicle-DNA complexes improved gene transfer to human tumor cell lines in comparison to the parent homopolymers despite the absence of receptor specific ligands and lysosomotropic agents such as chloroquine.
Collapse
Affiliation(s)
- M D Brown
- Department of Pharmaceutical Sciences, University of Strathclyde, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang W, Ajmani PS, Meyer EM, Simpkins JW, Hughes JA. Pre-exposure of cells to cationic lipids enhances transgene delivery and expression in a tissue culture cell line. J Drug Target 2000; 7:207-11. [PMID: 10680976 DOI: 10.3109/10611869909085503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several factors influence non-viral transfection in tissue culture models including nature of the cationic lipid, plasmid construction, and DNA lipid complex, among others. The cell line itself is another confounding variable. Each subcellular population may respond independently to the transgene or specific delivery vector with regards to toxicity or transgene expression. In this study, the SKnSH (human neuroblastoma) and COS-1 (African green kidney) cells were exposed to three different treatments A, B, and C. Treatment A refers to cells obtained from American Type Culture Collection (ATCC) and cultivated as recommended, treatment B to cells that were grown in presence of cationic lipids for two weeks, and treatment C to cells that were grown in presence of cationic lipids for two weeks followed by normal media for two weeks to determine if lipid mediated effects were reversible. Treatment B resulted in a three-fold increase in transgene expression of a reporter gene as compared to the other treatments. This increase in transgene expression appeared not to be related to alterations in toxicity. Interestingly, the fluid phase endocytic uptake of fluorescently labeled oligonucleotides was increased in treatment B. However, there was no significant difference in the cellular-associated signal when fluorescently labeled plasmid-DNA was evaluated. In COS-1 cells, no difference in transfection was observed with treatment B illustrating that cell lines respond independently. In conclusion, pre-exposure of SKnSH cells to cationic liposomes (treatment B) resulted in higher transgene production.
Collapse
Affiliation(s)
- W Wang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
28
|
Capan Y, Woo BH, Gebrekidan S, Ahmed S, DeLuca PP. Stability of poly(L-lysine)-complexed plasmid DNA during mechanical stress and DNase I treatment. Pharm Dev Technol 1999; 4:491-8. [PMID: 10578502 DOI: 10.1081/pdt-100101386] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this study was to investigate the formation and stability of complexes between plasmid DNA (pDNA) and poly(L-lysine) (PLL). Formation of pDNA/PLL complexes with various ratios was determined by a fluorescence spectrophotometric method using fluorescamine. The effects of sonication, vortexing, and exposure to DNase I on the stability of free pDNA and pDNA/PLL complexes are discussed. A linear correlation between PLL added and PLL bound was obtained with overall reaction efficiency of 84.2-92.6%. Sonication degraded both free and PLL-complexed pDNA within 15 sec of vortexing. However, vortexing did not alter the stability of free and complexed pDNA. Dramatic increase in the protection of pDNA in pDNA/PLL complexes was observed in the DNase I digestion experiment; 68.1-89.0% of total pDNA in the pDNA/PLL complexes was protected from DNase I digestion compared to only 19.2% of total pDNA that remained undegraded after DNase I treatment of free pDNA. An increase in the PLL/pDNA ratio led to an increase in the protection of supercoiled pDNA; 15.5-38.2% of supercoiled pDNA pin PLL/pDNA complexes was protected after DNase I treatment. The results show that complexation of pDNA with PLL can stabilize the supercoiled structure of pDNA for the development of biodegradable microspheres as a delivery system for pDNA. Stability of pDNA/PLL complex can be monitored by PicoGreen dye and fluorescence densitometric assay methods.
Collapse
Affiliation(s)
- Y Capan
- University of Kentucky, College of Pharmacy, Faculty of Pharmaceutical Sciences, Lexington 40536, USA
| | | | | | | | | |
Collapse
|
29
|
Jumaa M, Müller BW. In vitro investigation of the effect of various isotonic substances in parenteral emulsions on human erythrocytes. Eur J Pharm Sci 1999; 9:207-12. [PMID: 10620733 DOI: 10.1016/s0928-0987(99)00059-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hemolytic behaviour of human erythrocytes in parenteral emulsions containing various isotonizing substances (xylitol, sorbitol and glycerol) was studied. It was found that complete hemolysis of human erythrocytes occurred in parenteral emulsions with isotonic or isosmotic concentration of glycerol after 5 min, whereas emulsions which contained an isotonic concentration of xylitol or sorbitol did not show any hemolysis after 40 min. Conversely, formulations with different concentrations of glycerol in an isotonic solution of sorbitol did not show any hemolytic behaviour after 40 min. It appeared that all the hemolytic phenomena encountered in glycerol were of an isotonic character since hemolysis was totally prevented by the inclusion of an isotonic concentration of sorbitol. According to these in vitro results it seems that glycerol, a commonly used substance in commercial parenteral emulsions, may not be the best isotonizing substance.
Collapse
Affiliation(s)
- M Jumaa
- Department of Pharmaceutics and Biopharmaceutics of Christian Albrecht University, Gutenbergstrasse 76, D-24118, Kiel, Germany
| | | |
Collapse
|
30
|
Cherng JY, Schuurmans-Nieuwenbroek NM, Jiskoot W, Talsma H, Zuidam NJ, Hennink WE, Crommelin DJ. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. J Control Release 1999; 60:343-53. [PMID: 10425339 DOI: 10.1016/s0168-3659(99)00089-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this paper the effect of the topology of plasmid DNA (supercoiled, open-circular and linear) on its binding characteristics with the polymeric transfectant poly((2-dimethylamino)ethyl methacrylate) was studied. The formed polyplexes were also evaluated for their transfection properties in vitro in two different cell lines. Anion-exchange chromatography was used for the separation of supercoiled and open-circular plasmid from a plasmid stock solution. Linear plasmids were prepared by endonucleases that cleaved the plasmid either in the promoter region or in a region not specific for expression (ampicillin resistance region). Plasmid DNA was also heat-denatured for 6 h at 70 degrees C, resulting in DNA mainly in the open-circular and oligomeric forms. The transfection of two different cell lines was dependent on the topology of the DNA in the order supercoiled>open-circular approximately heat-denatured>linear DNA prepared by cleaving in the nonspecific region>linear DNA prepared by cleaving in the promoter region. No differences in the size of the complexes or in the quenching of the DNA-intercalating fluorophore acridine orange were found as function of the topology. However, circular dichroism spectroscopy revealed differences between the topological plasmid species, both in the free form and in the presence of excess of cationic polymer.
Collapse
Affiliation(s)
- J Y Cherng
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80.082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NM, van Steenbergen MJ, Hennink WE. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug Chem 1999; 10:589-97. [PMID: 10411456 DOI: 10.1021/bc980148w] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of water-soluble cationic carriers was evaluated as transfectant. Almost all studied cationic methacrylate/methacrylamide polymers were able to condense the structure of plasmid DNA, yielding polymer/plasmid complexes (polyplexes) with a size of 0.1-0.3 micron and a slightly positive zeta-potential, which can be taken up by cells, e.g., via endocytosis. However, the transfection efficiency and the cytotoxicity of the polymers differed widely: the highest transfection efficiency and cytotoxicity were observed for poly[2-(dimethylamino)ethyl methacrylate], p(DMAEMA). Assuming that polyplexes enter cells via endocytosis, p(DMAEMA) apparently has advantageous properties to escape the endosome. A possible explanation is that, due to its average pK(a) value of 7.5, p(DMAEMA) is partially protonated at physiological pH and might behave as a proton sponge. This might cause a disruption of the endosome, which results in the release of both the polyplexes and cytotoxic endosomal/lysosomal enzymes into the cytosol. On the other hand, the analogues of p(DMAEMA) studied here have a higher average pKa value and have, consequently, a higher degree of protonation and a lower buffering capacity. This might be associated with a lower tendency to destabilize the endosome, resulting in both a lower transfection efficiency and a lower cytotoxicity. Furthermore, molecular modeling showed that, of all studied polymers, p(DMAEMA) has the lowest number of interactions with DNA. We therefore hypothesized that the superior transfection efficiency of p(DMAEMA) containing polyplexes can be ascribed to an intrinsic property of p(DMAEMA) to destabilize endosomes combined with an easy dissociation of the polyplex once present in the cytosol and/or the nucleus.
Collapse
Affiliation(s)
- P van de Wetering
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Abstract
The need for genotherapy to refocus its attention on to laboratory evaluation of better methods rather than proceeding to the clinic with semi-apt tools for genetic transfer has been highlighted in clinical study reports documented to date. Quintessential for tumour genotherapy is the ability to target abnormal cells, hence reducing exposure of normal cells to genetic material whilst maximizing gene dosage to tumour cells. This becomes increasingly important as genotherapy establishes itself in the clinic alongside the older modes of treatment. This review has discussed the applicability of lipoplexes for genotherapy of solid tumours. Lipoplexes have been used extensively for gene transfer into cells, such as cancerous cells, deficient for a certain gene product. While cationic liposomes have many advantages over other forms of delivery mechanisms, several problems hinder their use in-vivo. A closer examination of the physical limitations of current lipoplex preparations, the development and testing of novel formulations, combined with more attention to the cellular processes of cell membrane breaching and nuclear entry, may enhance gene delivery. Essential for tumour genotherapy is the ability to target these lipoplexes into tumour sites whilst reducing gene dosage to other normal tissues. Development of a better lipofection agent may indeed require a collaboration of the fields of physiology, cell biology, molecular biology, biochemistry, chemistry and membrane physics.
Collapse
Affiliation(s)
- C R Dass
- School of Biomedical Sciences, Charles Sturt University-Riverina, Wagga Wagga, Australia.
| | | |
Collapse
|