1
|
Welch JF, Mitchell GS. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective. Exp Physiol 2024; 109:1217-1237. [PMID: 38551996 PMCID: PMC11291877 DOI: 10.1113/ep091506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 08/02/2024]
Abstract
During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.
Collapse
Affiliation(s)
- Joseph F. Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Halperin I, Vigotsky AD. An Integrated Perspective of Effort and Perception of Effort. Sports Med 2024; 54:2019-2032. [PMID: 38909350 PMCID: PMC11329614 DOI: 10.1007/s40279-024-02055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
Effort and the perception of effort (PE) have been extensively studied across disciplines, resulting in multiple definitions. These inconsistencies block scientific progress by impeding effective communication between and within fields. Here, we present an integrated perspective of effort and PE that is applicable to both physical and cognitive activities. We define effort as the energy utilized to perform an action. This definition can be applied to biological entities performing various voluntary or involuntary activities, irrespective of whether the effort contributes to goal achievement. Then, we define PE as the instantaneous experience of utilizing energy to perform an action. This definition builds on that of effort without conflating it with other subjective experiences. We explore the nature of effort and PE as constructs and variables and highlight key considerations in their measurement. Our integrated perspective aims to facilitate a deeper understanding of these constructs, refine research methodologies, and promote interdisciplinary collaborations.
Collapse
Affiliation(s)
- Israel Halperin
- Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel.
| | - Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, USA
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Jhang J, Liu S, O’Keefe DD, Han S. A top-down slow breathing circuit that alleviates negative affect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529925. [PMID: 36909649 PMCID: PMC10002623 DOI: 10.1101/2023.02.25.529925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Breathing is profoundly influenced by both behavior and emotion1-4 and is the only physiological parameter that can be volitionally controlled4-6. This indicates the presence of cortical-to-brainstem pathways that directly control brainstem breathing centers, but the neural circuit mechanisms of top-down breathing control remain poorly understood. Here, we identify neurons in the dorsal anterior cingulate cortex (dACC) that project to the pontine reticular nucleus caudalis (PnC) and function to slow breathing rates. Optogenetic activation of this corticopontine pathway (dACC→PnC neurons) in mice slows breathing and alleviates behaviors associated with negative emotions without altering valence. Calcium responses of dACC→PnC neurons are tightly correlated with changes in breathing patterns entrained by behaviors, such as drinking. Activity is also elevated when mice find relief from an anxiety-provoking environment and slow their breathing pattern. Further, GABAergic inhibitory neurons within the PnC that receive direct input from dACC neurons decrease breathing rate by projecting to pontomedullary breathing centers. They also send collateral projections to anxiety-related structures in the forebrain, thus comprising a neural network that modulates breathing and negative affect in parallel. These analyses greatly expand our understanding of top-down breathing control and reveal circuit-based mechanisms by which slow breathing and anxiety relief are regulated together.
Collapse
Affiliation(s)
- Jinho Jhang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Present Address: Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David D. O’Keefe
- Research Development Department, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Nicolò A, Sacchetti M. Differential control of respiratory frequency and tidal volume during exercise. Eur J Appl Physiol 2023; 123:215-242. [PMID: 36326866 DOI: 10.1007/s00421-022-05077-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The lack of a testable model explaining how ventilation is regulated in different exercise conditions has been repeatedly acknowledged in the field of exercise physiology. Yet, this issue contrasts with the abundance of insightful findings produced over the last century and calls for the adoption of new integrative perspectives. In this review, we provide a methodological approach supporting the importance of producing a set of evidence by evaluating different studies together-especially those conducted in 'real' exercise conditions-instead of single studies separately. We show how the collective assessment of findings from three domains and three levels of observation support the development of a simple model of ventilatory control which proves to be effective in different exercise protocols, populations and experimental interventions. The main feature of the model is the differential control of respiratory frequency (fR) and tidal volume (VT); fR is primarily modulated by central command (especially during high-intensity exercise) and muscle afferent feedback (especially during moderate exercise) whereas VT by metabolic inputs. Furthermore, VT appears to be fine-tuned based on fR levels to match alveolar ventilation with metabolic requirements in different intensity domains, and even at a breath-by-breath level. This model reconciles the classical neuro-humoral theory with apparently contrasting findings by leveraging on the emerging control properties of the behavioural (i.e. fR) and metabolic (i.e. VT) components of minute ventilation. The integrative approach presented is expected to help in the design and interpretation of future studies on the control of fR and VT during exercise.
Collapse
Affiliation(s)
- Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| |
Collapse
|
5
|
Ma W, Nemdharry S, Elgueta Cancino E, Chiou SY. Influence of coil orientation on corticospinal excitability of trunk muscles during postural and volitional tasks in healthy adults. Front Hum Neurosci 2023; 17:1108169. [PMID: 36816500 PMCID: PMC9929149 DOI: 10.3389/fnhum.2023.1108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Trunk muscles play a role in maintaining postural stability and performing goal-directed voluntary movements in activities of daily living. Evidence has shown that the primary motor cortex (M1) is involved in modulation of postural control and voluntary movements of the trunk. However, it remains unknown whether the neural circuits within the M1 were recruited to the same extent between a postural task and a goal-directed voluntary task. Methods To address this, we examined latencies and amplitudes of motor evoked potentials (MEPs) of the erector spinae (ES) with transcranial magnetic stimulation (TMS) figure-of-eight coil oriented to induce latero-medial (LM), posterior-anterior (PA), and anterior-posterior (AP) currents in the M1 in twenty healthy participants during a dynamic shoulder flexion (DSF) task, a postural task requiring anticipatory postural adjustments (APAs), and during a static trunk extension (STE) task, a voluntary task without involvement of APAs. Results We found that differences in the AP-LM latency of ES MEP were longer compared with the PA-LM latency in both tasks. Corticospinal excitability was overall greater during the DSF task than during the STE task irrespective of the coil orientation. Discussion Our findings suggest that while the same neural circuits in the M1 were recruited to modulate both postural and voluntary control of the trunk, the contribution was greater to the postural task than the voluntary task, possibly due to the requirement of APAs in the task.
Collapse
Affiliation(s)
- Wesley Ma
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom
| | - Sheanil Nemdharry
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom
| | - Edith Elgueta Cancino
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom,Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Science, Universidad Andrés Bello, Santiago, Chile
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, United Kingdom,*Correspondence: Shin-Yi Chiou ✉
| |
Collapse
|
6
|
Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022; 16:982963. [PMID: 36213203 PMCID: PMC9537466 DOI: 10.3389/fncir.2022.982963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
A plethora of neural centers in the central nervous system control the fundamental respiratory pattern. This control is ensured by neurons that act as pacemakers, modulating activity through chemical control driven by changes in the O2/CO2 balance. Most of the respiratory neural centers are located in the brainstem, but difficult to localize on magnetic resonance imaging (MRI) due to their small size, lack of visually-detectable borders with neighboring areas, and significant physiological noise hampering detection of its activity with functional MRI (fMRI). Yet, several approaches make it possible to study the normal response to different abnormal stimuli or conditions such as CO2 inhalation, induced hypercapnia, volitional apnea, induced hypoxia etc. This review provides a comprehensive overview of the majority of available studies on central respiratory control in humans.
Collapse
Affiliation(s)
- Carolina Ciumas
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
The Respiratory Resistance Sensitivity Task: An Automated Method for Quantifying Respiratory Interoception and Metacognition. Biol Psychol 2022; 170:108325. [DOI: 10.1016/j.biopsycho.2022.108325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
|
8
|
Kılıçoğlu MS, Yurdakul OV, Çelik Y, Aydın T. Investigating the correlation between pulmonary function tests and ultrasonographic diaphragm measurements and the effects of respiratory exercises on these parameters in hemiplegic patients. Top Stroke Rehabil 2021; 29:218-229. [PMID: 33844946 DOI: 10.1080/10749357.2021.1911748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To investigate the correlation of DUS and pulmonary function tests (PFTs), and investigate the effects of respiratory exercises on the above parameters.Methods: For the treatment group (n=20), neurological rehabilitation and respiratory exercise program, and for the control group (n=21), only a neurological rehabilitation program was implemented for 30 sessions. Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), end-inspiration diaphragm thickness (IDT), end-expiratory diaphragm thickness (EDT), and diaphragm thickening ratio (DTR) were measured pre- and post-treatment.Results: IDTs and EDTs as well as DTRs of affected side (p < .001, .001, and .03, respectively) and intact side (p < .001, .001, and .02, respectively) were found to improve post-treatment than before treatment in the treatment group. Similarly, FVC, FEV1, and FEV1/FVC, were better post-treatment than before treatment in the treatment group. Moreover, the affected side IDT was positively correlated with FVC and FEV1 before treatment (r = .38, p = .03 and r = .35, p = .02) and post-treatment (r = .46, p = .02 and r = .39, p = .03). The affected side DTR was positively correlated with FVC and FEV1 before treatment (r = .44, p = .01 and r = .40, p = .02) and post-treatment (r = .32, p = .03 and r = .40, p = .04).Conclusion: DUS can be used for the evaluation of respiratory problems in stroke patients. Moreover, breathing exercises improve these parameters in stroke patients, and they can be followed up by DUS.
Collapse
Affiliation(s)
- Mehmet Serkan Kılıçoğlu
- Department of Physical Medicine and Rehabilitation, Karamursel State Hospital, Karamursel, Kocaeli, Turkey
| | - Ozan Volkan Yurdakul
- Medicine, Department of Physical Medicine and Rehabilitation, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Yusuf Çelik
- Medicine, Department of Biostatistics, Biruni University, Topkapi, Istanbul, Turkey
| | - Teoman Aydın
- Medicine, Department of Physical Medicine and Rehabilitation, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| |
Collapse
|
9
|
AlSalahi SE, Junejo RT, Bradley C, Balanos GM, Siebenmann C, Fisher JP. The middle cerebral artery blood velocity response to acute normobaric hypoxia occurs independently of changes in ventilation in humans. Exp Physiol 2021; 106:861-867. [PMID: 33527604 DOI: 10.1113/ep089127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the ventilatory response to moderate acute hypoxia increase cerebral perfusion independently of changes in arterial oxygen tension in humans? What is the main finding and its importance? The ventilatory response does not increase middle cerebral artery mean blood velocity during moderate isocapnic acute hypoxia beyond that elicited by reduced oxygen saturation. ABSTRACT Hypoxia induces ventilatory, cardiovascular and cerebrovascular adjustments to defend against reductions in systemic oxygen delivery. We aimed to determine whether the ventilatory response to moderate acute hypoxia increases cerebral perfusion independently of changes in arterial oxygenation. Eleven young healthy individuals were exposed to four 15 min experimental conditions: (1) normoxia (partial pressure of end-tidal oxygen, P ET O 2 = 100 mmHg), (2) hypoxia ( P ET O 2 = 50 mmHg), (3) normoxia with breathing volitionally matched to levels observed during hypoxia (hyperpnoea; P ET O 2 = 100 mmHg) and (4) hypoxia ( P ET O 2 = 50 mmHg) with respiratory frequency and tidal volume volitionally matched to levels observed during normoxia (i.e., restricted breathing (RB)). Isocapnia was maintained in all conditions. Middle cerebral artery mean blood velocity (MCA Vmean ), assessed by transcranial Doppler ultrasound, was increased during hypoxia (58 ± 12 cm/s, P = 0.04) and hypoxia + RB (61 ± 14 cm/s, P < 0.001) compared to normoxia (55 ± 11 cm/s), while it was unchanged during hyperpnoea (52 ± 13 cm/s, P = 0.08). MCA Vmean was not different between hypoxia and hypoxia + RB (P > 0.05). These findings suggest that the hypoxic ventilatory response does not increase cerebral perfusion, indexed using MCA Vmean , during moderate isocapnic acute hypoxia beyond that elicited by reduced oxygen saturation.
Collapse
Affiliation(s)
- Sultan E AlSalahi
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rehan T Junejo
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Chris Bradley
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Kluger DS, Gross J. Depth and phase of respiration modulate cortico-muscular communication. Neuroimage 2020; 222:117272. [PMID: 32822811 DOI: 10.1101/2020.01.13.904524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 05/28/2023] Open
Abstract
Recent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the potential influence of respiration depth and respiration phase on the human motor system. We obtained simultaneous recordings of brain activity, muscle activity, and respiration while participants performed a steady contraction task. We used corticomuscular coherence as a measure of efficient long-range cortico-peripheral communication. We found coherence within the beta range over sensorimotor cortex to be reduced during voluntary deep compared to involuntary normal breathing. Moreover, beta coherence was found to be cyclically modulated by respiration phase in both conditions. Overall, these results demonstrate how respiratory rhythms influence the synchrony of brain oscillations, conceivably regulating computational efficiency through neural excitability. Intriguing questions remain with regard to the shape of these modulatory processes and how they influence perception, cognition, and behaviour.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Kluger DS, Gross J. Depth and phase of respiration modulate cortico-muscular communication. Neuroimage 2020; 222:117272. [PMID: 32822811 DOI: 10.1016/j.neuroimage.2020.117272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the potential influence of respiration depth and respiration phase on the human motor system. We obtained simultaneous recordings of brain activity, muscle activity, and respiration while participants performed a steady contraction task. We used corticomuscular coherence as a measure of efficient long-range cortico-peripheral communication. We found coherence within the beta range over sensorimotor cortex to be reduced during voluntary deep compared to involuntary normal breathing. Moreover, beta coherence was found to be cyclically modulated by respiration phase in both conditions. Overall, these results demonstrate how respiratory rhythms influence the synchrony of brain oscillations, conceivably regulating computational efficiency through neural excitability. Intriguing questions remain with regard to the shape of these modulatory processes and how they influence perception, cognition, and behaviour.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Fukumoto Y. Effective Motor Imagery Application: Examining Spinal Cord Excitability from the F-Wave and Autonomic Nervous Activity from LF/HF. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Currow DC, Hunt T, Louw S, Eckert D, Allcroft P, To TH, Greene A, Krajnik M, Mahler D, Ekström M. Isolating peripheral effects of endogenous opioids in modulating exertional breathlessness in people with moderate or severe COPD: a randomised controlled trial. ERJ Open Res 2019; 5:00153-2019. [PMID: 31886161 PMCID: PMC6926367 DOI: 10.1183/23120541.00153-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/17/2019] [Indexed: 11/05/2022] Open
Abstract
QUESTION ADDRESSED BY THE STUDY Endogenous opioids (endorphins) have been reported to modulate exercise-induced breathlessness, but the relative contribution of peripheral opioid receptors has not been tested. MATERIALS PARTICIPANTS AND METHODS This was a double-blind, randomised, three-arm, cross-over trial in outpatients with spirometry-verified moderate to severe chronic obstructive pulmonary disease. Participants undertook an incremental symptom-limited treadmill test followed by five endurance treadmill tests at 75% of their maximal work rate; two tests for familiarisation and three tests 30 min after intravenous injection of either methylnaltrexone 0.3 mg·kg-1 (blocking peripheral opioid receptors only) or naloxone 0.1 mg·kg-1 (blocking both central and peripheral opioid receptors) or normal saline, in randomised order. The primary end-point was the regression slope between breathlessness intensity (0-10 numerical rating scale) and oxygen consumption (V'O2 ) during the walk tests, comparing methylnaltrexone and placebo using a paired t-test. RESULTS 17 participants completed the trial: median (range) 66 (55-82) years; 15 males; mean±sd forced expiratory volume (FEV1) 53.8±17.6% predicted; FEV1/forced vital capacity ratio 0.55±15.9. There was no statistically or clinically significant difference in the primary end-point (regression slope of breathlessness intensity and V'O2 ) for methylnaltrexone (p=0.498) or naloxone (p=0.804), compared to placebo. Secondary outcomes were similar between the three treatment groups, including peak and mean breathlessness intensity and unpleasantness, exercise capacity, endurance time and leg fatigue. ANSWER TO THE QUESTION Blocking peripheral opioid receptors (methylnaltrexone) or peripheral and central opioid receptors (naloxone) did not appear to modulate breathlessness intensity nor exercise capacity when compared with placebo (no blockade).
Collapse
Affiliation(s)
- David C. Currow
- IMPACCT, Faculty of Health, University of Technology Sydney, Ultimo, Australia
- Discipline Palliative and Supportive Services, Flinders University, Adelaide, Australia
| | - Toby Hunt
- Dept of Respiratory Medicine, Flinders University, Adelaide, Australia
| | - Sandra Louw
- McCloud Consulting Group, Belrose, Australia
| | - Danny Eckert
- Neuroscience Research Australia, Margarete Ainsworth Building, Sydney, Australia
| | - Peter Allcroft
- Discipline Palliative and Supportive Services, Flinders University, Adelaide, Australia
- Southern Adelaide Palliative Services (SAPS), Flinders Medical Centre, Bedford Park, Australia
| | - Tim H.M. To
- Discipline Palliative and Supportive Services, Flinders University, Adelaide, Australia
- Southern Adelaide Palliative Services (SAPS), Flinders Medical Centre, Bedford Park, Australia
| | - Aine Greene
- Discipline Palliative and Supportive Services, Flinders University, Adelaide, Australia
| | - Malgorzata Krajnik
- Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Don Mahler
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Magnus Ekström
- IMPACCT, Faculty of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Medicine, Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Hernandez L, Manning J, Zhang S. Voluntary control of breathing affects center of pressure complexity during static standing in healthy older adults. Gait Posture 2019; 68:488-493. [PMID: 30616178 DOI: 10.1016/j.gaitpost.2018.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 02/02/2023]
Abstract
Background Physiological/biomechanical systems display high degrees of complexity in their corresponding physiological and/or biomechanical outputs, indicative of normal healthy physiological functioning, though little attention has been paid to potential mechanisms which may affect complexity. Center of pressure (CoP) dynamics also display high degrees of complexity and may be affected via altered respiratory-motor interactions such as during voluntary control of breathing. Purpose The purpose of this study was to investigate the differences in the complexity of CoP dynamics during autonomous vs. voluntary control of breathing and between different voluntarily controlled breathing conditions. Methods Center of pressure recordings were taken from 18 older adults during static standing under three different breathing conditions: 1) neutral breathing, 2) abdominal breathing, and 3) thoracic breathing, the first constituting the autonomous breathing condition and the latter two constituting voluntarily controlled breathing conditions. CoP dynamics were quantified using sample entropy, standard deviation, 95% sway area, and average radial velocity. Repeated measure MANOVAs were used to assess the effect of breathing on CoP dynamics, with top-down application of ANOVAs and pairwise comparison as needed. Results Voluntary control of breathing during both conditions resulted in significantly higher CoP variability and lower sample entropy than during autonomous control of breathing in the mediolateral direction, indicating less complex dynamics and loss of system control. No significant differences between voluntary breathing conditions were observed. Conclusion Voluntary control of breathing significantly affected on CoP dynamics during static standing. The complexity of the postural control system may be affected via alterations in respiratory-motor interactions.
Collapse
Affiliation(s)
| | | | - Shuqi Zhang
- Northern Illinois University, United States.
| |
Collapse
|
15
|
Abstract
Context: Reliable quantitative measure of meditation is still elusive. Although electroencephalogram (EEG) and heart rate variability (HRV) are known as quantitative measures of meditation, effects of meditation on EEG and HRV may well take long time as these measures are involuntarily controlled. Effect of mediation on respiration is well known; however, quantitative measures of respiration during meditation have not been studied. Aims: Breath rate variability (BRV) as an alternate measure of meditation even over a short duration is proposed. The main objective of this study is to test the hypothesis that BRV is a simple measure that differentiates between meditators and nonmeditators. Settings and Design: This was a nonrandomized, controlled trial. Volunteers meditate in their natural habitat during signal acquisition. Subjects and Methods: We used Photo-Plythysmo-Gram (PPG) signal acquisition system from BIO-PAC and recorded video of chest and abdomen movement due to respiration during a short meditation (15 min) session for 12 individuals (all males) meditating in a relaxed sitting posture. Seven of the 12 individuals had substantial experience in meditation, while others are controls without any experience in meditation. Respiratory signal from PPG signal was derived and matched with that of the video respiratory signal. This derived respiratory signal is used for calculating BRV parameters in time, frequency, nonlinear, and time-frequency domain. Statistical Analysis Used: First, breath-to-breath interval (BBI) was calculated from the respiration signal, then time domain parameters such as standard deviation of BBI (SDBB), root mean square value of SDBB (RMSSD), and standard deviation of SDBB (SDSD) were calculated. We performed spectral analysis to calculate frequency domain parameters (power spectral density [PSD], power of each band, peak frequency of each band, and normalized frequency) using Burg, Welch, and Lomb–Scargle (LS) method. We calculated nonlinear parameters (sample entropy, approximate entropy, Poincare plot, and Renyi entropy). We calculated time frequency parameters (global PSD, low frequency-high frequency [LF-HF] ratio, and LF-HF power) by Burg LS and wavelet method. Results: The results show that the mediated individuals have high value of SDSD (+24%), SDBB (+29%), and RMSSD (+26%). Frequency domain analysis shows substantial increment in LFHF power (+73%) and LFHF ratio (+33%). Nonlinear parameters such as SD1 and SD2 were also more (>20%) for meditated persons. Conclusions: As compared to HRV, BRV can provide short-term effect on anatomic nervous system meditation, while HRV shows long-term effects. Improved autonomic function is one of the long-term effects of meditation in which an increase in parasympathetic activity and decrease in sympathetic dominance are observed. In future works, BRV could also be used for measuring stress.
Collapse
Affiliation(s)
- Rahul Soni
- Department of Applied Mechanics, IIT Madras, Chennai, Tamil Nadu, India
| | | |
Collapse
|
16
|
Acute hypercapnia does not alter voluntary drive to the diaphragm in healthy humans. Respir Physiol Neurobiol 2018; 258:60-68. [PMID: 29859322 DOI: 10.1016/j.resp.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
Abstract
Although systemic hypercapnia is a common outcome of pulmonary disease, the relationship between hypercapnia and voluntary diaphragmatic activation (VAdi) is unclear. To examine whether hypercapnia independent of ventilatory work contributes to reduced central motor drive to the diaphragm in healthy humans, 14 subjects spontaneously breathed room air (NN) or a hypercapnic gas mixture (HH; 7% CO2 with air) while at rest. Thereafter, subjects volitionally hyperventilated room air (NH) matching the minute ventilation recorded during HH while maintained at eucapnic levels. Twitch interpolation with bilateral magnetic stimulation of phrenic nerves at functional residual capacity was used to assess VAdi during the three trials. Although PETCO2 was elevated during HH compared with NN and NH (52 vs 36 mmHg), VAdi was not altered across the trials (HH = 93.3 ± 7.0%, NN = 94.4 ± 5.0%, NH = 94.9 ± 4.6%, p = 0.48). Our findings indicate that the magnitude of hypercapnia acutely imposed may not be effective in inhibiting voluntary neural drives to the diaphragm in normal resting individuals.
Collapse
|
17
|
Stoeckel MC, Esser RW, Gamer M, von Leupoldt A. Breathlessness amplifies amygdala responses during affective processing. Psychophysiology 2018; 55:e13092. [PMID: 29667212 DOI: 10.1111/psyp.13092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Breathlessness is an aversive symptom in many prevalent somatic and psychiatric diseases and is usually experienced as highly threatening. It is strongly associated with negative affect, but the underlying neural processes remain poorly understood. Therefore, using fMRI, the present study examined the effects of breathlessness on the neural processing of affective visual stimuli within candidate brain areas including the amygdala, insula, and anterior cingulate cortex (ACC). During scanning, 42 healthy volunteers, mean (SD) age: 29.0 (6.0) years, 14 female, were presented with affective picture series of negative, neutral, and positive valence while experiencing either no breathlessness (baseline conditions) or resistive-load induced breathlessness (breathlessness conditions). Respiratory measures and self-reports suggested successful induction of breathlessness and affective experiences. Self-reports of breathlessness intensity and unpleasantness were significantly higher during breathlessness conditions, mean (SD): 45.0 (16.6) and 32.3 (19.8), as compared to baseline conditions, mean (SD): 1.9 (3.0) and 2.9 (5.5). Compared to baseline conditions, stronger amygdala activations were observed during breathlessness conditions for both negative and positive affective picture series relative to neutral picture series, while no such effects were observed in insula and ACC. The present findings demonstrate that breathlessness amplifies amygdala responses during affective processing, suggesting an important role of the amygdala for mediating the interactions between breathlessness and affective states.
Collapse
Affiliation(s)
- M Cornelia Stoeckel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland W Esser
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Gamer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology 1, University of Würzburg, Würzburg, Germany
| | - Andreas von Leupoldt
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Health Psychology, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Yang CF, Feldman JL. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J Comp Neurol 2018; 526:1389-1402. [PMID: 29473167 DOI: 10.1002/cne.24415] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The preBötzinger Complex (preBötC), a compact medullary region essential for generating normal breathing rhythm and pattern, is the kernel of the breathing central pattern generator (CPG). Excitatory preBötC neurons in rats project to major breathing-related brainstem regions. Here, we provide a brainstem connectivity map in mice for both excitatory and inhibitory preBötC neurons. Using a genetic strategy to label preBötC neurons, we confirmed extensive projections of preBötC excitatory neurons within the brainstem breathing CPG including the contralateral preBötC, Bötzinger Complex (BötC), ventral respiratory group, nucleus of the solitary tract, parahypoglossal nucleus, parafacial region (RTN/pFRG or alternatively, pFL /pFV ), parabrachial and Kölliker-Füse nuclei, as well as major projections to the midbrain periaqueductal gray. Interestingly, preBötC inhibitory projections paralleled the excitatory projections. Moreover, we examined overlapping projections in the pons in detail and found that they targeted the same neurons. We further explored the direct anatomical link between the preBötC and suprapontine brain regions that may govern emotion and other complex behaviors that can affect or be affected by breathing. Forebrain efferent projections were sparse and restricted to specific nuclei within the thalamus and hypothalamus, with processes rarely observed in cortex, basal ganglia, or other limbic regions, e.g., amygdala or hippocampus. We conclude that the preBötC sends direct, presumably inspiratory-modulated, excitatory and inhibitory projections in parallel to distinct targets throughout the brain that generate and modulate breathing pattern and/or coordinate breathing with other behaviors, physiology, cognition, or emotional state.
Collapse
Affiliation(s)
- Cindy F Yang
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| |
Collapse
|
19
|
Bolzani A, Rolser SM, Kalies H, Maddocks M, Rehfuess E, Gysels M, Higginson IJ, Booth S, Bausewein C. Physical interventions for breathlessness in adults with advanced diseases. Hippokratia 2017. [DOI: 10.1002/14651858.cd012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Bolzani
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Stefanie M Rolser
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Helen Kalies
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Matthew Maddocks
- Cicely Saunders Institute, King's College London; Department of Palliative Care, Policy and Rehabilitation; Denmark Hill London UK SE5 9PJ
| | - Eva Rehfuess
- LMU Munich; Institute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public Health; Marchioninistr. 15 Munich Germany 81377
| | - Marjolein Gysels
- University of Amsterdam; Amsterdam Institute of Social Science Research; Amsterdam Netherlands
| | - Irene J Higginson
- King's College London; Department of Palliative Care, Policy and Rehabilitation, Cicely Saunders Institute; Bessemer Road Denmark Hill London UK SE5 9PJ
| | - Sara Booth
- Cambridge University Hospitals; Department of Palliative Care; Cambridge UK
| | - Claudia Bausewein
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| |
Collapse
|
20
|
Bolzani A, Rolser SM, Kalies H, Maddocks M, Rehfuess E, Swan F, Gysels M, Higginson IJ, Booth S, Bausewein C. Respiratory interventions for breathlessness in adults with advanced diseases. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [DOI: 10.1002/14651858.cd012683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Bolzani
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Stefanie M Rolser
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Helen Kalies
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Matthew Maddocks
- Cicely Saunders Institute, King's College London; Department of Palliative Care, Policy and Rehabilitation; Denmark Hill London UK SE5 9PJ
| | - Eva Rehfuess
- LMU Munich; Institute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public Health; Marchioninistr. 15 Munich Germany 81377
| | - Flavia Swan
- University of Hull; Hull Medical School; Hull UK
| | - Marjolein Gysels
- University of Amsterdam; Amsterdam Institute of Social Science Research; Amsterdam Netherlands
| | - Irene J Higginson
- King's College London; Department of Palliative Care, Policy and Rehabilitation, Cicely Saunders Institute; Bessemer Road Denmark Hill London UK SE5 9PJ
| | - Sara Booth
- Cambridge University Hospitals; Department of Palliative Care; Cambridge UK
| | - Claudia Bausewein
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| |
Collapse
|
21
|
Bolzani A, Rolser SM, Kalies H, Maddocks M, Rehfuess E, Hutchinson A, Gysels M, Higginson IJ, Booth S, Bausewein C. Cognitive-emotional interventions for breathlessness in adults with advanced diseases. Hippokratia 2017. [DOI: 10.1002/14651858.cd012682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Bolzani
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Stefanie M Rolser
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Helen Kalies
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| | - Matthew Maddocks
- Cicely Saunders Institute, King's College London; Department of Palliative Care, Policy and Rehabilitation; Denmark Hill London UK SE5 9PJ
| | - Eva Rehfuess
- LMU Munich; Institute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public Health; Marchioninistr. 15 Munich Germany 81377
| | | | - Marjolein Gysels
- University of Amsterdam; Amsterdam Institute of Social Science Research; Amsterdam Netherlands
| | - Irene J Higginson
- King's College London; Department of Palliative Care, Policy and Rehabilitation, Cicely Saunders Institute; Bessemer Road Denmark Hill London UK SE5 9PJ
| | - Sara Booth
- Cambridge University Hospitals; Department of Palliative Care; Cambridge UK
| | - Claudia Bausewein
- LMU Munich; Department of Palliative Medicine, Munich University Hospital; Marchioninistr. 15 Munich Germany
| |
Collapse
|
22
|
Schmidt M, Schumann A, Müller J, Bär KJ, Rose G. ECG derived respiration: comparison of time-domain approaches and application to altered breathing patterns of patients with schizophrenia. Physiol Meas 2017; 38:601-615. [DOI: 10.1088/1361-6579/aa5feb] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Saller MM, Huettl RE, Hanuschick P, Amend AL, Alberton P, Aszodi A, Huber AB. The role of Sema3-Npn-1 signaling during diaphragm innervation and muscle development. J Cell Sci 2016; 129:3295-308. [PMID: 27466379 PMCID: PMC5047703 DOI: 10.1242/jcs.186015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm.
Collapse
Affiliation(s)
- Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Schillerstraße 46, Munich 80336, Germany
| | - Philipp Hanuschick
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Anna-Lena Amend
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Bernstein Network for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
24
|
Barnes H, McDonald J, Smallwood N, Manser R. Opioids for the palliation of refractory breathlessness in adults with advanced disease and terminal illness. Cochrane Database Syst Rev 2016; 3:CD011008. [PMID: 27030166 PMCID: PMC6485401 DOI: 10.1002/14651858.cd011008.pub2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Breathlessness is a common and disabling symptom which affects many people with advanced cardiorespiratory disease and cancer. The most effective treatments are aimed at treating the underlying disease. However, this may not always be possible, and symptomatic treatment is often required in addition to maximal disease-directed therapy. Opioids are increasingly being used to treat breathlessness, although their mechanism of action is still not completely known. A few good sized, high quality trials have been conducted in this area. OBJECTIVES To determine the effectiveness of opioid drugs in relieving the symptom of breathlessness in people with advanced disease due to malignancy, respiratory or cardiovascular disease, or receiving palliative care for any other disease. SEARCH METHODS We performed searches on CENTRAL, MEDLINE, EMBASE, CINAHL, and Web of Science up to 19 October 2015. We handsearched review articles, clinical trial registries, and reference lists of retrieved articles. SELECTION CRITERIA We included randomised double-blind controlled trials that compared the use of any opioid drug against placebo or any other intervention for the relief of breathlessness. The intervention was any opioid, given by any route, in any dose. DATA COLLECTION AND ANALYSIS We imported studies identified by the search into a reference manager database. We retrieved the full-text version of relevant studies, and two review authors independently extracted data. The primary outcome measure was breathlessness and secondary outcome measures included exercise tolerance, oxygen saturations, adverse events, and mortality. We analysed all studies together and also performed subgroup analyses, by route of administration, type of opioid administered, and cause of breathlessness. Where appropriate, we performed meta-analysis. We assessed the evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and created three 'Summary of findings' tables. MAIN RESULTS We included 26 studies with 526 participants. We assessed the studies as being at high or unclear risk of bias overall. We only included randomised controlled trials (RCTs), although the description of randomisation was incomplete in some included studies. We aimed to include double blind RCTs, but two studies were only single blinded. There was inconsistency in the reporting of outcome measures. We analysed the data using a fixed-effect model, and for some outcomes heterogeneity was high. There was a risk of imprecise results due to the low numbers of participants in the included studies. For these reasons we downgraded the quality of the evidence from high to either low or very low.For the primary outcome of breathlessness, the mean change from baseline dyspnoea score was 0.09 points better in the opioids group compared to the placebo group (ranging from a 0.36 point reduction to a 0.19 point increase) (seven RCTs, 117 participants, very low quality evidence). A lower score indicates an improvement in breathlessness. The mean post-treatment dyspnoea score was 0.28 points better in the opioid group compared to the placebo group (ranging from a 0.5 point reduction to a 0.05 point increase) (11 RCTs, 159 participants, low quality evidence).The evidence for the six-minute walk test (6MWT) was conflicting. The total distance in 6MWT was 28 metres (m) better in the opioids group compared to placebo (ranging from 113 m to 58 m) (one RCT, 11 participants, very low quality evidence). However, the change in baseline was 48 m worse in the opioids group (ranging from 36 m to 60 m) (two RCTs, 26 participants, very low quality evidence).The adverse effects reported included drowsiness, nausea and vomiting, and constipation. In those studies, participants were 4.73 times more likely to experience nausea and vomiting compared to placebo, three times more likely to experience constipation, and 2.86 times more likely to experience drowsiness (nine studies, 162 participants, very low quality evidence).Only four studies assessed quality of life, and none demonstrated any significant change. AUTHORS' CONCLUSIONS There is some low quality evidence that shows benefit for the use of oral or parenteral opioids to palliate breathlessness, although the number of included participants was small. We found no evidence to support the use of nebulised opioids. Further research with larger numbers of participants, using standardised protocols and with quality of life measures included, is needed.
Collapse
Affiliation(s)
- Hayley Barnes
- Alfred HealthDepartment of Allergy, Immunology and Respiratory MedicineMelbourneAustralia
| | - Julie McDonald
- Princess Margaret Cancer Centre, University Health NetworkDepartment of Supportive CareTorontoOntarioCanada
- Department of Medicine, University of TorontoDivision of Medical OncologyTorontoOntarioCanada
| | - Natasha Smallwood
- Royal Melbourne HospitalDepartment of Respiratory MedicineMelbourneAustralia
| | - Renée Manser
- and Department of Respiratory Medicine, Royal Melbourne HospitalDepartment of Haematology and Medical Oncology, Peter MacCallum Cancer Institute, St Andrew's Place, East Melbourne 3002, Victoria305 Grattan StreetMelbourneAustralia3000
| | | |
Collapse
|
25
|
Chiou SY, Gottardi SEA, Hodges PW, Strutton PH. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks. PLoS One 2016; 11:e0147650. [PMID: 26807583 PMCID: PMC4726526 DOI: 10.1371/journal.pone.0147650] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Sam E. A. Gottardi
- The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Paul W. Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Science, Brisbane, Queensland, Australia
| | - Paul H. Strutton
- The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Burke PGR, Kanbar R, Basting TM, Hodges WM, Viar KE, Stornetta RL, Guyenet PG. State-dependent control of breathing by the retrotrapezoid nucleus. J Physiol 2015; 593:2909-26. [PMID: 25820491 DOI: 10.1113/jp270053] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS This study explores the state dependence of the hypercapnic ventilatory reflex (HCVR). We simulated an instantaneous increase or decrease of central chemoreceptor activity by activating or inhibiting the retrotrapezoid nucleus (RTN) by optogenetics in conscious rats. During quiet wake or non-REM sleep, hypercapnia increased both breathing frequency (fR ) and tidal volume (VT ) whereas, in REM sleep, hypercapnia increased VT exclusively. Optogenetic inhibition of RTN reduced VT in all sleep-wake states, but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Phasic RTN stimulation produced active expiration and reduced early expiratory airflow (i.e. increased upper airway resistance) only during wake. We conclude that the HCVR is highly state-dependent. The HCVR is reduced during REM sleep because fR is no longer under chemoreceptor control and thus could explain why central sleep apnoea is less frequent in REM sleep. ABSTRACT Breathing has different characteristics during quiet wake, non-REM or REM sleep, including variable dependence on PCO2. We investigated whether the retrotrapezoid nucleus (RTN), a proton-sensitive structure that mediates a large portion of the hypercapnic ventilatory reflex, regulates breathing differently during sleep vs. wake. Electroencephalogram, neck electromyogram, blood pressure, respiratory frequency (fR ) and tidal volume (VT ) were recorded in 28 conscious adult male Sprague-Dawley rats. Optogenetic stimulation of RTN with channelrhodopsin-2, or inhibition with archaerhodopsin, simulated an instantaneous increase or decrease of central chemoreceptor activity. Both opsins were delivered with PRSX8-promoter-containing lentiviral vectors. RTN and catecholaminergic neurons were transduced. During quiet wake or non-REM sleep, hypercapnia (3 or 6% FI,CO2 ) increased both fR and VT whereas, in REM sleep, hypercapnia increased VT exclusively. RTN inhibition always reduced VT but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Blood pressure was unaffected by either stimulation or inhibition. Except in REM sleep, phasic RTN stimulation entrained and shortened the breathing cycle by selectively shortening the post-inspiratory phase. Phasic stimulation also produced active expiration and reduced early expiratory airflow but only during wake. VT is always regulated by RTN and CO2 but fR is regulated by CO2 and RTN only when the brainstem pattern generator is in autorhythmic mode (anaesthesia, non-REM sleep, quiet wake). The reduced contribution of RTN to breathing during REM sleep could explain why certain central apnoeas are less frequent during this sleep stage.
Collapse
Affiliation(s)
- Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Walter M Hodges
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
27
|
Ozaki I, Kurata K. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring. Clin Neurophysiol 2015; 126:2162-9. [PMID: 25698305 DOI: 10.1016/j.clinph.2014.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the effects of voluntary deep breathing on the excitability of the hand area in the primary motor cortex (M1). METHODS We applied near-threshold transcranial magnetic stimulation (TMS) over M1 during the early phase of inspiration or expiration in both normal automatic and voluntary deep, but not "forced", breathing in eight healthy participants at rest. We monitored exhaled CO2 levels continuously, and recorded motor-evoked potentials (MEPs) simultaneously from the abductor pollicis brevis, first dorsal interosseous, abductor digiti minimi, flexor digitorum superficialis, and extensor incidis muscles. RESULTS We observed that, during voluntary deep breathing, MEP amplitude increased by up to 50% for all recorded muscles and the latency of MEPs decreased by approximately 1ms, compared with normal automatic breathing. We found no difference in the amplitude or latency of MEPs between inspiratory and expiratory phases in either normal automatic or voluntary deep breathing. CONCLUSIONS Voluntary deep breathing at rest facilitates MEPs following TMS over the hand area of M1, and MEP enhancement occurs throughout the full respiratory cycle. SIGNIFICANCE The M1 hand region is continuously driven by top-down neural signals over the entire respiratory cycle of voluntary deep breathing.
Collapse
Affiliation(s)
- Isamu Ozaki
- Department of Physical Therapy, Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori 030-8505, Japan.
| | - Kiyoshi Kurata
- Department of Physiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
28
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
29
|
Habituation to experimentally induced electrical pain during voluntary-breathing controlled electrical stimulation (BreEStim). PLoS One 2014; 9:e104729. [PMID: 25153077 PMCID: PMC4143193 DOI: 10.1371/journal.pone.0104729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/11/2014] [Indexed: 12/23/2022] Open
Abstract
Objective Painful peripheral electrical stimulation to acupuncture points was found to cause sensitization if delivered randomly (EStim), but induced habituation if triggered by voluntary breathing (BreEStim). The objective was to systematically compare the effectiveness of BreEStim and EStim and to investigate the possible mechanisms mediating the habituation effect of BreEStim. Methods Eleven pain-free, healthy subjects (6 males, 5 females) participated in the study. Each subject received the BreEStim and EStim treatments in a random order at least three days apart. Both treatments consisted of 120 painful but tolerable stimuli to the ulnar nerve at the elbow on the dominant arm. BreEStim was triggered by voluntary breathing while EStim was delivered randomly. Electrical sensation threshold (EST) and electrical pain threshold (EPT) were measured from the thenar and hypothenar eminences on both hands at pre-intervention and 10-minutes post-intervention. Results There was no difference in the pre-intervention baseline measurement of EST and EPT between BreEStim and EStim. BreEStim increased EPT in all tested sites on both hands, while EStim increased EPT in the dominant hypothenar eminence distal to the stimulating site and had no effect on EPT in other sites. There was no difference in the intensity of electrical stimulation between EStim and BreEStim. Conclusion Our findings support the important role human voluntary breathing plays in the systemic habituation effect of BreEStim to peripheral painful electrical stimulation.
Collapse
|
30
|
Guillén-Mandujano A, Carrasco-Sosa S. Additive effect of simultaneously varying respiratory frequency and tidal volume on respiratory sinus arrhythmia. Auton Neurosci 2014; 186:69-76. [PMID: 25200867 DOI: 10.1016/j.autneu.2014.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/29/2014] [Accepted: 08/12/2014] [Indexed: 11/26/2022]
Abstract
Our aims were to assess, in healthy young females and males, the effects of the linear joint variation of respiratory frequency (RF) and tidal volume (VT) on the logarithmic transformation of high-frequency power of RR intervals (lnHF). ECG and VT were recorded from 18 females and 20 males during three visually guided 30-s breathing maneuvers: linearly increasing RF (RFLI) at constant VT; linearly increasing VT (VTLI) followed by decreasing VT (VTLD) at fixed RF, and RFLI and VTLI-VTLD combined. VT of females was 20% smaller. Instantaneous RF and lnHF were computed from the time-frequency distributions of respiratory series and RR intervals. LnHF-RF and lnHF-VT relations were similar between genders. LnHF and RR intervals control-maneuver differences during combined maneuver were approximately equal to the sum of those of the independent maneuvers. LnHF-RFLI relation showed strong negative correlations in separated and combined conditions, with steeper slope in the latter (p < 0.001). LnHF-VTLI and lnHF-VTLD relations presented, in the independent maneuvers, three combinations of slopes of different sign, all with hysteresis, and in the combined maneuver, strong correlations with negative slope for VTLI and positive slope for VTLD, steeper (p < 0.001) and with greater hysteresis (p < 0.001) than the independent ones. LnHF responses to our fast, non-fatiguing and non-steady-state breathing maneuvers are: similar between genders; consistent attenuation due to RFLI, whether applied alone or combined; ambiguous and with hysteresis to independent VTLI-VTLD variations; systematic greater attenuation during RFLI combined with VTLI-VTLD, equal to the sum of the independent effects, indicating that there is no interference between them.
Collapse
Affiliation(s)
- Alejandra Guillén-Mandujano
- Laboratorio de Fisiología Médica, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, D.F., México; División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Iztapalapa, D.F., México.
| | - Salvador Carrasco-Sosa
- Laboratorio de Fisiología Médica, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, D.F., México
| |
Collapse
|
31
|
Jung KJ, Park JY, Hwang DW, Kim JH, Kim JH. Ultrasonographic diaphragmatic motion analysis and its correlation with pulmonary function in hemiplegic stroke patients. Ann Rehabil Med 2014; 38:29-37. [PMID: 24639923 PMCID: PMC3953360 DOI: 10.5535/arm.2014.38.1.29] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/24/2013] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate diaphragmatic motion via M-mode ultrasonography and to correlate it with pulmonary function in stroke patients. Methods This was a preliminary study comprised of ten stroke patients and sixteen healthy volunteers. The M-mode ultrasonographic probe was positioned in the subcostal anterior region of the abdomen for transverse scanning of the diaphragm during quiet breathing, voluntary sniffing, and deep breathing. We analyzed diaphragmatic motion and the relationship between diaphragmatic motion and pulmonary function. Results All stroke patients had restrictive pulmonary dysfunction. Compared to that exhibited by control subjects, stroke patients exhibited a significant unilateral reduction in motion on the hemiplegic side, primarily during volitional breathing. Diaphragmatic excursion in right-hemiplegic patients was reduced on both sides compared to that in control subjects. However, diaphragmatic excursion was reduced only on the left side and increased on the right side in left-hemiplegic patients compared to that in control subjects. Left diaphragmatic motion during deep breathing correlated positively with forced vital capacity (rho=0.86, p=0.007) and forced expiratory volume in 1 second (rho=0.79, p=0.021). Conclusion Reductions in diaphragmatic motion and pulmonary function can occur in stroke patients. Thus, this should be assessed prior to the initiation of rehabilitation therapy, and M-mode ultrasonography can be used for this purpose. It is a non-invasive method providing quantitative information that is correlated with pulmonary function.
Collapse
Affiliation(s)
- Kang-Jae Jung
- Department of Rehabilitation Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Ji-Young Park
- Department of Rehabilitation Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Do-Won Hwang
- Department of Rehabilitation Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Jeong-Hawn Kim
- Department of Rehabilitation Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Jae-Hyung Kim
- Department of Rehabilitation Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| |
Collapse
|
32
|
Danion F. Superposition of automatic and voluntary aspects of grip force control in humans during object manipulation. PLoS One 2013; 8:e79341. [PMID: 24244483 PMCID: PMC3823659 DOI: 10.1371/journal.pone.0079341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022] Open
Abstract
When moving grasped objects, people automatically modulate grip force (GF) with movement-dependent load force (LF) in order to prevent object slip. However, GF can also be modulated voluntarily as when squeezing an object. Here we investigated possible interactions between automatic and voluntary GF control. Participants were asked to generate horizontal cyclic movements (between 0.6 and 2.0 Hz) of a hand-held object that was restrained by an elastic band such that the load force (LF) reached a peak once per movement cycle, and to simultaneously squeeze the object at each movement reversal (i.e., twice per cycle). Participants also performed two control tasks in which they either only moved (between 0.6 and 2.0 Hz) or squeezed (between 1.2 and 4.0 Hz) the object. The extent to which GF modulation in the simultaneous task could be predicted from the two control tasks was assessed using power spectral analyses. At all frequencies, the GF power spectra from the simultaneous task exhibited two prominent components that occurred at the cycle frequency (ƒ) and at twice this frequency (2ƒ), whereas the spectra from the movement and squeeze control task exhibited only single peaks at ƒ and 2ƒ, respectively. At lower frequencies, the magnitudes of both frequency components in the simultaneous task were similar to the magnitudes of the corresponding components in the control tasks. However, as frequency increased, the magnitudes of both components in the simultaneous task were greater than the magnitudes of the corresponding control task components. Moreover, the phase relationship between the ƒ components of GF and LF began to drift from the value observed in the movement control task. Overall these results suggest that, at lower movement frequencies, voluntary and automatic GF control processes operate at different hierarchical levels. Several mechanisms are discussed to account for interaction effects observed at higher movement frequencies.
Collapse
Affiliation(s)
- Frederic Danion
- Institut de Neurosciences de la Timone, CNRS & Aix-Marseille University, Marseille, France
- * E-mail:
| |
Collapse
|
33
|
Abstract
Among the several topics included in respiratory studies investigators have focused on the control of breathing for a relatively few number of years, perhaps only the last 75 to 80. For a very long time, the phenomenon of respiration presented a great mystery. The Chinese had suggestions for proper breathing, and later the Egyptians sought to understand its purpose. But in the western world, the early Greeks made the more significant observations. Centuries passed before the anatomical structures pertinent to respiration were properly visualized and located. There followed efforts to understand if lung movement was necessary for life and what happened in the lung. The rise of chemistry in the 18th century eventually clarified the roles of the gases significant in respiratory behavior. More time was needed to understand what gases provoked increases in breathing and where those gases worked. At this point, control of breathing became a significant focus of respiratory investigators. Studies included identifying the structures and functions of central and peripheral chemoreceptors, and airway receptors, sources of respiratory rhythm and pattern generation, the impact of the organism's status on its breathing including environment and disease/trauma. At this same time, mid- to late-20th century, efforts to mathematicize the variables in the control of breathing appeared. So though wonderment about the mysterious phenomenon of respiration began over two millennia ago, serious physiological investigation into its control is by comparison very young.
Collapse
Affiliation(s)
- Robert S Fitzgerald
- Departments of Environmental Health Sciences Division of Physiology, of Physiology, and of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | |
Collapse
|
34
|
Abstract
During exercise by healthy mammals, alveolar ventilation and alveolar-capillary diffusion increase in proportion to the increase in metabolic rate to prevent PaCO2 from increasing and PaO2 from decreasing. There is no known mechanism capable of directly sensing the rate of gas exchange in the muscles or the lungs; thus, for over a century there has been intense interest in elucidating how respiratory neurons adjust their output to variables which can not be directly monitored. Several hypotheses have been tested and supportive data were obtained, but for each hypothesis, there are contradictory data or reasons to question the validity of each hypothesis. Herein, we report a critique of the major hypotheses which has led to the following conclusions. First, a single stimulus or combination of stimuli that convincingly and entirely explains the hyperpnea has not been identified. Second, the coupling of the hyperpnea to metabolic rate is not causal but is due to of these variables each resulting from a common factor which link the circulatory and ventilatory responses to exercise. Third, stimuli postulated to act at pulmonary or cardiac receptors or carotid and intracranial chemoreceptors are not primary mediators of the hyperpnea. Fourth, stimuli originating in exercising limbs and conveyed to the brain by spinal afferents contribute to the exercise hyperpnea. Fifth, the hyperventilation during heavy exercise is not primarily due to lactacidosis stimulation of carotid chemoreceptors. Finally, since volitional exercise requires activation of the CNS, neural feed-forward (central command) mediation of the exercise hyperpnea seems intuitive and is supported by data from several studies. However, there is no compelling evidence to accept this concept as an indisputable fact.
Collapse
Affiliation(s)
- Hubert V Forster
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
35
|
Li S, Berliner JC, Melton DH, Li S. Modification of electrical pain threshold by voluntary breathing-controlled electrical stimulation (BreEStim) in healthy subjects. PLoS One 2013; 8:e70282. [PMID: 23894632 PMCID: PMC3722161 DOI: 10.1371/journal.pone.0070282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pain has a distinct sensory and affective (i.e., unpleasantness) component. BreEStim, during which electrical stimulation is delivered during voluntary breathing, has been shown to selectively reduce the affective component of post-amputation phantom pain. The objective was to examine whether BreEStim increases pain threshold such that subjects could have improved tolerance of sensation of painful stimuli. METHODS Eleven pain-free healthy subjects (7 males, 4 females) participated in the study. All subjects received BreEStim (100 stimuli) and conventional electrical stimulation (EStim, 100 stimuli) to two acupuncture points (Neiguan and Weiguan) of the dominant hand in a random order. The two different treatments were provided at least three days apart. Painful, but tolerable electrical stimuli were delivered randomly during EStim, but were triggered by effortful inhalation during BreEStim. Measurements of tactile sensation threshold, electrical sensation and electrical pain thresholds, thermal (cold sensation, warm sensation, cold pain and heat pain) thresholds were recorded from the thenar eminence of both hands. These measurements were taken pre-intervention and 10-min post-intervention. RESULTS There was no difference in the pre-intervention baseline measurement of all thresholds between BreEStim and EStim. The electrical pain threshold significantly increased after BreEStim (27.5±6.7% for the dominant hand and 28.5±10.8% for the non-dominant hand, respectively). The electrical pain threshold significantly decreased after EStim (9.1±2.8% for the dominant hand and 10.2±4.6% for the non-dominant hand, respectively) (F[1, 10] = 30.992, p = .00024). There was no statistically significant change in other thresholds after BreEStim and EStim. The intensity of electrical stimuli was progressively increased, but no difference was found between BreEStim and EStim. CONCLUSION Voluntary breathing controlled electrical stimulation selectively increases electrical pain threshold, while conventional electrical stimulation selectively decreases electrical pain threshold. This may translate into improved pain control.
Collapse
Affiliation(s)
- Shengai Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- UTHealth Neurorehabilitation Research Laboratory at TIRR, The Institute of Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, Texas, United States of America
| | - Jeffrey C. Berliner
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- UTHealth Neurorehabilitation Research Laboratory at TIRR, The Institute of Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, Texas, United States of America
| | - Danielle H. Melton
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- UTHealth Neurorehabilitation Research Laboratory at TIRR, The Institute of Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, Texas, United States of America
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- UTHealth Neurorehabilitation Research Laboratory at TIRR, The Institute of Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
The palliative care population is generally vulnerable to experiencing medication-induced adverse effects and drug–drug interactions. Neuromodulation may offer particular advantages over systemic medications in this population. Spinal cord stimulation and peripheral nerve stimulation have long been utilized in efforts to provide analgesia for various painful conditions. More recently, deep brain stimulation/motor cortex stimulation has anecdotally been utilized for certain intractable pain states. Although brain electrical stimulation has not been adequately trialed or in some cases even tried at all for management of a variety of symptoms, it is conceivable that in the future it may be a potential therapeutic option in efforts to palliate various severe refractory symptoms (eg, intractable pain, nausea, dyspnea, delirium).
Collapse
Affiliation(s)
- Howard S. Smith
- Department of Anesthesiology, Albany Medical College, Albany, NY, USA
| | | |
Collapse
|
37
|
Li S. Breathing-controlled Electrical Stimulation (BreEStim) for management of neuropathic pain and spasticity. J Vis Exp 2013:e50077. [PMID: 23353138 PMCID: PMC3582688 DOI: 10.3791/50077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Electrical stimulation (EStim) refers to the application of electrical current to muscles or nerves in order to achieve functional and therapeutic goals. It has been extensively used in various clinical settings. Based upon recent discoveries related to the systemic effects of voluntary breathing and intrinsic physiological interactions among systems during voluntary breathing, a new EStim protocol, Breathing-controlled Electrical Stimulation (BreEStim), has been developed to augment the effects of electrical stimulation. In BreEStim, a single-pulse electrical stimulus is triggered and delivered to the target area when the airflow rate of an isolated voluntary inspiration reaches the threshold. BreEStim integrates intrinsic physiological interactions that are activated during voluntary breathing and has demonstrated excellent clinical efficacy. Two representative applications of BreEStim are reported with detailed protocols: management of post-stroke finger flexor spasticity and neuropathic pain in spinal cord injury.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, USA.
| |
Collapse
|
38
|
The phrenic component of acute schizophrenia--a name and its physiological reality. PLoS One 2012; 7:e33459. [PMID: 22438935 PMCID: PMC3306403 DOI: 10.1371/journal.pone.0033459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/13/2012] [Indexed: 12/26/2022] Open
Abstract
Decreased heart rate variability (HRV) was shown for unmedicated patients with schizophrenia and their first-degree relatives, implying genetic associations. This is known to be an important risk factor for increased cardiac mortality in other diseases. The interaction of cardio-respiratory function and respiratory physiology has never been investigated in the disease although it might be closely related to the pattern of autonomic dysfunction. We hypothesized that increased breathing rates and reduced cardio-respiratory coupling in patients with acute schizophrenia would be associated with low vagal function. We assessed variability of breathing rates and depth, HRV and cardio-respiratory coupling in patients, their first-degree relatives and controls at rest. Control subjects were investigated a second time by means of a stress task to identify stress-related changes of cardio-respiratory function. A total of 73 subjects were investigated, consisting of 23 unmedicated patients, 20 healthy, first-degree relatives and 30 control subjects matched for age, gender, smoking and physical fitness. The LifeShirt®, a multi-function ambulatory device, was used for data recording (30 minutes). Patients breathe significantly faster (p<.001) and shallower (p<.001) than controls most pronouncedly during exhalation. Patients' breathing is characterized by a significantly increased amount of middle- (p<.001), high- (p<.001), and very high frequency fluctuations (p<.001). These measures correlated positively with positive symptoms as assessed by the PANSS scale (e.g., middle frequency: r = 521; p<.01). Cardio-respiratory coupling was reduced in patients only, while HRV was decreased in patients and healthy relatives in comparison to controls. Respiratory alterations might reflect arousal in acutely ill patients, which is supported by comparable physiological changes in healthy subjects during stress. Future research needs to further investigate these findings with respect to their physiological consequences for patients. These results are invaluable for researchers studying changes of biological signals prone to the influence of breathing rate and rhythm (e.g., functional imaging).
Collapse
|
39
|
Parshall MB, Carle AC, Ice U, Taylor R, Powers J. Validation of a three-factor measurement model of dyspnea in hospitalized adults with heart failure. Heart Lung 2011; 41:44-56. [PMID: 21794918 DOI: 10.1016/j.hrtlng.2011.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The purpose of this study was to validate a 3-factor measurement model of dyspnea sensory quality (WORK-EFFORT, TIGHTNESS, SMOTHERING-AIR HUNGER) originally derived in patients with exacerbated chronic obstructive pulmonary disease. METHODS In this validation study, adult patients with heart failure were enrolled after hospital admission (median hospital day 1) and asked to rate the intensity of dyspnea sensory quality descriptors on the day of enrollment (study day 1; N = 119) and in a recall version for the day of admission (study day 0; n = 97). RESULTS Confirmatory factor analysis demonstrated good model fit for both days. Cronbach's α for each factor was greater than .87 for both study days. CONCLUSION This is the first study to validate a previously specified measurement model of dyspnea sensory quality in an independent sample. Results indicate that measurement of dyspnea sensory quality in exacerbated cardiopulmonary disease does not necessarily require disease-specific questionnaires.
Collapse
Affiliation(s)
- Mark B Parshall
- College of Nursing, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Li S, Rymer WZ. Voluntary breathing influences corticospinal excitability of nonrespiratory finger muscles. J Neurophysiol 2010; 105:512-21. [PMID: 21160006 DOI: 10.1152/jn.00946.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to investigate neurophysiologic mechanisms mediating the newly discovered phenomenon of respiratory-motor interactions and to explore its potential clinical application for motor recovery. First, young and healthy subjects were instructed to breathe normally (NORM); to exhale (OUT) or inhale (IN) as fast as possible in a self-paced manner; or to voluntarily hold breath (HOLD). In experiment 1 (n = 14), transcranial magnetic stimulation (TMS) was applied during 10% maximal voluntary contraction (MVC) finger flexion force production or at rest. The motor-evoked potentials (MEPs) were recorded from flexor digitorum superficialis (FDS), extensor digitorum communis (EDC), and abductor digiti minimi (ADM) muscles. Similarly, in experiment 2 (n = 11), electrical stimulation (ES) was applied to FDS or EDC during the described four breathing conditions while subjects maintained 10%MVC of finger flexion or extension and at rest. In the exploratory clinical experiments (experiment 3), four patients with chronic neurological disorders (three strokes, one traumatic brain injury) received a 30-min session of breathing-controlled ES to the impaired EDC. In experiment 1, the EDC MEP magnitudes increased significantly during IN and OUT at both 10%MVC and rest; the FDS MEPs were enhanced only at 10%MVC, whereas the ADM MEP increased only during OUT, compared with NORM for both at rest and 10%MVC. No difference was found between NORM and HOLD for all three muscles. In experiment 2, when FDS was stimulated, force response was enhanced during both IN and OUT, but only at 10%MVC. When EDC was stimulated, force response increased at both 10%MVC and rest, only during IN, but not OUT. The averaged response latency was 83 ms for the finger extensors and 79 ms for the finger flexors. After a 30-min intervention of ES to EDC triggered by forced inspiration in experiment 3, we observed a significant reduction in finger flexor spasticity. The spasticity reduction lasted for ≥ 4 wk in all four patients. TMS and ES data, collectively, support the phenomenon that there is an overall respiration-related enhancement on the motor system, with a strong inspiration-finger extension coupling during voluntary breathing. As such, breathing-controlled electrical stimulation (i.e., stimulation to finger extensors delivered during the voluntary inspiratory phase) could be applied for enhancing finger extension strength and finger flexor spasticity reduction in poststroke patients.
Collapse
Affiliation(s)
- Sheng Li
- University of Texas Health Science Center at Houston, Department of Physical Medicine and Rehabilitation, Houston, TX 77030, USA.
| | | |
Collapse
|
42
|
Dunin-Barkowski W, Lovering A, Orem J, Baekey D, Dick T, Rybak I, Morris K, O’Connor R, Nuding S, Shannon R, Lindsey B. L-plotting—A method for visual analysis of physiological experimental and modeling multi-component data. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2010.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Haouzi P. Initiating inspiration outside the medulla does produce eupneic breathing. J Appl Physiol (1985) 2010; 110:854-6. [PMID: 21030668 DOI: 10.1152/japplphysiol.00833.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Philippe Haouzi
- Pennsylvania State Univ., College of Medicine, Penn State Hershey Medical Center, 500 Univ. Dr., Hershey, PO Box 850, MC H047, PA 17033-0850, USA.
| |
Collapse
|
44
|
Iwamoto E, Taito S, Kawae T, Sekikawa K, Takahashi M, Inamizu T. The neural influence on the occurrence of locomotor–respiratory coordination. Respir Physiol Neurobiol 2010; 173:23-8. [DOI: 10.1016/j.resp.2010.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
|
45
|
Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol (1985) 2010; 109:966-76. [PMID: 20634355 DOI: 10.1152/japplphysiol.00462.2010] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of somatosensory feedback on cardioventilatory responses to rhythmic exercise in five men. In a double-blind, placebo-controlled design, subjects performed the same leg cycling exercise (50/100/150/325 ± 19 W, 3 min each) under placebo conditions (interspinous saline, L(3)-L(4)) and with lumbar intrathecal fentanyl impairing central projection of spinal opioid receptor-sensitive muscle afferents. Quadriceps strength was similar before and after fentanyl administration. To evaluate whether a cephalad migration of fentanyl affected cardioventilatory control centers in the brain stem, we compared resting ventilatory responses to hypercapnia (HCVR) and cardioventilatory responses to arm vs. leg cycling exercise after each injection. Similar HCVR and minor effects of fentanyl on cardioventilatory responses to arm exercise excluded direct medullary effects of fentanyl. Central command during leg exercise was estimated via quadriceps electromyogram. No differences between conditions were found in resting heart rate (HR), ventilation [minute ventilation (VE)], or mean arterial pressure (MAP). Quadriceps electromyogram, O(2) consumption (VO(2)), and plasma lactate were similar in both conditions at the four steady-state workloads. Compared with placebo, a substantial hypoventilation during fentanyl exercise was indicated by the 8-17% reduction in VE/CO(2) production (VCO(2)) secondary to a reduced breathing frequency, leading to average increases of 4-7 Torr in end-tidal PCO(2) (P < 0.001) and a reduced hemoglobin saturation (-3 ± 1%; P < 0.05) at the heaviest workload (∼90% maximal VO(2)) with fentanyl. HR was reduced 2-8%, MAP 8-13%, and ratings of perceived exertion by 13% during fentanyl vs. placebo exercise (P < 0.05). These findings demonstrate the essential contribution of muscle afferent feedback to the ventilatory, cardiovascular, and perceptual responses to rhythmic exercise in humans, even in the presence of unaltered contributions from other major inputs to cardioventilatory control.
Collapse
Affiliation(s)
- Markus Amann
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Raux M, Xie H, Similowski T, Koski L. Facilitatory conditioning of the supplementary motor area in humans enhances the corticophrenic responsiveness to transcranial magnetic stimulation. J Appl Physiol (1985) 2009; 108:39-46. [PMID: 19892923 DOI: 10.1152/japplphysiol.91454.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inspiratory loading in awake humans is associated with electroencephalographic signs of supplementary motor area (SMA) activation. To provide evidence for a functional connection between SMA and the diaphragm representation in the primary motor cortex (M1(DIA)), we tested the hypothesis that modulating SMA activity using repetitive transcranial magnetic stimulation (rTMS) would alter M1(DIA) excitability. Amplitude and latency of diaphragm motor evoked potentials (MEP(DIA)), evoked through single pulse M1(DIA) stimulation, before and up to 16 min after SMA stimulation, were taken as indicators of M1(DIA) excitability. MEPs from the first dorsal interosseous muscle (FDI, MEP(FDI)) served as a control. Four SMA conditioning sessions were performed in random order at 1-wk intervals. Two aimed at increasing SMA activity (5 and 10 Hz, both at 110% of FDI active motor threshold; referred to as 5Hz and 10Hz, respectively), and two aimed at decreasing it (1 Hz either at 110% of FDI active or resting motor threshold, referred to as aMT or rMT, respectively). The 5Hz protocol increased MEP(DIA) and MEP(FDI) amplitudes with a maximum 11-16 min poststimulation (P = 0.04 and P = 0.02, respectively). The 10Hz protocol increased MEP(FDI) amplitude with a similar time course (P = 0.03) but did not increase MEP(DIA) amplitude (P = 0.32). Both aMT and rMT failed to decrease MEP(DIA) or MEP(FDI) amplitudes (P = 0.23 and P = 0.90, respectively, for diaphragm and P = 0.48 and P = 0.14 for FDI). MEP(DIA) and MEP(FDI) latencies were unaffected by rTMS. These results demonstrate that 5-Hz rTMS over the SMA can increase the excitability of M1(DIA). These observations are consistent with the hypothesis of a functional connection between SMA and M1(DIA).
Collapse
Affiliation(s)
- Mathieu Raux
- Dept. of Anesthesiology and Critical Care, Groupe Hospitalier Pitie Salpetriere, 47-83 Boulevard de l'Hopital, 75651 Paris Cedex 13, France.
| | | | | | | |
Collapse
|
47
|
Lee LY. Respiratory sensations evoked by activation of bronchopulmonary C-fibers. Respir Physiol Neurobiol 2009; 167:26-35. [PMID: 18586581 PMCID: PMC2759402 DOI: 10.1016/j.resp.2008.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
C-fibers represent the majority of vagal afferents innervating the airways and lung, and can be activated by inhaled chemical irritants and certain endogenous substances. Stimulation of bronchopulmonary C-fibers with selective chemical activators by either inhalation or intravenous injection evokes irritation, burning and choking sensations in the throat, neck and upper chest (mid-sternum region) in healthy human subjects. These irritating sensations are often accompanied by bouts of coughs either during inhalation challenge or when a higher dose of the chemical activator is administered by intravenous injection. Dyspnea and breathless sensation are not always evoked when these afferents are activated by different types of chemical stimulants. This variability probably reflects the chemical nature of the stimulants, as well as the possibility that different subtypes of C-fibers encoded by different receptor proteins are activated. These respiratory sensations and reflex responses (e.g., cough) are believed to play an important role in protecting the lung against inhaled irritants and preventing overexertion under unusual physiological stresses (e.g., during strenuous exercise) in healthy individuals. More importantly, recent studies have revealed that the sensitivity of bronchopulmonary C-fibers can be markedly elevated in acute and chronic airway inflammatory diseases, probably caused by a sensitizing effect of certain endogenously released inflammatory mediators (e.g., prostaglandin E(2)) that act directly or indirectly on specific ion channels expressed on the sensory terminals. Normal physiological actions such as an increase in tidal volume (e.g., during mild exercise) can then activate these C-fiber afferents, and consequently may contribute, in part, to the lingering respiratory discomforts and other debilitating symptoms in patients with lung diseases.
Collapse
|
48
|
von Leupoldt A, Sommer T, Kegat S, Eippert F, Baumann HJ, Klose H, Dahme B, Büchel C. Down-regulation of insular cortex responses to dyspnea and pain in asthma. Am J Respir Crit Care Med 2009; 180:232-8. [PMID: 19483110 DOI: 10.1164/rccm.200902-0300oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Dyspnea is the impairing cardinal symptom of asthma but its accurate perception is also crucial for timely initiation of treatment. However, the underlying brain mechanisms of perceived dyspnea in patients with asthma are unknown. OBJECTIVES To study brain mechanisms of dyspnea in asthma. METHODS By using functional magnetic resonance imaging we compared the neuronal responses to experimentally induced dyspnea in patients with asthma and healthy controls. These brain activations were compared with neuronal responses evoked by pain to study neuronal generalization processes to another, similarly unpleasant, physiological sensation. MEASUREMENTS AND MAIN RESULTS While lying in the scanner, fourteen patients with mild-to-moderate asthma and fourteen matched healthy controls repeatedly underwent conditions of mild dyspnea, severe dyspnea, mild pain and severe pain. Dyspnea was induced by resistive loaded breathing. Heat pain of similar intensity was induced by a contact thermode. Whereas the sensory intensity of both sensations was rated similar by patients and controls, ratings of the affective unpleasantness of dyspnea and pain were reduced in patients. This perceptual difference was mirrored by reduced insular cortex activity, but increased activity in the periaqueductal gray (PAG) in patients during both increased dyspnea and pain. Connectivity analyses showed that asthma-specific down-regulation of the insular cortex during dyspnea and pain was moderated by increased PAG activity. CONCLUSIONS The results suggest a down-regulation of affect-related insular cortex activity by the PAG during perceived dyspnea and pain in patients with asthma. This might represent a neuronal habituation mechanism reducing the affective unpleasantness of dyspnea in asthma, which generalizes to other unpleasant physiological sensations such as pain.
Collapse
|
49
|
Evans KC, Dougherty DD, Schmid AM, Scannell E, McCallister A, Benson H, Dusek JA, Lazar SW. Modulation of spontaneous breathing via limbic/paralimbic-bulbar circuitry: an event-related fMRI study. Neuroimage 2009; 47:961-71. [PMID: 19450692 DOI: 10.1016/j.neuroimage.2009.05.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/13/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022] Open
Abstract
It is well established that pacemaker neurons in the brainstem provide automatic control of breathing for metabolic homeostasis and survival. During waking spontaneous breathing, cognitive and emotional demands can modulate the intrinsic brainstem respiratory rhythm. However the neural circuitry mediating this modulation is unknown. Studies of supra-pontine influences on the control of breathing have implicated limbic/paralimbic-bulbar circuitry, but these studies have been limited to either invasive surgical electrophysiological methods or neuroimaging during substantial respiratory provocation. Here we probed the limbic/paralimbic-bulbar circuitry for respiratory-related neural activity during unlabored spontaneous breathing at rest as well as during a challenging cognitive task (sustained random number generation). Functional magnetic resonance imaging (fMRI) with simultaneous physiological monitoring (heart rate, respiratory rate, tidal volume, end-tidal CO(2)) was acquired in 14 healthy subjects during each condition. The cognitive task produced expected increases in breathing rate, while end-tidal CO(2) and heart rate did not significantly differ between conditions. The respiratory cycle served as the input function for breath-by-breath, event-related, voxel-wise, random-effects image analyses in SPM5. Main effects analyses (cognitive task+rest) demonstrated the first evidence of coordinated neural activity associated with spontaneous breathing within the medulla, pons, midbrain, amygdala, anterior cingulate and anterior insular cortices. Between-condition paired t-tests (cognitive task>rest) demonstrated modulation within this network localized to the dorsal anterior cingulate and pontine raphe magnus nucleus. We propose that the identified limbic/paralimbic-bulbar circuitry plays a significant role in cognitive and emotional modulation of spontaneous breathing.
Collapse
Affiliation(s)
- Karleyton C Evans
- Department of Psychiatry, Division of Neurotherapeutics, Massachusetts General Hospital-East, 13th Street, Building 149, Suite 2625, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dorman S, Jolley C, Abernethy A, Currow D, Johnson M, Farquhar M, Griffiths G, Peel T, Moosavi S, Byrne A, Wilcock A, Alloway L, Bausewein C, Higginson I, Booth S. Researching breathlessness in palliative care: consensus statement of the National Cancer Research Institute Palliative Care Breathlessness Subgroup. Palliat Med 2009; 23:213-27. [PMID: 19251835 DOI: 10.1177/0269216309102520] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breathlessness is common in advanced disease and can have a devastating impact on patients and carers. Research on the management of breathlessness is challenging. There are relatively few studies, and many studies are limited by inadequate power or design. This paper represents a consensus statement of the National Cancer Research Institute Palliative Care Breathlessness Subgroup. The aims of this paper are to facilitate the design of adequately powered multi-centre interventional studies in breathlessness, to suggest a standardised, rational approach to breathlessness research and to aid future 'between study' comparisons. Discussion of the physiology of breathlessness is included.
Collapse
Affiliation(s)
- S Dorman
- Poole Hospital NHS Foundation Trust, Longfleet Road, Poole.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|