1
|
Chikezie FM, Veriegh FBD, Armoo S, Boakye DA, Taylor M, Osei-Atweneboana MY. Ongoing transmission of onchocerciasis in the Pru District of Ghana after two decades of mass drug administration with ivermectin and comparative identification of members of the Simulium damnosum complex using cytological and morphological techniques. Parasit Vectors 2024; 17:394. [PMID: 39289756 PMCID: PMC11409746 DOI: 10.1186/s13071-024-06333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/28/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Human onchocerciasis remains a public health problem in Ghana. Mass drug administration (MDA) with ivermectin (IVM) has reduced disease morbidity and prevalence, but the transmission of onchocerciasis remains ongoing in several endemic foci. We investigated parasite transmission in some endemic communities in Ghana that had received > 18 rounds of annual MDA with IVM and determined the species composition of black fly (Simulium damnosum) vectors in these areas. METHODS Adult female black flies were collected using human landing catches and identified as either forest or savanna species using morpho-taxonomic keys. The adult flies underwent dissection to determine their parity and detect any O. volvulus larvae, followed by the calculation of entomological indices. Simulium damnosum s.l. larvae were collected and preserved in freshly prepared Carnoy's fixative and were later used for cytotaxonomic studies. RESULTS A total of 9,983 adult flies were caught: 6,569 and 3,414 in the rainy and dry seasons respectively. Black fly biting activities over the study period showed bimodal or trimodal patterns. The highest monthly biting rate (MBR) of 10,578.75 bites/person/month was recorded in July in Beposo, while the highest monthly transmission potential of 100.69 infective bites/person/month was recorded in Asubende in August. Morphological analysis of 2,032 flies showed that 99.8% (2,028) of the flies were savanna species, with only 4 (0.2%) adult flies being of the forest species. Cytogenetic studies on 114 black fly larvae revealed three cytospecies (Simulium damnosum s.s., S. sirbanum and S. sanctipauli) in the study area. CONCLUSIONS The present studies confirmed an ongoing transmission of onchocerciasis in the study communities except Abua-1. It also provides further information on biting behaviors and onchocerciasis transmission indices in the study communities. Further, our data confirmed the savanna species (S. damnosum s.s. and S. sirbanum) of the S. damnosum s.l. to be the major vectors of onchocerciasis in the study areas, with only an occasional influx of forest cytotypes.
Collapse
Affiliation(s)
- Friday Maduka Chikezie
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Accra, Ghana
| | - Francis Balunnaa Dhari Veriegh
- Biomedical and Public Health Research Unit, Water Research Institute, Council for Scientific and Industrial Research (CSIR), Accra, Ghana
- University of Energy and Natural Resources, Sunyani, Ghana
| | - Samuel Armoo
- Biomedical and Public Health Research Unit, Water Research Institute, Council for Scientific and Industrial Research (CSIR), Accra, Ghana
| | - Daniel Adjei Boakye
- The END (Ending Neglected Diseases) Fund, New York, NY, USA
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Mark Taylor
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mike Yaw Osei-Atweneboana
- Biomedical and Public Health Research Unit, Water Research Institute, Council for Scientific and Industrial Research (CSIR), Accra, Ghana.
- College of Science and Technology, Council for Scientific and Industrial Research (CSIR), Accra, Ghana.
| |
Collapse
|
2
|
Cheke RA, Hawkes FM, Carnaghi M. Short- and Long-Range Dispersal by Members of the Simulium damnosum Complex (Diptera: Simuliidae), Vectors of Onchocerciasis: A Review. INSECTS 2024; 15:606. [PMID: 39194811 DOI: 10.3390/insects15080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Blackfly members of the Simulium damnosum complex are major vectors of the parasite that causes onchocerciasis in Africa and Yemen, with other vector species involved in a few localized areas of Africa and in the Neotropics. Although the life cycle of these blackflies is linked to fast-flowing rivers, they can travel long distances (up to at least 500 km), calling into question how transmission zones are defined. Knowledge of the short- and long-range dispersal of these vectors could inform where control interventions and monitoring are necessary if targets for onchocerciasis elimination are to be met. Yet, research on blackfly dispersal has been limited and fragmented over the last 70 years. Here, we review the literature on the dispersal of onchocerciasis vectors, and we show the need for further research to establish how far larvae can travel downstream; the extent to which adults invade transmission zones; and whether adults migrate in a series of successive short movements or in single long-distance shifts, or use both methods.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Manuela Carnaghi
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
3
|
Nielsen MK, Kaplan RM, Abbas G, Jabbar A. Biological implications of long-term anthelmintic treatment: what else besides resistance are we selecting for? Trends Parasitol 2023; 39:945-953. [PMID: 37633759 DOI: 10.1016/j.pt.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Long-term intensive use of anthelmintics for parasite control of livestock, companion animals, and humans has resulted in widespread anthelmintic resistance, a problem of great socioeconomic significance. But anthelmintic therapy may also select for other biological traits, which could have implications for anthelmintic performance. Here, we highlight recent examples of changing parasite dynamics following anthelmintic administration, which do not fit the definition of anthelmintic resistance. We also consider other possible examples in which anthelmintic resistance has clearly established, but where coselection for other biological traits may have also occurred. We offer suggestions for collecting more information and gaining a better understanding of these phenomena. Finally, we propose research questions that require further investigation and make suggestions to help address these knowledge gaps.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Ray M Kaplan
- School of Veterinary Medicine, St George's University, Grenada, West Indies
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
4
|
Cheke RA, Post RJ, Boakye DA. Seasonal variations and other changes in the geographical distributions of different cytospecies of the Simulium damnosum complex (Diptera: Simuliidae) in Togo and Benin. Acta Trop 2023:106970. [PMID: 37339715 DOI: 10.1016/j.actatropica.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Simulium damnosum s.l., the most important vector of onchocerciasis in Africa, is a complex of sibling species described on the basis of differences in their larval polytene chromosomes. These (cyto) species differ in their geographical distributions, ecologies and epidemiological roles. In Togo and Benin, distributional changes have been recorded as a consequence of vector control and environmental changes (e.g. creation of dams, deforestation), with potential epidemiological consequences. We review the distribution of cytospecies in Togo and Benin and report changes observed from 1975 to 2018. The elimination of the Djodji form of S. sanctipauli in south-western Togo in 1988 seems to have had no long-term effects on the distribution of the other cytospecies, despite an initial surge by S. yahense. Although we report a general tendency for long-term stability in most cytospecies' distributions, we also assess how the cytospecies' geographical distributions have fluctuated and how they vary with the seasons. In addition to seasonal expansions of geographical ranges by all species except S. yahense, there are seasonal variations in the relative abundances of cytospecies within a year. In the lower Mono river, the Beffa form of S. soubrense predominates in the dry season but is replaced as the dominant taxon in the rainy season by S. damnosum s.str. Deforestation was previously implicated in an increase of savanna cytospecies in southern Togo (1975-1997), but our data had little power to support (or refute) suggestions of a continuing increase, partly because of a lack of recent sampling. In contrast, the construction of dams and other environmental changes including climate change seem to be leading to decreases in the populations of S. damnosum s.l. in Togo and Benin. If so, combined with the disappearance of the Djodji form of S. sanctipauli, a potent vector, plus historic vector control actions and community directed treatments with ivermectin, onchocerciasis transmission in Togo and Benin is much reduced compared with the situation in 1975.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime ME4 4TB, Kent, UK
| | - Rory J Post
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AH, UK; London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Daniel A Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG581, Legon, Accra, Ghana; The END fund, 2 Park Avenue, 28th Floor, New York, NY10016, USA
| |
Collapse
|
5
|
Kleinschmidt B, Dorsch M, Heinänen S, Morkūnas J, Schumm YR, Žydelis R, Quillfeldt P. Prevalence of Haemosporidian Parasites in an Arctic Breeding Seabird Species-The Red-Throated Diver ( Gavia stellata). Microorganisms 2022; 10:2147. [PMID: 36363741 PMCID: PMC9698892 DOI: 10.3390/microorganisms10112147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 02/16/2024] Open
Abstract
Haemosporida, vector-transmitted blood parasites, can have various effects and may also exert selection pressures on their hosts. In this study we analyse the presence of Haemosporida in a previously unstudied migratory seabird species, the red-throated diver Gavia stellata. Red-throated divers were sampled during winter and spring in the eastern German Bight (North Sea). We used molecular methods and data from a related tracking study to reveal (i) if red-throated divers are infected with Haemosporida of the genera Leucocytozoon, Plasmodium and Haemoproteus, and (ii) how infection and prevalence are linked with the breeding regions of infected individuals. Divers in this study were assigned to western Palearctic breeding grounds, namely Greenland, Svalbard, Norway and Arctic Russia. We found a prevalence of Leucocytozoon of 11.0% in all birds sampled (n = 45), of 33.0% in birds breeding in Norway (n = 3) and of 8.3% in birds breeding in Arctic Russia (n = 25). For two birds that were infected no breeding regions could be assigned. We identified two previously unknown lineages, one each of Plasmodium and Leucocytozoon. Haemosporida have not been detected in birds from Greenland (n = 2) and Svalbard (n = 2). In summary, this study presents the first record of Haemosporida in red-throated divers and reports a new lineage of each, Plasmodium and Leucocytozoon GAVSTE01 and GAVSTE02, respectively.
Collapse
Affiliation(s)
- Birgit Kleinschmidt
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
- BioConsult SH, 25813 Husum, Germany
| | | | - Stefan Heinänen
- DHI, 2970 Hørsholm, Denmark
- Raasepori Campus (Raseborg), Novia University of Applied Sciences, Raseborgsvägen 9, 10600 Ekenäs, Finland
| | - Julius Morkūnas
- Marine Research Institute, Klaipėda University, 92294 Klaipėda, Lithuania
| | - Yvonne R. Schumm
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ramūnas Žydelis
- DHI, 2970 Hørsholm, Denmark
- Ornitela UAB, 03228 Vilnius, Lithuania
| | - Petra Quillfeldt
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Ayisi F, Sedou N, Dieunang SK, Yaya F, Tchago EF, Ndellejong CE, Biholong B, Boakye DA. A cross-sectional study of Simulium damnosum sensu lato breeding sites and species distribution in Sudan savanna, mixed savanna-forest and rainforest regions in Cameroon. Parasit Vectors 2022; 15:382. [PMID: 36271434 PMCID: PMC9587638 DOI: 10.1186/s13071-022-05462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background The presence of breeding sites and distribution of species of Simulium damnosum sensu lato are critical in understanding the epidemiology of onchocerciasis and evaluating the impact of elimination interventions. Reports on breeding sites and species distribution of members of S. damnosum s.l. in Cameroon are scarce and the few ones available date back to more than three decades. The aim of this study is to provide information on S. damnosum breeding sites across the rainy (RS) and dry (DS) seasons and the species composition in three different regions in Cameroon: Southwest (SW), Northwest (NW) and North (N). Methods A cross-sectional two-season study was carried out in three regions with different ecological characteristics (SW—rainforest; NW—mixed forest–Guinea savanna; N—Sudan savanna). Pre-control onchocerciasis endemicity, relief maps and historical entomological information were used to identify potential rivers for purposive sampling. Sampled larvae were fixed in Carnoy’s solution and sorted, and S. damnosum s.l. larvae were stored until identification by cytotaxonomy. Geographical coordinates of potential breeding sites were recorded to produce maps using ArcGIS, while Chi-square tests in SPSS were used to test for any differences between black fly seasonal breeding rates. Results A total of 237 potential breeding sites were sampled (RS = 81; DS = 156) and 72 were found positive for S. damnosum s.l. The SW had the most positive sites [67 (RS = 24; DS = 43)], with a significant difference in the rate of breeding between the seasons (P < 0.05). Among 68 sites visited in both seasons, 16 (23.5%) were positive in one of the two seasons with more sites positive in DS(11) than RS(05), 14 (20.6%) and 38 (55.9%) respectively positive and negative in both seasons. Simulium damnosum sensu stricto and S. sirbanum were the main species in the N, while S. squamosum and S. mengense were the predominant species in the NW and SW. Simulium soubrense and S. yahense were uniquely recorded in the SW. Conclusions A comprehensive mapping of breeding sites requires rainy and dry seasons sampling. This study demonstrates that a breeding site survey of S. damnosum s.l. is achievable in forest as well as savanna zones. Not all potential breeding sites are actual breeding sites. Observation of S. soubrense in the SW indicates changes in species composition over time and could affect onchocerciasis epidemiology in this area. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05462-w.
Collapse
Affiliation(s)
- Franklin Ayisi
- National Onchocerciasis Control Programme, Ministry of Public Health, Yaoundé, Cameroon.,African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon-Accra, Ghana
| | | | | | - Florent Yaya
- National Onchocerciasis Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | | | | | - Benjamin Biholong
- National Onchocerciasis Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Daniel Adjei Boakye
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon-Accra, Ghana. .,The End Fund, New York, NY, USA.
| |
Collapse
|
7
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
8
|
|
9
|
Abotsi KE, Kokou K, Dubuisson JY, Rouhan G. A first checklist of the Pteridophytes of Togo (West Africa). Biodivers Data J 2018; 6:e24137. [PMID: 29904271 PMCID: PMC5999689 DOI: 10.3897/bdj.6.e24137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The present work proposes, for the first time, a study exclusively focused on the diversity of Pteridophytes in Togo.The study was based on fieldwork that resulted in 869 new collections gathered between 2013 and 2017 in the country and on yet existing herbarium specimens kept at the Herbaria of Lomé and Paris. Thus, a total number of 1092 specimens collected throughout the country served as a basis for this work, to which were added the known, published occurrences of Pteridophytes for the country. NEW INFORMATION At the end of this study, a total diversity of 134 species belonging to 53 genera and 25 families and 12 orders were recorded and documented for the country. It results in 73 newly cited species for Togolese flora, including 61 spontaneous species. Lycopodiopsida (18 species) and Polypodiopsida (116 species) classes are both represented. The Polypodiales order is the most represented with 97 species. The Pteridaceae and Aspleniaceae families are the most diverse with 24 and 22 species respectively. Finally, notes were provided on species distribution at national level.
Collapse
Affiliation(s)
| | - Kouami Kokou
- Laboratory of Forestry Research, University of Lomé, Lomé, Togo
| | - Jean-Yves Dubuisson
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, 57 rue Cuvier CP 39, Paris, France
| | - Germinal Rouhan
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier CP 39, Paris, France
| |
Collapse
|
10
|
Choi YJ, Tyagi R, McNulty SN, Rosa BA, Ozersky P, Mafrtin J, Hallsworth-Pepin K, Unnasch TR, Norice CT, Nutman TB, Weil GJ, Fischer PU, Mitreva M. Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont. Nat Microbiol 2016; 2:16207. [PMID: 27869792 PMCID: PMC5512550 DOI: 10.1038/nmicrobiol.2016.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
Ongoing elimination efforts have altered the global distribution of Onchocerca volvulus, the agent of river blindness, and further population restructuring is expected as efforts continue. Therefore, a better understanding of population genetic processes and their effect on biogeography is needed to support elimination goals. We describe O. volvulus genome variation in 27 isolates from the early 1990s (before widespread mass treatment) from four distinct locales: Ecuador, Uganda, the West African forest and the West African savanna. We observed genetic substructuring between Ecuador and West Africa and between the West African forest and savanna bioclimes, with evidence of unidirectional gene flow from savanna to forest strains. We identified forest:savanna-discriminatory genomic regions and report a set of ancestry informative loci that can be used to differentiate between forest, savanna and admixed isolates, which has not previously been possible. We observed mito-nuclear discordance possibly stemming from incomplete lineage sorting. The catalogue of the nuclear, mitochondrial and endosymbiont DNA variants generated in this study will support future basic and translational onchocerciasis research, with particular relevance for ongoing control programmes, and boost efforts to characterize drug, vaccine and diagnostic targets.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | | | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - Philip Ozersky
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - John Mafrtin
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | | | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL, USA
| | - Carmelle T. Norice
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gary J. Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
O’Hanlon SJ, Slater HC, Cheke RA, Boatin BA, Coffeng LE, Pion SDS, Boussinesq M, Zouré HGM, Stolk WA, Basáñez MG. Model-Based Geostatistical Mapping of the Prevalence of Onchocerca volvulus in West Africa. PLoS Negl Trop Dis 2016; 10:e0004328. [PMID: 26771545 PMCID: PMC4714852 DOI: 10.1371/journal.pntd.0004328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP) before commencement of antivectorial and antiparasitic interventions. METHODS AND FINDINGS Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson's correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values) was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2-90%) in 1975. CONCLUSIONS AND SIGNIFICANCE This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where data are sparse, and may be used to help inform the feasibility of elimination with current and novel tools.
Collapse
Affiliation(s)
- Simon J. O’Hanlon
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s Campus), Imperial College London, London, United Kingdom
| | - Hannah C. Slater
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s Campus), Imperial College London, London, United Kingdom
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Robert A. Cheke
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s Campus), Imperial College London, London, United Kingdom
- Natural Resources Institute, University of Greenwich at Medway, Chatham, Kent, United Kingdom
| | - Boakye A. Boatin
- Lymphatic Filariasis Support Centre, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sébastien D. S. Pion
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
| | - Michel Boussinesq
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
| | - Honorat G. M. Zouré
- African Programme for Onchocerciasis Control (APOC), World Health Organization (WHO), Ouagadougou, Burkina Faso
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s Campus), Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Cheke RA, Basáñez MG, Perry M, White MT, Garms R, Obuobie E, Lamberton PHL, Young S, Osei-Atweneboana MY, Intsiful J, Shen M, Boakye DA, Wilson MD. Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2013.0559. [PMID: 25688018 PMCID: PMC4342963 DOI: 10.1098/rstb.2013.0559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25°C, the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29°C and 34°C, about 3°C and 7°C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 29°C and of savannah flies (Ghana) at 30°C. Small temperature increases (less than 2°C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 33°C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions.
Collapse
Affiliation(s)
- Robert A Cheke
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Maria-Gloria Basáñez
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Malorie Perry
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Michael T White
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Rolf Garms
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Emmanuel Obuobie
- Water Research Institute, Council for Scientific and Industrial Research, PO Box M32, Accra, Ghana
| | - Poppy H L Lamberton
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Stephen Young
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Mike Y Osei-Atweneboana
- Water Research Institute, Council for Scientific and Industrial Research, PO Box M32, Accra, Ghana
| | - Joseph Intsiful
- Regional Institute for Population Studies, University of Ghana, PO Box LG 97, Legon, Accra, Ghana
| | - Mingwang Shen
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Daniel A Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Michael D Wilson
- Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
13
|
Garms R, Badu K, Owusu-Dabo E, Baffour-Awuah S, Adjei O, Debrah AY, Nagel M, Biritwum NK, Gankpala L, Post RJ, Kruppa TF. Assessments of the transmission of Onchocerca volvulus by Simulium sanctipauli in the Upper Denkyira District, Ghana, and the intermittent disappearance of the vector. Parasitol Res 2015; 114:1129-37. [PMID: 25592754 DOI: 10.1007/s00436-014-4287-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Following studies on the transmission of Onchocerca volvulus (Leuckart) by Simulium sanctipauli Vajime & Dunbar (Diptera, Simuliidae) in Upper Denkyira District in Ghana in 2001 and 2002 (Kutin et al., Med Vet Ent 18:167-173, 2004), further assessments were carried out in 2006 and 2013/2014 to determine whether transmission parameters had changed since community-directed ivermectin treatment (CDTI) began in 1999. There were no marked changes of the transmission intensities in 2006. Only slight, but non-significant, reductions were observed in infection rates of parous flies with larval stages (L1-L3) of O. volvulus from 44.1 % (of 1672 parous flies) in 2001/2002 to 42.1 % (506) in 2006 and from 6.5 to 5.9 % of flies carrying infective larvae in their heads. This suggested that there was an ongoing transmission in the area and the parasite reservoir in the human population was still high. Unexpectedly, further assessments conducted in October 2013 and March and October 2014 revealed that the vector S. sanctipauli had apparently disappeared and transmission had ceased, probably as a result of intensified gold mining activities along the rivers Ofin and Pra. The water of both rivers was extremely turbid, heavily loaded with suspended solids, probably preventing the development of blackfly larvae. Some breeding and biting of Simulium yahense Vajime & Dunbar was observed in a small tributary of the Pra, the Okumayemfuo, which is not affected by gold mining. However, the infection rate of flies was low, only 3.7 % of 163 parous flies were infected with first stage (L1) larvae of O. volvulus.
Collapse
Affiliation(s)
- R Garms
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lamberton PHL, Cheke RA, Walker M, Winskill P, Osei-Atweneboana MY, Tirados I, Tetteh-Kumah A, Boakye DA, Wilson MD, Post RJ, Basáñez MG. Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasit Vectors 2014; 7:511. [PMID: 25413569 PMCID: PMC4247625 DOI: 10.1186/s13071-014-0511-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background Ghana is renowned for its sibling species diversity of the Simulium damnosum complex, vectors of Onchocerca volvulus. Detailed entomological knowledge becomes a priority as onchocerciasis control policy has shifted from morbidity reduction to elimination of infection. To date, understanding of transmission dynamics of O. volvulus has been mainly based on S. damnosum sensu stricto (s.s.) data. We aim to elucidate bionomic features of vector species of importance for onchocerciasis elimination efforts. Methods We collected S. damnosum sensu lato from seven villages in four Ghanaian regions between 2009 and 2011, using standard vector collection, and human- and cattle-baited tents. Taxa were identified using morphological and molecular techniques. Monthly biting rates (MBR), parous rates and monthly parous biting rates (MPBR) are reported by locality, season, trapping method and hour of collection for each species. Results S. damnosum s.s./S. sirbanum were collected at Asubende and Agborlekame, both savannah villages. A range of species was caught in the Volta region (forest-savannah mosaic) and Gyankobaa (forest), with S. squamosum or S. sanctipauli being the predominant species, respectively. In Bosomase (southern forest region) only S. sanctipauli was collected in the 2009 wet season, but in the 2010 dry season S. yahense was also caught. MBRs ranged from 714 bites/person/month at Agborlekame (100% S. damnosum s.s./S. sirbanum) to 8,586 bites/person/month at Pillar 83/Djodji (98.5% S. squamosum). MBRs were higher in the wet season. In contrast, parous rates were higher in the dry season (41.8% vs. 18.4%), resulting in higher MPBRs in the dry season. Daily host-seeking activity of S. damnosum s.s./S. sirbanum was bimodal, whilst S. squamosum and S. sanctipauli had unimodal afternoon peaks. Conclusions The bionomic differences between sibling species of the S. damnosum complex need to be taken into account when designing entomological monitoring protocols for interventions and parameterising mathematical models for onchocerciasis control and elimination. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Poppy H L Lamberton
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Robert A Cheke
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK. .,Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Peter Winskill
- MRC Centre for Outbreak Investigation and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Mike Y Osei-Atweneboana
- Department of Environmental Biology and Health, Council for Scientific and Industrial Research, Water Research Institute, Accra, Accra, PO Box M32, Ghana.
| | - Iñaki Tirados
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Daniel A Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, PO Box LG581, Ghana.
| | - Michael D Wilson
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, PO Box LG581, Ghana.
| | - Rory J Post
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AH, UK. .,Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
15
|
Oakgrove KS, Harrigan RJ, Loiseau C, Guers S, Seppi B, Sehgal RNM. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Int J Parasitol 2014; 44:717-27. [PMID: 25014331 DOI: 10.1016/j.ijpara.2014.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Avian species are commonly infected by multiple parasites, however few studies have investigated the environmental determinants of the prevalence of co-infection over a large scale. Here we believe that we report the first, detailed ecological study of the prevalence, diversity and co-infections of four avian blood-borne parasite genera: Plasmodium spp., Haemoproteus spp., Leucocytozoon spp. and Trypanosoma spp. We collected blood samples from 47 resident and migratory bird species across a latitudinal gradient in Alaska. From the patterns observed at collection sites, random forest models were used to provide evidence of associations between bioclimatic conditions and the prevalence of parasite co-infection distribution. Molecular screening revealed a higher prevalence of haematozoa (53%) in Alaska than previously reported. Leucocytozoons had the highest diversity, prevalence and prevalence of co-infection. Leucocytozoon prevalence (35%) positively correlated with Trypanosoma prevalence (11%), negatively correlated with Haemoproteus prevalence (14%) and had no correlation with Plasmodium prevalence (7%). We found temperature, precipitation and tree cover to be the primary environmental drivers that show a relationship with the prevalence of co-infection. The results provide insight into the impacts of bioclimatic drivers on parasite ecology and intra-host interactions, and have implications for the study of infectious diseases in rapidly changing environments.
Collapse
Affiliation(s)
- Khouanchy S Oakgrove
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Ryan J Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Claire Loiseau
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Sue Guers
- Alaska Songbird Institute, PO Box 82035, Fairbanks, AK 99708, USA
| | - Bruce Seppi
- Bureau of Land Management, Anchorage Field Office, 4700 BLM Road, Anchorage, AK 99507, USA
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
16
|
Post RJ, Cheke RA, Boakye DA, Wilson MD, Osei-Atweneboana MY, Tetteh-Kumah A, Lamberton PH, Crainey JL, Yaméogo L, Basáñez MG. Stability and change in the distribution of cytospecies of the Simulium damnosum complex (Diptera: Simuliidae) in southern Ghana from 1971 to 2011. Parasit Vectors 2013; 6:205. [PMID: 23849451 PMCID: PMC3727979 DOI: 10.1186/1756-3305-6-205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simulium damnosum s.l., the most important vector of onchocerciasis in Africa, is a complex of sibling species that have been described on the basis of differences in their larval polytene chromosomes. These (cyto) species differ in their geographical distributions, ecologies and epidemiological roles. In Ghana, distributional changes have been recorded as a consequence of vector control and environmental change (e.g. deforestation), with potential disease consequences. We review the distribution of cytospecies in southern Ghana and report changes observed with reference to historical data collated from 1971 to 2005 and new identifications made between 2006 and 2011. METHODS/RESULTS Larvae were collected from riverine breeding sites, fixed in Carnoy's solution and chromosome preparations made. Cytotaxonomic identifications from 1,232 samples (including 49 new samples) were analysed. We report long-term stability in cytospecies distribution in the rivers Afram, Akrum, Pawnpawn and Pru. For the rivers Oda, Ofin and Tano we describe (for the first time) patterns of distribution. We could not detect cytospecies composition changes in the upper Pra, and the lower Pra seems to have been stable. The elimination of the Djodji form of S. sanctipauli in the Volta Region seems to have had no long-term effects on the distribution of the other cytospecies, despite an initial surge by S. yahense. There has been a recent increase in the occurrence of savannah cytospecies in the river Asukawkaw, and this might be related to continuing deforestation. CONCLUSIONS Cytospecies' distributions have not been stable from 1971 to 2011. Although there are no obvious causes for the temporary appearance and subsequent disappearance of cytospecies in a particular location, a major influence has been vector control and migration patterns, probably explaining observed changes on the Black Volta and lower Volta rivers. Deforestation was previously implicated in an increase of savannah cytospecies in southern Ghana (1975-1997). Our data had little power to support (or refute) suggestions of a continuing increase, except in the Asukawkaw river basin.
Collapse
Affiliation(s)
- Rory J Post
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu X, Tian H, Zhou S, Chen L, Xu B. Impact of global change on transmission of human infectious diseases. SCIENCE CHINA. EARTH SCIENCES 2013; 57:189-203. [PMID: 32288763 PMCID: PMC7104601 DOI: 10.1007/s11430-013-4635-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/19/2013] [Indexed: 05/19/2023]
Abstract
Global change, which refers to large-scale changes in the earth system and human society, has been changing the outbreak and transmission mode of many infectious diseases. Climate change affects infectious diseases directly and indirectly. Meteorological factors including temperature, precipitation, humidity and radiation influence infectious disease by modulating pathogen, host and transmission pathways. Meteorological disasters such as droughts and floods directly impact the outbreak and transmission of infectious diseases. Climate change indirectly impacts infectious diseases by altering the ecological system, including its underlying surface and vegetation distribution. In addition, anthropogenic activities are a driving force for climate change and an indirect forcing of infectious disease transmission. International travel and rural-urban migration are a root cause of infectious disease transmission. Rapid urbanization along with poor infrastructure and high disease risk in the rural-urban fringe has been changing the pattern of disease outbreaks and mortality. Land use changes, such as agricultural expansion and deforestation, have already changed the transmission of infectious disease. Accelerated air, road and rail transportation development may not only increase the transmission speed of outbreaks, but also enlarge the scope of transmission area. In addition, more frequent trade and other economic activities will also increase the potential risks of disease outbreaks and facilitate the spread of infectious diseases.
Collapse
Affiliation(s)
- XiaoXu Wu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875 China
| | - HuaiYu Tian
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875 China
| | - Sen Zhou
- School of Environment, Tsinghua University, Beijing, 100084 China
| | - LiFan Chen
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875 China
| | - Bing Xu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875 China
- School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
18
|
Cheke RA, Garms R. Indices of onchocerciasis transmission by different members of the Simulium damnosum complex conflict with the paradigm of forest and savanna parasite strains. Acta Trop 2013; 125:43-52. [PMID: 22995985 DOI: 10.1016/j.actatropica.2012.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022]
Abstract
Onchocerciasis in savanna zones is generally more severe than in the forest and pathologies also differ geographically, differences often ascribed to the existence of two or more strains and incompatibilities between vectors and strains. However, flies in the forest transmit more infective larvae than their savanna counterparts, even in sympatry, contradicting expectations based on the forest and savanna strains paradigm. We analysed data on the numbers of Onchocerca volvulus larvae of different stages found in 10 different taxonomic categories of the Simulium damnosum complex derived from more than 48,800 dissections of flies from Sierra Leone in the west of Africa to Uganda in the east. The samples were collected before widespread ivermectin distribution and thus provide a baseline for evaluating control measures. Savanna species contained fewer larvae per infected or per infective fly than the forest species, even when biting and parous rates were accounted for. The highest transmission indices were found in the forest-dwelling Pra form of Simulium sanctipauli (616 L3/1000 parous flies) and the lowest in the savanna-inhabiting species S. damnosum/S. sirbanum (135) and S. kilibanum (65). Frequency distributions of numbers of L1-2 and L3 larvae found in parous S. damnosum/S. sirbanum, S. kilibanum, S. squamosum, S. yahense, S. sanctipauli, S. leonense and S. soubrense all conformed to the negative binomial distribution, with the mainly savanna-dwelling species (S. damnosum/S. sirbanum) having less overdispersed distributions than the mainly forest-dwelling species. These infection patterns were maintained even when forest and savanna forms were sympatric and biting the same human population. Furthermore, for the first time, levels of blindness were positively correlated with infection intensities of the forest vector S. yahense, consistent with relations previously reported for savanna zones. Another novel result was that conversion rates of L1-2 larvae to L3s were equivalent for both forest and savanna vectors. We suggest that either a multiplicity of factors are contributing to the observed disease patterns or that many parasite strains exist within a continuum.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK.
| | | |
Collapse
|
19
|
Ingram JC, DeClerck F, Rumbaitis del Rio C. Land Use Change and Human Health. INTEGRATING ECOLOGY AND POVERTY REDUCTION 2012. [PMCID: PMC7120924 DOI: 10.1007/978-1-4419-0633-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jane Carter Ingram
- International Conservation, Wildlife Conservation Society, Southern Blvd. 2300, Bronx, 10460 New York USA
| | | | | |
Collapse
|
20
|
Construction and characterisation of a BAC library made from field specimens of the onchocerciasis vector Simulium squamosum (Diptera: Simuliidae). Genomics 2010; 96:251-7. [PMID: 20603211 DOI: 10.1016/j.ygeno.2010.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 12/21/2022]
Abstract
A Bacterial Artificial Chromosome (BAC) library was made from wild-caught Simulium squamosum, which is an important vector of human onchocerciasis. The library is composed of 12,288 BACs, with an average insert size of 128 kb, and is expected to contain ~1.54 GB of cloned DNA. Random BAC-end sequencing generated over 95 kb of DNA sequence data from which putative S. squamosum gene sequences and novel repetitive DNA families were identified, including DNA transposons, retrotransposons and simple sequence repeats (SSRs). The sequence survey also provided evidence of DNA of microbial origin, and dissection of sample blackflies indicated that some of those used to prepare the library were likely to be parasitized by the mermithid Isomermis lairdi. Hybridisations with a set of three independent blackfly single-copy genes and two Wolbachia genes suggest that the library provides around 13-fold coverage of the S. squamosum genome and about 12-fold coverage of its Wolbachia endosymbiont.
Collapse
|
21
|
Abstract
In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide.
Collapse
Affiliation(s)
- R N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
22
|
Crainey JL, Wilson MD, Post RJ. An 18S ribosomal DNA barcode for the study of Isomermis lairdi, a parasite of the blackfly Simulium damnosum s.l. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:238-244. [PMID: 19712154 DOI: 10.1111/j.1365-2915.2009.00814.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mermithid parasite, Isomermis lairdi Mondet, Poinar & Bernadou (Nematoda: Mermithidae), is known to have a major impact on populations of Simulium damnosum s.l. Theobald (Diptera: Simuliidae) and on their efficiency as vectors of Onchocerca volvulus (Leuckart) (Nematoda: Filarioidea). However, the value of I. lairdi and other mermithid parasites as potential means of integrated vector control has not been fully realized. This is partly because traditional taxonomic approaches have been insufficient for describing and analysing important aspects of their biology and host range. In total, rDNA barcode sequences have been obtained from over 70 I. lairdi mermithids found parasitizing S. damnosum s.l. larvae in three different rivers. No two sequences were found to vary by more than 0.5%, and cytospecies identification of mermithid hosts revealed that I. lairdi with identical rDNA barcodes can parasitize multiple cytoforms of the S. damnosum complex, including S. squamosum (Enderlein). Phylogenetic analysis using a partial sequence from the 18S ribosomal DNA barcode, grouped I. lairdi in a monophyletic group with Gastromermis viridis Welch (Nematoda: Mermithidae) and Isomermis wisconsinensis Welch (Nematoda: Mermithidae).
Collapse
Affiliation(s)
- J L Crainey
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | |
Collapse
|
23
|
Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. ENVIRONMENT INTERNATIONAL 2008; 34:239-47. [PMID: 17868868 DOI: 10.1016/j.envint.2007.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 05/17/2023]
Abstract
This article reviews critical linkages between land-use transition and human health in the Himalayan region by applying ecosystem approaches to human health (or EcoHealth). Land-use transition in the Himalayan and similar regions includes sedentarization, agricultural intensification, habitat modification, migration, change of livelihoods and lifestyles, biodiversity loss, and increasing flash floods. These transitions, which can have impacts on human health, are driven by state policies, a market economy, and climate change. Human health is dependent on access to ecosystem services for food, nutrition, medicine, fiber and shelter, fresh water, and clear air. Ecosystem management has been a key means of controlling disease vectors and creating suitable habitats for human well-being. The paper identifies the web of environmental factors that influence human health. Institutional and policy issues for land-use and health transitions are also discussed.
Collapse
Affiliation(s)
- Jianchu Xu
- Kunming Institute of Botany, Kunming, Yunnan, China.
| | | | | | | |
Collapse
|
24
|
Pessoa FAC, Medeiros JF, Barrett TV. Effects of timber harvest on phlebotomine sand flies (Diptera: Psychodidae) in a production forest: abundance of species on tree trunks and prevalence of trypanosomatids. Mem Inst Oswaldo Cruz 2007; 102:593-9. [PMID: 17710304 DOI: 10.1590/s0074-02762007005000075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 06/11/2007] [Indexed: 11/22/2022] Open
Abstract
The Amazon forest is being exploited for timber production. The harvest removes trees, used by sand flies as resting sites, and decreases the canopy, used as refuges by some hosts. The present study evaluated the impact of the timber harvest, the abundance of sand flies, and their trypanosomatid infection rates before and after selective logging. The study was accomplished in terra-firme production forest in an area of timber harvest, state of Amazonas, Brazil. Sand fly catches were carried out in three areas: one before and after the timber harvest, and two control areas, a nature preservation area and a previously exploited area. The flies were caught by aspiration on tree trunks. Samples of sand flies were dissected for parasitological examination. In the site that suffered a harvest, a larger number of individuals was caught before the selective extraction of timber, showing significant difference in relation to the number of individuals and their flagellate infection rates after the logging. The other two areas did not show differences among their sand fly populations. This fact is suggestive of a fauna sensitive to the environmental alterations associated with selective logging.
Collapse
Affiliation(s)
- Felipe Arley Costa Pessoa
- Laboratório de Biodiversidade, Centro de Pesquisa Leônidas e Maria Deane, Fiocruz, Manaus, AM, 69057-070, Brasil.
| | | | | |
Collapse
|
25
|
Kutin K, Kruppa TF, Brenya R, Garms R. Efficiency of Simulium sanctipauli as a vector of Onchocerca volvulus in the forest zone of Ghana. MEDICAL AND VETERINARY ENTOMOLOGY 2004; 18:167-173. [PMID: 15189242 DOI: 10.1111/j.0269-283x.2004.00496.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of Simulium sanctipauli Vajime & Dunbar (Diptera: Simuliidae) as a vector of Onchocerca volvulus (Leuckart) (Spirurida: Onchocercidae) in the forest zone of central Ghana was studied in the Upper Denkyira district, where onchocerciasis is hyperendemic. Simulium sanctipauli was found to be a highly efficient vector, with a mean of 377 infective (L3) larvae in the heads of 1000 parous and 122 in the heads of 1000 biting flies. The overall infection rate of 44% of the parous flies with L1, L2 and L3 stages of O. volvulus (identity confirmed by polymerase chain reaction) demonstrates marked anthropophily. Female flies dispersed over a wide area and can transmit onchocerciasis up to at least 10 km away from their breeding sites. Annual community-directed treatments with ivermectin did not have a noticeable effect on the infection rates and parasitic loads of fly populations, which were as high 2 months after as 3 months before the distribution of ivermectin. This failure can be attributed to poor coverage, with treatment taken by only 24.4% of the population of the six study villages.
Collapse
Affiliation(s)
- K Kutin
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | |
Collapse
|