1
|
Kumar P, Divya, Kayastha AM. Exploring the catalytic potential of watermelon urease: Purification, biochemical characterization, and heavy metal precipitation. Int J Biol Macromol 2024; 282:136798. [PMID: 39442844 DOI: 10.1016/j.ijbiomac.2024.136798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Bioactive urease from watermelon (Citrullus lanatus) seeds was purified using acetone fractionation, anion-exchange, and size-exclusion chromatography, achieving a 121-fold increase and specific activity of 3216 U/mg. The enzyme appeared as a single band on native and SDS-PAGE, with a molecular mass of 480 ± 10 kDa and subunit mass of 80 ± 10 kDa, indicating six identical subunits. Atomic absorption spectroscopy revealed 1.46 nickel ions per subunit. Watermelon urease exhibited serological similarities with jack bean and pigeon pea ureases, an optimal pH of 7.3, an activation energy of 3 kcal/mol, Vmax of 3571 μmol/min/mg, and Km of 0.16 mM. The enzyme displayed biphasic thermal and pH inactivation kinetics, a strong preference for urea, and a half-life of 70 days with 1 mM DTT. This study highlights watermelon urease's role in bioremediation by facilitating the precipitation of heavy metals as stable carbonates, promoting environmental sustainability.
Collapse
Affiliation(s)
- Prince Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Divya
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Tatsuke T, Tomita S. Differential expression of fibroin-related genes in middle silk glands is induced by dietary differences in a strain-dependent manner in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104695. [PMID: 39154710 DOI: 10.1016/j.jinsphys.2024.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The silkworm (Bombyx mori) is a model organism for lepidopteran insects. It is an oligophagous insect that primarily feeds on mulberry leaves and has industrial use for the production of raw silk. The development of artificial diets has provided an alternative nutrient source for silkworms; however, one significant issue is that the production of cocoons is lower in silkworms reared on artificial diets compared with those reared on mulberry leaves. The differences in the silk gland in the late-stage fifth instar silkworm larvae, when silk synthesis is most active, between those raised on artificial diets and mulberry leaves, are unknown. In this study, we identified differences in the transcriptomes of the middle and posterior silk glands of fifth instar day five silkworm larvae reared on artificial diets compared with those reared on mulberry leaves using three strains: Daizo, Nichi01, and J137 × C146. We found that the silk-related genes fibrohexamerin (fhx), fibroin-light-chain (fibL), and fibroin-heavy-chain (fibH) in the middle silk gland, and ser1 in the posterior silk gland, were differentially expressed in a strain-dependent manner. In silkworms reared on artificial diets, fhx, fibL, and fibH in the middle silk gland were upregulated in Nichi01 and downregulated in J137 × C146, whereas ser1 in the posterior silk gland was upregulated in J137 × C146 compared with silkworms reared on mulberry leaves. Our results demonstrate that the diet and strain of silkworm larvae affect the expression of genes related to silk production in their silk glands during the late fifth instar stage.
Collapse
Affiliation(s)
- Tsuneyuki Tatsuke
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Shuichiro Tomita
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
3
|
Sindi AM, Zaman U, Saleh EAM, Kassem AF, Rahman KU, Khan SU, Alharbi M, Rizg WY, Omar KM, Majrashi MAA, Safhi AY, Abdelrahman EA. Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications. Int J Biol Macromol 2024; 259:129190. [PMID: 38185304 DOI: 10.1016/j.ijbiomac.2023.129190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.
Collapse
Affiliation(s)
- Amal M Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Asmaa F Kassem
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Khalil Ur Rahman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Shahid Ullah Khan
- Integrative Science Centre of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KP, Pakistan
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled Mohamed Omar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
4
|
Loharch S, Berlicki Ł. Rational Development of Bacterial Ureases Inhibitors. CHEM REC 2022; 22:e202200026. [PMID: 35502852 DOI: 10.1002/tcr.202200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Indexed: 12/23/2022]
Abstract
Urease, an enzyme that catalyzes the hydrolysis of urea, is a virulence factor of various pathogenic bacteria. In particular, Helicobacter pylori, that colonizes the digestive tract and Proteus spp., that can infect the urinary tract, are related to urease activity. Therefore, urease inhibitors are considered as potential therapeutics against these infections. This review describes current knowledge of the structures, activity, and biological importance of bacterial ureases. Moreover, the structure-based design of several classes of bacterial urease inhibitors is presented and discussed. Phosphinic and phosphonic acids were applied as transition-state analogues, while Michael acceptors and ebselen derivatives were applied as covalent binders of cysteine residue. This review incorporates bacterial urease inhibitors from literature published between 2008 and 2021.
Collapse
Affiliation(s)
- Saurabh Loharch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
5
|
Liu C, Xiao Y, Xiao Y, Li Z. Marine urease with higher thermostability, pH and salinity tolerance from marine sponge-derived Penicillium steckii S4-4. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:77-84. [PMID: 37073394 PMCID: PMC10077270 DOI: 10.1007/s42995-020-00076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
Urease has a broad range of applications, however, the current studies on urease mainly focus on terrestrial plants or microbes. Thus, it is quite necessary to determine if marine-derived ureases have different characteristics from terrestrial origins since the finding of ureases with superior performance is of industrial interest. In this study, the marine urease produced by Penicillium steckii S4-4 derived from marine sponge Siphonochalina sp. was investigated. This marine urease exhibited a maximum specific activity of 1542.2 U mg protein-1. The molecular weight of the enzyme was 183 kDa and a single subunit of 47 kDa was detected, indicating that it was a tetramer. The N-terminal amino acid sequence of the urease was arranged as GPVLKKTKAAAV with greatest similarity to that from marine algae Ectocarpus siliculosus. This urease exhibited a K m of 7.3 mmol L-1 and a V max of 1.8 mmol urea min-1 mg protein-1. The optimum temperature, pH and salinity are 55 ℃, 8.5 and 10%, respectively. This urease was stable and more than 80% of its maximum specific activity was detected after incubating at 25-60 ℃ for 30 min, pH 5.5-10.0 or 0-25% salinity for 6 h. Compared with the terrestrial urease from Jack bean, this marine urease shows higher thermostability, alkaline preference and salinity tolerance, which extends the potential application fields of urease to a great extent.
Collapse
Affiliation(s)
- Changrong Liu
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yao Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yilin Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
6
|
Kataria R, Khatkar A. Lead Molecules for Targeted Urease Inhibition: An Updated Review from 2010 -2018. Curr Protein Pept Sci 2020; 20:1158-1188. [PMID: 30894105 DOI: 10.2174/1389203720666190320170215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
The field of enzyme inhibition is a tremendous and quickly growing territory of research. Urease a nickel containing metalloenzyme found in bacteria, algae, fungi, and plants brings hydrolysis of urea and plays important role in environmental nitrogen cycle. Apart from this it was found to be responsible for many pathological conditions due to its presence in many microorganisms such as H. Pylori, a ureolytic bacteria having urease which elevates pH of gastric medium by hydrolyzing urea present in alimentary canal and help the bacteria to colonize and spread infection. Due to the infections caused by the various bacterial ureases such as Bacillus pasteurii, Brucella abortus, H. pylori, H. mustelae, Klebsiella aerogenes, Klebsiella tuberculosis, Mycobacterium tuberculosis, Pseudomonas putida, Sporosarcina pasteurii and Yersinia enterocolitica, it has been the current topic of today's research. About a wide range of compounds from the exhaustive literature survey has been discussed in this review which is enveloped into two expansive classes, as Inhibitors from synthetic origin and Inhibitors from natural origin. Moreover active site details of enzyme, mechanism of catalysis of substrate by enzyme, uses of plant urease and its pathogenic behavior has been included in the current review. So, overall, this review article diagrams the current landscape of the developments in the improvements in the thriving field of urease inhibitory movement in medicinal chemistry from year 2010 to 2018, with an emphasis on mechanism of action of inhibitors that may be used for more development of recent and strong urease inhibitors and open up new doors for assist examinations in a standout amongst the most lively and promising regions of research.
Collapse
Affiliation(s)
- Ritu Kataria
- International Institute of Pharmaceutical Sciences, Sonepat, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
7
|
Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J Adv Res 2018; 13:3-17. [PMID: 30094078 PMCID: PMC6077230 DOI: 10.1016/j.jare.2018.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Urease (urea amidohydrolase, EC 3.5.1.5) is a nickel-containing enzyme produced by plants, fungi, and bacteria that catalyzes the hydrolysis of urea into ammonia and carbamate. Urease is of historical importance in Biochemistry as it was the first enzyme ever to be crystallized (1926). Finding nickel in urease's active site (1975) was the first indication of a biological role for this metal. In this review, historical and structural features, kinetics aspects, activation of the metallocenter and inhibitors of the urea hydrolyzing activity of ureases are discussed. The review also deals with the non-enzymatic biological properties, whose discovery 40 years ago started a new chapter in the study of ureases. Well recognized as virulence factors due to the production of ammonia and alkalinization in diseases by urease-positive microorganisms, ureases have pro-inflammatory, endocytosis-inducing and neurotoxic activities that do not require ureolysis. Particularly relevant in plants, ureases exert insecticidal and fungitoxic effects. Data on the jack bean urease and on jaburetox, a recombinant urease-derived peptide, have indicated that interactions with cell membrane lipids may be the basis of the non-enzymatic biological properties of ureases. Altogether, with this review we wanted to invite the readers to take a second look at ureases, very versatile proteins that happen also to catalyze the breakdown of urea into ammonia and carbamate.
Collapse
Affiliation(s)
- Karine Kappaun
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Extraction, purification, kinetic characterization and immobilization of urease from Bacillus sphaericus MTCC 5100. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Li W, Li Y, Yang Z, Xu C. pH Control in a Urease-catalyzed Reaction Using Weak-base Beads as Polymer-supported Buffer Agents. CHEM LETT 2016. [DOI: 10.1246/cl.160462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Filiz E, Vatansever R, Ozyigit II. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches. Mol Biol Rep 2016; 43:129-40. [PMID: 26852122 DOI: 10.1007/s11033-016-3945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In structure-based phylogeny, plant ureases from G. max, M. truncatula and C. ensiformis were clearly diverged from bacterial ureases of B. pasteurii and K. aerogenes. Glu, Thr, His and Gly were commonly found as interacting residues in most urease-urea docking complexes while Glu was available in all docked structures. Besides, Ala and Arg residues, which are reported in active-site architecture of plant and bacterial ureases were present in G. max urea-urease complex but not present in others. Moreover, Arg435 and Arg437 in M. truncatula and G. max, respectively were identified as highly mutable hotspot residues residing in amidohydro 1 domain of enzyme. In addition, a number of stabilizing residues were predicted upon mutation of these hotspot residues however Cys and Thr made strong implications since they were also found in codon-aligned sequences as substitutions of hotspot residues. Comparative analyses of primary sequence and secondary structure in 37 different plants demonstrated quite conserved natures of ureases in plant kingdom. Structure-based phylogeny indicated the presence of a possible prokaryote-eukaryote split and implicated the subjection of bacterial ureases to heavy selection in prokaryotic evolution compared to plants. Urea-urease docking complexes suggested that different species could share common interacting residues as well as may have some other uncommon residues at species-dependent way. In silico mutation analyses identified mutable amino acids, which were predicted to reside in catalytic site of enzyme therefore mutagenesis at these sites seemed to have adverse effects on enzyme efficiency or function. This study findings will become valuable preliminary resource for future studies to further understand the primary, secondary and tertiary structures of urease sequences in plants as well as it will provide insights about various binding features of urea-urease complexes.
Collapse
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750, Cilimli, Duzce, Turkey.
| | - Recep Vatansever
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| |
Collapse
|
11
|
Overexpression of host plant urease in transgenic silkworms. Mol Genet Genomics 2014; 290:1117-23. [PMID: 25549597 DOI: 10.1007/s00438-014-0980-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Bombyx mori and mulberry constitute a model of insect-host plant interactions. Urease hydrolyzes urea to ammonia and is important for the nitrogen metabolism of silkworms because ammonia is assimilated into silk protein. Silkworms do not synthesize urease and acquire it from mulberry leaves. We synthesized the artificial DNA sequence ureas using the codon bias of B. mori to encode the signal peptide and mulberry urease protein. A transgenic vector that overexpresses ure-as under control of the silkworm midgut-specific P2 promoter was constructed. Transgenic silkworms were created via embryo microinjection. RT-PCR results showed that urease was expressed during the larval stage and qPCR revealed the expression only in the midgut of transgenic lines. Urea concentration in the midgut and hemolymph of transgenic silkworms was significantly lower than in a nontransgenic line when silkworms were fed an artificial diet. Analysis of the daily body weight and food conversion efficiency of the fourth and fifth instar larvae and economic characteristics indicated no differences between transgenic silkworms and the nontransgenic line. These results suggested that overexpression of host plant urease promoted nitrogen metabolism in silkworms.
Collapse
|
12
|
EL-Hefnawy ME, Sakran M, Ismail AI, Aboelfetoh EF. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds. BMC BIOCHEMISTRY 2014; 15:15. [PMID: 25065975 PMCID: PMC4121304 DOI: 10.1186/1471-2091-15-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). RESULTS The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, Km and Vmax, were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, Ea, and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. CONCLUSIONS Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants.
Collapse
Affiliation(s)
- Mohamed E EL-Hefnawy
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Sakran
- Department of Biochemistry, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ali I Ismail
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia
| | | |
Collapse
|
13
|
Krishna BL, Singh AN, Patra S, Dubey VK. Purification, characterization and immobilization of urease from Momordica charantia seeds. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Nabati F, Habibi-Rezaei M, Amanlou M, Moosavi-Movahedi A. Dioxane enhanced immobilization of urease on alkyl modified nano-porous silica using reversible denaturation approach. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Witte CP. Urea metabolism in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:431-8. [PMID: 21421389 DOI: 10.1016/j.plantsci.2010.11.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 05/02/2023]
Abstract
Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| |
Collapse
|
16
|
Kumar S, Kayastha AM. Soybean (Glycine max) urease: significance of sulfhydryl groups in urea catalysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:746-50. [PMID: 20558076 DOI: 10.1016/j.plaphy.2010.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 05/10/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
The soybean urease (urea amidohydrolase; EC 3.5.1.5) was investigated to elucidate the presence of sulfhydryl (-SH) groups and their significance in urea catalysis with the help of various -SH group specific reagents. The native urease incubated with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) showed exponential increase in the absorbance, thereby revealing the presence of -SH groups. A total of 34 -SH groups per hexamer enzyme molecule were estimated from the absorption studies which represents nearly six -SH groups per subunit. The time-dependent inactivation of urease with DTNB, p-chloromercuribenzoate (p-CMB), N-ethylmaleimide (NEM) and iodoacetamide (IAM) showed biphasic kinetics, where half of the enzyme activity was lost more rapidly than the other half. This study reveals the presence of two categories of "accessible" -SH groups, one category being more reactive than the other. The inactivation of urease by p-CMB was largely reversed on treatment with cysteine, which might be due to unblocking of -SH group by mercaptide exchange reaction. Finally, when NEM inactivated urease was incubated with sodium fluoride, a time-dependent regain of activity was observed with higher concentrations of fluoride ion.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
17
|
|
18
|
Follmer C. Insights into the role and structure of plant ureases. PHYTOCHEMISTRY 2008; 69:18-28. [PMID: 17706733 DOI: 10.1016/j.phytochem.2007.06.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/11/2007] [Accepted: 06/28/2007] [Indexed: 05/11/2023]
Abstract
The broad distribution of ureases in leguminous seeds, as well as the accumulation pattern of the protein during seed maturation, are suggestive of an important physiological role for this enzyme. Since the isolation and characterization of jack bean urease by Sumner in 1926, many investigations have been dedicated to the structural and biological features of this enzyme; nevertheless, many questions still remain. It has been reported that ureases from plants (jack bean and soybean seeds) display biological properties unrelated to their ureolytic activity, notably a high insecticidal activity against Coleoptera (beetles) and Hemiptera (bugs), suggesting that ureases might be involved in plant defense. Besides the insecticidal activity, canatoxin, a jack bean urease isoform, causes convulsions and death in mice and rats, induces indirect hemagglutination (hemilectin activity) and promotes exocytosis in several cell types. Not only plant ureases but also some microbial ureases (found in Bacillus pasteurii and Helicobacter pylori) are able to induce activation of platelets in a process mediated by lipoxygenase-derived metabolites. This review summarizes the biological and structural properties of plant ureases, compares them with those displayed by bacterial ureases, and discusses the significance of these findings.
Collapse
Affiliation(s)
- Cristian Follmer
- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, CT, Bloco A S410, Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|
19
|
Kurahashi H, Atiwetin P, Nagaoka S, Miyata S, Kitajima S, Sugimura Y. Absorption of mulberry root urease to the hemolymph of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1055-61. [PMID: 16005015 DOI: 10.1016/j.jinsphys.2005.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 05/03/2023]
Abstract
Mulberry leaves are the sole diet of the silkworm, Bombyx mori. The host urease is incorporated into the larval hemolymph and involved in nitrogen metabolism in the insect. To investigate the selective absorption of the host urease to the larvae, crude urease was prepared from mulberry leaves and roots. Root urease was identical to leaf urease on the basis of electrophoretic analyses: (1) the urease activity appeared in the same migration position in a native gel; (2) There was no difference in molecular mass of the subunit. The root urease was orally injected to the fifth instar larvae of the silkworm. Just before spinning, the larvae absorbed intact urease from the midgut lumen to the hemolymph without the loss of activity. The capacity to absorb urease occurred only at the specific stage. Localization of host urease in midgut tissue was observed using confocal laser scanning microscopy and transmission electron microscopy. Based on spatial distribution of immunofluorescent signals and immunogold particles, host urease specifically attached to the surfaces of microvilli existing in the apical side of columnar cells and appeared in the cytoplasm of the cells for transport to the hemolymph. The incorporation efficiency of root urease into the hemolymph was significantly higher than for ureases from jack bean seeds and Bacillus pasteurii. The urease that was transported to the hemolymph was electrophoretically altered, compared with the host urease extracted.
Collapse
Affiliation(s)
- Hitoshi Kurahashi
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Stasolla C, Katahira R, Thorpe TA, Ashihara H. Purine and pyrimidine nucleotide metabolism in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1271-95. [PMID: 14658380 DOI: 10.1078/0176-1617-01169] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Purine and pyrimidine nucleotides participate in many biochemical processes in plants. They are building blocks for nucleic acid synthesis, an energy source, precursors for the synthesis of primary products, such as sucrose, polysaccharides, phospholipids, as well as secondary products. Therefore, biosynthesis and metabolism of nucleotides are of fundamental importance in the growth and development of plants. Nucleotides are synthesized both from amino acids and other small molecules via de novo pathways, and from preformed nucleobases and nucleosides by salvage pathways. In this article the biosynthesis, interconversion and degradation of purine and pyrimidine nucleotides in higher plants are reviewed. This description is followed by an examination of physiological aspects of nucleotide metabolism in various areas of growth and organized development in plants, including embryo maturation and germination, in vitro organogenesis, storage organ development and sprouting, leaf senescence, and cultured plant cells. The effects of environmental factors on nucleotide metabolism are also described. This review ends with a brief discussion of molecular studies on nucleotide synthesis and metabolism.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | | | | |
Collapse
|
21
|
Das N, Kayastha AM, Srivastava PK. Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L) seeds. PHYTOCHEMISTRY 2002; 61:513-521. [PMID: 12409017 DOI: 10.1016/s0031-9422(02)00270-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.
Collapse
Affiliation(s)
- Nilanjana Das
- School of Biotechnology, Faculty of Science, Banaras Hindu University, - 221 005, Varanasi, India
| | | | | |
Collapse
|
22
|
Sugimura M, Hirayama C, Nakamura M. Selective transport of the mulberry leaf urease from the midgut into the larval hemolymph of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:1133-1138. [PMID: 12770191 DOI: 10.1016/s0022-1910(01)00094-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Just before spinning, larvae of the silkworm, Bombyx mori, absorb intact urease of the host plant (mulberry leaf) from the midgut lumen into the hemolymph. In order to investigate whether the transport of the mulberry leaf urease is selective, crude proteins extracted from the mulberry leaves were labeled with biotin and orally administered to the fifth instar larvae. The biotinylated proteins transported into the hemolymph were detected by ligand blotting using streptavidin. When the biotinylated proteins were administered to 5-day-old fifth instar larvae, a strong signal of a biotinylated protein was detected in the hemolymph 2 days after the administration. In contrast, when the biotinylated mulberry leaf proteins were administered to 3-day-old fifth instar larvae, no signal derived from the biotinylated proteins was detected in the hemolymph. The signal weakened when the biotinylated proteins had been immunoprecipitated before administering to the larvae, indicating that the signal came from the mulberry leaf urease. These results show that the transport of the mulberry leaf urease from the midgut into the hemolymph is selective and larval-stage specific. Subsequently, binding assays were carried out to test the binding ability of the mulberry leaf urease to the brush border membrane in the epithelial cells of larval midgut. The urease was not bound to the brush border membrane vesicles (BBMV) from the midgut of 3-day-old fifth instar larvae, while more than 60% of the total amount of incubated urease was bound to the BBMV from the midgut of 6-day-old fifth instar larvae. The urease binding ability of BBMV correlated with the uptake of the mulberry leaf urease. This suggests that a urease binding molecule(s) exists in the BBM of the midgut epithelium, which is involved in the uptake of the mulberry leaf urease. In addition, the uptake of the mulberry leaf urease into the hemolymph was induced by 20-hydroxyecdysone.
Collapse
Affiliation(s)
- M Sugimura
- National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, 305-8634, Ibaraki, Japan
| | | | | |
Collapse
|
23
|
Hirayama C, Sugimura M, Saito H, Nakamura M. Host plant urease in the hemolymph of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2000; 46:1415-1421. [PMID: 10878268 DOI: 10.1016/s0022-1910(00)00063-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Urease activity was detected in the hemolymph of the silkworm, Bombyx mori from the beginning of spinning to the pharate adult stage if the larvae were reared on mulberry leaves throughout the 5th-instar (the last larval instar). In contrast, no urease activity was detected in the hemolymph of insects fed artificial diets, resulting in accumulation of urea during the spinning stage. To identify the hemolymph urease, the enzyme was highly purified from the hemolymph of the spinning larvae that had been reared on mulberry leaves and the properties of the purified enzyme were compared with those of the mulberry leaf urease. Four out of six monoclonal antibodies raised against jack bean seed urease cross-reacted equally with the silkworm hemolymph urease and the mulberry leaf urease. Under reducing conditions, the hemolymph urease and the mulberry leaf urease migrated at 90.5 kDa on SDS-PAGE gels. The first 20 N-terminal sequence of the hemolymph urease revealed complete identity with that of the leaf urease. The optimum pH for activity and Km value for urea were almost the same for the two enzymes. In conclusion, these two ureases are very likely identical, strongly suggesting that the mulberry leaf urease passes through the larval gut wall into the hemolymph without being digested. In addition, oral administration of mulberry leaf urease just before spinning induced considerable urease activity in the hemolymph of the larvae, but the same treatment did not induce enzyme activity in the hemolymph of the larvae three days before the onset of spinning. These results suggest that the silkworm larvae acquire the host plant urease specifically at the end of the feeding stage in order to degrade urea accumulated in the hemolymph.
Collapse
Affiliation(s)
- C Hirayama
- National Institute of Sericultural and Entomological Science, Ohwashi, Tsukuba, 305-8634, Ibaraki, Japan
| | | | | | | |
Collapse
|