1
|
Zhao H, Chen J, Fan S, He X, Tan L, Wang J. Spatiotemporal variations of domoic acid: New findings in the sedimentary environment of a typical nearshore mariculture bay, China. ENVIRONMENTAL RESEARCH 2024; 261:119646. [PMID: 39032622 DOI: 10.1016/j.envres.2024.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.
Collapse
Affiliation(s)
- Hao Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Shengqing Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Neves J, Methion S, Díaz López B. Relationship between skin and body condition in three species of baleen whales. DISEASES OF AQUATIC ORGANISMS 2024; 159:99-115. [PMID: 39145476 DOI: 10.3354/dao03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The assessment of free-ranging cetacean health through the study of skin conditions using photographs has gained prominence in recent years. However, little attention has been given to the relationships between cetacean skin conditions, species, and body condition. To explore this relationship among baleen whale species along the northwestern coast of Spain, we employed a non-invasive method involving photograph analysis. In this study, we examined skin conditions (including injuries, epizoites and ectoparasites, pigmentation disorders, skin lesions, and anatomical malformations) and body condition (overall physical contours and form, as an indicator of nutritional status and health) in 3 species of whales (blue, fin, and minke whales). This methodology facilitated the identification of 29 subcategories of distinct skin conditions and an assessment of body condition over a 5 yr period (2017 to 2021). In our study, we present evidence linking hypopigmentation, protruding pieces of tissue, and tattoo-like lesions to 'Poor' body condition in the 3 baleen whale species. Fin whales exhibited a higher susceptibility to mottling (prevalence = 17.7%), while blue whales were more prone to starbursts (prevalence = 90.5%). Additionally, we found a significant relationship between skin condition diversity and individual body condition. Our findings contribute valuable information to the broader understanding of the health status of baleen whales. Further investigations are necessary to delve into the etiology of the documented skin conditions and their potential implications for individual survival. This study serves as a foundation for ongoing research aimed at advancing our comprehension of these findings.
Collapse
Affiliation(s)
- Joyce Neves
- Bottlenose Dolphin Research Institute (BDRI), 36980 O Grove, Spain
- Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Séverine Methion
- Bottlenose Dolphin Research Institute (BDRI), 36980 O Grove, Spain
| | - Bruno Díaz López
- Bottlenose Dolphin Research Institute (BDRI), 36980 O Grove, Spain
| |
Collapse
|
3
|
Li Z, Wang J, Yue H, Du M, Jin Y, Fan J. Marine toxin domoic acid alters nitrogen cycling in sediments. Nat Commun 2023; 14:7873. [PMID: 38036528 PMCID: PMC10689436 DOI: 10.1038/s41467-023-43265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
As a red tide algal toxin with intense neurotoxicity distributed worldwide, domoic acid (DA) has attracted increasing concerns. In this work, the integrative analysis of metagenome and metabolome are applied to investigate the impact of DA on nitrogen cycling in coastal sediments. Here we show that DA can act as a stressor to induce the variation of nitrogen (N) cycling by altering the abundance of functional genes and electron supply. Moreover, microecology theory revealed that DA can increase the role of deterministic assembly in microbial dynamic succession, resulting in the shift of niches and, ultimately, the alteration in N cycling. Notably, denitrification and Anammox, the important process for sediment N removal, are markedly limited by DA. Also, variation of N cycling implies the modification in cycles of other associated elements. Overall, DA is capable of ecosystem-level effects, which require further evaluation of its potential cascading effects.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| |
Collapse
|
4
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Moreira-González AR, Domit C, Rosa KMS, Mafra LL. Occurrence of potentially toxic microalgae and diarrhetic shellfish toxins in the digestive tracts of green sea turtles (Chelonia mydas) from southern Brazil. HARMFUL ALGAE 2023; 128:102498. [PMID: 37714579 DOI: 10.1016/j.hal.2023.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Algal toxins are involved in the mortality and/or illness of marine organisms via consumption of contaminated prey, or upon direct exposure to toxic cells. In this study, the presence of potentially toxic microalgal cells was investigated within the digestive tract contents of a threatened species of green turtle (Chelonia mydas). Additionally, lipophilic toxins were determined by LC-MS/MS in tissue samples (liver, stomach and/or intestine) of selected animals (n = 39 individuals) found dead-stranded in southern Brazil, from winter/2015 to autumn/2016. Thirteen potentially toxic species of microalgae (both benthic and planktonic), including seven dinoflagellates, six cyanobacteria and one diatom, were found in the digestive tract contents of green turtles. Among them, dinoflagellates belonging to the Dinophysis acuminata species complex were the most frequent (36%) and abundant (maximum average abundance of 566 cells g-1 in spring/2015). Moreover, 23% of the examined sea turtles exhibited detectable levels of the diarrhetic shellfish toxin okadaic acid (OA) in washed digestive tissues. Seven individuals accumulated OA in their intestines (max. 24.1 ng g-1) and two in the stomachs (max. 7.4 ng g-1). Toxin levels in the tissues were directly and significantly (r = 0.70, p < 0.025) associated with the cell abundance of OA-producing D. acuminata and Prorocentrum lima species complexes within the digestive contents of green turtles. Although OA concentrations were relatively low, possible chronic exposure might deteriorate general health conditions of exposed sea turtles, increasing the risk for diseases. Okadaic acid has been regarded as a tumor-promoting compound and an environmental co-factor in the incidence of fibropapillomatosis, a frequent disease in juvenile green turtles inhabiting this geographic region. Even though, only one green turtle containing OA in the digestive tissues (out of six examined) also presented fibropapillomatosis in this study. Notwithstanding, sea turtles are sentinels of ocean health. Monitoring the accumulation of algal toxins and their negative effects on these organisms contributes to conserving biodiversity and marine habitats.
Collapse
Affiliation(s)
- Angel R Moreira-González
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil; Centro de Estudios Ambientales de Cienfuegos (CEAC). Carretera a Castillo de Jagua. Km 1.5. AP. 5, Ciudad Nuclear 59350, Cienfuegos, Cuba
| | - Camila Domit
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil
| | - Kaianan M S Rosa
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil
| | - Luiz L Mafra
- Centro de Estudos do Mar. Universidade Federal do Paraná. Cx. Postal 61. Pontal do Paraná. Paraná. 83255-976. Brazil.
| |
Collapse
|
7
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
8
|
Lemos LS, Haxel JH, Olsen A, Burnett JD, Smith A, Chandler TE, Nieukirk SL, Larson SE, Hunt KE, Torres LG. Effects of vessel traffic and ocean noise on gray whale stress hormones. Sci Rep 2022; 12:18580. [PMID: 36329054 PMCID: PMC9633705 DOI: 10.1038/s41598-022-14510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
Human use of marinescapes is rapidly increasing, especially in populated nearshore regions where recreational vessel traffic can be dense. Marine animals can have a physiological response to such elevated human activity that can impact individual health and population dynamics. To understand the physiological impacts of vessel traffic on baleen whales, we investigated the adrenal stress response of gray whales (Eschrichtius robustus) to variable vessel traffic levels through an assessment of fecal glucocorticoid metabolite (fGC) concentrations. This analysis was conducted at the individual level, at multiple temporal scales (1-7 days), and accounted for factors that may confound fGC: sex, age, nutritional status, and reproductive state. Data were collected in Oregon, USA, from June to October of 2016-2018. Results indicate significant correlations between fGC, month, and vessel counts from the day prior to fecal sample collection. Furthermore, we show a significant positive correlation between vessel traffic and underwater ambient noise levels, which indicates that noise produced by vessel traffic may be a causal factor for the increased fGC. This study increases knowledge of gray whale physiological response to vessel traffic and may inform management decisions regarding regulations of vessel traffic activities and thresholds near critical whale habitats.
Collapse
Affiliation(s)
- Leila S. Lemos
- grid.4391.f0000 0001 2112 1969Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA ,grid.65456.340000 0001 2110 1845Institute of Environment, College of Arts, Science & Education, Florida International University, 3000 NE 151st St, North Miami, FL 33181 USA
| | - Joseph H. Haxel
- grid.451303.00000 0001 2218 3491Pacific Northwest National Laboratory, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA ,grid.4391.f0000 0001 2112 1969Cooperative Institute for Marine Resources Studies, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA
| | - Amy Olsen
- grid.427422.50000 0000 9883 4476Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way Pier 59, Seattle, WA 98101 USA
| | - Jonathan D. Burnett
- grid.4391.f0000 0001 2112 1969Aerial Information Systems Laboratory, Forest Engineering, Resources and Management Department, Oregon State University, Oregon, USA
| | - Angela Smith
- grid.427422.50000 0000 9883 4476Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way Pier 59, Seattle, WA 98101 USA
| | - Todd E. Chandler
- grid.4391.f0000 0001 2112 1969Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA
| | - Sharon L. Nieukirk
- grid.451303.00000 0001 2218 3491Pacific Northwest National Laboratory, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA
| | - Shawn E. Larson
- grid.427422.50000 0000 9883 4476Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way Pier 59, Seattle, WA 98101 USA
| | - Kathleen E. Hunt
- grid.22448.380000 0004 1936 8032Department of Biology, Smithsonian-Mason School of Conservation, George Mason University, Fairfax, VA USA
| | - Leigh G. Torres
- grid.4391.f0000 0001 2112 1969Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA
| |
Collapse
|
9
|
Smodlaka Tanković M, Baričević A, Gerić M, Domijan AM, Pfannkuchen DM, Kužat N, Ujević I, Kuralić M, Rožman M, Matković K, Novak M, Žegura B, Pfannkuchen M, Gajski G. Characterisation and toxicological activity of three different Pseudo-nitzschia species from the northern Adriatic Sea (Croatia). ENVIRONMENTAL RESEARCH 2022; 214:114108. [PMID: 35985485 DOI: 10.1016/j.envres.2022.114108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Diatoms of the genus Pseudo-nitzschia are cosmopolitans spread in seas and oceans worldwide, with more than 50 described species, dozens of which have been confirmed to produce domoic acid (DA). Here, we characterized and investigated the toxicological activity of secondary metabolites excreted into the growth media of different Pseudo-nitzschia species sampled at various locations in the northern Adriatic Sea (Croatia) using human blood cells under in vitro conditions. The results revealed that three investigated species of the genus Pseudo-nitzschia were capable of producing DA indicating their toxic potential. Moreover, toxicological data suggested all three Pseudo-nitzschia species can excrete toxic secondary metabolites into the surrounding media in addition to the intracellular pools of DA, raising concerns regarding their toxicity and environmental impact. In addition, all three Pseudo-nitzchia species triggered oxidative stress, one of the mechanisms of action likely responsible for the DNA damage observed in human blood cells. In line with the above stated, our results are of great interest to environmental toxicologists, the public and policy makers, especially in light of today's climate change, which favours harmful algal blooms and the growth of DA producers with a presumed negative impact on the public health of coastal residents.
Collapse
Affiliation(s)
| | - Ana Baričević
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Nataša Kužat
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, 21000 Split, Croatia
| | - Melissa Kuralić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Rožman
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Matjaž Novak
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Martin Pfannkuchen
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Stone HB, Banas NS, MacCready P, Trainer VL, Ayres DL, Hunter MV. Assessing a model of Pacific Northwest harmful algal bloom transport as a decision-support tool. HARMFUL ALGAE 2022; 119:102334. [PMID: 36344195 DOI: 10.1016/j.hal.2022.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/02/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In the Pacific Northwest, blooms of the diatom Pseudo-nitzschia (PN) sometimes produce domoic acid, a neurotoxin that causes amnesic shellfish poisoning, leading to a Harmful Algal Bloom (HAB) event. The Pacific Northwest (PNW) HAB Bulletin project, a partnership between academic, government, and tribal stakeholders, uses a combination of beach and offshore monitoring data and ocean forecast modeling to better understand the formation, evolution, and transport of HABs in this region. This project produces periodic Bulletins to inform local stakeholders of current and forecasted conditions. The goal of this study was to help improve how the forecast model is used in the Bulletin's preparation through a retrospective particle-tracking experiment. Using past observations of beach PN cell counts, events were identified that likely originated in the Juan de Fuca eddy, a known PN hotspot, and then particle tracks were used in the model to simulate these events. A variety of "beaching definitions" were tested, based on both water depth and distance offshore, to define when a particle in the model was close enough to the coast that it was likely to correspond to cells appearing in the intertidal zone and in shellfish diets, as well as a variety of observed PN cell thresholds to determine what cell count should be used to describe an event that would warrant further action. The skill of these criteria was assessed by determining the fraction of true positives, true negatives, false positives, and false negatives within the model in comparison with observations, as well as a variety of derived model performance metrics. This analysis suggested that for our stakeholders' purposes, the most useful beaching definition is the 30 m isobath and the most useful PN cell threshold for coincident field-based sample PN density estimates is 10,000 PN cells/L. Lastly, the performance of a medium-resolution (1.5 km horizontal resolution) version of the model was compared with that of a high-resolution (0.5 km horizontal resolution) version, the latter currently used in forecasting for the PNW HAB Bulletin project. This analysis includes a direct comparison of the two model resolutions for one overlapping year (2017). These results suggested that a narrower, more realistic beaching definition is most useful in a high-resolution model, while a wider beaching definition is more appropriate in a lower resolution model like the medium-resolution version used in this analysis. Overall, this analysis demonstrated the importance of incorporating stakeholder needs into the statistical approach in order to generate the most effective decision-support information from oceanographic modeling.
Collapse
Affiliation(s)
- Hally B Stone
- School of Oceanography, University of Washington, 1503 NE Boat St., Box 357940, Seattle, WA 98195, USA.
| | - Neil S Banas
- Department of Mathematics & Statistics, University of Strathclyde, 26 Richmond St., Glasgow, G1 1XH, UK
| | - Parker MacCready
- School of Oceanography, University of Washington, 1503 NE Boat St., Box 357940, Seattle, WA 98195, USA
| | - Vera L Trainer
- Environmental and Fisheries Science Division, National Marine Fisheries Service, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Daniel L Ayres
- Washington Department of Fish & Wildlife, 48 Devonshire Rd., Montesano, WA 98563, USA
| | - Matthew V Hunter
- Marine Resources Program, Oregon Department of Fish & Wildlife, 2001 Marine Dr. Suite 120, Astoria, OR 97013, USA
| |
Collapse
|
11
|
Free CM, Moore SK, Trainer VL. The value of monitoring in efficiently and adaptively managing biotoxin contamination in marine fisheries. HARMFUL ALGAE 2022; 114:102226. [PMID: 35550293 DOI: 10.1016/j.hal.2022.102226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) can produce biotoxins that accumulate in seafood species targeted by commercial, recreational, and subsistence fisheries and pose an increasing risk to public health as well as fisher livelihoods, recreational opportunities, and food security. Designing biotoxin monitoring and management programs that protect public health with minimal impacts to the fishing communities that underpin coastal livelihoods and food systems is critically important, especially in regions with worsening HABs due to climate change. This study reviews the history of domoic acid monitoring and management in the highly lucrative U.S. West Coast Dungeness crab fishery and highlights three changes made to these programs that efficiently and adaptively manage mounting HAB risk: (1) expanded spatial-temporal frequency of monitoring; (2) delineation of clear management zones; and (3) authorization of evisceration orders as a strategy to mitigate economic impacts. Simulation models grounded in historical data were used to measure the value of monitoring information in facilitating efficient domoic acid management. Power analysis confirmed that surveys sampling 6 crabs (the current protocol) have high power to correctly diagnose contamination levels and recommend appropriate management actions. Across a range of contamination scenarios, increasing the spatial-temporal frequency of monitoring allowed management to respond more quickly to changing toxin levels and to protect public health with the least impact on fishing opportunities. These results highlight the powerful yet underutilized role of simulation testing and power analysis in designing efficient biotoxin monitoring programs, demonstrating the credibility of these programs to stakeholders, and justifying their expense to policymakers.
Collapse
Affiliation(s)
- Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA; Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Stephanie K Moore
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Vera L Trainer
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| |
Collapse
|
12
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
13
|
No β-N-Methylamino-L-alanine (BMAA) Was Detected in Stranded Cetaceans from Galicia (North-West Spain). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), a non-proteinogenic amino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms) microorganisms, has been proposed to be associated with the development of neurodegenerative diseases. At first, BMAA appeared to be ubiquitously present worldwide in various organisms, from aquatic and terrestrial food webs. However, recent studies, using detection methods based on mass spectrometry, instead of fluorescence detection, suggest that the trophic transfer of BMAA is debatable. This study evaluated BMAA in 22 cetaceans of three different species (Phocoena phocoena, n = 8, Delphinus delphis, n = 8, and Tursiops truncatus, n = 6), found stranded in North-West Spain. BMAA analysis of the liver, kidney, or muscle tissues via sensitive liquid chromatography with tandem mass spectrometry did not reveal the presence of this compound or its isomers. The absence recorded in this study highlights the need to better understand the trophic transfer of BMAA and its anatomical distribution in marine mammals.
Collapse
|
14
|
Du M, Li Z, Wang J, Wang F, Zan S, Gu C. Anaerobic biotransformation mechanism of marine toxin domoic acid. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126798. [PMID: 34388926 DOI: 10.1016/j.jhazmat.2021.126798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Domoic acid (DA) is a major marine neurotoxin, occurs frequently in most of the world's coastlines and seriously threatens ecosystem and public health. However, information on its biotransformation process in coastal anaerobic environments remains unclear. In this study, the underlying mechanism of anaerobic biotransformation of DA by marine consortium GLY was investigated using the combination of liquid chromatography-high-resolution Orbitrap mass spectrometry and comparative metatranscriptomics analysis. The results demonstrated that DA could be cometabolically biotransformed under anaerobic conditions with pseudo-first-order reaction. Anaerobic biotransformation pathway of DA was clarified, including decarboxylation, dehydrogenation, carboxylation activation with CoA and multiple β-oxidation steps occurring at aliphatic side chain, which facilitated DA detoxification. Furthermore, anaerobic cometabolic biotransformation mechanism of glycine-DA by consortium GLY was established for the first time, a number of genes related to the metabolic pathways of glycine fermentation, fatty acid synthesis and β-oxidation were responded in the consortium GLY transcriptome and involved in the anaerobic biotransformation of DA. This study could deepen understanding of interaction mechanism between toxin DA and marine microorganisms, which provides a new insight into the DA fate and its effects on benthic microbial community in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Fengbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Chen Gu
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| |
Collapse
|
15
|
Kelchner H, Reeve-Arnold KE, Schreiner KM, Bargu S, Roques KG, Errera RM. Domoic Acid and Pseudo-nitzschia spp. Connected to Coastal Upwelling along Coastal Inhambane Province, Mozambique: A New Area of Concern. Toxins (Basel) 2021; 13:903. [PMID: 34941740 PMCID: PMC8704230 DOI: 10.3390/toxins13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Harmful algal blooms (HABs) are increasing globally in frequency, persistence, and geographic extent, posing a threat to ecosystem and human health. To date, no occurrences of marine phycotoxins have been recorded in Mozambique, which may be due to absence of a monitoring program and general awareness of potential threats. This study is the first documentation of neurotoxin, domoic acid (DA), produced by the diatom Pseudo-nitzschia along the east coast of Africa. Coastal Inhambane Province is a biodiversity hotspot where year-round Rhincodon typus (whale shark) sightings are among the highest globally and support an emerging ecotourism industry. Links between primary productivity and biodiversity in this area have not previously been considered or reported. During a pilot study, from January 2017 to April 2018, DA was identified year-round, peaking during Austral winter. During an intense study between May and August 2018, our research focused on identifying environmental factors influencing coastal productivity and DA concentration. Phytoplankton assemblage was diatom-dominated, with high abundances of Pseudo-nitzschia spp. Data suggest the system was influenced by nutrient pulses resulting from coastal upwelling. Continued and comprehensive monitoring along southern Mozambique would provide critical information to assess ecosystem and human health threats from marine toxins under challenges posed by global change.
Collapse
Affiliation(s)
- Holly Kelchner
- School of Renewable Natural Resources, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA 70803, USA;
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48108, USA
| | - Katie E. Reeve-Arnold
- All Out Africa Marine Research Centre, Praia do Tofo, Inhambane 1300, Mozambique; (K.E.R.-A.); (K.G.R.)
| | - Kathryn M. Schreiner
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MI 55812, USA;
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Sibel Bargu
- Department of Oceanography and Coastal Sciences, College of Coast and Environment, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA 70803, USA;
| | - Kim G. Roques
- All Out Africa Marine Research Centre, Praia do Tofo, Inhambane 1300, Mozambique; (K.E.R.-A.); (K.G.R.)
| | - Reagan M. Errera
- School of Renewable Natural Resources, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA 70803, USA;
- National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
| |
Collapse
|
16
|
Bernstein S, Ruiz-Cooley RI, Kudela R, Anderson CR, Dunkin R, Field JC. Stable isotope analysis reveals differences in domoic acid accumulation and feeding strategies of key vectors in a California hotspot for outbreaks. HARMFUL ALGAE 2021; 110:102117. [PMID: 34887000 DOI: 10.1016/j.hal.2021.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Given the effects of harmful algal blooms (HABs) on human and wildlife health, understanding how domoic acid (DA) is accumulated and transferred through food webs is critical for recognizing the most affected marine communities and predicting ecosystem effects. This study combines stable isotopes of carbon (δ13C) and nitrogen (δ15N) from bulk muscle tissue with DA measurements from viscera to identify the foraging strategies of important DA vectors and predators in Monterey Bay, CA. Tissue samples were collected from 27 species across three habitats in the summer of 2018 and 2019 (time periods without prominent HABs). Our results highlight an inshore-offshore variation in krill δ13C values and DA concentrations ([DA]; ppm) in anchovies indicating differences in coastal productivity and DA accumulation. The narrow overlapping isotopic niches between anchovies and sardines suggest similar diets and trophic positions, but striking differences in [DA] indicate a degree of specialization, thus, resource partitioning. In contrast, krill, market squid, and juvenile rockfish accumulated minimal DA and had comparatively broad isotopic niches, suggesting a lower capacity to serve as vectors because of potential differences in diet or feeding in isotopically distinct locations. Low [DA] in the liver of stranded sea lions and their generalist foraging tendencies limits our ability to use them as sentinels for DA outbreaks in a specific geographic area. Collectively, our results show that DA was produced a few kilometers from the coastline, and anchovies were the most powerful DA vector in coastal-pelagic zones (their DA loads exceeded the 20 ppm FDA regulatory limits for human consumption), while mussels did not contain detectable DA and only reflect in situ DA, δ13C, and δ15N values. Our study demonstrates the efficacy of combining multiple biogeochemical tracers to improve HAB monitoring efforts and identify the main routes of DA transfer across habitats and trophic levels.
Collapse
Affiliation(s)
- Sophie Bernstein
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA.
| | - Rocio I Ruiz-Cooley
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA; Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, México.
| | - Raphael Kudela
- University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Clarissa R Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, Scripps Institute of Oceanography, 8880 Biological Grade La Jolla, CA 92037, USA
| | - Robin Dunkin
- University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - John C Field
- National Oceanic and Atmospheric Administration, Fisheries Ecology Division, Southwest Fisheries Science Center 110 McAllister Way Road Santa Cruz, CA 95060, USA
| |
Collapse
|
17
|
PHARMACOKINETICS OF SUBCUTANEOUS ALPHA LIPOIC ACID, A PROPOSED THERAPEUTIC AID FOR DOMOIC ACID INTOXICATION IN CALIFORNIA SEA LIONS ( ZALOPHUS CALIFORNIANUS). J Zoo Wildl Med 2021; 52:872-879. [PMID: 34687502 DOI: 10.1638/2020-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Domoic acid (DA) is a potent neurotoxin produced by certain marine algae that can cause neurologic and cardiac dysfunction by activating glutamate receptors. Glutamate receptor overexcitation results in continuous cellular activation, oxidative damage, and cell death. DA toxicosis causes disorientation and seizures, and antiseizure medications are the primary treatment. Alpha lipoic acid (ALA), a powerful antioxidant and glutathione precursor widely used in humans and dogs, can cross the blood-brain barrier to provide antioxidant availability to brain tissue. Hundreds of stranded California sea lions (CSL; Zalophus californianus) are diagnosed annually with DA toxicosis and thus are an appropriate animal in which to establish ALA dosing recommendations for treatment. The objective of this study was to determine the population pharmacokinetics of a single 10- or 20-mg/kg dose of ALA administered subcutaneously into the interscapular region to healthy rehabilitated CSL. Blood was collected at two time points between 15 min and 24 h after administration. Serum ALA concentrations were measured by liquid chromatography-mass spectrometry, and parameters were evaluated using a nonlinear mixed effects model. ALA was rapidly absorbed for each dose, peaking within 20 to 30 minutes, and t1/2 of 40 and 32 min (10 and 20 mg/kg, respectively), followed by an initial steep distribution phase and prolonged elimination phase. Peak concentration (CMAX) was 1,243 ng/ml (10-mg/ml dose) and 5,010 ng/ml (20-mg/ml dose). Serum from 13 CSLd with DA toxicosis treated with 10 mg/kg ALA for 1 to 9 d had measurable levels, and ALA was also measurable in cerebrospinal fluid from two treated CSLs. Therapeutic effects are noted with a CMAX of 4,000 to 5,000 ng/ml in humans; thus in CSLs, 20 mg/kg administered subcutaneously once daily may be sufficient to achieve a therapeutic level in this species. Determination of efficacy and optimal dosing interval and duration require additional investigation.
Collapse
|
18
|
Hendrix AM, Lefebvre KA, Quakenbush L, Bryan A, Stimmelmayr R, Sheffield G, Wisswaesser G, Willis ML, Bowers EK, Kendrick P, Frame E, Burbacher T, Marcinek DJ. Ice seals as sentinels for algal toxin presence in the Pacific Arctic and subarctic marine ecosystems. MARINE MAMMAL SCIENCE 2021; 37:1292-1308. [PMID: 34690417 PMCID: PMC8518847 DOI: 10.1111/mms.12822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/04/2023]
Abstract
Domoic acid (DA) and saxitoxin (STX)-producing algae are present in Alaskan seas, presenting exposure risks to marine mammals that may be increasing due to climate change. To investigate potential increases in exposure risks to four pagophilic ice seal species (Erignathus barbatus, bearded seals; Pusa hispida, ringed seals; Phoca largha, spotted seals; and Histriophoca fasciata, ribbon seals), this study analyzed samples from 998 seals harvested for subsistence purposes in western and northern Alaska during 2005-2019 for DA and STX. Both toxins were detected in bearded, ringed, and spotted seals, though no clinical signs of acute neurotoxicity were reported in harvested seals. Bearded seals had the highest prevalence of each toxin, followed by ringed seals. Bearded seal stomach content samples from the Bering Sea showed a significant increase in DA prevalence with time (logistic regression, p = .004). These findings are consistent with predicted northward expansion of DA-producing algae. A comparison of paired samples taken from the stomachs and colons of 15 seals found that colon content consistently had higher concentrations of both toxins. Collectively, these results suggest that ice seals, particularly bearded seals (benthic foraging specialists), are suitable sentinels for monitoring HAB prevalence in the Pacific Arctic and subarctic.
Collapse
Affiliation(s)
- Alicia M. Hendrix
- Department of Environmental and Occupational Health SciencesUniversity of Washington, SeattleWashington
| | - Kathi A. Lefebvre
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Lori Quakenbush
- Arctic Marine Mammal ProgramAlaska Department of Fish and Game, FairbanksAlaska
| | - Anna Bryan
- Arctic Marine Mammal ProgramAlaska Department of Fish and Game, FairbanksAlaska
| | - Raphaela Stimmelmayr
- North Slope Borough Department of Wildlife Management, Utqiaġvik, Alaska
- Institute of Arctic BiologyUniversity of Alaska Fairbanks, FairbanksAlaska
| | - Gay Sheffield
- Alaska Sea Grant Marine Advisory ProgramUniversity of Alaska Fairbanks, NomeAlaska
| | - Gabriel Wisswaesser
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Maryjean L. Willis
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Emily K. Bowers
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Preston Kendrick
- Departments of Radiology and Pathology and BioengineeringUniversity of Washington Medical School, SeattleWashington
| | - Elizabeth Frame
- Aquatic Toxicology UnitKing County Environmental Laboratory, SeattleWashington
| | - Thomas Burbacher
- Department of Environmental and Occupational Health SciencesUniversity of Washington, SeattleWashington
| | - David J. Marcinek
- Departments of Radiology and Pathology and BioengineeringUniversity of Washington Medical School, SeattleWashington
| |
Collapse
|
19
|
Smith J, Shultz D, Howard MDA, Robertson G, Phonsiri V, Renick V, Caron DA, Kudela RM, McLaughlin K. Persistent domoic acid in marine sediments and benthic infauna along the coast of Southern California. HARMFUL ALGAE 2021; 108:102103. [PMID: 34588124 DOI: 10.1016/j.hal.2021.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Blooms of the diatom genus Pseudo-nitzschia occur annually in the Southern California Bight (SCB), and domoic acid (DA) associated with these events can contaminate fisheries, presenting both human and wildlife health risks. Recent studies have suggested that marine sediments may act as a reservoir for DA, extending the risk of food web contamination long after water column blooms have ended. In this study, we conducted a regional assessment of the extent and magnitude of DA in the benthic environment, and monthly observations of sediments and benthic infauna at multiple stations over a 16-month period. DA was widespread in continental shelf sediments of the SCB. The toxin was detected in 54% of all shelf habitats sampled. Detectable concentrations ranged from 0.11 ng/g to 1.36 ng/g. DA was consistently detected in benthic infauna tissues over the monthly timeseries, while the DA concentrations in sediments during the same period were commonly below detection or at low concentrations. The presence of DA in the benthic environment did not always have an apparent water column source, raising the possibility of lateral transport, retention/preservation in sediments or undetected blooms in subsurface waters. In most cases, DA was detected in tissues but not in the co-located surface sediments. Coarse taxonomic sorting of the infauna revealed that the accumulation of DA varied among taxa. We observed that DA was widespread among lower trophic level organisms in this study, potentially acting as a persistent source of DA to higher trophic levels in the benthos.
Collapse
Affiliation(s)
- Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States.
| | - Dana Shultz
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Meredith D A Howard
- Central Valley Regional Water Quality Control Board, Rancho Cordova, CA, United States
| | - George Robertson
- Orange County Sanitation District, Fountain Valley, CA, United States
| | - Vanh Phonsiri
- Orange County Sanitation District, Fountain Valley, CA, United States
| | - Violet Renick
- Orange County Sanitation District, Fountain Valley, CA, United States
| | - David A Caron
- University of Southern California, Los Angeles, CA, United States
| | - Raphael M Kudela
- University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Karen McLaughlin
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| |
Collapse
|
20
|
Bowers EK, Stimmelmayr R, Lefebvre KA. Stability of Domoic Acid in 50% Methanol Extracts and Raw Fecal Material from Bowhead Whales ( Balaena mysticetus). Mar Drugs 2021; 19:md19080423. [PMID: 34436262 PMCID: PMC8399427 DOI: 10.3390/md19080423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Domoic acid (DA), the toxin causing amnesic shellfish poisoning (ASP), is produced globally by some diatoms in the genus Pseudo-nitzschia. DA has been detected in several marine mammal species in the Alaskan Arctic, raising health concerns for marine mammals and subsistence communities dependent upon them. Gastrointestinal matrices are routinely used to detect Harmful Algal Bloom (HAB) toxin presence in marine mammals, yet DA stability has only been studied extensively in shellfish-related matrices. To address this knowledge gap, we quantified DA in bowhead whale fecal samples at multiple time points for two groups: (1) 50% methanol extracts from feces, and (2) raw feces stored in several conditions. DA concentrations decreased to 70 ± 7.1% of time zero (T0) in the 50% methanol extracts after 2 weeks, but remained steady until the final time point at 5 weeks (66 ± 5.7% T0). In contrast, DA concentrations were stable or increased in raw fecal material after 8 weeks of freezer storage (−20 °C), at room temperature (RT) in the dark, or refrigerated at 1 °C. DA concentrations in raw feces stored in an incubator (37 °C) or at RT in the light decreased to 77 ± 2.8% and 90 ± 15.0% T0 at 8 weeks, respectively. Evaporation during storage of raw fecal material is a likely cause of the increased DA concentrations observed over time with the highest increase to 126 ± 7.6% T0 after 3.2 years of frozen storage. These results provide valuable information for developing appropriate sample storage procedures for marine mammal fecal samples.
Collapse
Affiliation(s)
- Emily K. Bowers
- Northwest Fisheries Science Center, Environmental and Fisheries Sciences Division, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA;
| | - Raphaela Stimmelmayr
- The North Slope Borough Department of Wildlife Management, P.O. Box 69, Utqiagvik, AK 99723, USA;
| | - Kathi A. Lefebvre
- Northwest Fisheries Science Center, Environmental and Fisheries Sciences Division, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA;
- Correspondence:
| |
Collapse
|
21
|
Sha J, Xiong H, Li C, Lu Z, Zhang J, Zhong H, Zhang W, Yan B. Harmful algal blooms and their eco-environmental indication. CHEMOSPHERE 2021; 274:129912. [PMID: 33979937 DOI: 10.1016/j.chemosphere.2021.129912] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs) in freshwater lakes and oceans date back to as early as the 19th century, which can cause the death of aquatic and terrestrial organisms. However, it was not until the end of the 20th century that researchers had started to pay attention to the hazards and causes of HABs. In this study, we analyzed 5720 published literatures on HABs studies in the past 30 years. Our review presents the emerging trends in the past 30 years on HABs studies, the environmental and human health risks, prevention and control strategies and future developments. Therefore, this review provides a global perspective of HABs and calls for immediate responses.
Collapse
Affiliation(s)
- Jun Sha
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China; School of Tourism and Resource Environment, Qiannan Normal University for Nationalities, Duyun, China
| | - Haiyan Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35924, United States
| | - Jichao Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
22
|
Ben-Gigirey B, Soliño L, Bravo I, Rodríguez F, Casero MVM. Paralytic and Amnesic Shellfish Toxins Impacts on Seabirds, Analyses and Management. Toxins (Basel) 2021; 13:454. [PMID: 34209782 PMCID: PMC8309893 DOI: 10.3390/toxins13070454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
Marine biotoxins have been frequently implicated in morbidity and mortality events in numerous species of birds worldwide. Nevertheless, their effects on seabirds have often been overlooked and the associated ecological impact has not been extensively studied. On top of that, the number of published studies confirming by analyses the presence of marine biotoxins from harmful algal blooms (HABs) in seabirds, although having increased in recent years, is still quite low. This review compiles information on studies evidencing the impact of HAB toxins on marine birds, with a special focus on the effects of paralytic and amnesic shellfish toxins (PSTs and ASTs). It is mainly centered on studies in which the presence of PSTs and/or ASTs in seabird samples was demonstrated through analyses. The analytical techniques commonly employed, the tissues selected and the adjustments done in protocols for processing seabird matrixes are summarized. Other topics covered include the role of different vectors in the seabird intoxications, information on clinical signs in birds affected by PSTs and ASTs, and multifactorial causes which could aggravate the syndromes. Close collaboration between seabird experts and marine biotoxins researchers is needed to identify and report the potential involvement of HABs and their toxins in the mortality events. Future studies on the PSTs and ASTs pharmacodynamics, together with the establishment of lethal doses in various seabird species, are also necessary. These studies would aid in the selection of the target organs for toxins analyses and in the postmortem intoxication diagnoses.
Collapse
Affiliation(s)
- Begoña Ben-Gigirey
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain; (L.S.); (I.B.); (F.R.)
| | - Lucía Soliño
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain; (L.S.); (I.B.); (F.R.)
| | - Isabel Bravo
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain; (L.S.); (I.B.); (F.R.)
| | - Francisco Rodríguez
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain; (L.S.); (I.B.); (F.R.)
| | - María V. M. Casero
- RIAS Wildlife Rehabilitation and Research Centre, Parque Natural da Ria Formosa, 8700-194 Olhão, Portugal;
| |
Collapse
|
23
|
Kershaw JL, Jensen SK, McConnell B, Fraser S, Cummings C, Lacaze JP, Hermann G, Bresnan E, Dean KJ, Turner AD, Davidson K, Hall AJ. Toxins from harmful algae in fish from Scottish coastal waters. HARMFUL ALGAE 2021; 105:102068. [PMID: 34303514 DOI: 10.1016/j.hal.2021.102068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Harmful algal bloom events are increasing in a number of water bodies around the world with significant economic impacts on the aquaculture, fishing and tourism industries. As well as their potential impacts on human health, toxin exposure from harmful algal blooms (HABs) has resulted in widespread morbidity and mortality in marine life, including top marine predators. There is therefore a need for an improved understanding of the trophic transfer, and persistence of toxins in marine food webs. For the first time, the concentrations of two toxin groups of commercial and environmental importance, domoic acid (DA) and saxitoxin (including Paralytic Shellfish Toxin (PST) analogues), were measured in the viscera of 40 different fish species caught in Scotland between February and November, 2012 to 2019. Overall, fish had higher concentrations of DA compared to PSTs, with a peak in the summer / autumn months. Whole fish concentrations were highest in pelagic species including Atlantic mackerel and herring, key forage fish for marine predators including seals, cetaceans and seabirds. The highest DA concentrations were measured along the east coast of Scotland and in Orkney. PSTs showed highest concentrations in early summer, consistent with phytoplankton bloom timings. The detection of multiple toxins in such a range of demersal, pelagic and benthic fish prey species suggests that both the fish, and by extension, piscivorous marine predators, experience multiple routes of toxin exposure. Risk assessment models to understand the impacts of exposure to HAB toxins on marine predators therefore need to consider how chronic, low-dose exposure to multiple toxins, as well as acute exposure during a bloom, could lead to potential long-term health effects ultimately contributing to mortalities. The potential synergistic, neurotoxic and physiological effects of long-term exposure to multiple toxins require investigation in order to appropriately assess the risks of HAB toxins to fish as well as their predators.
Collapse
Affiliation(s)
- Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 8LB, UK; School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, PL4 8AA, UK.
| | - Silje-Kristin Jensen
- The Norwegian Directorate of Fisheries, Kystens Hus, Stortorget 1A, 9008 Tromsø, Norway
| | - Bernie McConnell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Shaun Fraser
- NAFC Marine Centre, University of the Highlands and Islands, Port Arthur, Scalloway, Shetland, ZE1 0UN, UK
| | - Caroline Cummings
- US Fish and Wildlife Service Alaska Region, 1011 East Tudor Road, Anchorage, Alaska, USA, 99503
| | | | | | - Eileen Bresnan
- Marine Laboratory, Marine Scotland Science, Aberdeen, AB119DB, UK
| | - Karl J Dean
- Cefas, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Andrew D Turner
- Cefas, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Keith Davidson
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 8LB, UK
| |
Collapse
|
24
|
Petroff R, Hendrix A, Shum S, Grant KS, Lefebvre KA, Burbacher TM. Public health risks associated with chronic, low-level domoic acid exposure: A review of the evidence. Pharmacol Ther 2021; 227:107865. [PMID: 33930455 DOI: 10.1016/j.pharmthera.2021.107865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae. DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people from the acute effects associated with ASP, DA is an increasingly significant public health concern, particularly for coastal dwelling populations, and there is a growing body of evidence suggesting that there are significant health consequences following repeated exposures to levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results from clinical and preclinical studies after both adult and developmental DA exposure. The review also highlights crucial areas for future DA research and makes the case that DA safety limits need to be reassessed to best protect public health from deleterious effects of this widespread marine toxin.
Collapse
Affiliation(s)
- Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Kathi A Lefebvre
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle,WA, USA.
| |
Collapse
|
25
|
Danil K, Berman M, Frame E, Preti A, Fire SE, Leighfield T, Carretta J, Carter ML, Lefebvre K. Marine algal toxins and their vectors in southern California cetaceans. HARMFUL ALGAE 2021; 103:102000. [PMID: 33980440 DOI: 10.1016/j.hal.2021.102000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Published baseline data on biotoxin exposure in cetaceans is sparse but critical for interpreting mortality events as harmful algal blooms increase in frequency and duration. We present the first synthesis of domoic acid (DA), saxitoxin (STX), okadaic acid (OA), and microcystin detections in the feces and urine of stranded and bycaught southern California cetaceans, over an 18 year period (2001-2018), along with corresponding stomach content data. DA was detected in 13 out of 19 cetacean species, most often in harbor porpoise (Phocoena phocoena) (81.8%, n = 22) and long-beaked common dolphins (Delphinus delphis bairdii) (74%, n = 231). Maximum DA concentrations of 324,000 ng/g in feces and 271, 967 ng/ml in urine were observed in D. d. bairdii. DA was detected more frequently and at higher concentrations in male vs. female D. d. bairdii. Higher fecal DA concentrations in D. d. bairdii were associated with a greater proportion of northern anchovy (Engraulis mordax) in the diet, indicating it may be a primary vector of DA. Fecal DA concentrations for D. d. bairdii off Point Conception were greater than those from animals sampled off Los Angeles and San Diego counties, reflecting greater primary productivity and higher Pseudo-nitzschia spp. abundance in that region and a greater abundance of E. mordax in the diet. STX was detected at low levels (fecal max = 7.5 ng/g, urine max = 17 ng/ml) in 3.6% (n = 165) of individuals from 3 out of 11 species. The occurrence of E. mordax in 100% of the 3 examined stomachs suggests this species could be a primary vector of the detected STX. OA was detected in 2.4% of tested individuals (n = 85) at a maximum fecal concentration of 422.8 ng/g. Microcystin was detected in 14.3% (n = 7) of tested individuals with a maximum liver concentration of 96.8 ppb.
Collapse
Affiliation(s)
- Kerri Danil
- NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, United States.
| | - Michelle Berman
- Channel Islands Cetacean Research Unit, Santa Barbara, CA, United States
| | - Elizabeth Frame
- King County Environmental Laboratory, Seattle, WA, United States
| | - Antonella Preti
- NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, United States; Institute of Marine Studies, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Spencer E Fire
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Tod Leighfield
- NOAA, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, United States
| | - Jim Carretta
- NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, United States
| | - Melissa L Carter
- Scripps Institution of Oceanography, La Jolla, CA, United States
| | - Kathi Lefebvre
- NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, United States
| |
Collapse
|
26
|
Quigg A, Parsons M, Bargu S, Ozhan K, Daly KL, Chakraborty S, Kamalanathan M, Erdner D, Cosgrove S, Buskey EJ. Marine phytoplankton responses to oil and dispersant exposures: Knowledge gained since the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2021; 164:112074. [PMID: 33540275 DOI: 10.1016/j.marpolbul.2021.112074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems. As such, alterations of the phytoplankton community propagate to upper trophic levels. This review brings together new insights into the influence of oil and dispersant on phytoplankton. We bring together laboratory, mesocosm and field experiments, including insights into novel observations of harmful algal bloom (HAB) forming species and zooplankton as well as bacteria-phytoplankton interactions. We finish by addressing knowledge gaps and highlighting key topics for research in novel areas.
Collapse
Affiliation(s)
- Antonietta Quigg
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Michael Parsons
- Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA.
| | - Sibel Bargu
- Louisiana State University, 1235 Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA.
| | - Koray Ozhan
- Middle East Technical University, P.O. Box 28, 33731 Erdemli, Mersin, Turkey.
| | - Kendra L Daly
- University of South Florida, 140 Seventh Ave S., St. Petersburg, FL 33701, USA.
| | - Sumit Chakraborty
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Manoj Kamalanathan
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Deana Erdner
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Sarah Cosgrove
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Edward J Buskey
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
27
|
Fire SE, Bogomolni A, DiGiovanni RA, Early G, Leighfield TA, Matassa K, Miller GA, Moore KMT, Moore M, Niemeyer M, Pugliares K, Wang Z, Wenzel FW. An assessment of temporal, spatial and taxonomic trends in harmful algal toxin exposure in stranded marine mammals from the U.S. New England coast. PLoS One 2021; 16:e0243570. [PMID: 33406141 PMCID: PMC7787384 DOI: 10.1371/journal.pone.0243570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 01/31/2023] Open
Abstract
Despite a long-documented history of severe harmful algal blooms (HABs) in New England coastal waters, corresponding HAB-associated marine mammal mortality events in this region are far less frequent or severe relative to other regions where HABs are common. This long-term survey of the HAB toxins saxitoxin (STX) and domoic acid (DA) demonstrates significant and widespread exposure of these toxins in New England marine mammals, across multiple geographic, temporal and taxonomic groups. Overall, 19% of the 458 animals tested positive for one or more toxins, with 15% and 7% testing positive for STX and DA, respectively. 74% of the 23 different species analyzed demonstrated evidence of toxin exposure. STX was most prevalent in Maine coastal waters, most frequently detected in common dolphins (Delphinus delphis), and most often detected during July and October. DA was most prevalent in animals sampled in offshore locations and in bycaught animals, and most frequently detected in mysticetes, with humpback whales (Megaptera novaeangliae) testing positive at the highest rates. Feces and urine appeared to be the sample matrices most useful for determining the presence of toxins in an exposed animal, with feces samples having the highest concentrations of STX or DA. No relationship was found between the bloom season of toxin-producing phytoplankton and toxin detection rates, however STX was more likely to be present in July and October. No relationship between marine mammal dietary preference and frequency of toxin detection was observed. These findings are an important part of a framework for assessing future marine mammal morbidity and mortality events, as well as monitoring ecosystem health using marine mammals as sentinel organisms for predicting coastal ocean changes.
Collapse
Affiliation(s)
- Spencer E. Fire
- Florida Institute of Technology, Melbourne, FL, United States of America
- * E-mail:
| | - Andrea Bogomolni
- Massachusetts Maritime Academy, Buzzards Bay, Massachusetts, United States of America
| | - Robert A. DiGiovanni
- Atlantic Marine Conservation Society, Hampton Bays, New York, United States of America
| | - Greg Early
- Integrated Statistics, Woods Hole, Massachusetts, United States of America
| | - Tod A. Leighfield
- National Oceanic and Atmospheric Administration, National Ocean Service, Charleston, South Carolina, United States of America
| | - Keith Matassa
- Ocean Animal Response and Research Alliance, Laguna Niguel, California, United States of America
| | - Glenn A. Miller
- Florida Institute of Technology, Melbourne, FL, United States of America
| | - Kathleen M. T. Moore
- International Fund for Animal Welfare, Yarmouth Port, Massachusetts, United States of America
| | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Misty Niemeyer
- International Fund for Animal Welfare, Yarmouth Port, Massachusetts, United States of America
| | - Katie Pugliares
- New England Aquarium, Boston, Massachusetts, United States of America
| | - Zhihong Wang
- CSS Corporation, Fairfax, VA, United States of America
- Under Contract to National Ocean Service, Charleston, South Carolina, United States of America
| | - Frederick W. Wenzel
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
28
|
Moriarty ME, Tinker MT, Miller MA, Tomoleoni JA, Staedler MM, Fujii JA, Batac FI, Dodd EM, Kudela RM, Zubkousky-White V, Johnson CK. Exposure to domoic acid is an ecological driver of cardiac disease in southern sea otters ✰. HARMFUL ALGAE 2021; 101:101973. [PMID: 33526183 DOI: 10.1016/j.hal.2020.101973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms produce toxins that bioaccumulate in the food web and adversely affect humans, animals, and entire marine ecosystems. Blooms of the diatom Pseudo-nitzschia can produce domoic acid (DA), a toxin that most commonly causes neurological disease in endothermic animals, with cardiovascular effects that were first recognized in southern sea otters. Over the last 20 years, DA toxicosis has caused significant morbidity and mortality in marine mammals and seabirds along the west coast of the USA. Identifying DA exposure has been limited to toxin detection in biological fluids using biochemical assays, yet measurement of systemic toxin levels is an unreliable indicator of exposure dose or timing. Furthermore, there is little information regarding repeated DA exposure in marine wildlife. Here, the association between long-term environmental DA exposure and fatal cardiac disease was investigated in a longitudinal study of 186 free-ranging sea otters in California from 2001 - 2017, highlighting the chronic health effects of a marine toxin. A novel Bayesian spatiotemporal approach was used to characterize environmental DA exposure by combining several DA surveillance datasets and integrating this with life history data from radio-tagged otters in a time-dependent survival model. In this study, a sea otter with high DA exposure had a 1.7-fold increased hazard of fatal cardiomyopathy compared to an otter with low exposure. Otters that consumed a high proportion of crab and clam had a 2.5- and 1.2-times greater hazard of death due to cardiomyopathy than otters that consumed low proportions. Increasing age is a well-established predictor of cardiac disease, but this study is the first to identify that DA exposure affects the risk of cardiomyopathy more substantially in prime-age adults than aged adults. A 4-year-old otter with high DA exposure had 2.3 times greater risk of fatal cardiomyopathy than an otter with low exposure, while a 10-year old otter with high DA exposure had just 1.2 times greater risk. High Toxoplasma gondii titers also increased the hazard of death due to heart disease 2.4-fold. Domoic acid exposure was most detrimental for prime-age adults, whose survival and reproduction are vital for population growth, suggesting that persistent DA exposure will likely impact long-term viability of this threatened species. These results offer insight into the pervasiveness of DA in the food web and raise awareness of under-recognized chronic health effects of DA for wildlife at a time when toxic blooms are on the rise.
Collapse
Affiliation(s)
- Megan E Moriarty
- Karen C. Drayer Wildlife Health Center and EpiCenter for Disease Dynamics, One Health Institute, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Dr. VM3B, Davis, CA, United States.
| | - M Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, 2885 Mission St., Santa Cruz, CA, United States; Department of Ecology and Evolutionary Biology, University of California, Long Marine Lab, 100 Shaffer Rd., Santa Cruz, CA, United States
| | - Melissa A Miller
- Karen C. Drayer Wildlife Health Center and EpiCenter for Disease Dynamics, One Health Institute, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Dr. VM3B, Davis, CA, United States; Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 1451 McAllister Way, Santa Cruz, CA, USA
| | - Joseph A Tomoleoni
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, 2885 Mission St., Santa Cruz, CA, United States
| | | | - Jessica A Fujii
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA, United States
| | - Francesca I Batac
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 1451 McAllister Way, Santa Cruz, CA, USA
| | - Erin M Dodd
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 1451 McAllister Way, Santa Cruz, CA, USA
| | - Raphael M Kudela
- Ocean Sciences Department, University of California, Santa Cruz, CA, United States
| | - Vanessa Zubkousky-White
- California Department of Public Health, Environmental Management Branch, 850 Marina Bay Pkwy, Richmond, CA, United States
| | - Christine K Johnson
- Karen C. Drayer Wildlife Health Center and EpiCenter for Disease Dynamics, One Health Institute, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Dr. VM3B, Davis, CA, United States.
| |
Collapse
|
29
|
Gajski G, Gerić M, Domijan AM, Golubović I, Žegura B. Marine toxin domoic acid induces in vitro genomic alterations in human peripheral blood cells. Toxicon 2020; 187:93-100. [PMID: 32891664 DOI: 10.1016/j.toxicon.2020.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/01/2022]
Abstract
Domoic acid (DA) is an excitatory marine neurotoxin produced by diatoms Pseudo-nitzschia spp. as a defence compound that accumulates in the food web and is associated with amnesic shellfish poisoning in humans. Although its toxicity has been well established in marine species, there is limited data on DA cytogenotoxicity in human non-target cells. Therefore, we aimed to investigate the cytogenotoxic potential of DA (0.01-10 μg/mL) in human peripheral blood cells (HPBCs) using a battery of bioassays in vitro. In addition, the influence of DA on oxidative stress parameters as a possible mechanism of action was assessed. Results revealed that DA induced dose- and time-dependent cytotoxic effects. DA significantly affected genomic instability by increasing the frequency of micronuclei and nuclear buds. Furthermore, a slight induction of primary DNA strand breaks was detected after 24 h of exposure accompanied by a significant increase in the number of abnormal size tailed nuclei. No induction of hOGG1 (human 8-oxoguanine DNA glycosylase) sensitive sites was determined upon exposure to DA. Additionally, DA induced oxidative stress by increased production of reactive oxygen species accompanied by changes in glutathione, superoxide dismutase, malondialdehyde and protein carbonyl levels. Overall, the obtained results showed adverse genotoxic effects of DA in non-target HPBCs.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, 10000, Zagreb, Croatia.
| | - Ivana Golubović
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, 10000, Zagreb, Croatia
| | - Bojana Žegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, 1000, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Marquez IA, Abraham A, Krause JW. Organic polymer consumption facilitates domoic acid entry into the marine food web without direct ingestion of Pseudo-nitzschia. HARMFUL ALGAE 2020; 98:101891. [PMID: 33129467 DOI: 10.1016/j.hal.2020.101891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Domoic acid (DA) is a neurotoxin produced by diatoms from the genera Pseudo-nitzschia and Nitzschia. DA is transferred through the food web when consumed by organisms such as copepods (e.g., Acartia tonsa). DA bioaccumulates in higher trophic levels and poses a threat to human health through amnesic shellfish poisoning. Laboratory experiments using a DA reference standard demonstrated that mild turbulence facilitates formation of organic polymer aggregates >0.6 µm in-vivo that can scavenge dissolved DA (dDA). Using A. tonsa, we demonstrate that DA can be assimilated through consumption of these organic polymers which scavenged dDA -a pathway which does not require direct ingestion of the toxin-producer Pseudo-nitzschia. In filtered seawater with spiked DA, copepods accumulated 24.8 ± 4.7 pg DA copepod-1 (2.1 ppm) on average by consuming organic polymers. This was validated in one out of five experiments using ambient DA concentrations. Copepods were suspended in particle-free seawater and accumulated 14.4 ± 3.8 pg DA copepod-1 (1.20 ppm), and in particle-concentrated seawater they accumulated 40.9 ± 3.8 pg DA copepod-1 (3.42 ppm). Data from this experiment suggests that ~34% of the total assimilated DA entered via an organic polymer-bound DA pathway. This experiment had the highest Pseudo-nitzschia spp. abundance (~225,000 cells L - 1) and cellular toxin quota, up to 0.88 pg DA cell-1, relative to the other four ambient DA experiments. These results demonstrate the potential for DA to enter the marine food web through an alternate pathway and may have considerable implications to understanding the flow of DA through marine food webs, and how we monitor DA and its potential vectors into the food web.
Collapse
Affiliation(s)
- Israel A Marquez
- Department of Marine Sciences, University of South Alabama, 307N. University Blvd. Mobile, AL 36688, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, AL 36528, United States.
| | - Ann Abraham
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, 1 Iberville Dr. Dauphin Island, AL 36528, United States.
| | - Jeffrey W Krause
- Department of Marine Sciences, University of South Alabama, 307N. University Blvd. Mobile, AL 36688, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, AL 36528, United States.
| |
Collapse
|
31
|
Marine Excitatory Amino Acids: Structure, Properties, Biosynthesis and Recent Approaches to Their Syntheses. Molecules 2020; 25:molecules25133049. [PMID: 32635311 PMCID: PMC7412112 DOI: 10.3390/molecules25133049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022] Open
Abstract
This review considers the results of recent studies on marine excitatory amino acids, including kainic acid, domoic acid, dysiherbaine, and neodysiherbaine A, known as potent agonists of one of subtypes of glutamate receptors, the so-called kainate receptors. Novel information, particularly concerning biosynthesis, environmental roles, biological action, and syntheses of these marine metabolites, obtained mainly in last 10–15 years, is summarized. The goal of the review was not only to discuss recently obtained data, but also to provide a brief introduction to the field of marine excitatory amino acid research.
Collapse
|
32
|
Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat Commun 2020; 11:536. [PMID: 31988285 PMCID: PMC6985238 DOI: 10.1038/s41467-019-14215-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/13/2019] [Indexed: 12/03/2022] Open
Abstract
Climate change and increased variability and intensity of climate events, in combination with recovering protected species populations and highly capitalized fisheries, are posing new challenges for fisheries management. We examine socio-ecological features of the unprecedented 2014–2016 northeast Pacific marine heatwave to understand the potential causes for record numbers of whale entanglements in the central California Current crab fishery. We observed habitat compression of coastal upwelling, changes in availability of forage species (krill and anchovy), and shoreward distribution shift of foraging whales. We propose that these ecosystem changes, combined with recovering whale populations, contributed to the exacerbation of entanglements throughout the marine heatwave. In 2016, domoic acid contamination prompted an unprecedented delay in the opening of California’s Dungeness crab fishery that inadvertently intensified the spatial overlap between whales and crab fishery gear. We present a retroactive assessment of entanglements to demonstrate that cooperation of fishers, resource managers, and scientists could mitigate future entanglement risk by developing climate-ready fisheries approaches, while supporting thriving fishing communities. Climate-driven extreme events may have strong local impacts on marine organisms and fisheries. Here the authors report increased whale entanglements in the northeast Pacific following a marine heatwave, and propose compression of coastal upwelling habitat as the potential driver.
Collapse
|
33
|
Inaba N, Trainer VL, Nagai S, Kojima S, Sakami T, Takagi S, Imai I. Dynamics of seagrass bed microbial communities in artificial Chattonella blooms: A laboratory microcosm study. HARMFUL ALGAE 2019; 84:139-150. [PMID: 31128798 DOI: 10.1016/j.hal.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The influence of algicidal and growth-inhibiting bacteria in a seagrass (Zostera marina) bed, and their capability of controlling blooms of the fish-killing raphidophyte flagellate, Chattonella antiqua, were examined in laboratory microcosm experiments. Bacterial communities in seawater collected from the seagrass bed and Z. marina biofilm suppressed artificial Chattonella blooms in the presence of their natural competitors and predators. Phylogenetic analysis suggest that considerable numbers of bacteria that suppress Chattonella, including algicidal or growth-inhibiting bacteria isolated from seagrass biofilm and seawater from the seagrass bed, are members of Proteobacteria that can decompose lignocellulosic compounds. A direct comparison of partial 16S rRNA gene sequences (500 bp) revealed that the growth-limiting bacterium (strain ZM101) isolated from Z. marina biofilm belonged to the genus Phaeobacter (Alphaproteobacteria) showed 100% similarity with strains of growth-limiting bacteria isolated from seawater of both the seagrass bed and nearshore region, suggesting that the origin of these growth-limiting bacteria are the seagrass biofilm or seawater surrounding the seagrass bed. This study demonstrates that Chattonella growth-limiting bacteria living on seagrass biofilm and in the adjacent seawater can suppress Chattonella blooms, suggesting the possibility of Chattonella bloom prevention through restoration, protection, or introduction of seagrass in coastal areas.
Collapse
Affiliation(s)
- Nobuharu Inaba
- Civil Engineering Research Institute for Cold Region, Public Works Research Institute, Hiragishi 1-3-1-34, Toyohira-ku, Sapporo, Hokkaido, 062-8602, Japan.
| | - Vera L Trainer
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA, 98112, United States
| | - Satoshi Nagai
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Senri Kojima
- Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hokkaido, Hakodate, 041-8611, Japan
| | - Tomoko Sakami
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama-ura, Minami-ise, Mie 516-0193, Japan
| | - Shuzo Takagi
- Research Institute for Fisheries Science, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Kashino 6641-6, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ichiro Imai
- Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho Hokkaido, Hakodate, 041-8611, Japan
| |
Collapse
|
34
|
Soliño L, Ferrer-Obiol J, Navarro-Herrero L, González-Solís J, Costa PR. Are pelagic seabirds exposed to amnesic shellfish poisoning toxins? HARMFUL ALGAE 2019; 84:172-180. [PMID: 31128801 DOI: 10.1016/j.hal.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Marine birds have been hypothesized to be underreported victims of harmful algal blooms (HABs). Toxic blooms of Pseudo-nitzschia spp., the primary amnesic toxin producer microalgae, domoic acid (DA) are known to cause massive mortalities of coastal seabirds and marine mammals around the world. However, these fatalities are only detected when birds die nearby the coastline and little is known about possible outbreaks of pelagic seabirds in oceanic areas. Here we aim to understand whether pelagic seabirds are exposed to amnesic shellfish poisoning (ASP) toxins. For this purpose, we tracked pelagic seabirds feeding on small epipelagic fish and squid, reported to be vectors of DA, which are obtained in high productivity zones where intense Pseudo-nitzschia blooms regularly occur. In particular, we tracked Cory's (Calonectris borealis) and Scopoli's (C. diomedea) shearwaters breeding in Gran Canaria (Canary Is.) and in Menorca (Balearic Is.) and feeding on the Canary Current region and the Catalonian coast, respectively. We sampled birds for blood at the recovery of the GPS (Global Positioning System) and analyzed it for DA determination by Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS). Among the 61 samples analyzed from Gran Canaria, and 87 from Menorca, 31 (50.8%) and 28 (32.2%) from each location presented detectable levels of DA ranging 1.0-10.6 ng mL-1. This work reveals that DA can be detected at variable levels in the blood of ASP-asymptomatic shearwaters and suggests a chronic exposure of shearwaters to DA, highlighting the need for further studies on DA effects. These results are of high relevance due to the vulnerability of these marine birds, which populations are in continuous decline. Since global warming is expected to alter and increase the occurrence of HABs, marine toxins might become an additional stressor for seabirds and exacerbate the already precarious conservation status of many species.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Joan Ferrer-Obiol
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Leia Navarro-Herrero
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Jacob González-Solís
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
35
|
Burbacher TM, Grant KS, Petroff R, Shum S, Crouthamel B, Stanley C, McKain N, Jing J, Isoherranen N. Effects of oral domoic acid exposure on maternal reproduction and infant birth characteristics in a preclinical nonhuman primate model. Neurotoxicol Teratol 2019; 72:10-21. [PMID: 30615984 PMCID: PMC6408264 DOI: 10.1016/j.ntt.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 11/23/2022]
Abstract
Domoic Acid (DA) is a naturally-occurring excitotoxin, produced by marine algae, which can bioaccumulate in shellfish and finfish. The consumption of seafood contaminated with DA is associated with gastrointestinal illness that, in the case of high DA exposure, can evolve into a spectrum of responses ranging from agitation to hallucinations, memory loss, seizures and coma. Because algal blooms that produce DA are becoming more widespread and very little is known about the dangers of chronic, low-dose exposure, we initiated a preclinical study focused on the reproductive and developmental effects of DA in a nonhuman primate model. To this end, 32 adult female Macaca fascicularis monkeys were orally exposed to 0, 0.075 or 0.15 mg/kg/day DA on a daily basis, prior to and during pregnancy. Females were bred to non-exposed males and infants were evaluated at birth. Results from this study provided no evidence of changes in DA plasma concentrations with chronic exposure. DA exposure was not associated with reproductive toxicity or adverse changes in the physical characteristics of newborns. However, in an unanticipated finding, our clinical observations revealed the presence of subtle neurological effects in the form of intentional tremors in the exposed adult females. While females in both dose groups displayed increased tremoring, the effect was dose-dependent and observed at a higher rate in females exposed to 0.15 mg/kg/day. These results demonstrate that chronic, low-level exposure to DA is associated with injury to the adult CNS and suggest that current regulatory guidelines designed to protect human health may not be adequate for high-frequency shellfish consumers.
Collapse
Affiliation(s)
- Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA.
| | - Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA
| | - Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brenda Crouthamel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA
| | - Courtney Stanley
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Noelle McKain
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA
| | - Jing Jing
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Godinho L, Silva A, Castelo Branco MA, Marques A, Costa PR. Evaluation of intracellular and extracellular domoic acid content in Pseudo-nitzschia multiseries cell cultures under different light regimes. Toxicon 2018; 155:27-31. [DOI: 10.1016/j.toxicon.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
37
|
Lefebvre KA, Hendrix A, Halaska B, Duignan P, Shum S, Isoherranen N, Marcinek DJ, Gulland FMD. Domoic acid in California sea lion fetal fluids indicates continuous exposure to a neuroteratogen poses risks to mammals. HARMFUL ALGAE 2018; 79:53-57. [PMID: 30420016 PMCID: PMC7297052 DOI: 10.1016/j.hal.2018.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 05/20/2023]
Abstract
Domoic acid (DA) is a neuroexcitotoxic amino acid that is naturally produced by some species of marine diatoms during harmful algal blooms (HABs). The toxin is transferred through the food web from plantivorous fish and shellfish to marine mammals resulting in significant morbidity and mortality. Due to the timing and location of DA producing HABs, it is well documented that pregnant female California sea lions (CSL) are regularly exposed to DA through their diet thereby posing exposure risks to a neuroteratogen in developing fetuses. In the present study, fluids from 36 fetuses sampled from naturally exposed pregnant CSLs were examined for DA. Domoic acid was detected in 79% of amniotic fluid (n = 24), 67% of allantoic fluid (n = 9), 75% of urine (n = 4), 41% of meconium (n = 17) and 29% of stomach content (n = 21) samples opportunistically collected from CSL fetuses. The distribution of DA in fetal samples indicates an increased prenatal exposure risk due to recirculation of DA in fetal fluids and continuous exposure to the developing brain.
Collapse
Affiliation(s)
- Kathi A Lefebvre
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, United States.
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Barbie Halaska
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, United States
| | - Padraig Duignan
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, United States
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - David J Marcinek
- Department of Radiology, Pathology, and Bioengineering, University of Washington, Seattle, WA 98109, United States
| | - Frances M D Gulland
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, United States
| |
Collapse
|
38
|
Smith J, Connell P, Evans RH, Gellene AG, Howard MDA, Jones BH, Kaveggia S, Palmer L, Schnetzer A, Seegers BN, Seubert EL, Tatters AO, Caron DA. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. HARMFUL ALGAE 2018; 79:87-104. [PMID: 30420020 DOI: 10.1016/j.hal.2018.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Blooms of the marine diatom genus Pseudo-nitzschia that produce the neurotoxin domoic acid have been documented with regularity along the coast of southern California since 2003, with the occurrence of the toxin in shellfish tissue predating information on domoic acid in the particulate fraction in this region. Domoic acid concentrations in the phytoplankton inhabiting waters off southern California during 2003, 2006, 2007, 2011 and 2017 were comparable to some of the highest values that have been recorded in the literature. Blooms of Pseudo-nitzschia have exhibited strong seasonality, with toxin appearing predominantly in the spring. Year-to-year variability of particulate toxin has been considerable, and observations during 2003, 2006, 2007, 2011 and again in 2017 linked domoic acid in the diets of marine mammals and seabirds to mass mortality events among these animals. This work reviews information collected during the past 15 years documenting the phenology and magnitude of Pseudo-nitzschia abundances and domoic acid within the Southern California Bight. The general oceanographic factors leading to blooms of Pseudo-nitzschia and outbreaks of domoic acid in this region are clear, but subtle factors controlling spatial and interannual variability in bloom magnitude and toxin production remain elusive.
Collapse
Affiliation(s)
- Jayme Smith
- Department of Biological Sciences, 3616 Trousdale Parkway, AHF 301, University of Southern California, Los Angeles, CA 90089, United States.
| | - Paige Connell
- Department of Biological Sciences, 3616 Trousdale Parkway, AHF 301, University of Southern California, Los Angeles, CA 90089, United States
| | - Richard H Evans
- Pacific Marine Mammal Center, 20612 Laguna Canyon Rd., Laguna Beach, CA 92651, United States
| | - Alyssa G Gellene
- Department of Biological Sciences, 3616 Trousdale Parkway, AHF 301, University of Southern California, Los Angeles, CA 90089, United States
| | - Meredith D A Howard
- Southern California Coastal Water Research Project, 3535 Harbor Blvd., Costa Mesa, CA 92626, United States
| | - Burton H Jones
- KAUST, Red Sea Research Center, King Abdullah University of Science and Technology, 4700 King Abdullah Boulevard, Thuwal, 23955-6900, Saudi Arabia
| | - Susan Kaveggia
- International Bird Rescue, 3601 S Gaffey St, San Pedro, CA 90731, United States
| | - Lauren Palmer
- Marine Mammal Care Center, 3601 S. Gaffey St., San Pedro, CA 90731, United States
| | - Astrid Schnetzer
- North Carolina State University, 4248 Jordan Hall, 2800 Faucette Drive, Raleigh, NC 276958, United States
| | - Bridget N Seegers
- National Aeronautics and Space Administration, Goddard Space Flight Center, Mail Code 616.2, Greenbelt, MD, 20771, United States; GESTAR/Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046, United States
| | - Erica L Seubert
- Department of Biological Sciences, 3616 Trousdale Parkway, AHF 301, University of Southern California, Los Angeles, CA 90089, United States
| | - Avery O Tatters
- Department of Biological Sciences, 3616 Trousdale Parkway, AHF 301, University of Southern California, Los Angeles, CA 90089, United States
| | - David A Caron
- Department of Biological Sciences, 3616 Trousdale Parkway, AHF 301, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
39
|
Radad K, Moldzio R, Al-Shraim M, Al-Emam A, Rausch WD. Long-term neurotoxic effects of domoic acid on primary dopaminergic neurons. Toxicol In Vitro 2018; 52:279-285. [PMID: 30017864 DOI: 10.1016/j.tiv.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Domoic acid, an excitatory neurotoxin produced by certain algae, reaches the food chain through accumulation in some sea organisms. To investigate its long-term neurotoxicity on dopaminergic neurons, prepared primary mesencephalic cell cultures were exposed to different concentrations of domoic acid (0.1, 1, 10, 100 μM) on the 8th day in vitro (DIV) for 4 days. On the 12th DIV, culture media were collected for measurement of lactate dehydrogenase and cultured cells were subjected to immunohistochemistry against tyrosine hydroxylase, neuronal nuclear antigen and glial fibrillary acidic protein, and fluorescence staining using H2DCFDA, JC-1 and Hoechst 33342 dyes. Moreover, roles of AMPA/KA and NMDA receptors in domoic acid neurotoxicity were also investigated. Domoic acid significantly decreased the number of dopaminergic neurons and adversely affected their morphology, and slightly reduced the expression of neuronal nuclear antigen and glial fibrillary acidic protein. Co-treatment of cultures with domoic acid and the AMPA/KA or NMDA receptor antagonists NBQX and MK-801 rescued significant number of dopaminergic neurons. Domoic acid significantly decreased red:green fluorescence ratio of JC-1 and did not affect production of reactive oxygen species and apoptotic cell death. In conclusions, the present study reveals that long-term treatment of primary mesencephalic cell culture with domoic acid significantly destroyed dopaminergic neurons. This effect appears to be attributed to activation of AMPA/KA and NMDA receptors and mitochondrial damage.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Rudolf Moldzio
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia; Forensic and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wolf-Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
40
|
Jing J, Petroff R, Shum S, Crouthamel B, Topletz AR, Grant KS, Burbacher TM, Isoherranen N. Toxicokinetics and Physiologically Based Pharmacokinetic Modeling of the Shellfish Toxin Domoic Acid in Nonhuman Primates. Drug Metab Dispos 2018; 46:155-165. [PMID: 29150543 PMCID: PMC5776359 DOI: 10.1124/dmd.117.078485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Domoic acid (DA), a neurotoxin, is produced by marine algae and has caused toxications worldwide in animals and humans. However, the toxicokinetics of DA have not been fully evaluated, and information is missing on the disposition of DA following oral exposures at doses that are considered safe for human consumption. In this study, toxicokinetics of DA were investigated in cynomolgus monkeys following single doses of 5 µg/kg DA intravenously, 0.075 mg/kg DA orally, and 0.15 mg/kg DA orally. After intravenous dosing, DA had a systemic clearance of 124 ± 71 (ml/h)/kg, volume of distribution at steady state of 131 ± 71 ml/kg and elimination half-life of 1.2 ± 1.1 hours. However, following oral dosing, the average terminal half-life of DA was 11.3 ± 2.4 hours, indicating that DA disposition follows flip-flop kinetics with slow, rate-limiting absorption. The absorption of DA was low after oral dosing with absolute bioavailability of 6% ± 4%. The renal clearance of DA was variable [21-152 (ml/h)/kg] with 42% ± 11% of the intravenous DA dose recovered in urine. A physiologically based pharmacokinetic model was developed for DA in monkeys and humans that replicated the flip-flop kinetics observed after oral administration and allowed simulation of urinary excretion and brain and kidney distribution of DA following intravenous and oral dosing. This study is the first to characterize DA disposition at exposure levels close to the current estimated tolerable daily intake and to mechanistically model DA disposition in a model species, providing important information of the toxicokinetics of DA for human safety assessment.
Collapse
Affiliation(s)
- Jing Jing
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Rebekah Petroff
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Sara Shum
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Brenda Crouthamel
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Ariel R Topletz
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Kimberly S Grant
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Thomas M Burbacher
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| | - Nina Isoherranen
- Department of Pharmaceutics (J.J., S.S., A.R.T., N.I.), Department of and Environmental and Occupational Health Sciences (R.P., B.C., K.S.G., T.M.B.), Center on Human Development and Disability (K.S.G., T.M.B.), and Infant Primate Research Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington (K.S.G., T.M.B.)
| |
Collapse
|
41
|
D'Agostino VC, Degrati M, Sastre V, Santinelli N, Krock B, Krohn T, Dans SL, Hoffmeyer MS. Domoic acid in a marine pelagic food web: Exposure of southern right whales Eubalaena australis to domoic acid on the Península Valdés calving ground, Argentina. HARMFUL ALGAE 2017; 68:248-257. [PMID: 28962985 DOI: 10.1016/j.hal.2017.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
The gulfs that surround Península Valdés (PV), Golfo Nuevo and Golfo San José in Argentina, are important calving grounds for the southern right whale Eubalaena australis. However, high calf mortality events in recent years could be associated with phycotoxin exposure. The present study evaluated the transfer of domoic acid (DA) from Pseudo-nitzschia spp., potential producers of DA, to living and dead right whales via zooplanktonic vectors, while the whales are on their calving ground at PV. Phytoplankton and mesozooplankton (primary prey of the right whales at PV and potential grazers of Pseudo-nitzschia cells) were collected during the 2015 whale season and analyzed for species composition and abundance. DA was measured in plankton and fecal whale samples (collected during whale seasons 2013, 2014 and 2015) using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The genus Pseudo-nitzschia was present in both gulfs with abundances ranging from 4.4×102 and 4.56×105 cell l-1. Pseudo-nitzschia australis had the highest abundance with up to 4.56×105 cell l-1. DA in phytoplankton was generally low, with the exception of samples collected during a P. australis bloom. No clear correlation was found between DA in phytoplankton and mesozooplankton samples. The predominance of copepods in mesozooplankton samples indicates that they were the primary vector for the transfer of DA from Pseudo-nitzschia spp. to higher trophic levels. High levels of DA were detected in four whale fecal samples (ranging from 0.30 to 710μgg-1 dry weight of fecal sample or from 0.05 and 113.6μgg-1 wet weight assuming a mean water content of 84%). The maximum level of DA detected in fecal samples (710μg DA g-1 dry weight of fecal sample) is the highest reported in southern right whales to date. The current findings demonstrate for the first time that southern right whales, E. australis, are exposed to DA via copepods as vectors during their calving season in the gulfs of PV.
Collapse
Affiliation(s)
- Valeria C D'Agostino
- Centro para el Estudio de Sistemas Marinos (CESIMAR), CCT CENPAT, CONICET, Boulevard Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina.
| | - Mariana Degrati
- Centro para el Estudio de Sistemas Marinos (CESIMAR), CCT CENPAT, CONICET, Boulevard Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia, San Juan Bosco, Boulevard Brown 3150, U9120ACV Puerto Madryn, Chubut, Argentina
| | - Viviana Sastre
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Roca 115, 1er Piso, U9100AQC Trelew, Argentina
| | - Norma Santinelli
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Roca 115, 1er Piso, U9100AQC Trelew, Argentina
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Chemische Ökologie, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Torben Krohn
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Chemische Ökologie, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Silvana L Dans
- Centro para el Estudio de Sistemas Marinos (CESIMAR), CCT CENPAT, CONICET, Boulevard Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia, San Juan Bosco, Boulevard Brown 3150, U9120ACV Puerto Madryn, Chubut, Argentina
| | - Mónica S Hoffmeyer
- Instituto Argentino de Oceanografía (IADO), CONICET-Bahía Blanca, Camino La Carrindanga Km 7.5, B8000FWB Bahía Blanca, Argentina; Facultad Regional Bahía Blanca, Universidad Tecnológica Nacional, 11 de Abril 461, B8000LMI Bahía Blanca, Argentina
| |
Collapse
|
42
|
Zhu Z, Qu P, Fu F, Tennenbaum N, Tatters AO, Hutchins DA. Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. HARMFUL ALGAE 2017; 67:36-43. [PMID: 28755719 DOI: 10.1016/j.hal.2017.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/12/2017] [Accepted: 06/11/2017] [Indexed: 06/07/2023]
Abstract
The toxic diatom genus Pseudo-nitzschia produces environmentally damaging harmful algal blooms (HABs) along the U.S. west coast and elsewhere, and a recent ocean warming event coincided with toxic blooms of record extent. This study examined the effects of temperature on growth, domoic acid toxin production, and competitive dominance of two Pseudo-nitzschia species from Southern California. Growth rates of cultured P. australis were maximal at 23°C (∼0.8d-1), similar to the maximum temperature recorded during the 2014-2015 warming anomaly, and decreased to ∼0.1 d-1 by 30°C. In contrast, cellular domoic acid concentrations only became detectable at 23°C, and increased to maximum levels at 30°C. In two incubation experiments using natural Southern California phytoplankton communities, warming also increased the relative abundance of another potentially toxic local species, P. delicatissima. These results suggest that both the toxicity and the competitive success of particular Pseudo-nitzschia spp. can be positively correlated with temperature, and therefore there is a need to determine whether harmful blooms of this diatom genus may be increasingly prevalent in a warmer future coastal ocean.
Collapse
Affiliation(s)
- Zhi Zhu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pingping Qu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Feixue Fu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy Tennenbaum
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Avery O Tatters
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - David A Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
43
|
Pugliese L, Casabianca S, Perini F, Andreoni F, Penna A. A high resolution melting method for the molecular identification of the potentially toxic diatom Pseudo-nitzschia spp. in the Mediterranean Sea. Sci Rep 2017; 7:4259. [PMID: 28652566 PMCID: PMC5484702 DOI: 10.1038/s41598-017-04245-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 05/11/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to develop and validate a high resolution melting (HRM) method for the rapid, accurate identification of the various harmful diatom Pseudo-nitzschia species in marine environments. Pseudo-nitzschia has a worldwide distribution and some species are toxic, producing the potent domoic acid toxin, which poses a threat to both human and animal health. Hence, it is important to identify toxic Pseudo-nitzschia species. A pair of primers targeting the LSU rDNA of the genus Pseudo-nitzschia was designed for the development of the assay and its specificity was validated using 22 control DNAs of the P. calliantha, P. delicatissima/P. arenysensis complex and P. pungens. The post-PCR HRM assay was applied to numerous unidentified Pseudo-nitzschia strains isolated from the northwestern Adriatic Sea (Mediterranean Sea), and it was able to detect and discriminate three distinct Pseudo-nitzschia taxa from unidentified samples. Moreover, the species-specific identification of Pseudo-nitzschia isolates by the HRM assay was consistent with phylogenetic analyses. The HRM assay was specific, robust and rapid when applied to high numbers of cultured samples in order to taxonomically identify Pseudo-nitzschia isolates recovered from environmental samples.
Collapse
Affiliation(s)
- Laura Pugliese
- Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121, Pesaro, Italy
| | - Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121, Pesaro, Italy.,Conisma, Consorzio Interuniversitario per le Scienze del Mare, Pz. Flaminio 9, 00196, Rome, Italy
| | - Federico Perini
- Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121, Pesaro, Italy
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121, Pesaro, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Viale Trieste 296, 61121, Pesaro, Italy. .,Conisma, Consorzio Interuniversitario per le Scienze del Mare, Pz. Flaminio 9, 00196, Rome, Italy. .,CNR-Institute of Marine Sciences (ISMAR), Largo Fiera della Pesca, 60125, Ancona, Italy.
| |
Collapse
|
44
|
Bengtson Nash SM, Baddock MC, Takahashi E, Dawson A, Cropp R. Domoic Acid Poisoning as a Possible Cause of Seasonal Cetacean Mass Stranding Events in Tasmania, Australia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:8-13. [PMID: 27530123 DOI: 10.1007/s00128-016-1906-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
The periodic trend to cetacean mass stranding events in the Australian island state of Tasmania remains unexplained. This article introduces the hypothesis that domoic acid poisoning may be a causative agent in these events. The hypothesis arises from the previously evidenced role of aeolian dust as a vector of iron input to the Southern Ocean; the role of iron enrichment in Pseudo-nitzschia bloom proliferation and domoic acid production; and importantly, the characteristic toxicosis of domoic acid poisoning in mammalian subjects leading to spatial navigation deficits. As a pre-requisite for quantitative evaluation, the plausibility of this hypothesis was considered through correlation analyses between historical monthly stranding event numbers, mean monthly chlorophyll concentration and average monthly atmospheric dust loading. Correlation of these variables, which under the domoic acid stranding scenario would be linked, revealed strong agreement (r = 0.80-0.87). We therefore advocate implementation of strategic quantitative investigation of the role of domoic acid in Tasmanian cetacean mass stranding events.
Collapse
Affiliation(s)
- S M Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program (SOPOPP), Environmental Futures Research Institute (EFRI), School of Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| | - M C Baddock
- Department of Geography, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - E Takahashi
- Department of Science, Information, Technology and Innovation (DSITI), Brisbane, QLD, 4001, Australia
| | - A Dawson
- Southern Ocean Persistent Organic Pollutants Program (SOPOPP), Environmental Futures Research Institute (EFRI), School of Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - R Cropp
- School of Environment, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
45
|
McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, Gulland FMD, Thomson RE, Cochlan WP, Trainer VL. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. GEOPHYSICAL RESEARCH LETTERS 2016; 43:10366-10376. [PMID: 27917011 PMCID: PMC5129552 DOI: 10.1002/2016gl070023] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 05/20/2023]
Abstract
A coastwide bloom of the toxigenic diatom Pseudo-nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions. Pseudo-nitzschia australis thrived north of its typical range in the warm, nutrient-poor water that spanned the northeast Pacific in early 2015. The seasonal transition to upwelling provided the nutrients necessary for a large-scale bloom; a series of spring storms delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and economic disruptions in the future.
Collapse
Affiliation(s)
- Ryan M. McCabe
- Joint Institute for the Study of the Atmosphere and OceanUniversity of WashingtonSeattleWashingtonUSA
| | | | - Raphael M. Kudela
- Ocean Sciences DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Kathi A. Lefebvre
- Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Nicolaus G. Adams
- Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Brian D. Bill
- Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | | | - Richard E. Thomson
- Department of Fisheries and OceansInstitute of Ocean SciencesSidneyBritish ColumbiaCanada
| | - William P. Cochlan
- Romberg Tiburon Center for Environmental StudiesSan Francisco State UniversityTiburonCaliforniaUSA
| | - Vera L. Trainer
- Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| |
Collapse
|
46
|
González PM, Puntarulo S. Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis. Comp Biochem Physiol A Mol Integr Physiol 2016; 200:79-86. [DOI: 10.1016/j.cbpa.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
|
47
|
Cook PF, Reichmuth C, Rouse A, Dennison S, Van Bonn B, Gulland F. Natural exposure to domoic acid causes behavioral perseveration in Wild Sea lions: Neural underpinnings and diagnostic application. Neurotoxicol Teratol 2016; 57:95-105. [DOI: 10.1016/j.ntt.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023]
|
48
|
Lefebvre KA, Quakenbush L, Frame E, Huntington KB, Sheffield G, Stimmelmayr R, Bryan A, Kendrick P, Ziel H, Goldstein T, Snyder JA, Gelatt T, Gulland F, Dickerson B, Gill V. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. HARMFUL ALGAE 2016; 55:13-24. [PMID: 28073526 PMCID: PMC8276754 DOI: 10.1016/j.hal.2016.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 05/10/2023]
Abstract
Current climate trends resulting in rapid declines in sea ice and increasing water temperatures are likely to expand the northern geographic range and duration of favorable conditions for harmful algal blooms (HABs), making algal toxins a growing concern in Alaskan marine food webs. Two of the most common HAB toxins along the west coast of North America are the neurotoxins domoic acid (DA) and saxitoxin (STX). Over the last 20 years, DA toxicosis has caused significant illness and mortality in marine mammals along the west coast of the USA, but has not been reported to impact marine mammals foraging in Alaskan waters. Saxitoxin, the most potent of the paralytic shellfish poisoning toxins, has been well-documented in shellfish in the Aleutians and Gulf of Alaska for decades and associated with human illnesses and deaths due to consumption of toxic clams. There is little information regarding exposure of Alaskan marine mammals. Here, the spatial patterns and prevalence of DA and STX exposure in Alaskan marine mammals are documented in order to assess health risks to northern populations including those species that are important to the nutritional, cultural, and economic well-being of Alaskan coastal communities. In this study, 905 marine mammals from 13 species were sampled including; humpback whales, bowhead whales, beluga whales, harbor porpoises, northern fur seals, Steller sea lions, harbor seals, ringed seals, bearded seals, spotted seals, ribbon seals, Pacific walruses, and northern sea otters. Domoic acid was detected in all 13 species examined and had the greatest prevalence in bowhead whales (68%) and harbor seals (67%). Saxitoxin was detected in 10 of the 13 species, with the highest prevalence in humpback whales (50%) and bowhead whales (32%). Pacific walruses contained the highest concentrations of both STX and DA, with DA concentrations similar to those detected in California sea lions exhibiting clinical signs of DA toxicosis (seizures) off the coast of Central California, USA. Forty-six individual marine mammals contained detectable concentrations of both toxins emphasizing the potential for combined exposure risks. Additionally, fetuses from a beluga whale, a harbor porpoise and a Steller sea lion contained detectable concentrations of DA documenting maternal toxin transfer in these species. These results provide evidence that HAB toxins are present throughout Alaska waters at levels high enough to be detected in marine mammals and have the potential to impact marine mammal health in the Arctic marine environment.
Collapse
Affiliation(s)
- Kathi A Lefebvre
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA.
| | - Lori Quakenbush
- Alaska Department of Fish and Game, Arctic Marine Mammal Program, 1300 College Road, Fairbanks, AK, USA
| | - Elizabeth Frame
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA
| | - Kathy Burek Huntington
- Alaska Veterinary Pathology Services (AVPS), 23834 The Clearing Drive, Eagle River, AK, USA
| | - Gay Sheffield
- University of Alaska Fairbanks, Alaska Sea Grant, Marine Advisory Program, PO Box 400, Nome, AK, USA
| | - Raphaela Stimmelmayr
- North Slope Borough Department of Wildlife Management, PO Box 69, Barrow, AK, USA
| | - Anna Bryan
- Alaska Department of Fish and Game, Arctic Marine Mammal Program, 1300 College Road, Fairbanks, AK, USA
| | - Preston Kendrick
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA
| | - Heather Ziel
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, Seattle, WA, USA
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jonathan A Snyder
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 East Tudor Rd., Anchorage, AK, USA
| | - Tom Gelatt
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, Seattle, WA, USA
| | - Frances Gulland
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA, USA
| | - Bobette Dickerson
- Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, Seattle, WA, USA
| | - Verena Gill
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 East Tudor Rd., Anchorage, AK, USA
| |
Collapse
|
49
|
McAloose D, Rago MV, Di Martino M, Chirife A, Olson SH, Beltramino L, Pozzi LM, Musmeci L, La Sala L, Mohamed N, Sala JE, Bandieri L, Andrejuk J, Tomaszewicz A, Seimon T, Sironi M, Samartino LE, Rowntree V, Uhart MM. Post-mortem findings in southern right whales Eubalaena australis at Península Valdés, Argentina, 2003-2012. DISEASES OF AQUATIC ORGANISMS 2016; 119:17-36. [PMID: 27068500 DOI: 10.3354/dao02986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Between 2003 and 2012, 605 southern right whales (SRW; Eubalaena australis) were found dead along the shores of Península Valdés (PV), Argentina. These deaths included alarmingly high annual losses between 2007 and 2012, a peak number of deaths (116) in 2012, and a significant number of deaths across years in calves-of-the-year (544 of 605 [89.9%]; average = 60.4 yr(-1)). Post-mortem examination and pathogen testing were performed on 212 whales; 208 (98.1%) were calves-of-the-year and 48.0% of these were newborns or neonates. A known or probable cause of death was established in only a small number (6.6%) of cases. These included ship strike in a juvenile and blunt trauma or lacerations (n = 5), pneumonia (n = 4), myocarditis (n = 2), meningitis (n = 1), or myocarditis and meningitis (n = 1) in calves. Ante-mortem gull parasitism was the most common gross finding. It was associated with systemic disease in a single 1-2 mo old calf. Immunohistochemical labeling for canine distemper virus, Toxoplasma gondii and Brucella spp., and PCR for cetacean morbillivirus (CeMV), influenza A, and apicomplexan protozoa were negative on formalin-fixed, paraffin-embedded lung and brain samples from a subset of whales; PCR for Brucella spp. was positive in a newborn/neonate with pneumonia. Skin samples from whales with gull parasitism were PCR negative for CeMV, poxvirus, and papillomavirus. This is the first long-term study to investigate and summarize notable post-mortem findings in the PV SRW population. Consistent, significant findings within or between years to explain the majority of deaths and those in high-mortality years remain to be identified.
Collapse
Affiliation(s)
- Denise McAloose
- Wildlife Conservation Society Zoological Health Program, Bronx, New York 10464, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barbosa A, Balagué V, Valera F, Martínez A, Benzal J, Motas M, Diaz JI, Mira A, Pedrós-Alió C. Age-Related Differences in the Gastrointestinal Microbiota of Chinstrap Penguins (Pygoscelis antarctica). PLoS One 2016; 11:e0153215. [PMID: 27055030 PMCID: PMC4824521 DOI: 10.1371/journal.pone.0153215] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/26/2016] [Indexed: 11/30/2022] Open
Abstract
The gastrointestinal tract microbiota is known to play very important roles in the well being of animals. It is a complex community composed by hundreds of microbial species interacting closely among them and with their host, that is, a microbial ecosystem. The development of high throughput sequencing techniques allows studying the diversity of such communities in a realistic way and considerable work has been carried out in mammals and some birds such as chickens. Wild birds have received less attention and in particular, in the case of penguins, only a few individuals of five species have been examined with molecular techniques. We collected cloacal samples from Chinstrap penguins in the Vapour Col rookery in Deception Island, Antarctica, and carried out pyrosequencing of the V1-V3 region of the 16S rDNA in samples from 53 individuals, 27 adults and 26 chicks. This provided the first description of the Chinstrap penguin gastrointestinal tract microbiota and the most extensive in any penguin species. Firmicutes, Bacteoridetes, Proteobacteria, Fusobacteria, Actinobacteria, and Tenericutes were the main components. There were large differences between chicks and adults. The former had more Firmicutes and the latter more Bacteroidetes and Proteobacteria. In addition, adults had richer and more diverse bacterial communities than chicks. These differences were also observed between parents and their offspring. On the other hand, nests explained differences in bacterial communities only among chicks. We suggest that environmental factors have a higher importance than genetic factors in the microbiota composition of chicks. The results also showed surprisingly large differences in community composition with other Antarctic penguins including the congeneric Adélie and Gentoo penguins.
Collapse
Affiliation(s)
- Andrés Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Vanessa Balagué
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Francisco Valera
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México DF, México
| | - Jesús Benzal
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Miguel Motas
- Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Julia I. Diaz
- Centro de Estudios Parasitológicos y de Vectores, CCT La Plata (CONICET-UNLP), La Plata, Argentina
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Carlos Pedrós-Alió
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| |
Collapse
|