1
|
Hanusrichterova J, Mokry J, Al-Saiedy MR, Koetzler R, Amrein MW, Green FHY, Calkovska A. Factors influencing airway smooth muscle tone: a comprehensive review with a special emphasis on pulmonary surfactant. Am J Physiol Cell Physiol 2024; 327:C798-C816. [PMID: 39099420 DOI: 10.1152/ajpcell.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
A thin film of pulmonary surfactant lines the surface of the airways and alveoli, where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs. Furthermore, surfactant has been shown to relax airway smooth muscle (ASM) after exposure to ASM agonists, suggesting a more subtle function. Whether surfactant masks irritant sensory receptors or interacts with one of them is not known. The relaxant effect of surfactant on ASM is absent in bronchial tissues denuded of an epithelial layer. Blocking of prostanoid synthesis inhibits the relaxant function of surfactant, indicating that prostanoids might be involved. Another possibility for surfactant to be active, namely through ATP-dependent potassium channels and the cAMP-regulated epithelial chloride channels [cystic fibrosis transmembrane conductance regulators (CFTRs)], was tested but could not be confirmed. Hence, this review discusses the mechanisms of known and potential relaxant effects of pulmonary surfactant on ASM. This review summarizes what is known about the role of surfactant in smooth muscle physiology and explores the scientific questions and studies needed to fully understand how surfactant helps maintain the delicate balance between relaxant and constrictor needs.
Collapse
Affiliation(s)
- Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mustafa R Al-Saiedy
- Department of Internal Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rommy Koetzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Joana Alves M, Browe BM, Carolina Rodrigues Dias A, Torres JM, Zaza G, Bangudi S, Blackburn J, Wang W, de Araujo Fernandes-Junior S, Fadda P, Toland A, Baer LA, Stanford KI, Czeisler C, Garcia AJ, Javier Otero J. Metabolic trade-offs in Neonatal sepsis triggered by TLR4 and TLR1/2 ligands result in unique dysfunctions in neural breathing circuits. Brain Behav Immun 2024; 119:333-350. [PMID: 38561095 DOI: 10.1016/j.bbi.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.
Collapse
Affiliation(s)
- Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Brigitte M Browe
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| | - Ana Carolina Rodrigues Dias
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Juliet M Torres
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Suzy Bangudi
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Wesley Wang
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | | | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Amanda Toland
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Cancer Biology and Genetics and Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lisa A Baer
- Department of Cancer Biology and Genetics and Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Neuroscience Institute, The University of Chicago, Chicago, IL, United States.
| | - José Javier Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
3
|
Sun X, Lan Z, Shi Q, Wu H, Lu G, Qiu Y, Tang Y, Qiao G. Persistent cough after pulmonary resection: Minor issue, major hurdle. Heliyon 2024; 10:e31338. [PMID: 38826748 PMCID: PMC11141375 DOI: 10.1016/j.heliyon.2024.e31338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024] Open
Abstract
Background Persistent cough is one of the most common complications following pulmonary resection, that impairs patients' quality of life and prolongs recovery time. However, a comprehensive review of persistent cough after pulmonary resection (CAP) has not been performed. Methods A literature search of PubMed/MEDLINE, Web of Science, and Embase database was conducted for persistent-CAP up to June 2023. Subsequent qualitative systematic review focused on definition, risk factors, prevention, and treatment of persistent-CAP. Results Persistent-CAP stands as a prevalent postoperative complication subsequent to pulmonary resection procedures. with an incidence of 24.4-55.0 %. Although persistent-CAP has a minor impact on survival, this condition is of critical importance because it presents a major hurdle in recovery after surgery. In this review, we proposed a systemic definition for persistent-CAP based on available evidence and our own data. Several assessment tools used to assess severity of persistent-CAP are also introduced. Risk factors associated with persistent-CAP are explored, including surgical approaches, resection extent, surgical site, lymph node dissection, postoperative gastroesophageal acid reflux, tracheal intubation anesthesia, preoperative comorbidity, and sex among others. Surgical and anesthesia preventions targeting risk factors to prevent persistent-CAP are elaborated. A number of studies have shown that a multidisciplinary approach can effectively relieve persistent-CAP. Conclusions Although the mechanisms underlying persistent-CAP are still unclear, existing studies demonstrated that persistent-CAP is related to surgical and anesthesia factors. Therefore, in the future, prevention and treatment should be developed based on risk factors to overcome the hurdle of persistent-CAP.
Collapse
Affiliation(s)
- Xuefeng Sun
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
- Department of Thoracic Surgery, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Zihua Lan
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
- Shantou University Medical College, Shantou, China
| | - Qiuling Shi
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hansheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guojie Lu
- Department of Thoracic Surgery (Respiratory Center Area 1), Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuan Qiu
- Department of Thoracic Surgery/Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Guibin Qiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| |
Collapse
|
4
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Siebert JN, Salomon C, Taddeo I, Gervaix A, Combescure C, Lacroix L. Outdoor Cold Air Versus Room Temperature Exposure for Croup Symptoms: A Randomized Controlled Trial. Pediatrics 2023; 152:e2023061365. [PMID: 37525974 DOI: 10.1542/peds.2023-061365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVES Croup is the most common cause of acute upper airway obstruction in children. The benefits of treating croup with steroids are well established, with an onset of effect 30 minutes after administration. We investigated whether a 30-minute exposure to outdoor cold air might improve mild to moderate croup symptoms before the onset of action of steroids. METHODS This open-label, single-center, randomized controlled trial, enrolled children aged 3 months to 10 years with croup and a Westley Croup Score (WCS) ≥2 attending a tertiary pediatric emergency department. Participants were randomized (1:1) to either a 30-minute exposure to outdoor cold (<10°C) atmospheric air or to indoor ambient room air immediately after triage and administration of a single-dose oral dexamethasone. The primary endpoint was a decrease in WCS ≥2 points from baseline at 30 minutes. Analyses were intention to treat. RESULTS A total of 118 participants were randomly assigned to be exposed to outdoor cold air (n = 59) or indoor room temperature (n = 59). Twenty-nine of 59 children (49.2%) in the outdoor group and 14 of 59 (23.7%) in the indoor group showed a decrease in WCS ≥2 points from baseline at 30 minutes after triage (risk difference 25.4% [95% confidence interval 7.0-43.9], P = .007). Patients with moderate croup benefited the most from the intervention at 30 minutes (risk difference 46.1% [20.6-71.5], P < .001). CONCLUSIONS A 30-minute exposure to outdoor cold air (<10°C), as an adjunct to oral dexamethasone, is beneficial for reducing the intensity of clinical symptoms in children with croup, especially when moderate.
Collapse
Affiliation(s)
- Johan N Siebert
- Department of Pediatric Emergency Medicine, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Coralie Salomon
- Department of Pediatric Emergency Medicine, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | - Ilaria Taddeo
- Department of Pediatric Emergency Medicine, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | - Alain Gervaix
- Department of Pediatric Emergency Medicine, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christophe Combescure
- Division of Clinical Epidemiology, Department of Health and Community Medicine, University of Geneva and Geneva University Hospital, Geneva, Switzerland
| | - Laurence Lacroix
- Department of Pediatric Emergency Medicine, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Desmedt O, Luminet O, Maurage P, Corneille O. Discrepancies in the Definition and Measurement of Human Interoception: A Comprehensive Discussion and Suggested Ways Forward. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231191537. [PMID: 37642084 DOI: 10.1177/17456916231191537] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Interoception has been the subject of renewed interest over the past 2 decades. The involvement of interoception in a variety of fundamental human abilities (e.g., decision-making and emotional regulation) has led to the hypothesis that interoception is a central transdiagnostic process that causes and maintains mental disorders and physical diseases. However, interoception has been inconsistently defined and conceptualized. In the first part of this article, we argue that the widespread practice of defining interoception as the processing of signals originating from within the body and limiting it to specific physiological pathways (lamina I spinothalamic afferents) is problematic. This is because, in humans, the processing of internal states is underpinned by other physiological pathways generally assigned to the somatosensory system. In the second part, we explain that the consensual dimensions of interoception are empirically detached from existing measures, the latter of which capture loosely related phenomena. This is detrimental to the replicability of findings across measures and the validity of interpretations. In the general discussion, we discuss the main insights of the current analysis and suggest a more refined way to define interoception in humans and conceptualize its underlying dimensions.
Collapse
Affiliation(s)
- Olivier Desmedt
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- The Swiss National Science Foundation, Berne, Switzerland
| | - Olivier Luminet
- Psychological Science Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Fund for Scientific Research, Brussels, Belgium
| | - Pierre Maurage
- Psychological Science Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Fund for Scientific Research, Brussels, Belgium
| | - Olivier Corneille
- Psychological Science Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Yu J. Research journey into multiple-sensor theory. J Neurophysiol 2023; 130:128-138. [PMID: 37341418 DOI: 10.1152/jn.00062.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
In 1998, I was asked by the American Physiological Society to review a book written by Dr. Michael de Burgh Daly, Peripheral Arterial Chemoreceptors and Respiratory-Cardiovascular Integration. Inspired by this work, I came to appreciate how researchers in the later stages of their careers and who provide a detailed review of their experimental approach might effectively contribute to science, especially to the benefit of young scientists (Yu J. The Physiologist 41: 231, 1998.). This article is written in that vein. Over several decades of intensive investigation of cardiopulmonary reflexes, focused on the sensory receptors, my colleagues and I advanced a novel multiple-sensor theory (MST) to explain the role of the vagal mechanosensory system. Described here is our research journey through various stages of developing MST and the process of how the problem was identified, approached, and tackled. MST redefines conventional mechanosensor doctrines and is supported by new studies that clarify a century of research data. It entails reinterpretation of many established findings. Hopefully, this article will benefit young scientists, such as graduate and postdoctoral students in the cardiopulmonary sensory research field.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Pulmonary Medicine, University of Louisville, Louisville, Kentucky, United States
- Robley Rex VA Medical Center, Louisville, Kentucky, United States
| |
Collapse
|
8
|
Wilson CG. Respiration: The circuit for hypoxia-induced sighs. Curr Biol 2023; 33:R371-R374. [PMID: 37160098 DOI: 10.1016/j.cub.2023.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sighs are a response to hypoxia, altered lung volume, and emotional state. A recent study employing in vivo physiology, optogenetics, chemoablation, and genetic silencing shows the importance of gastrin releasing peptide-expressing neurons in mediating sighs.
Collapse
Affiliation(s)
- Christopher G Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
9
|
Yu J. Multiple sensor theory in airway mechanosensory units. Respir Physiol Neurobiol 2023; 313:104071. [PMID: 37149207 DOI: 10.1016/j.resp.2023.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Two conventional doctrines govern airway mechanosensory interpretation: One-Sensor Theory (OST) and Line-Labeled Theory (LLT). In OST, one afferent fiber connects to a single sensor. In LLT, a different type of sensor sends signals via its specific line to a particular brain region to evoke its reflex. Thus, airway slowly adapting receptors (SARs) inhibit breathing and rapidly adapting receptors (RARs) stimulate breathing. However, recent studies show many different mechanosensors connect to a single afferent fiber (Multiple-Sensor Theory, MST). That is, SARs and RARs may send different types of information through the same afferent pathway, indicating different information has been integrated at the sensory unit level. Thus, a sensory unit is not merely a transducer (textbook concept), but also a processor. MST is a conceptual shift. Data generated over last eight decades under OST require re-interpretation.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Pulmonary Medicine, University of Louisville, Louisville, KY 40292, Robley Rex VA Medical Center, Louisville, KY 40206, USA.
| |
Collapse
|
10
|
Hernández-Morato I, Yu VX, Pitman MJ. A review of the peripheral proprioceptive apparatus in the larynx. Front Neuroanat 2023; 17:1114817. [PMID: 36910514 PMCID: PMC9998684 DOI: 10.3389/fnana.2023.1114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
The larynx is an organ of the upper airway that participates in breathing, glutition, voice production, and airway protection. These complex functions depend on vocal fold (VF) movement, facilitated in turn by the action of the intrinsic laryngeal muscles (ILM). The necessary precise and near-instantaneous modulation of each ILM contraction relies on proprioceptive innervation of the larynx. Dysfunctional laryngeal proprioception likely contributes to disorders such as laryngeal dystonia, dysphagia, vocal fold paresis, and paralysis. While the proprioceptive system in skeletal muscle derived from somites is well described, the proprioceptive circuitry that governs head and neck structures such as VF has not been so well characterized. For over two centuries, researchers have investigated the question of whether canonical proprioceptive organs, muscle spindles, and Golgi tendon organs, exist in the ILM, with variable findings. The present work is a state-of-the-art review of the peripheral component of laryngeal proprioception, including current knowledge of canonical and possible alternative proprioceptive circuitry elements in the larynx.
Collapse
Affiliation(s)
- Ignacio Hernández-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Victoria X Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Musselwhite MN, Shen TY, Rose MJ, Iceman KE, Poliacek I, Pitts T, Bolser DC. THE INFLUENCE OF CO 2 ON SPATIOTEMPORAL FEATURES OF MECHANICALLY INDUCED COUGH IN ANESTHETIZED CATS. Respir Physiol Neurobiol 2022; 307:103964. [PMID: 36174962 DOI: 10.1016/j.resp.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO2. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex. We hypothesized that decreased CO2 would enhance coughing. In 12 spontaneously breathing adult male cats, we compared bouts of prolonged mechanically stimulated cough, in which cough induced hyperventilation (CHV) was allowed to occur, with isocapnic cough trials where we maintained eupneic end-tidal CO2 by adding CO2 to the inspired gas. Isocapnia slightly increased cough number and decreased esophageal pressures with no change in EMG magnitudes or phase durations. The cough-to-eupnea transition was also analyzed between CHV, isocapnia, and a third group of animals that were mechanically hyperventilated to apnea. The transition to eupnea was highly sensitive to added CO2, and CHV apneas were much shorter than those produced by mechanical hyperventilation. We suggest that the cough pattern generator is relatively insensitive to CHV. In the immediate post-cough period, the appearance of breathing while CO2 is very low suggests a transient reduction in apneic threshold following a paroxysmal cough bout.
Collapse
Affiliation(s)
- M Nicholas Musselwhite
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America.
| | - Tabitha Y Shen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| | - Kimberly E Iceman
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville. 511 S Floyd St, MDR 616, Louisville, Kentucky, 40202, United States of America
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics. Malá hora 4A, 036 01 Martin-Záturčie, Slovakia
| | - Teresa Pitts
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville. 511 S Floyd St, MDR 616, Louisville, Kentucky, 40202, United States of America.
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| |
Collapse
|
12
|
Klein Wolterink RGJ, Wu GS, Chiu IM, Veiga-Fernandes H. Neuroimmune Interactions in Peripheral Organs. Annu Rev Neurosci 2022; 45:339-360. [PMID: 35363534 DOI: 10.1146/annurev-neuro-111020-105359] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interaction occurs at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interaction. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Glendon S Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | | |
Collapse
|
13
|
Liu P, Zelko IN, Yu J. A comparative study of bronchopulmonary slowly adapting receptors between rabbits and rats. Physiol Rep 2022; 10:e15069. [PMID: 35343655 PMCID: PMC8958495 DOI: 10.14814/phy2.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary mechanosensory receptors provide important inputs to the respiratory center for control of breathing. However, what is known about their structure-function relationship is still limited. In these studies, we explored this relationship comparing bronchopulmonary slowly adapting receptor (SAR) units in rabbits and rats. In morphological studies, sensory units in tracheobronchial smooth muscle labeled with anti-Na+ /K+ -ATPase (α3 subunit) were found to be larger in the rabbit. Since larger structures may result from increased receptor size or more numerous receptors, further examination showed receptor size was the same in both species, but more receptors in a structure in rabbits than rats, accounting for their larger structure. In functional studies, SAR units were recorded electrically in anesthetized, open-chest, and artificially ventilated animals and responses to lung inflation were compared at three different constant airway pressures (10, 20, and 30 cmH2 O). At each level of the inflation, SAR discharge frequencies were found to be higher in rabbits than rats. We conclude that a relatively larger number of receptors in a sensory unit may be responsible for higher SAR activities in rabbit SAR units.
Collapse
Affiliation(s)
- Ping Liu
- Department of MedicineUniversity of LouisvilleLouisvilleKentucky40292USA
| | - Igor N. Zelko
- Department of MedicineUniversity of LouisvilleLouisvilleKentucky40292USA
| | - Jerry Yu
- Department of MedicineUniversity of LouisvilleLouisvilleKentucky40292USA
- Robley Rex VA Medical CenterLouisvilleKentucky40206USA
| |
Collapse
|
14
|
Domnik NJ, Vincent SG, Fisher JT. Mechanosensitivity of Murine Lung Slowly Adapting Receptors: Minimal Impact of Chemosensory, Serotonergic, and Purinergic Signaling. Front Physiol 2022; 13:833665. [PMID: 35250636 PMCID: PMC8889033 DOI: 10.3389/fphys.2022.833665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Murine slowly adapting receptors (SARs) within airway smooth muscle provide volume-related feedback; however, their mechanosensitivity and morphology are incompletely characterized. We explored two aspects of SAR physiology: their inherent static mechanosensitivity and a potential link to pulmonary neuroepithelial bodies (NEBs). SAR mechanosensitivity displays a rate sensitivity linked to speed of inflation; however, to what extent static SAR mechanosensitivity is tuned for the very rapid breathing frequency (B f ) of small mammals (e.g., mouse) is unclear. NEB-associated, morphologically described smooth muscle-associated receptors (SMARs) may be a structural analog for functionally characterized SARs, suggesting functional linkages between SARs and NEBs. We addressed the hypotheses that: (1) rapid murine B f is associated with enhanced in vivo SAR static sensitivity; (2) if SARs and NEBs are functionally linked, stimuli reported to impact NEB function would alter SAR mechanosensitivity. We measured SAR action potential discharge frequency (AP f, action potentials/s) during quasi-static inflation [0-20 cmH2O trans-respiratory pressure (PTR)] in NEB-relevant conditions of hypoxia (FIO2 = 0.1), hypercarbia (FICO2 = 0.1), and pharmacologic intervention (serotonergic 5-HT3 receptor antagonist, Tropisetron, 4.5 mg/kg; P2 purinergic receptor antagonist, Suramin, 50 mg/kg). In all protocols, we obtained: (1) AP f vs. PTR; (2) PTR threshold; and (3) AP f onset at PTR threshold. The murine AP f vs. PTR response comprises high AP f (average maximum AP f: 236.1 ± 11.1 AP/s at 20 cmH2O), a low PTR threshold (mean 2.0 ± 0.1 cmH2O), and a plateau in AP f between 15 and 20 cmH2O. Murine SAR mechanosensitivity (AP f vs. PTR) is up to 60% greater than that reported for larger mammals. Even the maximum difference between intervention and control conditions was minimally impacted by NEB-related alterations: Tropisetron -7.6 ± 1.8% (p = 0.005); Suramin -10.6 ± 1.5% (p = 0.01); hypoxia +9.3 ± 1.9% (p < 0.001); and hypercarbia -6.2 ± 0.9% (p < 0.001). We conclude that the high sensitivity of murine SARs to inflation provides enhanced resolution of operating lung volume, which is aligned with the rapid B f of the mouse. We found minimal evidence supporting a functional link between SARs and NEBs and speculate that the <10% change in SAR mechanosensitivity during altered NEB-related stimuli is not consistent with a meaningful physiologic role.
Collapse
Affiliation(s)
- Nicolle J. Domnik
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sandra G. Vincent
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - John T. Fisher
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
15
|
Basin S, Valentin S, Demoulin-Alexikova S, Demoulin B, Foucaud L, Gérard D, Pouget C, Allado E, Chenuel B, Poussel M. Impact of Inhaled Corticosteroids on the Modulation of Respiratory Defensive Reflexes During Artificial Limb Exercise in Ovalbumin-Sensitized Rabbits. Front Physiol 2022; 12:804577. [PMID: 35145425 PMCID: PMC8821955 DOI: 10.3389/fphys.2021.804577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Cough is a major lower airway defense mechanism that can be triggered by exercise in asthma patients. Studies on cough reflex in experimental animal models revealed a decrease of cough reflex sensitivity during exercise in healthy animals, but a lack of desensitization in ovalbumin-sensitized rabbits. The aim of our study is to evaluate the impact of inhaled corticosteroids on cough reflex during artificial limb exercise in an animal model of eosinophilic airway inflammation. Materials and Methods Sixteen adult ovalbumin-sensitized rabbits were randomly divided into two groups. The “OVA-Corticoid” group (n = 8) received inhaled corticosteroids (budesonide; 1 mg/day during 2 consecutive days) while the “OVA-Control” (n = 8) group was exposed to saline nebulization. The sensitivity of defensive reflexes induced by direct mechanical stimulation of the trachea was studied in anesthetized animals, at rest and during artificial limb exercise. Cell count was performed on bronchoalveolar lavage fluid and middle lobe tissue sections to assess the level of eosinophilic inflammation. Results All rabbits were significantly sensitized but there was no difference in eosinophilic inflammation on bronchoalveolar lavage or tissue sections between the two groups. Artificial limb exercise resulted in a significant (p = 0.002) increase in minute ventilation by 30% (+ 209 mL.min–1, ± 102 mL/min–1), with no difference between the two groups. 322 mechanical tracheal stimulations were performed, 131 during exercise (40.7%) and 191 at rest (59.3%). Cough reflex was the main response encountered (46.9%), with a significant increase in cough reflex threshold during artificial limb exercise in the “OVA-Corticoid” group (p = 0.039). Cough reflex threshold remained unchanged in the “OVA-Control” group (p = 0.109). Conclusion Inhaled corticosteroids are able to restore desensitization of the cough reflex during artificial limb exercise in an animal model of airway eosinophilic inflammation. Airway inflammation thus appears to be involved in the physiopathology of exercise-induced cough in this ovalbumin sensitized rabbit model. Inhaled anti-inflammatory treatments could have potential benefit for the management of exercise-induced cough in asthma patients.
Collapse
Affiliation(s)
- Sarah Basin
- Department of Pneumology, CHRU Nancy, Nancy, France
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- *Correspondence: Sarah Basin,
| | - Simon Valentin
- Department of Pneumology, CHRU Nancy, Nancy, France
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Silvia Demoulin-Alexikova
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Department of Pediatric Respiratory Function Testing, CHRU Nancy, Nancy, France
| | - Bruno Demoulin
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Laurent Foucaud
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | | | - Celso Pouget
- Department of Pathology CHRU Nancy, Nancy, France
| | - Edem Allado
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| | - Bruno Chenuel
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| | - Mathias Poussel
- EA 3450 DevAH—Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
- Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| |
Collapse
|
16
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
17
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Sulaiman AL-Ahmad M, Yáñez A, AL-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Gómez RM, González Díaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortega-Martell JA, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part 1: Role of TRP channels in neurogenic inflammation of cough neuronal pathways. World Allergy Organ J 2021; 14:100617. [PMID: 34934475 PMCID: PMC8654622 DOI: 10.1016/j.waojou.2021.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cough features a complex peripheral and central neuronal network. The function of the chemosensitive and stretch (afferent) cough receptors is well described but partly understood. It is speculated that chronic cough reflects a neurogenic inflammation of the cough reflex, which becomes hypersensitive. This is mediated by neuromediators, cytokines, inflammatory cells, and a differential expression of neuronal (chemo/stretch) receptors, such as transient receptor potential (TRP) and purinergic P2X ion channels; yet the overall interaction of these mediators in neurogenic inflammation of cough pathways remains unclear. OBJECTIVES The World Allergy Organization/Allergic Rhinitis and its Impact on Asthma (WAO/ARIA) Joint Committee on Chronic Cough reviewed the current literature on neuroanatomy and pathophysiology of chronic cough. The role of TRP ion channels in pathogenic mechanisms of the hypersensitive cough reflex was also examined. OUTCOMES Chemoreceptors are better studied in cough neuronal pathways compared to stretch receptors, likely due to their anatomical overabundance in the respiratory tract, but also their distinctive functional properties. Central pathways are important in suppressive mechanisms and behavioral/affective aspects of chronic cough. Current evidence strongly suggests neurogenic inflammation induces a hypersensitive cough reflex marked by increased expression of neuromediators, mast cells, and eosinophils, among others. TRP ion channels, mainly TRP V1/A1, are important in the pathogenesis of chronic cough due to their role in mediating chemosensitivity to various endogenous and exogenous triggers, as well as a crosstalk between neurogenic and inflammatory pathways in cough-associated airways diseases.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, MA, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | | | - Anahí Yáñez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. AL-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. González Díaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, Nuevo León, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University, Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing 100730, China
| | - Luciana Kase Tanno
- Université Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The Interuniversity Messerli Research Institute, Medical University Vienna and Univ, of Veterinary Medicine Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology,National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
18
|
Pathak S, Slovarp L, Clary MS, Jetté ME. Laryngeal Chemoreflex in Health and Disease: A Review. Chem Senses 2021; 45:823-831. [PMID: 33247587 DOI: 10.1093/chemse/bjaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The larynx plays a key role in airway protection via the laryngeal chemoreflex (LCR). This involuntary reflex can be evoked when hazardous substances activate mucosal receptors, which send signals to be processed within the brainstem. Although the LCR is meant to be protective, the reflex can become hyperstimulated, even to benign stimuli, which can result in pathological disorders, such as chronic cough and inducible laryngeal obstruction. In this review, we will outline the mechanism of the LCR and its associated pathological disorders.
Collapse
Affiliation(s)
- Shivani Pathak
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Laurie Slovarp
- School of Speech, Language, Hearing, & Occupational Sciences, University of Montana, Missoula, MT, USA
| | - Matthew S Clary
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Marie E Jetté
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
19
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
20
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
21
|
Venkat D, Dhillon K, Rowley JA. Effects of High Altitude on Sleep and Respiratory System. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00276-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Li X, Li X, Zhang W, Liu Q, Gao Y, Chang R, Zhang C. Factors and potential treatments of cough after pulmonary resection: A systematic review. Asian J Surg 2021; 44:1029-1036. [PMID: 33610443 DOI: 10.1016/j.asjsur.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cough is a common complication following pulmonary resection. Persistent and severe cough after pulmonary resection can cause significant impairments in quality of life among postoperative patients. Complications of cough can be life-threatening. To improve patients' probability and quality of life, factors that induce cough after pulmonary resection (CAP) and potential treatments should be explored and summarized. Previous studies have identified various factors related to CAP. However, those factors have not been categorized and analyzed in a sensible manner. Here, we summarized the different factors and classified them into four groups. Potential therapies might be developed to selectively target different factors that affect CAP. However, the exact mechanism underlying CAP remains unknown, making it difficult to treat and manage CAP. In this review, we summarized the latest studies in our understanding of the factors related to CAP and potential treatments targeting those factors. This review can help understand the mechanism of CAP and develop efficient therapies and management.
Collapse
Affiliation(s)
- Xin Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Wuyang Zhang
- Clinical Skills Training Center, XiangyaHospital, Central South University, Changsha, 410008, Hunan, China.
| | - Qi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
23
|
Groher ME. Normal Swallowing in Adults. Dysphagia 2021. [DOI: 10.1016/b978-0-323-63648-3.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Yu J. Spectrum of myelinated pulmonary afferents (III) cracking intermediate adapting receptors. Am J Physiol Regul Integr Comp Physiol 2020; 319:R724-R732. [PMID: 33085910 PMCID: PMC7792821 DOI: 10.1152/ajpregu.00136.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/22/2022]
Abstract
Conventional one-sensor theory (one afferent fiber connects to a single sensor) categorizes the bronchopulmonary mechanosensors into the rapidly adapting receptors (RARs), slowly adapting receptors (SARs), or intermediate adapting receptors (IARs). RARs and SARs are known to sense the rate and magnitude of mechanical change, respectively; however, there is no agreement on what IARs sense. Some investigators believe that the three types of sensors are actually one group with similar but different properties and IARs operate within that group. Other investigators (majority) believe IARs overlap with the RARs and SARs and can be classified within them according to their characteristics. Clearly, there is no consensus on IARs function. Recently, a multiple-sensor theory has been advanced in which a sensory unit may contain many heterogeneous sensors, such as both RARs and SARs. There are no IARs. Intermediate adapting unit behavior results from coexistence of RARs and SARs. Therefore, the unit can sense both rate and magnitude of changes. The purpose of this review is to provide evidence that the multiple-sensor theory better explains sensory unit behavior.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| |
Collapse
|
25
|
Pan LY, Peng LP, Xu C, Ding C, Chen J, Wang WY, Zhu XY, Zhao J, Li C. Predictive factors of cough after uniportal video-assisted thoracoscopic pulmonary resection. J Thorac Dis 2020; 12:5958-5969. [PMID: 33209428 PMCID: PMC7656438 DOI: 10.21037/jtd-20-2652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Cough is one of the shared complications after lung surgery. In this study, a prospective analysis was conducted for exploring the risk factors of persistent cough after uniportal video-assisted thoracoscopic pulmonary resection. Methods One hundred thirty-five patients with pulmonary nodules who underwent surgical treatment in the same surgical group from November 2019 to January 2020 were enrolled in this prospective study. The severity of cough and its impact on patients’ quality of life before and after surgery were assessed by the Mandarin Chinese version of the Leicester cough questionnaire (LCQ-MC), and postoperative cough was tested by the cough visual analog scale (VAS) and cough symptom score (CSS). Risk factors of cough after pulmonary resection (CAP) were determined by univariate and multivariate logistic regression analysis. Results The incidence of postoperative cough was 24.4% (33 of 135 patients). Univariate analysis showed that gender (female), the surgical site (upper right), the resection (lobectomy), subcarinal lymph node dissection, postoperative acid reflux, length of hospitalization contributed to the development of CAP resection. Multivariate logistic regression analysis showed that the resection (lobectomy) (OR 3.590, 95% CI: 0.637–20.300, P=0.017), subcarinal lymph node dissection (OR 4.420, 95% CI: 1.342–14.554, P=0.001), postoperative acid reflux (OR 13.55, 95% CI: 3.186–57.633, P<0.001) and duration of anesthesia (over 153 minutes, OR 0.987, 95% CI: 0.978–0.997, P=0.011) were independent risk factors for postoperative cough. Conclusions The application of uniportal video-assisted thoracoscopic techniques to several types of lung surgery are conducive to enhanced recovery after surgery (ERAS). Postoperative cough is related to an ocean of factors, the resection (lobectomy), subcarinal lymph node dissection, postoperative acid reflux, and duration of anesthesia (over 153 minutes) are independent high-risk factors for CAP resection. Trial registration This study was registered on ClinicalTrials.gov (NCT04204148).
Collapse
Affiliation(s)
- Liu-Ying Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Ping Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Yi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin-Yu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Ghali MGZ. Retracted: Control of hypoglossal pre‐inspiratory discharge. Exp Physiol 2020; 105:1232-1255. [DOI: 10.1113/ep087329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Michael George Zaki Ghali
- Departments of Neurological Surgery, Internal Medicine, General Surgery, and Neuroscience Karolinska Institutet Huddinge Stockholm Sweden
- Departments of Neurological Surgery, Neurophysiology, Neuroscience University of Oslo Oslo Norway
- Departments of Neurological Surgery and Neurochemistry University of Helsinki Helsinki Finland
- Departments of Neurological Surgery, Internal Medicine, Cardiothoracic Surgery, and Neuroscience University of California Francisco San Francisco CA USA
- Departments of Neurological Surgery and Neuroscience Barrow Neurological Institute Phoenix AZ USA
| |
Collapse
|
27
|
Altiparmak B, Korkmaz Toker M, Uysal Aİ, Köseoğlu S, Gümüş Demirbilek S. Evaluation of the effect of the mouth gag use on optic nerve sheath diameter of pediatric patients undergoing tonsillectomy or Adenotonsillectomy: An observational study. BMC Anesthesiol 2020; 20:163. [PMID: 32620080 PMCID: PMC7333300 DOI: 10.1186/s12871-020-01079-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A mouth gag is usually used during tonsillectomy and adenotonsillectomy surgeries, cleft palate repair, obstructive sleep apnea surgery, and intraoral tumor excision. The placement of the gag causes hemodynamic changes similar to laryngoscopy. The aim of this study was to evaluate the effect of mouth gag placement on the optic nerve sheath diameter (ONSD) of pediatric patients. The secondary aim was to assess the relationship between neck extension and changes in ONSD. METHODS The trial was prospectively registered to the Australian New Zealand Clinical Trials Registry (Trial ID: ACTRN12618000551291) on 12.04.2018. This prospective, observational study was performed in a tertiary university hospital operating room between 01.05.2018-01.07.2018. Thirty-five children aged < 18 years, with ASA I status, who were scheduled for tonsillectomy and adenotonsillectomy surgeries were prospectively included in the study. Measurements of ONSD were performed (T0) after induction of anesthesia, (T1) after endotracheal intubation, (T2) after mouth gag placement, and (T3) 20 min after mouth gag placement. After the mouth gag was placed and the head was positioned for surgery, the degree of neck extension was calculated. RESULTS All participants completed the study. There were significant differences in ONSD values at time points T1, T2, and T3 (p < 0.001, CI: - 0.09,-0.05; p < 0.001, CI: - 0.09,-0.05; p < 0.001, CI: - 0.05,-0.02; respectively). The maximum increase in ONSD was after intubation (0.69 ± 0.06 mm) and immediately after mouth gag placement (0.67 ± 0.07 mm). ONSD values continued to increase 20 min after gag placement (0.36 ± 0.04). There was no relation between the degree of neck extension and ONSD values (β = 0.63, p = 0.715). CONCLUSIONS The use of a mouth gag causes significant increases in ONSD measurements of children. Therefore, attention to the duration of mouth gag placement should be considered during surgery. TRIAL REGISTRATION The trial was prospectively registered to the Australian New Zealand Clinical Trials Registry (Trial ID: ACTRN12618000551291 ) on 12.04.2018.
Collapse
Affiliation(s)
- Başak Altiparmak
- Department of Anesthesiology and Reanimation, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Melike Korkmaz Toker
- Department of Anesthesiology and Reanimation, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ali İhsan Uysal
- Department of Anesthesiology and Reanimation, Muğla Sıtkı Koçman University Training and Research Hospital, Muğla, Turkey
| | - Sabri Köseoğlu
- Department of Ear Nose Throat, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Semra Gümüş Demirbilek
- Department of Anesthesiology and Reanimation, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
28
|
Ward JL, Lisciandro GR, Ware WA, Miles KG, Viall AK, DeFrancesco TC. Lung ultrasonography findings in dogs with various underlying causes of cough. J Am Vet Med Assoc 2020; 255:574-583. [PMID: 31429645 DOI: 10.2460/javma.255.5.574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize lung ultrasonography (LUS) findings in dogs with a primary clinical complaint of cough. ANIMALS 100 client-owned coughing dogs. PROCEDURES A standardized LUS examination was performed for all dogs to quantify the number of B lines and identify subpleural abnormalities at 4 sites on each hemithorax. The final clinical diagnosis (reference standard) was determined by medical record review, and sensitivity and specificity of LUS for the diagnosis of selected causes of cough was determined. RESULTS Common underlying causes of cough included dynamic airway collapse (n = 37), cardiogenic pulmonary edema (CPE; 12), and bronchitis (10). Compared with dogs with other causes of cough, dogs with bacterial pneumonia (n = 7) were more likely to have subpleural shred signs, whereas dogs with pulmonary neoplasia (4) were more likely to have subpleural nodule signs. Dogs with CPE had higher total B-line scores and higher numbers of LUS sites strongly positive for B lines (> 3 B lines/site) than other dogs. The LUS criteria of total B-line score ≥ 10 and presence of ≥ 2 sites strongly positive for B lines were each 92% sensitive and 94% specific for CPE diagnosis. Notably, 18% (16/88) of dogs with noncardiac causes of cough had been treated previously with diuretics because of prior CPE misdiagnosis. CONCLUSIONS AND CLINICAL RELEVANCE LUS profiles in dogs with cough differed by the underlying cause. In dogs with a clinical history of cough, this imaging modality could be diagnostically useful, particularly to help exclude the possibility of underlying CPE.
Collapse
|
29
|
Valentin S, Chenuel B, Demoulin-Alexikova S, Demoulin B, Gérard D, Foucaud L, Poussel M. Desensitization of the Cough Reflex Induced by Corticosteroids in Ovalbumin-Sensitized Rabbits During Artificial Limb Exercise. Front Physiol 2020; 11:466. [PMID: 32528305 PMCID: PMC7247830 DOI: 10.3389/fphys.2020.00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Cough is a major symptom frequently experienced during exercise, mainly in asthmatic patients. Inhaled glucocorticoids represent the keystone treatment in the management of asthma, but little is known about interactions between cough and exercise, especially in controlled patients. During exercise, cough reflex (CR) appears downregulated in healthy animal models whereas a lack of desensitization of CR has been shown in ovalbumin-sensitized animal models, mimicking asthmatic disease. Aims and Objectives The goal of our study was to clarify the potential modulation of the CR induced by inhaled corticosteroids (CS) in ovalbumin (OVA) sensitized rabbits during artificial limb exercise. Materials and Methods Seventeen OVA sensitized rabbits were studied. Among them, 9 were treated with CS delivered intravenously (OVA-Corticoids). The ventilatory response to direct tracheal stimulation, performed at rest and during exercise, was determined to assess the incidence and the sensitivity of the CR. Broncho-alveolar lavage (BAL) and cell counts were performed to determine the level of airway inflammation. Exercise was mimicked by electrically induced hindlimb muscular contractions (EMC). Results Compared to rest values, EMC increased minute ventilation by 28% without any decrease in respiratory resistance (Rsr). Among 322 tracheal stimulations, 172 (53%) were performed at rest and 150 (47%) during exercise. The sensitivity of CR decreased during artificial limb exercise compared to baseline in OVA-Corticoids rabbits (p = 0.0313) while it remained unchanged in OVA rabbits (p = NS). Conclusion Corticosteroids appear to restore the desensitization of the CR in OVA sensitized rabbits during artificial limb exercise, suggesting the potential role of airway inflammation in the pathophysiology of cough during exercise in asthmatics.
Collapse
Affiliation(s)
- Simon Valentin
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France.,Department of Pneumology, CHRU Nancy, Nancy, France
| | - Bruno Chenuel
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France.,Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| | - Silvia Demoulin-Alexikova
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Bruno Demoulin
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | | | - Laurent Foucaud
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France
| | - Mathias Poussel
- EA 3450 DevAH - Development, Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control, Université de Lorraine, Nancy, France.,Pulmonary Function Testing and Exercise Physiology, CHRU Nancy, Nancy, France
| |
Collapse
|
30
|
Barragán-Zarate GS, Lagunez-Rivera L, Solano R, Pineda-Peña EA, Landa-Juárez AY, Chávez-Piña AE, Carranza-Álvarez C, Hernández-Benavides DM. Prosthechea karwinskii, an orchid used as traditional medicine, exerts anti-inflammatory activity and inhibits ROS. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112632. [PMID: 31991201 DOI: 10.1016/j.jep.2020.112632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prosthechea karwinskii (Mart.) J.M.H. Shaw is a Mexican orchid used in traditional medicine by some indigenous communities to treat issues related to inflammation (cough, wounds, burns, and diabetes). Pharmacological research of this orchid could validate its therapeutic uses and demonstrate its potential for treating other health conditions of high prevalence in Mexico, including those associated with oxidative stress such as diabetes, cancer, atherosclerosis, and hypertension as well as inflammation. AIM OF THE STUDY The leaf extract from P. karwinskii was examined to identify its compounds and elucidate its inhibitory effect on reactive oxygen species as well as its anti-inflammatory activity and gastroprotective effects in an animal model. MATERIALS AND METHODS Compounds were identified via ultra-high-performance liquid chromatography coupled with electrospray ionization with quadrupole time of flight-mass spectrometry. Inhibition of reactive oxygen species was determined ex vivo in peripheral blood mononuclear cells with 2',7'-dichlorodihydrofluorescein diacetate. The anti-inflammatory activity was assessed using a carrageenan-induced paw edema model in Wistar rats; nitric oxide and tumor necrosis factor alpha levels were quantified. The gastroprotective effect was evaluated in Wistar rats with indomethacin-induced gastric injury. RESULTS Nine compounds were identified in the P. karwinskii leaf extract. Most compounds, such as quinic acid, malic acid, neochlorogenic acid, chlorogenic acid, rutin, embelin, pinellic acid, and azelaic acid, were reported to exhibit antioxidant and/or anti-inflammatory activity. The extract was also found to inhibit reactive oxygen species in the ex vivo model. Unlike other anti-inflammatory drugs, the extract exerted a dual effect: anti-inflammatory activity and protection of the gastric mucosa. The results showed that the extract could significantly inhibit the release of nitric oxide without a dose-response relationship. CONCLUSION P. karwinskii leaf extract inhibited reactive oxygen species and exerted an anti-inflammatory effect. Moreover, this extract did not induce gastric damage in the animals. The bioactivity of the species was found to support its use in traditional medicine. This orchid could be used to treat inflammatory diseases without causing the side effects associated with nonsteroidal anti-inflammatory drugs. It can also be employed to treat other pathological conditions associated with oxidative stress. The findings herein form the basis for the future discovery of natural products that may serve as safe alternative therapies for inflammatory disorders.
Collapse
Affiliation(s)
- Gabriela Soledad Barragán-Zarate
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, 71230, Oaxaca, Mexico.
| | - Luicita Lagunez-Rivera
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, 71230, Oaxaca, Mexico.
| | - Rodolfo Solano
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, 71230, Oaxaca, Mexico.
| | - Elizabeth Arlen Pineda-Peña
- Laboratorio de Farmacología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Frac. La Escalera, Ticomán, 07320, Ciudad de México, Mexico.
| | - Arizai Yolia Landa-Juárez
- Laboratorio de Farmacología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Frac. La Escalera, Ticomán, 07320, Ciudad de México, Mexico.
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Frac. La Escalera, Ticomán, 07320, Ciudad de México, Mexico.
| | - Candy Carranza-Álvarez
- Unidad Académica Multidisciplinaria de la Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Frac. Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, Mexico.
| | - Diego Manuel Hernández-Benavides
- Unidad Académica Multidisciplinaria de la Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Frac. Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, Mexico.
| |
Collapse
|
31
|
Pecova T, Kocan I, Vysehradsky R, Pecova R. Itch and Cough - Similar Role of Sensory Nerves in Their Pathogenesis. Physiol Res 2020; 69:S43-S54. [PMID: 32228011 DOI: 10.33549/physiolres.934403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Itch is the most common chief complaint in patients visiting dermatology clinics and is analogous to cough and also sneeze of the lower and upper respiratory tract, all three of which are host actions trying to clear noxious stimuli. The pathomechanisms of these symptoms are not completely determined. The itch can originate from a variety of etiologies. Itch originates following the activation of peripheral sensory nerve endings following damage or exposure to inflammatory mediators. More than one sensory nerve subtype is thought to subservepruriceptive itch which includes both unmyelinated C-fibers and thinly myelinated Adelta nerve fibers. There are a lot of mediators capable of stimulating these afferent nerves leading to itch. Cough and itch pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. The inflammation is involved in the development of chronic conditions of itch and cough. The aim of this review is to point out the role of sensory nerves in the pathogenesis of cough and itching. The common aspects of itch and cough could lead to new thoughts and perspectives in both fields.
Collapse
Affiliation(s)
- T Pecova
- Clinic of Dermatovenerology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Martin, Slovak
| | | | | | | |
Collapse
|
32
|
Nieman GF, Al-Khalisy H, Kollisch-Singule M, Satalin J, Blair S, Trikha G, Andrews P, Madden M, Gatto LA, Habashi NM. A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Front Physiol 2020; 11:227. [PMID: 32265734 PMCID: PMC7096584 DOI: 10.3389/fphys.2020.00227] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by “casting open” the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hassan Al-Khalisy
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | | | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Girish Trikha
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria Madden
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
McDonald BI, Tift MS, Hückstädt LA, Jeffko M, Ponganis PJ. Stroke effort and relative lung volume influence heart rate in diving sea lions. J Exp Biol 2020; 223:jeb214163. [PMID: 32098880 DOI: 10.1242/jeb.214163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
Abstract
The dive response, bradycardia (decreased heart rate) and peripheral vasoconstriction, is the key mechanism allowing breath-hold divers to perform long-duration dives while actively swimming and hunting prey. This response is variable and modulated by factors such as dive duration, depth, exercise and cognitive control. This study assessed the potential role of exercise and relative lung volume in the regulation of heart rate (fH) during dives of adult female California sea lions instrumented with electrocardiogram (ECG), depth and tri-axial acceleration data loggers. A positive relationship between activity (minimum specific acceleration) and fH throughout dives suggested increased muscle perfusion associated with exercise. However, apart from late ascent, fH during dives was still less than or equal to resting fH (on land). In addition, the activity-fH relationship was weaker in long, deep dives consistent with prioritization of blood oxygen conservation over blood oxygen delivery to muscle in those dives. Pulmonary stretch receptor reflexes may also contribute to fH regulation as fH profiles generally paralleled changes in relative lung volume, especially in shallower dives and during early descent and late ascent of deeper dives. Overall, these findings support the concept that both exercise and pulmonary stretch receptor reflexes may influence the dive response in sea lions.
Collapse
Affiliation(s)
- Birgitte I McDonald
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| | - Michael S Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Rd, Wilmington, NC 28403, USA
| | - Luis A Hückstädt
- Institute of Marine Sciences, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - Michael Jeffko
- United States Coast Guard Academy, 27 Mohegan Way, New London, CT 06320, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography - University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Yi F, Han L, Liu B, Zhang X, Xue Y, Luo W, Chen Q, Lai K. Determinants of response to bronchodilator in patients with cough variant asthma- A randomized, single-blinded, placebo-controlled study. Pulm Pharmacol Ther 2020; 61:101903. [PMID: 32092472 DOI: 10.1016/j.pupt.2020.101903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/29/2019] [Accepted: 02/20/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Not all patients with cough variant asthma (CVA) show responsiveness to bronchodilators (RB) in clinic. Whether there are specific clinical and pathophysiological features can indicate RB in patients with CVA needs further investigation. Thus, we aimed to investigate the RB in patients with CVA and associated factors. METHODS Forty-two CVA patients were randomized in a 2:1 ratio to receive oral bambuterol hydrochloride (10 mg, once daily, for 3 days) or matched placebo, 36 patients (24 with bronchodilator and 12 with placebo) completed the study eventually. RB was considered when cough visual analogue scale (VAS) score decreased 30% or more after 3 days treatment. The baseline clinical and pathophysiological characteristics between patients with RB and patients without RB were compared. CRS was presented with the lowest concentration of capsaicin inducing at least 5 coughing (C5). RESULTS The responsive rate of patients with bronchodilator was significantly higher than that with placebo (62.5% vs 16.7%, p < 0.01). Patients with RB showed a significant greater mean decline of FEV1% predicted after bronchial provocation (26.7% vs 22.4%, p < 0.05) and higher geometric mean of sputum eosinophils (1.37 vs 0.69, p < 0.05) as compared with these without RB. No significant differences in sputum neutrophil, Log C5 were found between patients with RB and patients without RB. There was a moderate correlation between the decline of FEV1% pred and RB (rs = 0.443, p < 0.05). The regression analysis showed that nocturnal cough was a predictor of RB (OR, 7.33, 95% CI: 1.11-48.26, p = 0.038). No adverse events were reported by all of the patients after the study. CONCLUSION More than one-third of patients with CVA do not respond to bronchodilator treatment, indicating that the response to bronchodilator should not be a diagnostic requirement of CVA. CVA patients with higher airway responsiveness will more likely respond to bronchodilator. Cough of CVA might be elicited by different mechanisms, which suggests that CVA could be divided into two phenotypes according to the response to bronchodilators.
Collapse
Affiliation(s)
- Fang Yi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Lina Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Baojuan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Xu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Yongxin Xue
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Qiaoli Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China.
| |
Collapse
|
35
|
Lai K, Yi F, Han L, Liu B, Zhang X, Xue Y, Luo W, Chen Q. Response to bronchodilator and clinical, pathophysiological features in patients with nonasthmatic eosinophilic bronchitis. CLINICAL RESPIRATORY JOURNAL 2019; 14:242-249. [PMID: 31808598 DOI: 10.1111/crj.13123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Whether nonasthmatic eosinophilic bronchitis (NAEB) shows response to bronchodilator (RB) remains unclear. OBJECTIVES To investigate the RB and its relationship with clinical and pathophysiological features in NAEB. METHODS Fifty-one patients with NAEB were assigned in a 2:1 ratio to receive oral bambuterol hydrochloride (n = 34, 10 mg, once daily, for 3 days) or matched placebo (n = 17) randomly, of whom 48 patients (32 with bronchodilator and 16 with placebo) completed the study. Sputum induction, spirometry and cough reflex sensitivity were measured. RB was considered when cough Visual analogue scale (VAS) score decreased 30% or more after treatment. Cough reflex sensitivity was defined as the lowest concentration of capsaicin inducing five coughings or more (C5), and presented as Log C5. RESULTS The responsive rate of patients with bronchodilator was significantly higher than that with placebo (34.4% vs 6.3%, P < 0.05). The VAS score decreased significantly in patients with bronchodilator (median: 6.0-3.0, P < 0.01). There was a significantly higher median Log C5 (2.7 vs 1.3, P < 0.05), and a higher trend of decline in FEV1 % predicted and MMEF% predicted after bronchial provocation in patients with RB as compared with patients without RB. No significant differences in baseline percentages of sputum eosinophil were found between patients with RB and that without RB. CONCLUSIONS One third of patients with NAEB respond well to bronchodilator treatment, which are related with lower cough reflex sensitivity and increased airway responsiveness. The relationship between NAEB and asthma needs to be investigated further.
Collapse
Affiliation(s)
- Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lina Han
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baojuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongxin Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoli Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Abstract
The peripheral nervous system (PNS) is highly complicated and heterogenous. Conventional neuromodulatory approaches have revealed numerous essential biological functions of the PNS and provided excellent tools to treat a large variety of human diseases. Yet growing evidence indicated the importance of cell-type-specific neuromodulation in the PNS in not only biological research using animal models but also potential human therapies. Optogenetics is a recently developed neuromodulatory approach combining optics and genetics that can effectively stimulate or silence neuronal activity with high spatial and temporal precision. Here, I review research regarding optogenetic manipulations for cell-type-specific control of the PNS, highlighting the advantages and challenges of current optogenetic tools, and discuss their potential future applications.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
37
|
Kamimura M, Mouri A, Takayama K, Mizutani T, Hamamoto Y, Iikura M, Furihata K. Cough related to swallowing in asthma patients. Asia Pac Allergy 2019; 9:e31. [PMID: 31720242 PMCID: PMC6826117 DOI: 10.5415/apallergy.2019.9.e31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/10/2019] [Indexed: 11/04/2022] Open
Abstract
Background Occurrence of cough during swallowing is common among asthma patients, but has not been investigated in detail. Objective We conducted an observational study to determine the prevalence of swallowing-related cough (SRC) and its characteristics in asthma patients. Methods Asthma patients attending our outpatient department between May 2005 and April 2007 were interviewed to investigate if they had ever experienced SRC, as well as postnasal drip or heartburn and cough related to these conditions. Results Among 417 patients who completed the questionnaire, 121 patients (29.0%) had experienced SRC. Spicy and sour foods were the most frequent tussigenic foods, causing cough in 76.0% and 53.7% of the 121 patients, respectively. In patients without SRC, the prevalence rates of postnasal drip and postnasal drip-induced cough were 35.8% (106 of 296) and 7.8% (23 of 296), respectively. The corresponding prevalence rates in patients with SRC were 50.4% (61 of 121) and 37.2% (45 of 121), which were both significantly higher than in patients without cough (p = 0.006 and p < 0.001 respectively). In patients without SRC, the prevalence rates of heartburn and heartburn-induced cough were 22.2% (66 of 296) and 2.4% (7 of 296), respectively. The corresponding prevalence rates in patients with SRC were 45.5% (55 of 121) and 16.5% (20 of 121), with both being significantly higher than in patients without cough (p = 0.002 and p < 0.001, respectively). Conclusion SRC was frequent in asthma patients, and was closely related to postnasal drip and heartburn. Irritable larynx is one of the possible underlying mechanisms of SRC. This study was registered with the University Hospital Medical Information Network clinical trials registry (registration number: UMIN000017426).
Collapse
Affiliation(s)
- Mitsuhiro Kamimura
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Atsuto Mouri
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Kazuo Takayama
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Tomonori Mizutani
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Yoichiro Hamamoto
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Motoyasu Iikura
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Kaneyuki Furihata
- Department of Pulmonology, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| |
Collapse
|
38
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Paccione CE, Jacobsen HB. Motivational Non-directive Resonance Breathing as a Treatment for Chronic Widespread Pain. Front Psychol 2019; 10:1207. [PMID: 31244707 PMCID: PMC6579813 DOI: 10.3389/fpsyg.2019.01207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic widespread pain (CWP) is one of the most difficult pain conditions to treat due to an unknown etiology and a lack of innovative treatment design and effectiveness. Based upon preliminary findings within the fields of motivational psychology, integrative neuroscience, diaphragmatic breathing, and vagal nerve stimulation, we propose a new treatment intervention, motivational non-directive (ND) resonance breathing, as a means of reducing pain and suffering in patients with CWP. Motivational ND resonance breathing provides patients with a noninvasive means of potentially modulating five psychophysiological mechanisms imperative for endogenously treating pain and increasing overall quality of life.
Collapse
Affiliation(s)
- Charles Ethan Paccione
- Department of Pain Management and Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | |
Collapse
|
40
|
Regulation of Cough by Voltage-Gated Sodium Channels in Airway Sensory Nerves. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2018-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract
Chronic cough is a significant clinical problem in many patients. Current cough suppressant therapies are largely ineffective and have many dangerous adverse effects. Therefore, the identification of novel therapeutic targets and strategies for chronic cough treatment may lead to development of novel effective antitussive therapies with fewer adverse effects. The experimental research in the area of airway sensory nerves suggests that there are two main vagal afferent nerve subtypes that can directly activate cough – extrapulmonary airway C-fibres and Aδ-fibres (described as cough receptors) innervating the trachea. There are different receptors on the vagal nerve terminals that can trigger coughing, such as TRP channels and P2X2/3 receptors. However, in many patients with chronic respiratory diseases multiple activation of these receptors could be involved and it is also difficult to target these receptors. For that reason, a strategy that would inhibit cough-triggering nerve afferents regardless of activated receptors would be of great benefit. In recent years huge progress in understanding of voltage-gated sodium channels (NaVs) leads to a hypothesis that selective targeting of NaVs in airways may represent an effective treatment of pathological cough. The NaVs (NaV1.1 – NaV1.9) are essential for initiation and conduction of action potentials in these nerve fibres. Effective blocking of NaVs will prevent communication between airways and central nervous system and that would inhibit provoked cough irrespective to stimuli. This review provides an overview of airway afferent nerve subtypes that have been described in respiratory tract of human and in animal models. Moreover, the review highlights the current knowledge about cough, the sensory nerves involved in cough, and the voltage-gated sodium channels as a novel neural target in regulation of cough.
Collapse
|
41
|
Ferasin L, Linney C. Coughing in dogs: what is the evidence for and against a cardiac cough? J Small Anim Pract 2019; 60:139-145. [PMID: 30652329 DOI: 10.1111/jsap.12976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 01/06/2023]
Abstract
Cough has been historically reported as a major clinical sign of cardiogenic pulmonary oedema in dogs. However, recent evidence appears to contradict the traditional dogmatic approach that linked cough to congestive heart failure in dogs. Here we use a question-based format to introduce and discuss the modern evidence regarding "cardiac cough" and the interpretation of this important but often misleading clinical sign.
Collapse
Affiliation(s)
- L Ferasin
- Lumbry Park Veterinary Specialists, Alton, Hampshire, GU34 3HL, UK
| | - C Linney
- Willows Veterinary Referral Service, Solihull, West Midlands B90 4NH, UK
| |
Collapse
|
42
|
Umans BD, Liberles SD. Neural Sensing of Organ Volume. Trends Neurosci 2018; 41:911-924. [PMID: 30143276 PMCID: PMC6252275 DOI: 10.1016/j.tins.2018.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
Many internal organs change volume periodically. For example, the stomach accommodates ingested food and drink, the bladder stores urine, the heart fills with blood, and the lungs expand with every breath. Specialized peripheral sensory neurons function as mechanoreceptors that detect tissue stretch to infer changes in organ volume and then relay this information to the brain. Central neural circuits process this information and evoke perceptions (satiety, nausea), control physiology (breathing, heart rate), and impact behavior (feeding, micturition). Yet, basic questions remain about how neurons sense organ distension and whether common sensory motifs are involved across organs. Here, we review candidate mechanosensory receptors, cell types, and neural circuits, focusing on the stomach, bladder, and airways. Understanding mechanisms of organ stretch sensation may provide new ways to treat autonomic dysfunction.
Collapse
Affiliation(s)
- Benjamin D Umans
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Masuda H, Nakamuta N, Yamamoto Y. Morphology of GNAT3-immunoreactive chemosensory cells in the rat larynx. J Anat 2018; 234:149-164. [PMID: 30467855 DOI: 10.1111/joa.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
The upper airways play important roles in respiratory defensive reflexes. Although solitary chemosensory cells and chemosensory cell clusters have been reported in the laryngeal mucosa of mammalian species, the distribution and cellular morphology of chemosensory cells remain unclear. In the present study, the distribution and morphology of solitary chemosensory cells and chemosensory cell clusters were examined by immunofluorescence for GNAT3 on whole-mount preparations of the rat laryngeal mucosa. Electrophysiological experiments were performed to analyze the respiratory reflexes evoked by bitter stimuli to the laryngeal cavity. In the whole area of the laryngeal mucosa, the numbers of GNAT3-immunoreactive solitary chemosensory cells and chemosensory clusters were 421.0 ± 20.3 and 62.7 ± 6.9, respectively. GNAT3-immunoreactive solitary chemosensory cells were mainly distributed in the mucosa overlying epiglottic and arytenoid cartilage, and chemosensory clusters were mainly distributed on the edge of the epiglottis and aryepiglottic fold. GNAT3-immunoreactive solitary chemosensory cells were slender with elongated processes or had a flask-like/columnar shape. The number of GNAT3-immunoreactive cells in chemosensory clusters was 6.1 ± 0.4, ranging between 2 and 14 cells. GNAT3-immunoreactive cells in the cluster were variform and the tips of apical processes gathered at one point at the surface of the epithelium. The tips of apical cytoplasmic processes in solitary chemosensory cells and cells in the cluster were immunoreactive for espin, and faced the laryngeal cavity. Physiological experiments showed that the application of 10 mm quinine hydrochloride to the laryngeal cavity decreased respiratory frequency. The present results revealed the chemosensory field of the larynx and the morphological characteristics of the laryngeal chemosensory system for respiratory depression.
Collapse
Affiliation(s)
- Haruka Masuda
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
44
|
Abstract
Background The objective of the study is to retrospectively analyze the cough status after double lumen tube (DLT) and spontaneous respiration thoracic anesthesia, to compare the degree of influence of anesthesia and surgical factors, and to investigate whether spontaneous respiration anesthesia can reduce the incidence of cough. Methods Postoperative follow-ups were performed on 1,162 patients from July 2011 to December 2015 who meet the selected conditions, whose surgical approach is limited to VAST bullectomy, wedge resection, segmentectomy, or lobectomy. Patients' probability of cough in 1st day (T1), 2nd days (T2), 3rd days (T3), 1st month (T4), 3rd months (T5), 6th months (T6) and 12th months (T7) after thoracoscopic surgery were recorded, as well as the Leicester cough questionnaire (LCQ) survey results, visual cough score (VAS), and cough symptom scores. All cases were divided into double-lumen endotracheal tubes anesthesia group (group T, n=925 cases) and spontaneous respiratory anesthesia group (group S, n=456 cases), and group S was further divided into intravenous composite intercostal nerve block anesthesia group (group SB, n=157 cases) and intravenous combined epidural anesthesia group (group SE, n=299 cases). Results The probability of cough decreases with the increasing of postoperative time (P<0.05). The probability of cough is similar between group SE and group SB (P>0.05). The probability of cough in group T is significantly higher than other groups at any time point (P<0.05). In group T, the symptom of cough is the most severe, the scores of physiological, psychological, and social parts of LCQ are the lowest, and the VAS score is the highest (P<0.05), but all these are similar in group SE and group SB (P>0.05). The duration of antibiotic application, the days of chest drainage tube indwelling, and the days of hospital stay are all lower in group S than in group T (P<0.05). Conclusions There is a correlation between pulmonary surgery and postoperative cough. The probability of postoperative cough is higher in the more invasive patients. The probability of coughing is approximately 27% to 36% at 3 months after surgery, and approximately 2.6% to 7.9% in one year after surgery. The combination of surgery and anesthesia methods increases the probability of cough from 48.9% to 65.1% at 3 months after surgery, and about 20.5% to 22.8% in 1 year after surgery. Spontaneous respiration anesthesia can significantly reduce the probability of cough, improve postoperative recovery, and improve postoperative quality of life.
Collapse
Affiliation(s)
- Zhenzhu Chen
- Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qinglong Dong
- Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lixia Liang
- Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
45
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
46
|
Bonvini SJ, Belvisi MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther 2017; 47:21-28. [PMID: 28669932 DOI: 10.1016/j.pupt.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Cough is the most common reason for patients to visit a primary care physician, yet it remains an unmet medical need. It can be idiopathic in nature but can also be a troublesome symptom across chronic lung diseases such as asthma, COPD and idiopathic pulmonary fibrosis (IPF). Chronic cough affects up to 12% of the population and yet there are no safe and effective therapies. The cough reflex is regulated by vagal, sensory afferent nerves which innervate the airway. The Transient Receptor Potential (TRP) family of ion channels are expressed on sensory nerve terminals, and when activated can evoke cough. This review focuses on the role of 4 TRP channels; TRP Vannilloid 1 (TRPV1), TRP Ankyrin 1 (TRPA1), TRP Vannilloid 4 (TRPV4) and TRP Melastatin 8 (TRPM8) and the purinergic P2X3 receptor and their possible role in chronic cough. We conclude that these ion channels, given their expression profile and their role in the activation of sensory afferents and the cough reflex, may represent excellent therapeutic targets for the treatment of respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
47
|
Yamamoto Y, Nakamuta N. Morphology of P2X3-immunoreactive nerve endings in the rat tracheal mucosa. J Comp Neurol 2017; 526:550-566. [PMID: 29124772 DOI: 10.1002/cne.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Nerve endings with immunoreactivity for the P2X3 purinoreceptor (P2X3) in the rat tracheal mucosa were examined by immunohistochemistry of whole-mount preparations with confocal scanning laser microscopy. P2X3 immunoreactivity was observed in ramified endings distributed in the whole length of the trachea. The myelinated parent axons of P2X3-immunoreactive nerve endings ramified into several branches that extended two-dimensionally in every direction at the interface between the epithelial layer and lamina propria. The axonal branches of P2X3-immunoreactive endings branched off many twigs located just beneath the epithelium, and continued to intraepithelial axon terminals. The axon terminals of P2X3-immunoreactive endings were beaded, rounded, or club-like in shape and terminated between tracheal epithelial cells. Flat axon terminals sometimes partly ensheathed neuroendocrine cells with immunoreactivity for SNAP25 or CGRP. Some axons and axon terminals with P2X3 immunoreactivity were immunoreactive for P2X2, while some terminals were immunoreactive for vGLUT2. Furthermore, a retrograde tracing method using fast blue (FB) revealed that 88.4% of FB-labeled cells with P2X3 immunoreactivity originated from the nodose ganglion. In conclusion, P2X3-immunoreactive nerve endings in the rat tracheal mucosa have unique morphological characteristics, and these endings may be rapidly adapting receptors and/or irritant receptors that are activated by mucosal irritant stimuli.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
48
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
49
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
50
|
Brandimore AE, Hegland KW, Okun MS, Davenport PW, Troche MS. Voluntary upregulation of reflex cough is possible in healthy older adults and Parkinson's disease. J Appl Physiol (1985) 2017; 123:19-26. [PMID: 28360120 DOI: 10.1152/japplphysiol.00612.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022] Open
Abstract
Cough is an airway-protective mechanism that serves to detect and forcefully eject aspirate material. Existing research has identified the ability of healthy young adults to suppress or modify cough motor output based on external cueing. However, no study has evaluated the ability of people with Parkinson's disease (PD) and healthy older adults (HOAs) to upregulate cough motor output. The goal of this study was to evaluate the ability of people with PD and healthy age-matched controls (HOAs) to upregulate reflex and voluntary cough function volitionally with verbal instruction and visual biofeedback of airflow targets. Sixteen participants with PD and twenty-eight HOAs (56-83 yr old) were recruited for this study. Experimental procedures used spirometry to evaluate 1) baseline reflex cough (evoked with capsaicin) and voluntary sequential cough and 2) reflex and voluntary cough with upregulation biofeedback. Cough airflow was recorded and repeated-measures ANOVA was used to analyze differences in cough airflow parameters. Cough peak expiratory airflow rate and cough expired volume were significantly greater in the cueing condition for both induced reflex (P < 0.001) and voluntary cough (P < 0.001) compared with baseline measures. This is the first study to demonstrate the ability of people with PD and HOAs to upregulate induced reflex and voluntary cough motor output volitionally. These results support the development of studies targeting improved cough effectiveness in patients with airway-protective deficits.NEW & NOTEWORTHY Aspiration pneumonia is a leading cause of death in Parkinson's disease (PD) and results from concurrent dysphagia and dystussia (cough dysfunction). This is the first study to demonstrate that people with PD and healthy age-matched controls can volitionally upregulate induced reflex and voluntary cough effectiveness when presented with novel cueing strategies. Thus targeting upregulation of cough effectiveness via biofeedback may be a viable way to enhance airway protection in people with PD.
Collapse
Affiliation(s)
- Alexandra E Brandimore
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York.,Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida.,Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida
| | - Karen W Hegland
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida.,Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida.,Department of Neurology, University of Florida, Gainesville, Florida; and
| | - Michael S Okun
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida.,Department of Neurology, University of Florida, Gainesville, Florida; and
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Michelle S Troche
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York; .,Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida
| |
Collapse
|