1
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
2
|
Mazucanti CH, Liu QR, Lang D, Huang N, O’Connell JF, Camandola S, Egan JM. Release of insulin produced by the choroid plexis is regulated by serotonergic signaling. JCI Insight 2019; 4:131682. [PMID: 31647782 PMCID: PMC6962018 DOI: 10.1172/jci.insight.131682] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The choroid plexus (ChP) is a highly vascularized tissue found in the brain ventricles, with an apical epithelial cell layer surrounding fenestrated capillaries. It is responsible for the production of most of the cerebrospinal fluid (CSF) in the ventricular system, subarachnoid space, and central canal of the spinal cord, while also constituting the blood-CSF barrier (BCSFB). In addition, epithelial cells of the ChP (EChP) synthesize neurotrophic factors and other signaling molecules that are released into the CSF. Here, we show that insulin is produced in EChP of mice and humans, and its expression and release are regulated by serotonin. Insulin mRNA and immune-reactive protein, including C-peptide, are present in EChP, as detected by several experimental approaches, and appear in much higher levels than any other brain region. Moreover, insulin is produced in primary cultured mouse EChP, and its release, albeit Ca2+ sensitive, is not regulated by glucose. Instead, activation of the 5HT2C receptor by serotonin treatment led to activation of IP3-sensitive channels and Ca2+ mobilization from intracellular storage, leading to insulin secretion. In vivo depletion of brain serotonin in the dorsal raphe nucleus negatively affected insulin expression in the ChP, suggesting an endogenous modulation of ChP insulin by serotonin. Here, we show for the first time to our knowledge that insulin is produced by EChP in the brain, and its release is modulated at least by serotonin but not glucose.
Collapse
|
3
|
Versteeg RI, Koopman KE, Booij J, Ackermans MT, Unmehopa UA, Fliers E, la Fleur SE, Serlie MJ. Serotonin Transporter Binding in the Diencephalon Is Reduced in Insulin-Resistant Obese Humans. Neuroendocrinology 2017; 105:141-149. [PMID: 27626923 PMCID: PMC5637289 DOI: 10.1159/000450549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Altered brain dopaminergic and serotonergic pathways have been shown in obese rodents and humans, but it is unknown whether this is related to obesity per se or to the metabolic derangements associated with obesity. METHODS We performed a case-control study in insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) subjects (n = 12) and age-matched lean controls (n = 8) and measured serotonin transporter (SERT) binding in the whole diencephalon and specifically in the hypothalamus, as well as dopamine transporter (DAT) binding in the striatum using 123I- FP-CIT single-photon emission computed tomography. We assessed insulin sensitivity using the homeostatic model assessment of insulin resistance. RESULTS BMI did not differ between the IRO and ISO subjects. SERT binding in the diencephalon was significantly lower in IRO than in ISO subjects, but was not different between lean and obese subjects. SERT binding in the hypothalamus tended to be reduced in obese versus lean subjects, but was not different between IRO and ISO subjects. Striatal DAT binding was similar between lean and obese subjects as well as between ISO and IRO subjects. CONCLUSIONS We conclude that SERT binding in the diencephalon is reduced in insulin-resistant subjects independently of body weight, while hypothalamic SERT binding tends to be lower in obesity, with no difference between insulin-resistant and insulin-sensitive subjects. This suggests that the metabolic perturbations associated with obesity independently affect SERT binding within the diencephalon.
Collapse
Affiliation(s)
| | | | | | - Mariëtte T. Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Mireille J. Serlie
- Department of Endocrinology and Metabolism
- *Mireille J. Serlie, Academic Medical Center, University of Amsterdam, Meibergdreef 9, NL-1105 AZ Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
4
|
Sestan-Pesa M, Horvath TL. Metabolism and Mental Illness. Trends Mol Med 2016; 22:174-183. [PMID: 26776095 DOI: 10.1016/j.molmed.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023]
Abstract
Over the past century, overwhelming evidence has emerged pointing to the hypothalamus of the central nervous system (CNS) as a crucial regulator of systemic control of metabolism, including appetite and feeding behavior. Appetite (or hunger) is a fundamental driver of survival, involving complex behaviors governed by various parts of the brain, including the cerebral cortex. Here, we provide an overview of basic metabolic principles affecting the CNS and discuss their relevance to physiological and pathological conditions of higher brain functions. These novel perspectives may well provide new insights into future research strategies to facilitate the development of novel therapies for treating mental illness.
Collapse
Affiliation(s)
- Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
A refined high carbohydrate diet is associated with changes in the serotonin pathway and visceral obesity. Genet Res (Camb) 2015; 97:e23. [PMID: 26707058 DOI: 10.1017/s0016672315000233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Consumption of palatable foods high in refined carbohydrate has been implicated as a contributing factor to the epidemic levels of obesity. Such foods may disrupt appetite regulation in the hypothalamus through alterations in hunger and satiety signalling. This investigation examined whether a palatable high refined carbohydrate (HRC) diet with the potential to induce obesity was linked to modulation of serotonin and dopamine signalling within the hypothalamus of rats. Male Wistar rats were allowed ad libitum access to either a palatable refined carbohydrate enriched (HRC) diet or standard chow (SC). Visceral fat percentage was used as a measure of the animals' weight gain during the trial. Real-time PCR was applied to determine any variation in levels of expression of the serotonin (Slc6A4 or Sert) and dopamine transporter (Slc6A3 or Dat) genes. After 29 weeks, the HRC group showed a significant increase in visceral fat percentage accompanied by increased expression of Sert. Higher levels of circulating triglycerides were also seen. This investigation determined that a refined high carbohydrate diet is associated with visceral obesity, increased circulating lipids in the blood and distorted serotonergic signalling, which possibly alters satiety and hunger signals.
Collapse
|
6
|
Versteeg RI, Serlie MJ, Kalsbeek A, la Fleur SE. Serotonin, a possible intermediate between disturbed circadian rhythms and metabolic disease. Neuroscience 2015; 301:155-67. [PMID: 26047725 DOI: 10.1016/j.neuroscience.2015.05.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 01/27/2023]
Abstract
It is evident that eating in misalignment with the biological clock (such as in shift work, eating late at night and skipping breakfast) is associated with increased risk for obesity and diabetes. The biological clock located in the suprachiasmatic nucleus dictates energy balance including feeding behavior and glucose metabolism. Besides eating and sleeping patterns, glucose metabolism also exhibits clear diurnal variations with higher blood glucose concentrations, glucose tolerance and insulin sensitivity prior to waking up. The daily variation in plasma glucose concentrations in rats, is independent of the rhythm in feeding behavior. On the other hand, feeding itself has profound effects on glucose metabolism, but differential effects occur depending on the time of the day. We here review data showing that a disturbed diurnal eating pattern results in alterations in glucose metabolism induced by a disrupted circadian clock. We first describe the role of central serotonin on feeding behavior and glucose metabolism and subsequently describe the effects of central serotonin on the circadian system. We next explore the interaction between the serotonergic system and the circadian clock in conditions of disrupted diurnal rhythms in feeding and how this might be involved in the metabolic dysregulation that occurs with chronodisruption.
Collapse
Affiliation(s)
- R I Versteeg
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - S E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
8
|
Wright T, Langley-Evans SC, Voigt JP. The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring. Physiol Behav 2011; 103:164-72. [DOI: 10.1016/j.physbeh.2011.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/22/2022]
|
9
|
Hernández L, Paredes D, Rada P. Feeding behavior as seen through the prism of brain microdialysis. Physiol Behav 2011; 104:47-56. [PMID: 21549733 DOI: 10.1016/j.physbeh.2011.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/28/2022]
Abstract
The knowledge of feeding behavior mechanisms gained through brain microdialysis is reviewed. Most of the chemical changes so far reported concern to the limbic system in rodents. A picture showing increases and decreases of extracellular neurotransmitters correlating to different aspects of feeding behavior is gradually emerging. Depending on the region, the same neurotransmitter may signal opposite aspects of feeding. Dopamine (DA) in the nucleus accumbens (NAC) correlates with food reward, stimulus saliency, and goal directed hyperlocomotion but in the ventromedial hypothalamus DA correlates with satiety and hypolocomotion. The findings accumulated in the last 25 years suggest that the control of a particular function relies on the interaction of several neurotransmitters rather than on a single neurotransmitter. The poor sensitivity of most analytical techniques hinders time and spatial resolution of microdialysis. Therefore, neurochemical correlates of short lasting behaviors are hard to figure out. As new and more sensitive analytical techniques are applied, new neurochemical correlates of feeding show up. Sometimes the proper analytical techniques are simply not available. As a consequence, critical signals such as neuropeptides are not yet completely placed in the puzzle. Despite such limitations, brain microdialysis has yielded a great deal of knowledge on the neurochemical basis of feeding.
Collapse
Affiliation(s)
- Luis Hernández
- Laboratory of Behavioral Physiology, School of Medicine, Universidad de los Andes, Mérida, Venezuela
| | | | | |
Collapse
|
10
|
Meal ingestion, amino acids and brain neurotransmitters: Effects of dietary protein source on serotonin and catecholamine synthesis rates. Physiol Behav 2009; 98:156-62. [DOI: 10.1016/j.physbeh.2009.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/10/2009] [Accepted: 05/11/2009] [Indexed: 11/21/2022]
|
11
|
Metabolic state, neurohormones, and vagal stimulation, not increased serotonin, orchestrate postprandial drowsiness. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.bihy.2009.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Dietary Modification of Brain Function: Effects on Neuroendocrine and Psychological Determinants of Mental Health‐ and Stress‐Related Disorders. Adv Clin Chem 2008; 45:99-138. [DOI: 10.1016/s0065-2423(07)00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Rouch C, Meile MJ, Gerozissis K. Persisting neural and endocrine modifications induced by a single fat meal. Cell Mol Neurobiol 2005; 25:995-1008. [PMID: 16392032 PMCID: PMC11529546 DOI: 10.1007/s10571-005-8470-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 05/11/2005] [Indexed: 11/25/2022]
Abstract
1. High-fat diets, modify the neuroendocrine response and, when prolonged, result in positive energy balance and obesity. Little is known about the effects of fat on the mechanisms operating in the initial steps of the neural and endocrine disturbances. 2. The studies reported here were designed to access the impact of the consumption of a single exclusively animal fat meal (lard), 24 h following its ingestion a) on the response of the hypothalamic serotonergic system to a standard laboratory chow meal and b) on the circulating levels of glucose, insulin, and leptin. The release of serotonin in the extracellular medial hypothalamic space (including the paraventricular-PVN and ventromedian-VMH nuclei) was determined using electrochemical detection following HPLC in samples obtained in vivo by microdialysis, in nonanesthetized adult male Wistar rats. 3. A lard meal resulted in decreased hypothalamic serotonin release postprandially and attenuated (24 h later) the hypothalamic serotonin response that normally follows a balanced meal. 4. In permanently catheterized rats, postprandial glucose and insulin levels measured in samples obtained in vivo, were either not, or only slightly, modified after a lard meal, whereas plasma leptin levels were increased. Interestingly, 24 h after a meal, insulin and leptin levels were increased in those animals eating a fat meal compared with those eating chow. Next-day glucose levels remained identical after the absorption either of a chow, or a lard meal. 5. The changes induced by the fat meal on peripheral and central regulators of energy and glucose homeostasis represent either adaptive mechanisms or early alterations that could render the organism vulnerable to further insults.
Collapse
Affiliation(s)
| | | | - Kyriaki Gerozissis
- CNRS UMR, 7059, Paris, France
- CNRS UMR, 7059, University Paris 7, 2 Place Jussieu, case 7126, 75251 Paris, France
| |
Collapse
|
14
|
Orosco M, Rouch C, Beslot F, Feurte S, Regnault A, Dauge V. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behav Brain Res 2004; 148:1-10. [PMID: 14684242 DOI: 10.1016/s0166-4328(03)00153-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among food proteins, alpha-lactalbumin (LAC) has the highest ratio of tryptophan (Trp) over its competitor amino acids. Consequently, contrary to casein (CAS), LAC ingestion increases Trp access to the brain leading to enhanced serotonin (5-HT) synthesis. As an index of serotonergic activity, we assessed extracellular 5-HT in response to LAC ingestion, using microdialysis, and performed behavioural tests in rats in order to characterise the suggested improvements of mood observed in humans after ingestion of this protein. Rats were fed with diets enriched either in LAC or CAS as control, acutely (30 min meals) or chronically (3 and 6 days). A 30 min LAC meal significantly increased 5-HT release in the medial hypothalamus. This effect disappeared after 3 and 6 days of diet. The basal premeal 5-HT levels were increasingly enhanced by the LAC diet. Compared to a CAS meal, LAC increased the percentage of time spent on the open arms of the elevated plus maze and the number of visits to the centre of the open field, suggesting an anxiolytic-like effect. A single LAC meal decreased sucrose consumption, while 3 or 6 days diets enhanced it, reflecting an appetitive and/or rewarding action. In conclusion, LAC ingestion induces anxiolytic-like and rewarding effects possibly related to serotonergic activation. Shifting transiently, the commonly consumed CAS-enriched to LAC-enriched diets may induce beneficial effects on mood.
Collapse
Affiliation(s)
- Martine Orosco
- CNRS UMR 7059, Université Paris 7, Case 7126, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
15
|
Rouch C, Meile MJ, Orosco M. Extracellular hypothalamic serotonin and plasma amino acids in response to sequential carbohydrate and protein meals. Nutr Neurosci 2003; 6:117-24. [PMID: 12722987 DOI: 10.1080/1028415031000079676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In previous studies, we showed that carbohydrate and protein ingestion, respectively, increased and decreased hypothalamic extracellular serotonin and the plasma ratio tryptophan over its competitor amino acids (Trp/LNAAs), reflecting serotonin synthesis. Serotonin levels returned towards baseline 2 h after either meal while the ratio remained altered. The question addressed is the ability of serotonin to respond expectedly to a second meal of the alternate nutrient. Rats were fed with sequential meals of either carbohydrates first and then casein 2 h later or in reverse order. Hypothalamic serotonin was measured using microdialysis. Permanent blood sampling allowed to track in parallel plasma amino acids. A carbohydrate meal increased hypothalamic serotonin, so did a subsequent casein meal. Conversely, following a casein meal that reduced serotonin, a carbohydrate meal also decreased it. The plasma ratio Trp/LNAAs was enhanced by a carbohydrate meal and remained high for 2h. A subsequent casein meal reversed this change but the ratio remained higher than basal values. A first casein meal reduced the ratio that was not increased again by a subsequent carbohydrate meal. It is obvious that ingestion of specific nutrients induce long-lasting metabolic and neurochemical variations that prevent subsequent changes to occur. The lack of expected changes to a second meal addresses again the hypothesis of alternate appetites for carbohydrates and proteins driven by serotonin changes.
Collapse
Affiliation(s)
- C Rouch
- Physiopathologie de la Nutrition, CNRS UMR 7059, Case 71 26, Université Paris 7, 2, Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
16
|
Smriga M, Kameishi M, Tanaka T, Kondoh T, Torii K. Preference for a solution of branched-chain amino acids plus glutamine and arginine correlates with free running activity in rats: involvement of serotonergic-dependent processes of lateral hypothalamus. Nutr Neurosci 2002; 5:189-99. [PMID: 12041875 DOI: 10.1080/10284150290028936] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rats were given free access to a running wheel, food, water, and a solution composed of branched-chain amino acids plus glutamine and arginine (the "BCAA-based" solution). A positive relationship between dark-period running distance and preference for the BCAA-based solution was observed. Serotonin release in the lateral hypothalamus, the central nucleus of amygdala and the medial nucleus raphe in overnight fluid-deprived rats during their first subsequent free drinking was also measured. A lowered serotonin release in the lateral hypothalamus characterized the rats that consumed the BCAA-based solution. No drink-related changes were observed in the amygdala. A separate group of rats was trained on a treadmill. Following the training period, plasma amino acids and brain serotonin release were measured during running. The BCAA-based solution infused before running elevated the branched chain amino acids/tryptophan plasma ratio at the end of, and after, running. Additionally, a decreased lateral hypothalamus serotonin release was seen 80 min after running, when compared with water-infused rats. No fluid-related changes in the amygdala were observed. The exercise-related shift in the fluid preference towards a BCAA-based solution suggests an ergogenic benefit. The forced-running study shows the lateral hypothalamus as a critical region in the effects of a BCAA-based solution.
Collapse
Affiliation(s)
- Miro Smriga
- Ajinomoto Co. Inc., Central Research Laboratories, Kawasaki, Japan.
| | | | | | | | | |
Collapse
|
17
|
Orosco M, Rouch C, Daugé V. Behavioral responses to ingestion of different sources of fat. Involvement of serotonin? Behav Brain Res 2002; 132:103-9. [PMID: 11853863 DOI: 10.1016/s0166-4328(01)00397-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In previous experiments, we described a decrease in extracellular hypothalamic serotonin, 5-hydroxy-tryptamine (5-HT), in response to ingestion of a lard meal. This effect was related to the low satiating potency of lard as compared with other nutrients. Since the composition in fatty acids might be important for these effects, the purpose of this study was to analyze the neurochemical and behavioral responses to ingestion of different sources of fat. Unique meals of three margarines used in human feeding were compared with a meal of lard with regard to their effects on hypothalamic 5-HT, satiety, anxiety-like behavior and sucrose consumption. A vegetable margarine with a high content in saturated fatty acids also decreased hypothalamic 5-HT while ingestion of a sunflower oil and an olive oil enriched margarines, both high in polyunsaturated fatty acids, did not affect significantly 5-HT levels. However, these two last ones were not the most satiating. The olive oil margarine induced a tendency to an anxiety-like behavior while lard increased sucrose consumption. Thus, ingestion of fats may alter specifically behavioral responses. The involvement of 5-HT is likely in the case of lard ingestion but probably not for the other sources of fat.
Collapse
Affiliation(s)
- Martine Orosco
- Physiopathologie de la Nutrition, CNRS ESA 7059, Université Paris 7, 2, Place Jussieu, 75251 Paris, Cedex 05, France.
| | | | | |
Collapse
|
18
|
Rouch C, Nicolaidis S, Orosco M. Effects of pure macronutrient ingestion on plasma tryptophan and large neutral amino acids. Nutr Neurosci 2002; 4:63-73. [PMID: 11842877 DOI: 10.1080/1028415x.2001.11747351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role of tryptophan and its competitor large neutral amino acids, proposed earlier for serotonin synthesis following carbohydrate or protein ingestion, was reassessed in relation to a recent study investigating serotonin release, including the so far unknown effects of fats. In the present study, meals of either carbohydrates, casein, or lard, were supplied to rats for 30 min and blood samples collected every 15 min to follow the changes in plasma large neutral amino acids. In response to carbohydrates, amino acid levels fell and the ratio tryptophan over sum of other amino acids increased. Following casein ingestion, all amino acids were enhanced, tryptophan somewhat less, leading to a decreased ratio. The lard meal induced a slight decrease in some amino acids while the ratio remained constant. Only in response to casein, and partly to carbohydrates, did a consistent relation appear between the previously observed serotonin changes and the ratio. These data suggest that a relationship between the ratio and the previously observed serotonin changes is not always encountered because the release is not obligatorily coupled to synthesis and is subject to behavioral influences. It remains that serotonin release is affected by the composition of the meal through peripheral metabolic mechanisms.
Collapse
Affiliation(s)
- C Rouch
- Physiopathologie de la Nutrition, CNRS ESA 7059, Université Paris 7, Paris, France
| | | | | |
Collapse
|
19
|
Kaplan RJ, Greenwood CE, Winocur G, Wolever TM. Dietary protein, carbohydrate, and fat enhance memory performance in the healthy elderly. Am J Clin Nutr 2001; 74:687-93. [PMID: 11684539 DOI: 10.1093/ajcn/74.5.687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary carbohydrates can improve memory. Whether these effects are related to elevations in blood glucose or to energy ingestion is unknown. OBJECTIVES Our objectives were to determine 1) the influence of isoenergetic protein-, carbohydrate-, and fat-containing drinks on cognitive performance and 2) whether the time period after ingestion affects cognition. DESIGN After fasting overnight, 11 men and 11 women aged 61-79 y consumed either a 300-mL drink containing 774 kJ as pure protein (whey), carbohydrate (glucose), or fat (safflower oil) or a nonenergy placebo on 4 separate mornings. Cognitive tests were administered 15 and 60 min after ingestion of the drinks. Plasma glucose and serum insulin concentrations were measured. RESULTS Only the carbohydrate drink increased blood glucose (P < 0.0001). Compared with the placebo, all 3 macronutrients improved delayed paragraph recall (PR) (P < 0.001) and improved or tended to improve immediate PR (P < 0.04) 15 min after ingestion. Beneficial effects on other cognitive tests were confined to one or more of the macronutrients: carbohydrate improved Trail Making Test (Trails) performance at 60 min (P = 0.02) and tended to improve Trails at 15 min (P = 0.04) and PR at 60 min in men, carbohydrate and fat improved or tended to improve performance on Trails at 15 and 60 min in subjects with poor baseline scores (r > -0.41, P < 0.03), fat tended to improve attention at 60 min (P < 0.05), and protein reduced the rate of forgetting on the PR at 15 min (P = 0.002). CONCLUSIONS Energy intake from protein, carbohydrate, or fat can enhance memory independently of elevations in blood glucose. Each macronutrient may also exert unique effects on cognition.
Collapse
Affiliation(s)
- R J Kaplan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
20
|
Béquet F, Gomez-Merino D, Berthelot M, Guezennec CY. Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: effect of glucose supplementation. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:223-30. [PMID: 11683680 DOI: 10.1046/j.1365-201x.2001.00859.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to assess extracellular glucose changes in hippocampus in response to physical exercise and to determine the influence of glucose supplementation. In the same time, we have observed the changes in serotonin, in order to study the relationship between glucose and serotonin during exercise. Both glucose and serotonin were assessed using microdialysis. Exercise induced an increase in extracellular glucose levels over baseline during exercise to 121.1 +/- 3.0% (P < 0.001), then a decrease to baseline during recovery. The serotonin followed glucose changes during the first 90 min of exercise, but followed a different pattern during recovery, increasing to a maximum of 129.9 +/- 7.0% after 30 min of recovery (P < 0.001). When a 15% glucose solution was infused (10 microL x min(-1)) during exercise and recovery, blood glucose concentration was increased, but extracellular brain glucose decreased to reach a minimum of 73.3 +/- 4.6% after 90 min of recovery (P < 0.001). Serotonin was always the mirror-reflect of cerebral glucose, with a maximum increase of 142.0 +/- 6.9% after 90 min of recovery (P < 0.001). These results show that exercise induces changes in brain glucose and 5-hydroxytryptamine (5-HT) levels, which were dramatically modified by glucose infusion. Taking into account the implication of brain 5-HT in central fatigue, they suggest that if glucose supplementation, before and during exercise, undoubtedly increase performance because of its peripheral positive action, it would have a negative impact on the quality of recovery after the end of the exercise.
Collapse
Affiliation(s)
- F Béquet
- Department of Physiology, IMASSA, Brétigny-sur-Orge Cedex, France
| | | | | | | |
Collapse
|
21
|
Smolders I, Loo JV, Sarre S, Ebinger G, Michotte Y. Effects of dietary sucrose on hippocampal serotonin release: a microdialysis study in the freely-moving rat. Br J Nutr 2001; 86:151-5. [PMID: 11502227 DOI: 10.1079/bjn2001360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of dietary supplementation with either sucrose or starch (50 g/kg regular food for 2 weeks) on central 5-hydroxytryptamine (5HT; serotonin) release were investigated in freely-moving rats. It has been suggested that the amount of transmitter that serotoninergic neurons release might be altered by food intake. We monitored the effects of sucrose and starch on concentrations of extracellular 5HT, its metabolite 5-hydroxyindoleacetic acid (5HIAA), gamma-aminobutyric acid (GABA) and dopamine in the hippocampus, using in vivo microdialysis. The major finding was that baseline levels of extracellular hippocampal 5HT in rats with ad libitum access to food supplemented with sucrose were significantly higher compared with the starch control group. We then verified that sucrose supplementation affected the potency of S(+)fenfluramine to increase hippocampal 5HT levels. In both groups of rats, acute intraperitoneal injection (1 mg/kg) of this anorectic drug induced a response curve of the extracellular hippocampal 5HT levels, with a shape that corresponded with earlier data for different brain areas often using up to 10-fold higher doses of S(+)fenfluramine. Nevertheless, we showed that throughout the experiment the absolute values of the sucrose response curve remained higher than in the starch group. On the other hand, S(+)fenfluramine exerted longer lasting effects in the starch group, as compared with the sucrose group. Significant decreases in levels of extracellular hippocampal 5HIAA levels following S(+)fenfluramine administration were simultaneously observed. A practical implication of the present findings is that dietary sucrose may bias the results of studies investigating brain serotoninergic mechanisms and the effects of (anorectic) drugs interacting with 5HT systems in the hippocampus.
Collapse
Affiliation(s)
- I Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
22
|
Gerozissis K, Rouch C, Lemierre S, Nicolaidis S, Orosco M. A potential role of central insulin in learning and memory related to feeding. Cell Mol Neurobiol 2001; 21:389-401. [PMID: 11775068 PMCID: PMC11533830 DOI: 10.1023/a:1012606206116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Hypothalamic insulin (HI) is well known for its role in feeding regulation. In addition, its concentration is modified in response to meals. Recent studies suggest that brain insulin participates in memory processes, possibly through stimulation by glucose. 2. The present microdialysis study focused on local in vivo regulation of HI by glucose and on the effects of aging on HI, since aging is characterized by deterioration of memory, body weight regulation, and central glucose utilization. Glucose (8 mM) infused for 5 min increased extracellular HI levels rapidly, by 4.6-fold, and cerebellar insulin levels by 0.4-fold only, suggesting a specific area-dependent regulation of HI by glucose. Neither insulinemia nor glycemia were affected, suggesting a central mechanism. The same dose of glucose induced a modest (0.4-fold), delayed (45 min) increase in hypothalamic serotonin, suggesting that the effect of glucose on HI is independent of a previously defined local serotonin-induced insulin release. HI levels in old normal weight rats were half the levels of young rats. In genetically old obese (fa/fa) Zucker rats, HI concentration was 30% of that in young normal rats, suggesting a deterioration of HI availability when aging and obesity are combined. 3. The above results, in line with recent considerations on a potential role of central insulin in learning and memory, suggest particular effects of HI on feeding and memory and probably on a specific "memory for food."
Collapse
Affiliation(s)
- K Gerozissis
- Laboratoire de Physiopathologie de la Nutrition, Université Paris 7, France.
| | | | | | | | | |
Collapse
|
23
|
Buwalda B, Blom WA, Koolhaas JM, van Dijk G. Behavioral and physiological responses to stress are affected by high-fat feeding in male rats. Physiol Behav 2001; 73:371-7. [PMID: 11438364 DOI: 10.1016/s0031-9384(01)00493-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between monoaminergic neurochemistry and macronutrient intake have been frequently shown. Because monoaminergic systems in the brain are also closely involved in behavioral and physiological stress responses it can be hypothesized that differences in the macronutrient composition of diets are reflected in these responses. The present studies, therefore, were designed to assess the consequences of a change in dietary macronutrient composition on a variety of physiological and behavioral responses (both acute and long-term) to a number of stressors. The effect of chronic high-fat (HF; 61% kcal from fat) feeding on the stress responses was compared with controls receiving regular high-carbohydrate (HC; 63% kcal from carbohydrates) laboratory chow. Rats were kept on this diet for at least 2 months before they were exposed to either psychological (social defeat) or physiological (lipopolysaccharide, LPS, administration) stress. At baseline, chronic HF feeding caused a slight, but significantly reduction in body temperature relative to that observed in HC-fed rats. Following social defeat or LPS injection, HF feeding caused a faster recovery of the body temperature increase relative to animals on the HC diet. Stress-induced suppression of home cage locomotor activity and body weight gain were also reduced by HF feeding. The serotonergic 5-HT(1a) receptor hyposensitivity that was observed in HC-fed rats 2 weeks after stress was absent in the HF regimen. Although the present results cannot be readily interpreted as showing purely beneficial effects of high-fat diets on stress responsivity, the findings in the present study do encourage further investigation of possible ameliorating effects of high-fat diets on aspects of the behavioral and physiological response stress.
Collapse
Affiliation(s)
- B Buwalda
- Department of Animal Physiology, University of Groningen, PO Box 14, 9750 AA Haren, Netherlands.
| | | | | | | |
Collapse
|
24
|
Fetissov SO, Meguid MM, Chen C, Miyata G. Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience 2001; 101:657-63. [PMID: 11113314 DOI: 10.1016/s0306-4522(00)00374-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A positive linear correlation between dopamine and serotonin release was found in the ventromedial hypothalamus and in the lateral hypothalamic area in fasting rats and in fed rats during intermeal intervals. Dopamine release in the ventromedial hypothalamus positively correlated with dopamine and serotonin release in the lateral hypothalamic area, which occurred only during intermeal intervals and was non-significant during the meal consumption periods or during fasting. Meal size correlated significantly only with a decrease in serotonin release in the lateral hypothalamic area. The study was designed to evaluate the relationship between dopamine and serotonin release in these hypothalamic areas and their dependence on feeding status. Microdialysis was performed simultaneously via two probes, one in the ventromedial hypothalamus and the other in the contralateral lateral hypothalamic area, of freely moving male lean Zucker rats over 24h with preserved light and dark phase, either with ad libitum access to food and water, or when no food was available. Dopamine and serotonin concentrations were measured by high-performance liquid chromatography with electrochemical detection in 20-min dialysis samples. Time-series analysis was applied to determine linear correlations between monoamines and in relation to food intake. Data showed that release of dopamine and serotonin is synchronized within the ventromedial hypothalamus and lateral hypothalamic area, particularly in the dark phase and when no food was ingested. However, synchronized release of monoamines between these nuclei occurred only during intermeal intervals: the periods of satiety. These findings suggest a tight relationship between dopaminergic and serotonergic systems of the lateral hypothalamic area and ventromedial hypothalamus, which is influenced by the feeding state and which may be involved in maintaining the balance within and between the centers of the parasympathetic and sympathetic nervous systems. The data also illustate that food intake is coupled unequivocally to the release of dopamine and serotonin in the hypothalamus, suggesting it as a mechanism of activation of postsynaptic neurons associated with new metabolic status.
Collapse
Affiliation(s)
- S O Fetissov
- Neuroscience Program, Surgical Metabolism and Nutrition Laboratory, Department of Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
25
|
Orosco M, Gerozissis K. Macronutrient-induced cascade of events leading to parallel changes in hypothalamic serotonin and insulin. Neurosci Biobehav Rev 2001; 25:167-74. [PMID: 11323081 DOI: 10.1016/s0149-7634(01)00004-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular serotonin (5-HT) and insulin from hypothalamic PVN-VMH region follow parallel changes in response to specific macronutrient ingestion. Possible independent or causal mechanisms have been investigated. A common primary event might be pancreatic insulin secretion for both insulin entry into the brain and 5-HT synthesis through variations in the ratio of tryptophan over competitor amino acids. The steps of this cascade were found to account only partly for the changes in hypothalamic 5-HT and insulin. The central consequences of these metabolic effects may be modulated directly at the hypothalamic level. For instance, we observed a positive relation between the changes in insulin and 5-HT and the satiating potency of each nutrient. In addition, a direct action of dexfenfluramine on insulin has been found at the hypothalamic level showing that an activation of the serotonergic system immediately enhances insulin levels. This central event may be an important step in a cascade of events triggered by macronutrient ingestion leading to common hypothalamic insulin and 5-HT changes involved in feeding regulation.
Collapse
Affiliation(s)
- M Orosco
- Physiopathologie de la Nutrition, CNRS ESA 7059, Université Paris 7, 2 place Jussieu, 75251 Cedex 05, Paris, France.
| | | |
Collapse
|
26
|
Choi YH, Fletcher PJ, Anderson GH. Extracellular amino acid profiles in the paraventricular nucleus of the rat hypothalamus are influenced by diet composition. Brain Res 2001; 892:320-8. [PMID: 11172779 DOI: 10.1016/s0006-8993(00)03267-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One possible mechanism by which food consumption signals feeding centers is through the resulting changes in amino acid profiles in the brain. In this study we examined the effect of voluntary consumption of a 50% protein diet or a 0% protein (carbohydrate) diet on extracellular amino acid profiles in the hypothalamic paraventricular nucleus (PVN) of freely moving rats from 1800 to 2100 h. Dialysates were continuously collected via microdialysis probes inserted in the PVN at 1500 h. Extracellular concentrations of isoleucine, leucine, methionine, tyrosine and valine were elevated within the first or second 20 min following the start of the 50% protein diet (P<0.05). The ratio of tryptophan to the total branched-chain amino acids (BCAA) in extracellular fluid increased following consumption of the carbohydrate diet (P<0.05), but decreased after the protein diet. An elevated ratio of tyrosine to BCAA was observed at the end of the measurement following the protein-free meal. It is concluded that amino acid concentrations in extracellular fluid of the PVN change rapidly after food consumption and that the changes are influenced by dietary composition.
Collapse
Affiliation(s)
- Y H Choi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | | | |
Collapse
|
27
|
Meguid MM, Fetissov SO, Varma M, Sato T, Zhang L, Laviano A, Rossi-Fanelli F. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 2000; 16:843-57. [PMID: 11054589 DOI: 10.1016/s0899-9007(00)00449-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because daily food intake is the product of the size of a meal and the frequency of meals ingested, the characteristic of meal size to meal number during a 24-h light-dark cycle constitutes an identifiable pattern specific to normal states and obesity and that occurs during early cancer anorexia. An understanding of simultaneous changes in meal size and meal number (constituting a change in feeding patterns) as opposed to an understanding of only food intake provides a more insightful dynamic picture reflecting integrated behavior. We have correlated this to simultaneous changes in dopamine and serotonin concentrations and to their postsynaptic receptors, focusing simultaneously on two discrete hypothalamic food-intake-related nuclei, in response to the ingestion of food. The relation between concentrations of dopamine and serotonin limited to the lateral hypothalamic area (LHA) and the ventromedial nucleus (VMN) as they relate to the influence of meal size and meal number during the hyperphagia of obesity and anorexia of cancer as measured in our experiments are discussed. Based on these data, conceptual models are proposed concerning: 1) an "afferent-efferent neurotransmitter unit," with facilitatory or inhibitory neuropeptide properties to generate an appropriate neuroendocrine and neuronal response that ultimately modifies food intake; 2) initiation and termination of a meal, thereby determining the number and size of a meal under normal conditions; and 3) a schema integrating the onset mechanism of cancer anorexia. Nicotine is used as a tool to further explore the relation of meal size to meal number, with a focus on simultaneous changes in dopamine and serotonin concentrations in the LHA and VMN with the onset of acute anorexia of nicotine infusion and acute hyperphagia of nicotine cessation. Data concerning the role of sex-related hormones on dopamine and serotonin with regard to the LHA and VMN in relation to the modulation of food intake are also presented.
Collapse
Affiliation(s)
- M M Meguid
- Neuroscience Program, Surgical Metabolism and Nutrition Laboratory, Department of Surgery, University Hospital, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Orosco M, Rouch C, Gerozissis K. Activation of hypothalamic insulin by serotonin is the primary event of the insulin-serotonin interaction involved in the control of feeding. Brain Res 2000; 872:64-70. [PMID: 10924676 DOI: 10.1016/s0006-8993(00)02449-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous experiments, we reported a close parallelism in the responses of both serotonin (5-HT) and insulin in the hypothalamic PVN-VMH region of freely-moving rats during feeding. Thus, hypothalamic 5-HT and insulin may participate, independently or in interaction, in the control of carbohydrate and fat ingestion. The precedence of the activation of one or the other substance remained to be investigated. In adult male Wistar rats, (a) dexfenfluramine was administered to the PVN-VMH region by reverse microdialysis (80 microM for 10 min) while local insulin was assessed; (b) insulin was locally infused (400 mU for 10 min) through the tip of the dialysis probe while 5-HT was measured. Dexfenfluramine immediately increased 5-HT release, and also extracellular insulin levels (+102%). This activation of insulin by serotonin is actually a central effect since neither insulinemia nor glycemia were affected. Conversely, insulin enhanced 5-HT release (+81%), but only 45 min after the beginning of its infusion. Noradrenaline, dopamine and metabolites were slightly or not at all modified by insulin. These data demonstrate that an interaction does exist between insulin and 5-HT in the VMH-PVN area. Because of the delay of 5-HT response to insulin, an activation of the serotonergic system would be the causal event acting immediately on insulin, and not the contrary. Whatever the exact mechanism of this interaction, it seems to be a link in a larger cascade of events involving numerous neurotransmitters and peptides leading to the regulation of feeding.
Collapse
Affiliation(s)
- M Orosco
- Laboratoire de Physiopathologie de la Nutrition, CNRS ESA 7059, case 7126, Université Paris 7, 2 place Jussieu, 75251, Cedex 05, Paris, France.
| | | | | |
Collapse
|
29
|
Cai XJ, Lister CA, Buckingham RE, Pickavance L, Wilding J, Arch JR, Wilson S, Williams G. Down-regulation of orexin gene expression by severe obesity in the rats: studies in Zucker fatty and zucker diabetic fatty rats and effects of rosiglitazone. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:131-7. [PMID: 10814839 DOI: 10.1016/s0169-328x(00)00041-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Orexins (hypocretins) are lateral hypothalamic neuropeptides implicated in regulating feeding and the sleep-wake cycle. To study their possible relevance to obesity and diabetes, we measured hypothalamic prepro-orexin mRNA levels in obese, normoglycemic Zucker fatty (fa/fa) and in hyperglycemic, non-obese Zucker diabetic fatty (ZDF) rats. Hypothalamic prepro-orexin mRNA concentrations in Zucker fatty rats were 31% lower than those in lean controls (0. 69+/-0.06 vs. 1.00+/-0.10 arbitrary units, P<0.05), but did not differ between ZDF diabetic rats and non-diabetic controls. Treatment of ZDF diabetic rats with rosiglitazone (1 or 3 mg/kg body weight daily for 13 weeks) normalized plasma glucose and significantly reduced plasma insulin, while leptin levels were 67% higher than in untreated ZDF rats (20.2+/-0.5 vs. 12.1+/-2.5, P<0. 001). Rosiglitazone treatment markedly enhanced weight gain compared with untreated ZDF rats (final weight 732+/-13 g vs. 409+/-13 g, P<0. 001) even though they were restricted to the same food intake. Rosiglitazone-treated ZDF rats had significantly lower hypothalamic prepro-orexin mRNA levels (0.68+/-0.07 arbitrary units) than both non-diabetic lean controls (1.00+/-0.10, P=0.02) and untreated diabetics (1.03+/-0.14, P=0.03). Our data suggest that prepro-orexin gene expression may be suppressed by substantial weight gain. Obesity-related signals that might mediate this effect have not been identified, but plasma leptin, insulin and glucose are not obviously involved.
Collapse
Affiliation(s)
- X J Cai
- Diabetes and Endocrinology Research Group, Department of Medicine, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fetissov SO, Meguid MM, Shafiroff M, Miyata G, Torelli GF. Dopamine in the VMN of the hypothalamus is important for diurnal distribution of eating in obese male Zucker rats. Nutrition 2000; 16:65-6. [PMID: 10674238 DOI: 10.1016/s0899-9007(99)00205-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Wang J, Dourmashkin JT, Yun R, Leibowitz SF. Rapid changes in hypothalamic neuropeptide Y produced by carbohydrate-rich meals that enhance corticosterone and glucose levels. Brain Res 1999; 848:124-36. [PMID: 10612704 DOI: 10.1016/s0006-8993(99)02040-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prior studies have demonstrated that chronic consumption over several weeks of a high-carbohydrate (65%) diet, compared to a moderate-carbohydrate (45%) or low-carbohydrate (15%) diet, potentiates the expression, synthesis and release of hypothalamic NPY. This effect occurs specifically in neurons of the arcuate nucleus (ARC) which project to the paraventricular nucleus (PVN). In the present experiments, tests involving acute manipulations were conducted to determine whether such diet-induced changes in NPY can occur rapidly, perhaps within 1-2 h, and whether these effects can be linked to specific changes in circulating glucoregulatory hormones or glucose itself., In adult, albino rats maintained on lab chow, the acute manipulations included the presentation of either a high-carbohydrate, moderate-carbohydrate or high-fat diet for 90 min at the onset of the natural feeding cycle. They also involved manipulations of glucose itself, either through the ingestion of a glucose (20%) solution in a drinking tube or intraperitoneal injection of a glucose solution (10%). After a high-carbohydrate meal compared to a moderate-carbohydrate or high-fat meal, NPY gene expression examined via in situ hybridization is found to be significantly enhanced in the ARC. The high-carbohydrate meal also potentiates NPY immunoreactivity in the ARC and PVN but has little effect on NPY in other hypothalamic areas examined and actually causes a reduction in the feeding-stimulatory peptide, galanin, specifically in the PVN. The meal-induced increase in NPY is associated with specific endocrine patterns, as revealed by measurements in serum collected from trunk blood or from rats implanted with a chronic jugular catheter. After a high-carbohydrate meal, levels of glucose, together with corticosterone and insulin, are significantly elevated, while non-esterified fatty acids are reduced. A possible effect of circulating glucose on hypothalamic NPY is further suggested by the finding that the consumption or a single injection of a glucose solution at the onset of the feeding cycle similarly elevates NPY mRNA and peptide immunoreactivity in the ARC and PVN. These results demonstrate that hypothalamic NPY can change rapidly in response to dietary carbohydrate. They also suggest that this effect may be related to changes in circulating CORT as well as to the availability or utilization of glucose.
Collapse
Affiliation(s)
- J Wang
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|