1
|
Barbier L, Pipart P, Vahdati M, Lorthioir C, Tran Y, Hourdet D. Injectable hydrogels based on alginates grafted with LCST side-chains of different chemistry. Carbohydr Polym 2024; 336:122126. [PMID: 38670757 DOI: 10.1016/j.carbpol.2024.122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
A homologous series of thermoassociating copolymers was prepared by grafting onto alginates different amounts of three different temperature responsive polymers: poly(N-isopropylacrylamide), poly(di(ethylene glycol)methacrylate) and poly(ethylene oxide-co-propylene oxide). From a large set of analytical techniques combining rheology, calorimetry, NMR and SAXS, the relevant parameters controlling the sol/gel transition and the gel properties, mainly the degree of entanglement of macromolecules and the fraction of responsive stickers, were highlighted and interpreted objectively by considering the particularities of the phase diagrams of LCST polymers. Complementary analyses were implemented to investigate adhesiveness, injectabilty, gel swelling and molecular release in physiological environment of thermogelling formulations. In particular, it is shown that steady shear experiments allow to predict the injection forces by taking into account the characteristics of the system (syringe and needle), and that the rapid gelation of the formulations when they are heated at 37 °C delays the release of small molecules into the environment. The overall set of data is discussed in the framework of scaling relations in order to draw quantitative guidelines for the design of injectable thermoresponsive hydrogels.
Collapse
Affiliation(s)
- L Barbier
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - P Pipart
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - M Vahdati
- University of Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 67200 Strasbourg, France.
| | - C Lorthioir
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne University, CNRS, F-75005 Paris, France.
| | - Y Tran
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| | - D Hourdet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France.
| |
Collapse
|
2
|
Bonetti L, Borsacchi S, Soriente A, Boccali A, Calucci L, Raucci MG, Altomare L. Injectable in situ gelling methylcellulose-based hydrogels for bone tissue regeneration. J Mater Chem B 2024; 12:4427-4440. [PMID: 38629219 DOI: 10.1039/d3tb02414h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Injectable bone substitutes (IBSs) represent a compelling choice for bone tissue regeneration, as they can be exploited to optimally fill complex bone defects in a minimally invasive manner. In this context, in situ gelling methylcellulose (MC) hydrogels may be engineered to be free-flowing injectable solutions at room temperature and gels upon exposure to body temperature. Moreover, incorporating a suitable inorganic phase can further enhance the mechanical properties of MC hydrogels and promote mineralization, thus assisting early cell adhesion to the hydrogel and effectively guiding bone tissue regeneration. In this work, thermo-responsive IBSs were designed selecting MC as the organic matrix and calcium phosphate (CaP) or CaP modified with graphene oxide (CaPGO) as the inorganic component. The resulting biocomposites displayed a transition temperature around body temperature, preserved injectability even after loading with the inorganic components, and exhibited adequate retention on an ex vivo calf femoral bone defect model. The addition of CaP and CaPGO promoted the in vitro mineralization process already 14 days after immersion in simulated body fluid. Interestingly, combined X-ray diffraction and solid state nuclear magnetic resonance characterizations revealed that the formed biomimetic phase was constituted by crystalline hydroxyapatite and amorphous calcium phosphate. In vitro biological characterization revealed the beneficial impact of CaP and CaPGO, indicating their potential in promoting cell adhesion, proliferation and osteogenic differentiation. Remarkably, the addition of GO, which is very attractive for its bioactive properties, did not negatively affect the injectability of the hydrogel nor the mineralization process, but had a positive impact on cell growth and osteogenic differentiation on both pre-differentiated and undifferentiated cells. Overall, the proposed formulations represent potential candidates for use as IBSs for application in bone regeneration both under physiological and pathological conditions.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Silvia Borsacchi
- Institute of Chemistry of Organometallic Compounds (ICCOM), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
- Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Alessandra Soriente
- Institute for Polymers, Composites and Biomaterials (IPCB), Italian National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Napoli, Italy
| | - Alberto Boccali
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Lucia Calucci
- Institute of Chemistry of Organometallic Compounds (ICCOM), Italian National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
- Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Maria Grazia Raucci
- Institute for Polymers, Composites and Biomaterials (IPCB), Italian National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Napoli, Italy
| | - Lina Altomare
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Dixit K, Bora H, Chakrabarti R, Saha B, Dogra N, Biswas S, Sengupta TK, Kaushal M, Rana S, Mukherjee G, Dhara S. Thermoresponsive keratin-methylcellulose self-healing injectable hydrogel accelerating full-thickness wound healing by promoting rapid epithelialization. Int J Biol Macromol 2024; 263:130073. [PMID: 38342268 DOI: 10.1016/j.ijbiomac.2024.130073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Chronic wounds suffer from impaired healing due to microbial attack and poor vascular growth. Thermoresponsive hydrogels gained attention in wound dressing owing to their gelation at physiological temperature enabling them to take the shape of asymmetric wounds. The present study delineates the development of thermoresponsive hydrogel (MCK), from hair-derived keratin (K) and methylcellulose (MC) in the presence of sodium sulfate. The gelation temperature (Tg) of this hydrogel is in the range of 30 °C to 33 °C. Protein-polymer interaction leading to thermoreversible sol-gel transition involved in MCK blends has been analyzed and confirmed by FTIR, XRD, and thermal studies. Keratin, has introduced antioxidant properties to the hydrogel imparted cytocompatibility towards human dermal fibroblasts (HDFs) as evidenced by both MTT and live dead assays. In vitro wound healing assessment has been shown by enhanced migration of HDFs in the presence of MCK hydrogel compared to the control. Also, CAM assay and CD31 expression by the Wistar rat model has shown increased blood vessel branching after the implantation of MCK hydrogel. Further, in vivo study, demonstrated MCK efficacy of hydrogel in accelerating full-thickness wounds with minimal scarring in Wistar rats, re-epithelialization, and reinstatement of the epidermal-dermal junction thereby exhibiting clinical relevance for chronic wounds.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India; Immunology and Inflammation Research Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Hema Bora
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Rituparna Chakrabarti
- Cardiovascular biology lab, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Baisakhee Saha
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Nantu Dogra
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Saikat Biswas
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | | | - Manish Kaushal
- Department of Chemical Engineering, IIT Kharagpur, West Bengal 721302, India
| | - Subhasis Rana
- Department of Basic Science and Humanities, University of Engineering and Management, New Town, Action Area-III, Kolkata 700160, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India
| | - Santanu Dhara
- Biomaterial Tissue Engineering Laboratory, School of Medical Science and Technology, IIT Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
4
|
Sol/gel transition of thermoresponsive Hyaluronan: From liquids to elastic and sticky materials. Carbohydr Polym 2023; 310:120715. [PMID: 36925242 DOI: 10.1016/j.carbpol.2023.120715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Thermoassociating copolymers were prepared by grafting temperature responsive poly(N-isopropylacrylamide-stat-N-tert-butylacrylamide) telomers onto hyaluronan. By varying the composition of LCST side chains, from 50 to 100 wt% of NIPAM units, it is shown that the sol/gel transition of entangled solutions can be accurately controlled in the range of 10 to 35 °C with an abrupt transition and reversible properties. Complementary experiments, performed by DSC and NMR, demonstrate the close relationship between thermoassociation of LCST grafts, forming microdomains of low mobility, and macroscopic properties. Moreover, by performing tack experiments during heating we demonstrate that hyaluronan formulations abruptly switch from a weak adhesive viscous behavior to an elastic adhesive profile in the gel regime. As LCST side-chains form concentrated micro-domains of low mobility, physical gels can resist to dissociation above their sol/gel transition for relatively long periods when immersed in excess physiological medium. The thermoassociative behavior of these copolymers, whose properties can be finely tuned in order to form sticky gels at body temperature, clearly demonstrates their potential in biomedical applications such as injectable gels for drug delivery or tissue engineering.
Collapse
|
5
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
6
|
Moll P, Salminen H, Stadtmüller L, Schmitt C, Weiss J. Solidification of concentrated pea protein-pectin mixtures as potential binder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4195-4202. [PMID: 36637051 DOI: 10.1002/jsfa.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Binders in plant-based meat analogues allow different components, such as extrudate and fat particles, to stick together. Typically, binders then are solidified to transform the mass into a non-sticky, solid product. As an option for a clean-label binder possessing such properties, the solidification behavior of pea protein-pectin mixtures (250 g kg-1 , r = 2:1, pH 6) was investigated upon heating, and upon addition of calcium, transglutaminase, and laccase, or by combinations thereof. RESULTS Mixtures of (homogenized) pea protein and apple pectin had higher elastic moduli and consistency coefficients and lower frequency dependencies upon calcium addition. This indicated that calcium physically cross-linked pectin chains that formed the continuous phase in the biopolymer matrix. The highest degree of solidification was obtained with a mixture of pea protein and sugar beet pectin upon addition of laccase that covalently cross-linked both biopolymers involved. All solidified mixtures lost their stickiness. A mixture of soluble pea protein and apple pectin solidified only slightly through calcium and transglutaminase, probably due to differences in the microstructural arrangement of the biopolymers. CONCLUSION The chemical makeup of the biopolymers and their spatial distribution determines solidification behavior in concentrated biopolymer mixtures. In general, pea protein-pectin mixtures can solidify and therefore have the potential to act as binders in meat analogues. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pascal Moll
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Hanna Salminen
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lucie Stadtmüller
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Christophe Schmitt
- Department of Chemistry, Nestlé Research, Nestlé Institute of Material Sciences, Lausanne, Switzerland
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Thermo-irreversible emulsion gels based on deacetylated konjac glucomannan and methylcellulose as animal fat analogs. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Moll P, Salminen H, Schmitt C, Weiss J. Pea protein–sugar beet pectin binders can provide cohesiveness in burger type meat analogues. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractMethylcellulose is commonly used in meat analogues for binding ingredients. In this study, we compared the binding properties of a methylcellulose hydrogel (5% w/w) to a novel, clean-label binder based on a mixture of pea protein and sugar beet pectin (r = 2:1, 22.5% w/w, pH 6.0) with and without laccase addition in a burger type meat analogue. It was shown that the pea protein–pectin binder glued vegetable protein particles and fat mimic particles together prior to cooking and frying, thereby improving forming of the mass into burger patties. Furthermore, sensory analysis revealed that the cohesiveness of the fried burger patties was better when the protein–pectin binder was used. However, the used binder system did not affect the hardness of the burger patties indicating that the binders rather affected the coherence of the structural elements. Burgers with solid fat particles were rated better in terms of appearance as compared to emulsified fat particles, since the former were not visible. This study is useful to better understand meat analogue product design for a higher acceptance among consumers.
Collapse
|
9
|
Comparison of Binding Properties of a Laccase-Treated Pea Protein-Sugar Beet Pectin Mixture with Methylcellulose in a Bacon-Type Meat Analogue. Foods 2022; 12:foods12010085. [PMID: 36613300 PMCID: PMC9818594 DOI: 10.3390/foods12010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
A bacon-type meat analogue consists of different structural layers, such as textured protein and a fat mimetic. To obtain a coherent and appealing product, a suitable binder must glue those elements together. A mixture based on pea protein and sugar beet pectin (r = 2:1, 25% w/w solids, pH 6) with and without laccase addition and a methylcellulose hydrogel (6% w/w) serving as benchmark were applied as binder between textured protein and a fat mimetic. A tensile strength test, during which the layers were torn apart, was performed to measure the binding ability. The pea protein-sugar beet pectin mixture without laccase was viscoelastic and had medium and low binding strength at 25 °C (F ≤ 3.5 N) and 70 °C (F ≈ 1.0 N), respectively. The addition of laccase solidified the mixture and increased binding strength at 25 °C (F ≥ 4.0 N) and 70 °C (F ≈ 2.0 N), due to covalent bonds within the binder and between the binder and the textured protein or the fat mimetic layers. Generally, the binding strength was higher when two textured protein layers were glued together. The binding properties of methylcellulose hydrogel was low (F ≤ 2.0 N), except when two fat mimetic layers were bound due to hydrophobic interactions becoming dominant. The investigated mixed pectin-pea protein system is able serve as a clean-label binder in bacon-type meat analogues, and the application in other products seems promising.
Collapse
|
10
|
Wu Z, Jayaraman A. Machine Learning-Enhanced Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) for Analyzing Fibrillar Structures in Polymer Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware19716, United States
| |
Collapse
|
11
|
Wang R, He H, Sharma PR, Tian J, Söderberg LD, Rosén T, Hsiao BS. Unexpected Gelation Behavior of Cellulose Nanofibers Dispersed in Glycols. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruifu Wang
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| | - Hongrui He
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| | - Priyanka R. Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| | - Jiajun Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| | - L. Daniel Söderberg
- Fiber and Polymer Technology Department, KTH Royal Institute of Technology, StockholmS-100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, StockholmS-100 44, Sweden
| | - Tomas Rosén
- Fiber and Polymer Technology Department, KTH Royal Institute of Technology, StockholmS-100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, StockholmS-100 44, Sweden
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| |
Collapse
|
12
|
Shah S, Famta P, Fernandes V, Bagasariya D, Charankumar K, Kumar Khatri D, Bala Singh S, Srivastava S. Quality by Design steered Development of Niclosamide Loaded Liposomal Thermogel for Melanoma: In vitro and Ex vivo Evaluation. Eur J Pharm Biopharm 2022; 180:119-136. [PMID: 36198344 DOI: 10.1016/j.ejpb.2022.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
Abstract
Melanoma is the most malignant form of skin cancer across the globe. Conventional therapies are currently ineffective which could be attributed to the rampant chemo-resistance, metastasis, inability to cross the skin barriers and accumulate within the tumor microenvironment. This advent brings in the principles of drug repurposing by repositioning Niclosamide (NIC), an anthelmintic drug for skin cancer. Incorporation into the liposomes facilitated enhanced melanoma cell uptake and apoptosis. Cytotoxicity studies revealed 1.756-fold enhancement in SK-MEL-28 cytotoxicity by NIC-loaded liposomes compared to free drug. Qualitative and quantitative cell internalization indicated greater drug uptake within the melanoma cells illustrating the efficacy of liposomes as efficient carrier systems. Nuclear staining showed blebbing and membrane shrinkage. Elevated ROS levels and apoptosis shown by DCFDA and acridine orange-ethidium bromide staining revealed greater melanoma cell death by liposomes compared to free drug. Incorporating NIC liposomes into the thermogel system restricted the liposomes as a depot onto the upper skin layers. Sustained zero order release up to 48 h with liposomes and 23.58-fold increase in viscosity led to the sol-to-gel transition at 33℃ was observed with liposomal thermogel. Ex vivo gel permeation studies revealed that C-6 loaded liposomes incorporated within the thermogel successfully formed a depot over the upper skin layer for 6 h to prevent transdermal delivery and systemic adverse effects. Thus, it could be concluded that NIC loaded liposomal thermogel system could be an efficacious therapeutic alternative for the management of melanoma.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Valencia Fernandes
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA.
| |
Collapse
|
13
|
Development of Saturated Fat Replacers: Conventional and Nano-Emulsions Stabilised by Lecithin and Hydroxylpropyl Methylcellulose. Foods 2022; 11:foods11162536. [PMID: 36010537 PMCID: PMC9407586 DOI: 10.3390/foods11162536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
The combination of two emulsifiers, lecithin and hydroxypropyl methylcellulose (HPMC), into emulsions is an interesting strategy to design fat replacers in food matrices. The objective of this study was to investigate the effect of HPMC type and concentration on the formation, stability, and microstructure of conventional emulsions and nanoemulsions. Two different types of HPMC with low and high content of methyl and hydroxypropyl groups (HPMC-L and HPMC-H) were evaluated. The results showed that the molecular structure and concentration of HPMC play a major role in the viscoelastic behaviour, the gelation temperature, and the strength of gel formed. The firmness and work of shear of HPMC solutions increased significantly (p < 0.05) with increasing concentration. HPMC-L illustrated a more stable gel structure than the HPMC-H solution. Nanoemulsions showed lower moduli values, firmness, and work of shear than conventional emulsions due to the influence of high-pressure homogenization. A combination of lecithin and HPMC improved the physical and lipid oxidative stability of the emulsions, presenting a lower creaming index and thiobarbituric acid reactive substances (TBARS). In conclusion, HPMC-L at 2% w/w could be a suitable type and concentration combined with lecithin to formulate a saturated fat replacer that could mimic butter technological performance during food manufacturing operations.
Collapse
|
14
|
Miranda-Valdez IY, Viitanen L, Intyre JM, Puisto A, Koivisto J, Alava M. Predicting effect of fibers on thermal gelation of methylcellulose using Bayesian optimization. Carbohydr Polym 2022; 298:119921. [DOI: 10.1016/j.carbpol.2022.119921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
|
15
|
Abstract
Methylcellulose and chitosan served as promising ingredients for a thermoresponsive hair styling gel after successful application in the medical industry. Both ingredients uphold the clean beauty standard without infringing on performance. By combining these two ingredients, a hair gel can be created that promises an extended hold of style once a heated external stimulus, such as a curling wand, is applied to the hair. Chitosan serves as the cationic biopolymer to adhere the gel to the hair, whereas the methylcellulose acts as the smart biopolymer to lock the desired hairstyle in place. Various ranges of chitosan and methylcellulose concentrations were explored for formulation optimization with rheology and curl drop testing. The rheology testing included a flow sweep test to understand the shear-thinning behavior of the sample as well as the effect of concentration on viscosity. Another rheology test completed was a temperature ramp test from room temperature (25 °C) to 60 °C to study the effect of heat on the various concentrations within the samples. A curl drop test was performed as well, over a 48-h period in which the different samples were applied to wet hair tresses, dried, curled, and hung vertically to see how the style held up over a long period of time with the influence of gravity.
Collapse
|
16
|
Nelson AZ, Wang Y, Wang Y, Margotta AS, Sammler RL, Izmitli A, Katz JS, Curtis-Fisk J, Li Y, Ewoldt RH. Gelation under stress: impact of shear flow on the formation and mechanical properties of methylcellulose hydrogels. SOFT MATTER 2022; 18:1554-1565. [PMID: 35107466 DOI: 10.1039/d1sm01711j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate that small unidirectional applied-stresses during temperature-induced gelation dramatically change the gel temperature and the resulting mechanical properties and structure of aqueous methylcellulose (MC), a material that forms a brittle gel with a fibrillar microstructure at elevated temperatures. Applied stress makes gelation more difficult, evidenced by an increased gelation temperature, and weakens mechanical properties of the hot gel, evidenced by a decreased elastic modulus and decreased apparent failure stress. In extreme cases, formation of a fully percolated polymer network is inhibited and a soft granular yield-stress fluid is formed. We quantify the effects of the applied stress using a filament-based mechanical model to relate the measured properties to the structural features of the fibril network. The dramatic changes in the gel temperature and hot gel properties give more design freedom to processing-dependent rheology, but could be detrimental to coating applications where gravitational stress during gelation is unavoidable.
Collapse
Affiliation(s)
- Arif Z Nelson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yilin Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yushi Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Anthony S Margotta
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Robert L Sammler
- Formulation, Automation, and Material Science and Engineering, Corporate R&D, Dow Inc., Midland, MI 48674, USA
| | - Aslin Izmitli
- Home and Personal Care TS&D, Dow Inc., Collegeville, PA 19426, USA
| | - Joshua S Katz
- Pharma Solutions R&D, International Flavors & Fragrances, Wilmington, DE 19803, USA
| | - Jaime Curtis-Fisk
- Formulation, Automation, and Material Science and Engineering, Corporate R&D, Dow Inc., Midland, MI 48674, USA
| | - Yongfu Li
- Analytical Science, Corporate R&D, Dow Inc., Midland, MI 48674, USA
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Coughlin ML, Edmund J, Bates FS, Lodge TP. Temperature Dependence of Chain Conformations and Fibril Formation in Solutions of Poly(N-isopropylacrylamide)-Grafted Methylcellulose. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- McKenzie L. Coughlin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jerrick Edmund
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Bhaladhare S, Das D. Cellulose: A Fascinating Biopolymer for Hydrogel Synthesis. J Mater Chem B 2022; 10:1923-1945. [DOI: 10.1039/d1tb02848k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing environmental concerns and increasing demands for eco-friendly materials have obliged researchers worldwide to explore naturally occurring biopolymers for various applications. Cellulose is a non-exhaustible polysaccharide biopolymer available almost...
Collapse
|
19
|
Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022; 275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
In recent years, smart-responsive nanocellulose composite hydrogels have attracted extensive attention due to their unique porous substrate, hydrophilic properties, biocompatibility and stimulus responsiveness. At present, the research on smart response nanocellulose composite hydrogel mainly focuses on the selection of composite materials and the construction of internal chemical bonds. The common composite materials and connection methods used for preparation of smart response nanocellulose composite hydrogels are compared according to the different types of response sources such as temperature, pH and so on. The response mechanisms and the application prospects of different response types of nanocellulose composite hydrogels are summarized, and the transformation of internal ions, functional groups and chemical bonds, as well as the changes in mechanical properties such as modulus and strength are discussed. Finally, the shortcomings and application prospects of nanocellulose smart response composite hydrogels are summarized and prospected.
Collapse
Affiliation(s)
- Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
20
|
da Silva JB, Dos Santos RS, Vecchi CF, Bruschi ML. Drug Delivery Platforms Containing Thermoresponsive Polymers and Mucoadhesive Cellulose Derivatives: A Review of Patents. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:90-102. [PMID: 35379163 DOI: 10.2174/2667387816666220404123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the development of mucoadhesive systems for drug delivery has gained keen interest, with enormous potential in applications through different routes. Mucoadhesion characterizes an attractive interaction between the pharmaceutical dosage form and the mucosal surface. Many polymers have shown the ability to interact with mucus, increasing the residence time of local and/or systemic administered preparations, such as tablets, patches, semi-solids, and micro and nanoparticles. Cellulose is the most abundant polymer on the earth. It is widely used in the pharmaceutical industry as an inert pharmaceutical ingredient, mainly in its covalently modified forms: methylcellulose, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and carboxymethylcellulose salts. Aiming to overcome the drawbacks of oral, ocular, nasal, vaginal, and rectal routes and thereby maintaining patient compliance, innovative polymer blends have gained the interest of the pharmaceutical industry. Combining mucoadhesive and thermoresponsive polymers allows for simultaneous in situ gelation and mucoadhesion, thus enhancing the retention of the system at the site of administration and drug availability. Thermoresponsive polymers have the ability to change physicochemical properties triggered by temperature, which is particularly interesting considering the physiological temperature. The present review provides an analysis of the main characteristics and applications of cellulose derivatives as mucoadhesive polymers and their use in blends together with thermoresponsive polymers, aiming at platforms for drug delivery. Patents were reviewed, categorized, and discussed, focusing on the applications and pharmaceutical dosage forms using this innovative strategy. This review manuscript also provides a detailed introduction to the topic and a perspective on further developments.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Camila Felix Vecchi
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| |
Collapse
|
21
|
Multi-frequency passive and active microrheology with optical tweezers. Sci Rep 2021; 11:13917. [PMID: 34230533 PMCID: PMC8260820 DOI: 10.1038/s41598-021-93130-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
Optical tweezers have attracted significant attention for microrheological applications, due to the possibility of investigating viscoelastic properties in vivo which are strongly related to the health status and development of biological specimens. In order to use optical tweezers as a microrheological tool, an exact force calibration in the complex system under investigation is required. One of the most promising techniques for optical tweezers calibration in a viscoelastic medium is the so-called active–passive calibration, which allows determining both the trap stiffness and microrheological properties of the medium with the least a-priori knowledge in comparison to the other methods. In this manuscript, we develop an optimization of the active–passive calibration technique performed with a sample stage driving, whose implementation is more straightforward with respect to standard laser driving where two different laser beams are required. We performed microrheological measurements over a broad frequency range in a few seconds implementing an accurate multi-frequency driving of the sample stage. The optical tweezers-based microrheometer was first validated by measuring water, and then exemplarily applied to more viscous medium and subsequently to a viscoelastic solution of methylcellulose in water. The described method paves the way to microrheological precision metrology in biological samples with high temporal- and spatial-resolution allowing for investigation of even short time-scale phenomena.
Collapse
|
22
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
23
|
Hydrophilic modification of methylcellulose to obtain thermoviscosifying polymers without macro-phase separation. Carbohydr Polym 2021; 260:117792. [DOI: 10.1016/j.carbpol.2021.117792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/16/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
|
24
|
Ye Y, Huo X, Yin Z. Protein-protein interactions at high concentrations: Effects of ArgHCl and NaCl on the stability, viscosity and aggregation mechanisms of protein solution. Int J Pharm 2021; 601:120535. [PMID: 33811966 DOI: 10.1016/j.ijpharm.2021.120535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The aim of this work was to use the diffusion coefficient ration (Dm/Dline) as a parameter to characterize the stability of protein at high concentration, to compare the effects of ArgHCl and NaCl on the interaction of highly concentrated proteins under different pH conditions, and to explore the correlation with protein stability. For this purpose, a high-concentration bovine serum albumin solution (BSA) was selected as the model system, and the diffusion coefficient, aggregation degree, conformational stability, and solution viscosity of the protein were studied by dynamic light scattering (DLS) and spectral detection techniques. The result showed that there was a significant correlation between the Dm/Dline and the protein aggregation. The Dm/Dline of the protein was minimum at pH 7.4, which corresponded to the maximum degree of aggregation and the highest solution viscosity. At pH 7.4, the hydrophobic interactions and the increased conformational stability of ArgHCl maximized the stability of the protein and reduced the viscosity of the solution by 69.3%. At pH 3.0, the strong charge shielding effect of ArgHCl and NaCl and the decreased conformational stability induced protein aggregation and the gel formation. These findings provided valuable insights into the mechanism of protein aggregation and the diffusion coefficient ration (Dm/Dline) could be a potential tool for the pre-formulation studies.
Collapse
Affiliation(s)
- Yalin Ye
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xingli Huo
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
25
|
Liberman L, Schmidt PW, Coughlin ML, Ya’akobi AM, Davidovich I, Edmund J, Ertem SP, Morozova S, Talmon Y, Bates FS, Lodge TP. Salt-Dependent Structure in Methylcellulose Fibrillar Gels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucy Liberman
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Schmidt
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - McKenzie L. Coughlin
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Asia Matatyaho Ya’akobi
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Irina Davidovich
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Jerrick Edmund
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - S. Piril Ertem
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Svetlana Morozova
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Macomolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yeshayahu Talmon
- Department of Chemical Engineering, and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Frank S. Bates
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
|
27
|
Rheological Investigation of Thermoresponsive Alginate-Methylcellulose Gels for Epidermal Growth Factor Formulation. COSMETICS 2020. [DOI: 10.3390/cosmetics8010003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epidermal growth factors (EGF) serve as promising candidates for skin regeneration and rejuvenation products, but their instability hinders them from widespread use. Protective immobilization and directed release can be achieved through implementing a hydrogel delivery system. Alginate and methylcellulose are both natural polymers offering biocompatibility and environmental sensitivity. This blended gel system was investigated rheologically to understand its performance in topical applications. Alginate and methylcellulose were found to form a synergistic gel system that resulted in superior viscosity and thermoresponsiveness compared to the individual components. Increasing methylcellulose concentration directly enhanced gel elasticity, and higher viscosities provided better thermal protection of EGF. The addition of EGF at 3.33 mg/mL resulted in a decrease of viscosity but an increase in viscoelastic modulus. EGF concentration also played a large role in shear viscosity and thermoresponsiveness of the ternary system. An alginate-methylcellulose system presents promising rheological tunability, which may provide EGF thermal protection in a topical delivery format.
Collapse
|
28
|
Chiu JCY, Teodoro JA, Lee JH, Matthews K, Duffy SP, Ma H. Selective cell propagation via micropatterning of a thermally-activated hydrogel. LAB ON A CHIP 2020; 20:1544-1553. [PMID: 32270803 DOI: 10.1039/c9lc01230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to selectively propagate specific cells is fundamentally important to the development of clonal cell populations. Current methods rely on techniques such as limiting dilution, colony picking, and flow cytometry to transfer single cells into single wells, resulting in workflows that are low-throughput, slowed by propagation kinetics, and susceptible to contamination. Here, we developed a method, called selective laser gelation (SLG), to micropattern hydrogels in cell culture media in order to encapsulate specific cells to selectively arrest their growth. This process relies on the inverse gelation of methylcellulose, which forms a hydrogel when heated rather than cooled. Local heating using an infrared laser enables hydrogel micropatterning, while phase transition hysteresis retains the hydrogel after laser excitation. As a demonstration, we used this approach to selectively propagate transgenic CHO cells with increased antibody productivity. More generally, hydrogel micropatterning provides a simple and non-contact method for selective propagation of cells based on features identified by imaging.
Collapse
Affiliation(s)
- Jeffrey C Y Chiu
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Han Q, Bai F, Luo Q, Wu M, Song G, Zhang H, Wang Y. The assembly and antitumor activity of lycium barbarum polysaccharide-platinum-based conjugates. J Inorg Biochem 2020; 205:111001. [PMID: 32007698 DOI: 10.1016/j.jinorgbio.2020.111001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
In this work, the new polysaccharide-platinum conjugates of 5-aminosalicylic acid modified lycium barbarum polysaccharide linking platinum compounds were designed in order to construct an anticancer metal drug delivery system. The multiple analysis methods were used to describe the chemical structure and physical properties of the polysaccharide-metal conjugates. The results showed that 5-aminosalicylic acid successfully acted as linker which was covalently bound between polysaccharide and platinum compound. The morphology and rheological properties of polysaccharide have been changed by the formation of conjugates, which exhibited certain inhibition specificity to A549 (human lung cancer cell line). The agarose gel electrophoresis and fluorescence microscopy results demonstrated that such conjugates promoted the unwinding of DNA and could significantly damage the nucleus of A549 cells. Cell cycle analyzing the Pt complex of conjugates could cause intracellular DNA damage and induced G2 phase arrest. So, polysaccharide-platinum conjugates might find a range of applications, for example in metal anticancer drug delivery.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Qianqian Han
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Feng Bai
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Qiang Luo
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Mingliang Wu
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China
| | - Gang Song
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| |
Collapse
|
30
|
Lua HY, Naim MN, P. Mohammed MA, Hamidon F, Abu Bakar NF. Effects of ultrasonicated methylcellulose coating on French fries during deep frying process. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hwee Ying Lua
- Faculty of Engineering, Department of Process and Food EngineeringUniversiti Putra Malaysia Selangor Malaysia
| | - Mohd Nazli Naim
- Faculty of Engineering, Department of Process and Food EngineeringUniversiti Putra Malaysia Selangor Malaysia
| | - Mohd Afandi P. Mohammed
- Faculty of Engineering, Department of Process and Food EngineeringUniversiti Putra Malaysia Selangor Malaysia
| | - Fariza Hamidon
- Faculty of Chemical EngineeringUniversiti Technologi MARA Shah Alam Malaysia
| | | |
Collapse
|
31
|
Lauterbach A, Ekelund K. Rheological temperature sweeping in a quality by design approach for formulation development and optimization. Int J Pharm 2019; 568:118533. [PMID: 31325589 DOI: 10.1016/j.ijpharm.2019.118533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022]
Abstract
Many topical drug products are multi-phase systems which are prone to phase separation exhibiting a high risk for not meeting the critical quality attributes (CQAs) of a pharmaceutical product such as uniform active pharmaceutical ingredient (API) distribution and physical homogeneity. In order to investigate and control these CQAs a rheological temperature sweeping (RTS) method was implemented and refined to enable quantification of these characteristics within a quality by design (QbD) approach. For method implementation, emulsion and ointment compositions were prepared within a design of experiments (DoE) and critical responses from RTS were extracted via principal component analysis (PCA) in a multivariate data analysis (MVA) approach. The span after 3 cycles of RTS on emulsions and a combination of 5 principal components (PCs) for ointments were selected as responses from PCA. The span correlates with the droplet size of selected emulsions followed during stability whereas the combination of the PCs for ointments enables a differentiation of the compositions. Identified critical material attributes (CMAs) are the emulsifier concentration of the emulsion and the liquid paraffin (LP) content of the ointments. In conclusion, RTS enables a rapid screening of liquid and semi-solid products in a quantitative manner for pharmaceutical development and formulation optimization.
Collapse
Affiliation(s)
- Andreas Lauterbach
- Pharmaceutical Development Reinbek, Almirall Hermal GmbH, Scholtzstraße 3, 21465 Reinbek, Germany.
| | - Katarina Ekelund
- Pharmaceutical Development Sant Feliu, Almirall, S.A., Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| |
Collapse
|
32
|
Schmidberger M, Nikolic I, Pantelic I, Lunter D. Optimization of Rheological Behaviour and Skin Penetration of Thermogelling Emulsions with Enhanced Substantivity for Potential Application in Treatment of Chronic Skin Diseases. Pharmaceutics 2019; 11:E361. [PMID: 31344864 PMCID: PMC6723268 DOI: 10.3390/pharmaceutics11080361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Topical formulations are an important pillar in the therapy of skin diseases. Nevertheless, after application the formulation will be exposed to environmental effects. Contact with other surfaces will reduce the available amount of formulation and drug substance. The resulting consequences for therapy range from reduced effects to therapeutic failure. The removed active ingredient also contaminates patients' environment. The aim of this work was to develop preparations that remain at the application site. These will enhance safety and efficiency and thus improve of skin disease therapies. Therefore, we developed polymer-stabilised emulsions that show thermogelling properties. Emulsions with different methyl cellulose concentrations and macrogols of different molecular weights were investigated. The dispersed phase consisted of nonivamide as the active pharmaceutical ingredient, dissolved in medium-chain triglycerides. Rheological properties, droplet size, substantivity and ex vivo penetration experiments were performed to characterise the developed formulations. Droplet size and rheological parameters were affected by the composition of the preparations. The tested formulations showed benefits in their substantivity compared to a conventional semi-solid cream. We found a residual amount of up to 100% at the application site. The drug levels in viable epidermis were in a therapeutic range. The developed emulsions are a promising vehicle to improve therapy for chronic skin diseases.
Collapse
Affiliation(s)
- Markus Schmidberger
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe Street, 11221 Belgrade, Serbia
| | - Ivana Pantelic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe Street, 11221 Belgrade, Serbia
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
33
|
Isa Ziembowicz F, de Freitas DV, Bender CR, dos Santos Salbego PR, Piccinin Frizzo C, Pinto Martins MA, Reichert JM, Santos Garcia IT, Kloster CL, Villetti MA. Effect of mono- and dicationic ionic liquids on the viscosity and thermogelation of methylcellulose in the semi-diluted regime. Carbohydr Polym 2019; 214:174-185. [DOI: 10.1016/j.carbpol.2019.02.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
|
34
|
Hynninen V, Mohammadi P, Wagermaier W, Hietala S, Linder MB, Ikkala O, Nonappa. Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Schmidt PW, Morozova S, Owens PM, Adden R, Li Y, Bates FS, Lodge TP. Molecular Weight Dependence of Methylcellulose Fibrillar Networks. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | | | - Roland Adden
- Dow Pharma
and Food
Solutions, Bomlitz 05161, Germany
| | - Yongfu Li
- Analytical Sciences, The Dow Chemical Company, Midland, Michigan 48667, United States
| | | | | |
Collapse
|
36
|
Hynninen V, Hietala S, McKee JR, Murtomäki L, Rojas OJ, Ikkala O, Nonappa. Inverse Thermoreversible Mechanical Stiffening and Birefringence in a Methylcellulose/Cellulose Nanocrystal Hydrogel. Biomacromolecules 2018; 19:2795-2804. [PMID: 29733648 PMCID: PMC6095634 DOI: 10.1021/acs.biomac.8b00392] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/06/2018] [Indexed: 12/19/2022]
Abstract
We show that composite hydrogels comprising methyl cellulose (MC) and cellulose nanocrystal (CNC) colloidal rods display a reversible and enhanced rheological storage modulus and optical birefringence upon heating, i.e., inverse thermoreversibility. Dynamic rheology, quantitative polarized optical microscopy, isothermal titration calorimetry (ITC), circular dichroism (CD), and scanning and transmission electron microscopy (SEM and TEM) were used for characterization. The concentration of CNCs in aqueous media was varied up to 3.5 wt % (i.e, keeping the concentration below the critical aq concentration) while maintaining the MC aq concentration at 1.0 wt %. At 20 °C, MC/CNC underwent gelation upon passing the CNC concentration of 1.5 wt %. At this point, the storage modulus ( G') reached a plateau, and the birefringence underwent a stepwise increase, thus suggesting a percolative phenomenon. The storage modulus ( G') of the composite gels was an order of magnitude higher at 60 °C compared to that at 20 °C. ITC results suggested that, at 60 °C, the CNC rods were entropically driven to interact with MC chains, which according to recent studies collapse at this temperature into ring-like, colloidal-scale persistent fibrils with hollow cross-sections. Consequently, the tendency of the MC to form more persistent aggregates promotes the interactions between the CNC chiral aggregates towards enhanced storage modulus and birefringence. At room temperature, ITC shows enthalpic binding between CNCs and MC with the latter comprising aqueous, molecularly dispersed polymer chains that lead to looser and less birefringent material. TEM, SEM, and CD indicate CNC chiral fragments within a MC/CNC composite gel. Thus, MC/CNC hybrid networks offer materials with tunable rheological properties and access to liquid crystalline properties at low CNC concentrations.
Collapse
Affiliation(s)
- Ville Hynninen
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, FI-00076 Espoo, Finland
| | - Sami Hietala
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 HY Helsinki, Finland
| | | | - Lasse Murtomäki
- Departments
of Chemical and Metallurgical Engineering and Chemistry and Materials
Science, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Orlando J. Rojas
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, FI-00076 Espoo, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Espoo, Finland
| | - Olli Ikkala
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, FI-00076 Espoo, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Espoo, Finland
| | - Nonappa
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, FI-00076 Espoo, Finland
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Espoo, Finland
| |
Collapse
|
37
|
Su X, Feng Y. Thermoviscosifying Smart Polymers for Oil and Gas Production: State of the Art. Chemphyschem 2018; 19:1941-1955. [PMID: 29888849 DOI: 10.1002/cphc.201800190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 11/06/2022]
Abstract
Water-soluble polymers have been extensively used in all sections of the oil and gas upstream industry, but their inherent thermothinning behaviour has limited their applications in harsh environments. To address this issue, thermoviscosifying (or "thermothickening") polymers (TVPs) whose aqueous solution viscosity automatically increases upon increasing the temperature were introduced in the early 1990s. This review first recalls the background for developing such smart materials, followed by demonstrating the mechanism of thermothickening. Next, three major TVPs including N-alkyl substituted acrylamide copolymers, grafted polyethers, and cellulose derivatives are summarized with respect to their structure-property relationship, then their practical trials or potential uses in oil and gas drilling fluids, cementing slurries, hydraulic fracturing, steam flooding, and enhanced oil recovery are discussed. Finally, the advantages and disadvantages of the current TVPs are commented and future prospects are discussed to close this review.
Collapse
Affiliation(s)
- Xin Su
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
38
|
Arca HC, Mosquera-Giraldo LI, Bi V, Xu D, Taylor LS, Edgar KJ. Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules 2018; 19:2351-2376. [PMID: 29869877 DOI: 10.1021/acs.biomac.8b00517] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellulose ethers have proven to be highly useful natural-based polymers, finding application in areas including food, personal care products, oil field chemicals, construction, paper, adhesives, and textiles. They have particular value in pharmaceutical applications due to characteristics including high glass transition temperatures, high chemical and photochemical stability, solubility, limited crystallinity, hydrogen bonding capability, and low toxicity. With regard to toxicity, cellulose ethers have essentially no ability to permeate through gastrointestinal enterocytes and many are already in formulations approved by the U.S. Food and Drug Administration. We review pharmaceutical applications of these valuable polymers from a structure-property-function perspective, discussing each important commercial cellulose ether class; carboxymethyl cellulose, methyl cellulose, hydroxypropylcellulose, hydroxypropyl methyl cellulose, and ethyl cellulose, and cellulose ether esters including hydroxypropyl methyl cellulose acetate succinate and carboxymethyl cellulose acetate butyrate. We also summarize their syntheses, basic material properties, and key pharmaceutical applications.
Collapse
Affiliation(s)
| | - Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Vivian Bi
- Ashland Specialty Ingredients , 500 Hercules Road , Wilmington , Delaware 19808 , United States
| | - Daiqiang Xu
- Ashland Specialty Ingredients , 500 Hercules Road , Wilmington , Delaware 19808 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | | |
Collapse
|
39
|
Wang Z, Yang K, Li H, Yuan C, Zhu X, Huang H, Wang Y, Su L, Nishinari K, Fang Y. In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell. Carbohydr Polym 2018; 190:190-195. [PMID: 29628237 DOI: 10.1016/j.carbpol.2018.02.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Gelation of methylcellulose aqueous solution was investigated by a high-pressure viscosity measurement device which consisted of diamond anvil cell, microscope and CCD. And the temperature and pressure dependence of the viscosity of methylcellulose aqueous solution was measured utilizing a rolling-ball technique. The results showed that sol-gel thermal transition of methylcellulose solution occurred at the temperature of 53 °C under atmospheric pressure. Upon compression, it was indicated that the viscosity showed a dramatic change in the vicinity of the pressure of 500 MPa. Parabolic phase diagram of methylcellulose aqueous solution was constructed, and it showed that the melting point was an increasing function of pressure at the first stage and an decreasing function of pressure at the final stage. The mechanism of sol-gel transformation of methylcellulose aqueous solutions was also discussed, it might be assumed that both hydrogen and hydrophobic bonds were involved with the gel formation in the case of methylcellulose aqueous solution.
Collapse
Affiliation(s)
- Zheng Wang
- School of Sciences, Wuhan University of Technology, Wuhan, Hubei, 430070, China; Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kun Yang
- Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Haining Li
- School of Sciences, Wuhan University of Technology, Wuhan, Hubei, 430070, China; Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chaosheng Yuan
- Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xiang Zhu
- Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Haijun Huang
- School of Sciences, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
| | - Yongqiang Wang
- Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Lei Su
- Center for High Pressure Science and Technology Research, Zhengzhou University of Light Industry, Zhengzhou, 450002, China; Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Katsuyoshi Nishinari
- School of Food and Biological Engineering, Glyn O Phillips Hydrocolloids Research Centre, Hubei University of Technology, Wuhan, 430068, China
| | - Yapeng Fang
- School of Food and Biological Engineering, Glyn O Phillips Hydrocolloids Research Centre, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
40
|
Hu X, Zhang D, Sheiko SS. Cooling-Triggered Shapeshifting Hydrogels with Multi-Shape Memory Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707461. [PMID: 29761565 DOI: 10.1002/adma.201707461] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Heating-triggered shape actuation is vital for biomedical applications. The likely overheating and subsequent damage of surrounding tissue, however, severely limit its utilization in vivo. Herein, cooling-triggered shapeshifting is achieved by designing dual-network hydrogels that integrate a permanent network for elastic energy storage and a reversible network of hydrophobic crosslinks for "freezing" temporary shapes when heated. Upon cooling to 10 °C, the hydrophobic interactions weaken and allow recovery of the original shape, and thus programmable shape alterations. Further, multiple temporary shapes can be encoded independently at either different temperatures or different times during the isothermal network formation. The ability of these hydrogels to shapeshift at benign conditions may revolutionize biomedical implants and soft robotics.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Daixuan Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| |
Collapse
|
41
|
Kim MH, Kim BS, Park H, Lee J, Park WH. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Int J Biol Macromol 2018; 109:57-64. [DOI: 10.1016/j.ijbiomac.2017.12.068] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
|
42
|
Lodge TP, Maxwell AL, Lott JR, Schmidt PW, McAllister JW, Morozova S, Bates FS, Li Y, Sammler RL. Gelation, Phase Separation, and Fibril Formation in Aqueous Hydroxypropylmethylcellulose Solutions. Biomacromolecules 2018; 19:816-824. [PMID: 29489329 DOI: 10.1021/acs.biomac.7b01611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thermoresponsive behavior of a hydroxypropylmethylcellulose (HPMC) sample in aqueous solutions has been studied by a powerful combination of characterization tools, including rheology, turbidimetry, cryogenic transmission electron microscopy (cryoTEM), light scattering, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS). Consistent with prior literature, solutions with concentrations ranging from 0.3 to 3 wt % exhibit a sharp drop in the dynamic viscoelastic moduli G' and G″ upon heating near 57 °C. The drop in moduli is accompanied by an abrupt increase in turbidity. All the evidence is consistent with this corresponding to liquid-liquid phase separation, leading to polymer-rich droplets in a polymer-depleted matrix. Upon further heating, the moduli increase, and G' exceeds G″, corresponding to gelation. CryoTEM in dilute solutions reveals that HPMC forms fibrils at the same temperature range where the moduli increase. SANS and SAXS confirm the appearance of fibrils over a range of concentration, and that their average diameter is ca. 18 nm; thus gelation is attributable to formation of a sample-spanning network of fibrils. These results are compared in detail with the closely related and well-studied methylcellulose (MC). The HPMC fibrils are generally shorter, more flexible, and contain more water than with MC, and the resulting gel at high temperatures has a much lower modulus. In addition to the differences in fibril structure, the key distinction between HPMC and MC is that the former undergoes liquid-liquid phase separation prior to forming fibrils and associated gelation, whereas the latter forms fibrils first. These results and their interpretation are compared with the prior literature, in light of the relatively recent discovery of the propensity of MC and HPMC to self-assemble into fibrils on heating.
Collapse
|
43
|
Almeida N, Rakesh L, Zhao J. The effect of kappa carrageenan and salt on thermoreversible gelation of methylcellulose. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-017-2256-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Effect of polymer concentration and thermal history on the inverse thermogelation of hydroxypropylcellulose aqueous solutions. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Sun Y, Peng C, Wang X, Wang R, Yang J, Zhang D. Rheological behavior of Al2O3 suspensions containing polyelectrolyte complexes for direct ink writing. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Moreira R, Chenlo F, Silva C, Torres MD. Rheological behaviour of aqueous methylcellulose systems: Effect of concentration, temperature and presence of tragacanth. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Paderes M, Ahirwal D, Fernández Prieto S. Natural and synthetic polymers in fabric and home care applications. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.
Collapse
|
48
|
Enzymic degradation of hydroxyethyl cellulose and analysis of the substitution pattern along the polysaccharide chain. Carbohydr Polym 2017; 169:92-100. [PMID: 28504183 DOI: 10.1016/j.carbpol.2017.02.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/23/2022]
Abstract
The enzymatic degradation behavior of hydroxyethyl cellulose (HEC) samples with different molar substitutions (MS) values was investigated. The changes in the molecular structure of HEC treated with enzymatic approach in comparison to the native HEC were studied through nuclear magnetic resonance (NMR), fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques and kinetics of degradation was studied by viscometry. The cleavage of HEC chains could be observed from FTIR and kinetics results. Moreover, reduce in molecular weight (Mw) of polymer and liberated glucose concentration was investigated by gel permeation chromatography (GPC) analysis during enzymatic degradation. And all these results indicated that HEC with lower MS is more susceptible to degrade and provided a better understanding of the mechanism operating during enzymatic hydrolysis of HEC by cellulases. Furthermore, by complete degradation and quantification of liberated glucose, the substitution index (SI) and the distribution of substituents along the HEC chain were investigated. The results suggested that the HEC samples differed in hydroxyethyl molar substitutions (MS) and possible distribution of the hydroxyethyl groups. Impressively, our efforts established a facile analytical method for the elucidation of the distribution of substituents along the HEC chain.
Collapse
|
49
|
Piermaría J, Bengoechea C, Abraham AG, Guerrero A. Shear and extensional properties of kefiran. Carbohydr Polym 2016; 152:97-104. [DOI: 10.1016/j.carbpol.2016.06.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022]
|
50
|
Lee SC, Cho YW, Park K. Control of Thermogelation Properties of Hydrophobically-Modified Methylcellulose. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911505049652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aqueous solutions that undergo reversible thermosensitive gelation around body temperature were developed based on hydrophobically-modified methyl cellulose (HMMC). The approach involved HMMC as the main component of aqueous compositions to provide a system with fast gelling properties, which has not been accomplished with aqueous solutions of unmodified methyl cellulose (MC). MC was modified with the stearyl group as a hydrophobic modifier by controlling the degree of modification. The gelation rate of aqueous solutions containing identical amounts of HMMC and NaCl increased as the temperature increased. The HMMC solutions gelled at a fixed temperature and concentration range, while the unmodified MC solutions did not show sol-to-gel transition. In addition, HMMC solutions exhibited much faster gelation than MC solutions at given polymer and NaCl concentrations. The HMMC/NaCl solutions exhibited the reversible gel-to-sol transition upon cooling below 25°C. The rate of sol-to-gel transition at body temperature, and the reversible gel-to-sol transition at room temperature, were modulated by adjusting the concentration of HMMC and NaCl, respectively. The HMMC/NaCl compositions provided a simple system for accurate control of the thermogelling temperature and the thermogelation rates.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Departments of Pharmaceutics and Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yong Woo Cho
- Departments of Pharmaceutics and Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kinam Park
- Departments of Pharmaceutics and Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA,
| |
Collapse
|