1
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
2
|
Huang JH, Jiao YH, Li L, Li DW, Li HY, Yang WD. Small RNA analysis of Perna viridis after exposure to Prorocentrum lima, a DSP toxins-producing dinoflagellate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105950. [PMID: 34474269 DOI: 10.1016/j.aquatox.2021.105950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Diarrheic shellfish poisoning toxins (DSP toxins) are a set of the most important phycotoxins produced by some dinoflagellates. Studies have shown that DSP toxins have various toxicities such as genotoxicity, cytotoxicity, and immunotoxicity to bivalve mollusks. However, these toxicities appear decreasing with exposure time and concentration of DSP toxins. The underlying mechanism involved remains unclear. In this study, small RNA sequencing was performed in the digestive gland of the mussel Perna viridis after exposure to DSP toxins-producing dinoflagellate Prorocentrum lima for different time periods. The potential roles of miRNAs in response and detoxification to DSP toxins in the mussel were analyzed. Small RNA sequencing of 12 samples from 72 individuals was conducted by BGISEQ-500. A total of 123 mature miRNAs were identified, including 90 conserved miRNAs and 33 potential novel miRNAs. After exposure to P. lima, multiple important miRNAs displayed some alterations. Further miRNA target prediction revealed some important genes involved in cytoskeleton, apoptosis, complement system and immune stress. qPCR demonstrated that miR-71_5, miR-750_1 and novel_mir4 were significantly up-regulated at 6 h after exposure to P. lima, while miR-100_2 was significantly down-regulated after 96 h of exposure. Accordingly, putative target genes of these differentially expressed miRNAs experienced some changes. After 6 h of DSP toxins exposure, NHLRC2 and C1q-like were significantly down-regulated. After 96 h of DSP toxins exposure, NHLRC2 was significantly up-regulated. It is reasonable to speculate that the mussel P. viridis might respond to DSP toxins through miR-750_1, novel_mir4 and miR-71_5 regulating the expression of relevant target genes involved in apoptosis, cytoskeleton, and immune response, etc. This study might provide new clues to uncover the toxic response of bivalve to DSP toxins and lay a foundation for revealing the roles of miRNAs in the environmental adaptation in shellfish.
Collapse
Affiliation(s)
- Jia-Hui Huang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Bresnan E, Arévalo F, Belin C, Branco MAC, Cembella AD, Clarke D, Correa J, Davidson K, Dhanji-Rapkova M, Lozano RF, Fernández-Tejedor M, Guðfinnsson H, Carbonell DJ, Laza-Martinez A, Lemoine M, Lewis AM, Menéndez LM, Maskrey BH, McKinney A, Pazos Y, Revilla M, Siano R, Silva A, Swan S, Turner AD, Schweibold L, Provoost P, Enevoldsen H. Diversity and regional distribution of harmful algal events along the Atlantic margin of Europe. HARMFUL ALGAE 2021; 102:101976. [PMID: 33875184 DOI: 10.1016/j.hal.2021.101976] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The IOC-ICES-PICES Harmful Algal Event Database (HAEDAT) was used to describe the diversity and spatiotemporal distribution of harmful algal events along the Atlantic margin of Europe from 1987 - 2018. The majority of events recorded are caused by Diarrhetic Shellfish Toxins (DSTs). These events are recorded annually over a wide geographic area from southern Spain to northern Scotland and Iceland, and are responsible for annual closures of many shellfish harvesting areas. The dominant causative dinoflagellates, members of the morphospecies 'Dinophysis acuminata complex' and D. acuta, are common in the waters of the majority of countries affected. There are regional differences in the causative species associated with PST events; the coasts of Spain and Portugal with the dinoflagellates Alexandrium minutum and Gymnodinium catenatum, north west France/south west England/south Ireland with A. minutum, and Scotland/Faroe Islands/Iceland with A. catenella. This can influence the duration and spatial scale of PST events as well as the toxicity of shellfish. The diatom Pseudo-nitzschia australis is the most widespread Domoic Acid (DA) producer, with records coming from Spain, Portugal, France, Ireland and the UK. Amnesic Shellfish Toxins (ASTs) have caused prolonged closures for the scallop fishing industry due to the slow depuration rate of DA. Amendments to EU shellfish hygiene regulations introduced between 2002 and 2005 facilitated end-product testing and sale of adductor muscle. This reduced the impact of ASTs on the scallop fishing industry and thus the number of recorded HAEDAT events. Azaspiracids (AZAs) are the most recent toxin group responsible for events to be characterised in the ICES area. Events associated with AZAs have a discrete distribution with the majority recorded along the west coast of Ireland. Ciguatera Poisoning (CP) has been an emerging issue in the Canary Islands and Madeira since 2004. The majority of aquaculture and wild fish mortality events are associated with blooms of the dinoflagellate Karenia mikimotoi and raphidophyte Heterosigma akashiwo. Such fish killing events occur infrequently yet can cause significant mortalities. Interannual variability was observed in the annual number of HAEDAT areas with events associated with individual shellfish toxin groups. HABs represent a continued risk for the aquaculture industry along the Atlantic margin of Europe and should be accounted for when considering expansion of the industry or operational shifts to offshore areas.
Collapse
Affiliation(s)
- Eileen Bresnan
- Marine Scotland Marine Laboratory, Aberdeen, AB11 9DB, U.K..
| | - Fabiola Arévalo
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Catherine Belin
- Institut français de recherche pour l'exploitation de la mer (IFREMER) VIGIES F-44311, Nantes, France
| | - Maria A C Branco
- Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisboa, Portugal
| | | | - Dave Clarke
- Marine Institute, Rinville, Oranmore, Galway, H91 R673, Ireland
| | - Jorge Correa
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Keith Davidson
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, U.K
| | | | | | | | | | | | - Aitor Laza-Martinez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
| | - Maud Lemoine
- Institut français de recherche pour l'exploitation de la mer (IFREMER) VIGIES F-44311, Nantes, France
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | - Luz Mamán Menéndez
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Huelva, Spain
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | - April McKinney
- Agri-Food and Biosciences Institute, Belfast, BT9 5PX, U.K
| | - Yolanda Pazos
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Marta Revilla
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), E-20110 Pasaia, Spain
| | - Raffaele Siano
- Institut français de recherche pour l'exploitation de la mer (IFREMER), DYNECO F-29280 Plouzané, France
| | - Alexandra Silva
- Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisboa, Portugal
| | - Sarah Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, U.K
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | | | | | - Henrik Enevoldsen
- IOC Science and Communication Centre on Harmful Algae, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Cho K, Heo J, Han J, Hong HD, Jeon H, Hwang HJ, Hong CY, Kim D, Han JW, Baek K. Industrial Applications of Dinoflagellate Phycotoxins Based on Their Modes of Action: A Review. Toxins (Basel) 2020; 12:E805. [PMID: 33353166 PMCID: PMC7766252 DOI: 10.3390/toxins12120805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Dinoflagellates are an important group of phytoplanktons, characterized by two dissimilar flagella and distinctive features of both plants and animals. Dinoflagellate-generated harmful algal blooms (HABs) and associated damage frequently occur in coastal areas, which are concomitant with increasing eutrophication and climate change derived from anthropogenic waste and atmospheric carbon dioxide, respectively. The severe damage and harmful effects of dinoflagellate phycotoxins in the fishing industry have been recognized over the past few decades, and the management and monitoring of HABs have attracted much attention, leaving aside the industrial application of their valuable toxins. Specific modes of action of the organisms' toxins can effectively be utilized for producing beneficial materials, such as Botox and other therapeutic agents. This review aims to explore the potential industrial applications of marine dinoflagellate phycotoxins; furthermore, this review focuses on their modes of action and summarizes the available knowledge on them.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| | - Jina Heo
- Growth Engine Research Department, Chungbuk Research Institute (CRI), Chungju, Chungchungbuk-do 28517, Korea;
| | - Jinwook Han
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| | - Hyun Dae Hong
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| | - Hancheol Jeon
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| | - Hyun-Ju Hwang
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| | - Chang-Yu Hong
- Department of Environmental and Urban Research, Jeju Research Institute, Jeju-si, Jeju-do 63147, Korea;
| | - Daekyung Kim
- Daegu Center, Korea Basic Science Institute (KBSI), Daegu, Gyeongsangbuk-do 41566, Korea
| | - Jong Won Han
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| | - Kyunghwa Baek
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea (MABIK), Seocheon-gun, Chungchungnam-do 33662, Korea; (K.C.); (J.H.); (H.D.H.); (H.J.); (H.-J.H.); (K.B.)
| |
Collapse
|
5
|
Dai X, Bill BD, Adams NG, Tillmann U, Sloan C, Lu D, Trainer VL. The effect of temperature and salinity on growth rate and azaspiracid cell quotas in two strains of Azadinium poporum (Dinophyceae) from Puget Sound, Washington State. HARMFUL ALGAE 2019; 89:101665. [PMID: 31672233 DOI: 10.1016/j.hal.2019.101665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Azaspiracids (AZA) are novel lipophilic polyether marine biotoxins associated with azaspiracid shellfish poisoning (AZP). Azaspiracid-59 (AZA-59) is a new AZA that was recently detected in strains of Azadinium poporum from Puget Sound, Washington State. In order to understand how environmental factors affect AZA abundances in Puget Sound, a laboratory experiment was conducted with two local strains of A. poporum to estimate the growth rate and AZA-59 (both intra- and extracellular) cell quotas along temperature and salinity gradients. Both strains of A. poporum grew across a wide range of temperatures (6.7 °C to 25.0 °C), and salinities (15 to 35). Growth rates increased with increasing temperature up to 20.0 °C, with a range from 0.10 d-1 to 0.42 d-1. Both strains of A. poporum showed variable growth rates from 0.26 d-1 to 0.38 d-1 at salinities from 15 to 35. The percentage of intracellular AZA-59 in both strains was generally higher in exponential than in stationary phase along temperature and salinity gradients, indicating higher retention of toxin in actively growing cells. Cellular toxin quotas varied by strain in both the temperature and salinity treatments but were highest at the lowest growth rates, especially for the faster growing strain, NWFSC1011. Consistent with laboratory experiments, field investigations in Sequim Bay, WA, during 2016-2018 showed that A. poporum was detected when salinity and temperature became favorable to higher growth rates in June and July. Although current field data of A. poporum in Puget Sound indicate a generally low abundance, the potential of local A. poporum to adapt to and grow in a wide range of temperature and salinity may open future windows for blooms. Although increased temperatures, anticipated for the Puget Sound region over the next decades, will enhance the growth of A. poporum, these higher temperatures will not necessarily support higher toxin cell quotas. Additional sampling and assessment of the total toxicity of AZA-59 will provide the basis for a more accurate estimation of risk for azaspiracid poisoning in Puget Sound shellfish.
Collapse
Affiliation(s)
- Xinfeng Dai
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA.
| | - Brian D Bill
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA
| | - Nicolaus G Adams
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Catherine Sloan
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA
| | - Douding Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Vera L Trainer
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA.
| |
Collapse
|
6
|
Dhanji-Rapkova M, O'Neill A, Maskrey BH, Coates L, Swan SC, Teixeira Alves M, Kelly RJ, Hatfield RG, Rowland-Pilgrim SJ, Lewis AM, Turner AD. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: azaspiracids and yessotoxins. HARMFUL ALGAE 2019; 87:101629. [PMID: 31349886 DOI: 10.1016/j.hal.2019.101629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC-MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton. On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams. The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45-OH homo-YTX were detected throughout the monitored period. 45-OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45-OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs. This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Alison O'Neill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Sarah C Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Rebecca J Kelly
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Stephanie J Rowland-Pilgrim
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
7
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
8
|
Ji Y, Qiu J, Xie T, McCarron P, Li A. Accumulation and transformation of azaspiracids in scallops (Chlamys farreri) and mussels (Mytilus galloprovincialis) fed with Azadinium poporum, and response of antioxidant enzymes. Toxicon 2017; 143:20-28. [PMID: 29229237 DOI: 10.1016/j.toxicon.2017.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022]
Abstract
Azaspiracid (AZA) producing microalgae have been reported internationally and could potentially impact a variety of seafood. Scallops (Chlamys farreri) and mussels (Mytilus galloprovincialis) from China were fed with the AZA2 producer, Azadinium poporum, to study uptake, metabolism and oxidative stress in the shellfish. LC-MS/MS showed significant accumulation and differential metabolism of AZA2 in the scallops and mussels. In mussels AZA2 was metabolized to AZA19, with subsequent decarboxylation to AZA6. In scallops no AZA19 or AZA6 was observed, however, a novel AZA metabolite was formed that is isobaric with AZA19 ([M+H]+, m/z 886), but elutes at a different retention time. In addition it was noted that the scallop metabolite was stable during heating, while AZA19 has been shown to decarboxylate. Concentrations of reactive oxygen species (ROS) and activities of antioxidant enzymes were monitored. ROS levels increased slightly in the meat of scallops and mussels due to starvation in the acclimation and depuration periods, but reduced in the feeding periods with non-toxic Isochrysis galbana or toxic A. poporum. No obvious variations were found in activities for a range of antioxidant enzymes. These results provide new insights on the potential for accumulation and metabolism of AZAs in bivalve species relevant to this area of China, which is of importance considering the recent finding of AZA producing microalgae in the region.
Collapse
Affiliation(s)
- Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Tian Xie
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada, 1411 Oxford Street, Halifax, B3H 3Z1, Nova Scotia, Canada
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
9
|
Tillmann U, Jaén D, Fernández L, Gottschling M, Witt M, Blanco J, Krock B. Amphidoma languida (Amphidomatacea, Dinophyceae) with a novel azaspiracid toxin profile identified as the cause of molluscan contamination at the Atlantic coast of southern Spain. HARMFUL ALGAE 2017; 62:113-126. [PMID: 28118886 DOI: 10.1016/j.hal.2016.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Azaspiracids (AZA) are a group of food poisoning phycotoxins that are known to accumulate in shellfish. They are produced by some species of the planktonic dinophycean taxon Amphidomataceae. Azaspiracids have been first discovered in Ireland but are now reported in shellfish from numerous global sites thus showing a wide distribution. In shellfish samples collected in 2009 near Huelva (Spain), AZA was also found along the Andalusian Atlantic coast for the first time. Analysis using LC-MS/MS revealed the presence of two different AZA analogues in different bivalve shellfish species (Chamelea gallina, Cerastoderma edule, Donax trunculus, and Solen vagina). In a number of samples, AZA levels exceeded the EU regulatory level of 160μg AZA-1 eq. kg-1 (reaching maximum levels of >500μg AZA-1 eq. kg-1 in Chamelea gallina and >250μg AZA-1 eq. kg-1 in Donax trunculus) causing closures of some local shellfish production areas. One dinophyte strain established from the local plankton during the AZA contamination period and determined as Amphidoma languida was in fact toxigenic, and its AZA profile disclosed it as the causative species: it contained AZA-2 as the main compound and the new compound AZA-43 initially detected in the shellfish. AZA-43 had the same mass as AZA-3, but produced different collision induced dissociation (CID) spectra. High resolution mass spectrometric measurements indicated that there is an unsaturation in the H, I ring system of AZA-43 distinguishing it from the classical AZA such as AZA-1, -2, and -3. Furthermore, the Spanish strain was different from the previously reported AZA profile of the species that consist of AZA-38 and AZ-39. In molecular phylogenetics, the Andalusian strain formed a monophyletic group together with other strains of Am. languida, but ITS sequences data revealed surprisingly high intragenomic variability. The first Andalusian case of AZA contamination of shellfish above the EU regulatory limit reported here clearly revealed the risk of azaspiracid poisoning (AZP) for this area and also for the Atlantic coast of Iberia and North Africa. The present study underlines the need for continuous monitoring of AZA and the organisms producing such toxins.
Collapse
Affiliation(s)
- Urban Tillmann
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - David Jaén
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Ctra. Punta Umbría-Cartaya, km 12, 21459 Cartaya, Spain
| | - Lourdes Fernández
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Ctra. Punta Umbría-Cartaya, km 12, 21459 Cartaya, Spain
| | - Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, D-80638 München, Germany
| | - Matthias Witt
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Juan Blanco
- Centro de Investigacións Mariñas, Apdo 13. 36620 Vilanova de Arousa, Spain
| | - Bernd Krock
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|
10
|
Rossi R, Dell'Aversano C, Krock B, Ciminiello P, Percopo I, Tillmann U, Soprano V, Zingone A. Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach. Anal Bioanal Chem 2016; 409:1121-1134. [PMID: 27822651 DOI: 10.1007/s00216-016-0037-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Azadinium dexteroporum is the first species of the genus described from the Mediterranean Sea and it produces different azaspiracids (AZA). The aims of this work were to characterize the toxin profile of the species and gain structural information on azaspiracids produced by the A. dexteroporum strain SZN-B848 isolated from the Gulf of Naples. Liquid chromatography-mass spectrometry (LC-MS) analyses were carried out on three MS systems having different ion source geometries (ESI, TurboIonSpray®, ESI ION MAX) and different MS analyzers operating either at unit resolution or at high resolution, namely a hybrid triple quadrupole-linear ion trap (Q-Trap MS), a time of flight (TOF MS), and a hybrid linear ion trap Orbitrap XL Fourier transform mass spectrometer (LTQ Orbitrap XL FTMS). As a combined result of these different analyses, A. dexteroporum showed to produce AZA-35, previously reported from Azadinium spinosum, and six compounds that represent new additions to the AZA-group of toxins, including AZA-54 to AZA-58 and 3-epiAZA-7, a stereoisomer of the shellfish metabolite AZA-7. Based on the interpretation of fragmentation patterns, we propose that all these molecules, except AZA-55, have the same A to I ring system as AZA-1, with structural modifications all located in the carboxylic side chain. Considering that none of the azaspiracids produced by the Mediterranean strain of A. dexteroporum is currently regulated by European food safety authorities, monitoring programs of marine biotoxins in the Mediterranean area should take into account the occurrence of the new analogues to avoid an underestimation of the AZA-related risk for seafood consumers. Graphical Abstract A multi-platform MS approach reveals known and new azaspiracids in a Mediterranean strain of Azadinium dexteroporum.
Collapse
Affiliation(s)
- Rachele Rossi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Bernd Krock
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Patrizia Ciminiello
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Isabella Percopo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Urban Tillmann
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Vittorio Soprano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Adriana Zingone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
11
|
Li A, Jiang B, Chen H, Gu H. Growth and toxin production of Azadinium poporum strains in batch cultures under different nutrient conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:117-126. [PMID: 26820226 DOI: 10.1016/j.ecoenv.2016.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Azaspiracid-2 (AZA2) is the dominant toxin produced by Azadinium poporum strains AZDY06 and AZFC22 isolated from the South China Sea. Biomass and AZA2-production were examined within batch cultures with variation in experimental concentrations of nitrate (0, 88, 882, and 2647µM) or phosphate (0, 3.6, 36, and 109µM), different nitrogen sources (nitrate and urea) and media (f/2-Si, L1-Si, and K-Si) in the present study. Growth of both strains positively responded to nitrate or phosphate nutrients, but the growth status was significantly repressed by the highest additional level of phosphate (109µM). Both AZDY06 and AZFC22 grew well with higher specific growth rates, but with shorter growth periods, within f/2-Si medium spiked with urea than that within media spiked with nitrate. L1-Si medium with relatively high concentrations of trace metals was relatively favorable to both strains of A. poporum tested here. No obvious change within the toxin profile occurred in all cultures of both strains under the various nutrient conditions, although trace amounts of some suspicious derivatives of AZA2 occurred in some cultures. AZA2 cell quotas within both strains significantly (p<0.05) increased at the stationary phase under lower additional phosphate (0 and 3.6µM). Significant differences were not found within AZA2 cell quotas in cultures with additional nitrate ranging from 0 to 2647µM. The highest AZA2 cell quota and maximum AZA2 quantity per culture volume occurred in batch culture at the stationary phase under phosphate concentrations at 3.6µM. Neither A. poporum strain exhibited significant changes in AZA2 cell quotas within f/2-Si media spiked with urea or nitrate as nitrogen sources. The AZA2 cell quota of strain AZDY06 also did not change remarkably within f/2-Si, L1-Si, and K-Si media, however the AZA2 cell quota of strain AZFC22 within L1-Si medium was significantly (p<0.05) higher than that within f/2-Si medium.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Baozhou Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huidan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Haifeng Gu
- Third Institute of Oceanography, SOA, Xiamen 361005, China
| |
Collapse
|
12
|
Limbu SM, Kyewalyanga MS. Spatial and temporal variations in environmental variables in relation to phytoplankton composition and biomass in coral reef areas around Unguja, Zanzibar, Tanzania. SPRINGERPLUS 2015; 4:646. [PMID: 26543780 PMCID: PMC4628011 DOI: 10.1186/s40064-015-1439-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/14/2015] [Indexed: 11/10/2022]
Abstract
Phytoplankton can indirectly indicate health status of coral reefs due to their sensitivity to changes in water quality parameters. This study explored the spatial and temporal variability in water quality and nutrients in relation to phytoplankton community composition and chlorophyll a concentration at Bawe, Mnemba, Chumbe and Pongwe coral reef sites in Unguja Island. In situ measurements of dissolved oxygen, temperature, salinity and pH were done every month for 1 year. Surface water samples were collected for determination of phytoplankton composition, nutrients and chlorophyll a concentration. Dissolved oxygen, temperature, salinity and pH did not differ significantly among the four sites (p > 0.05) but showed significant temporal variations among months (p < 0.05). Bawe had significantly higher phosphate concentration (1.45 ± 0.57 µg L(-1)) than Chumbe (0.74 ± 0.53 µg L(-1)), Mnemba (0.42 ± 0.30 µg L(-1)) and Pongwe (0.28 ± 0.10 µg L(-1); p < 0.05). Similarly, Bawe had significantly higher nitrate concentration (0.81 ± 0.43 µg L(-1)) than Mnemba (0.33 ± 0.14 µg L(-1)) and Pongwe (0.24 ± 0.13 µg L(-1); p < 0.05) but similar to Chumbe (0.90 ± 0.35 µg L(-1); p > 0.05). However, values obtained at all the studied sites were less than 3 and 14 mg L(-1) for phosphate and nitrate, respectively, for eutrophic oceans. Phytoplankton species were dominated by Bacillariophyceae (70.83 %) and some species identified such as Ceratium sp., Dinophysis sp., Protoperidinium sp., Prorocentrum sp., Oscillatoria sp. and Dictyocha fibula are known to produce toxins that affect fish species. Bawe had significantly higher chlorophyll a concentration (0.47 ± 0.07 mg L(-1)) than Mnemba (0.33 ± 0.04 mg L(-1)) and Chumbe (0.33 ± 0.04 mg L(-1); p < 0.05). Chlorophyll a concentration was spatially inversely related to distance from Unguja town (p < 0.05) while it was temporally significantly positively correlated with dissolved oxygen, nitrate and phosphate (p < 0.05). The study revealed that, the coral reef sites have low nutrient levels and are in good health. The existence of toxic phytoplankton species suggests careful consumption of fisheries resources at the four coral reef sites and frequent monitoring for Harmful Algal Blooms (HABs) is required. The higher nutrients and chlorophyll a concentrations at Bawe Island compared to other sites calls for mechanisms to limit the release of domestic sewage from households and hotels to safeguard the coral reefs.
Collapse
Affiliation(s)
- S M Limbu
- Department of Aquatic Sciences and Fisheries, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania ; Department of Biology, School of Life Sciences, Laboratory of Aquaculture Nutrition and Environmental Health, East China Normal University, 500 Dong Chuan Road, Shanghai, 200241 China
| | - M S Kyewalyanga
- Institute of Marine Sciences, University of Dar es Salaam, Mizingani Road, P.O. Box 668, Zanzibar, Tanzania
| |
Collapse
|
13
|
|
14
|
Reguera B, Riobó P, Rodríguez F, Díaz PA, Pizarro G, Paz B, Franco JM, Blanco J. Dinophysis toxins: causative organisms, distribution and fate in shellfish. Mar Drugs 2014; 12:394-461. [PMID: 24447996 PMCID: PMC3917280 DOI: 10.3390/md12010394] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/29/2013] [Accepted: 12/31/2013] [Indexed: 11/25/2022] Open
Abstract
Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins) and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP), even at low cell densities (<103 cells·L⁻¹). They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins), and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.
Collapse
Affiliation(s)
- Beatriz Reguera
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Pilar Riobó
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Francisco Rodríguez
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Patricio A Díaz
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Gemita Pizarro
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Beatriz Paz
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - José M Franco
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Juan Blanco
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| |
Collapse
|
15
|
Percopo I, Siano R, Rossi R, Soprano V, Sarno D, Zingone A. A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov. JOURNAL OF PHYCOLOGY 2013; 49:950-966. [PMID: 27007318 DOI: 10.1111/jpy.12104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/24/2013] [Indexed: 06/05/2023]
Abstract
A new photosynthetic planktonic marine dinoflagellate, Azadinium dexteroporum sp. nov., is described from the Gulf of Naples (South Tyrrhenian Sea, Mediterranean Sea). The plate formula of the species, Po, cp, X, 4', 3a, 6″, 6C, 5?S, 6‴ and 2″″, is typical for this recently described genus. Azadinium dexteroporum is the smallest rep-resentative of the genus (8.5 μm average length, 6.2 μm average width) and shares the presence of a small antapical spine with the type species A. spinosum and with A. polongum. However, it differs from all other Azadinium species for the markedly asymmetrical Po plate and the position of the ventral pore, which is located at the right posterior end of the Po plate. Another peculiarity of A. dexteroporum is the pronounced concavity of the second intercalary plate (2a), which appears collapsed with respect to the other plates. Phylogenetic analyses based on the large subunit 28S rDNA (D1/D2) and the internal transcribed spacer (ITS rDNA) support the attribution of A. dexteroporum to the genus Azadinium and its separation from the other known species. LC/MS-TOF analysis shows that Azadinium dex-teroporum produces azaspiracids in low amounts. Some of them have the same molecular weight as known compounds such as azaspiracid-3 and -7 and Compound 3 from Amphidoma languida, as well as similar fragmentation patterns in some cases. This is the first finding of a species producing azapiracids in the Mediterranean Sea.
Collapse
Affiliation(s)
- Isabella Percopo
- Taxonomy and Identification of Marine Phytoplankton Service, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Raffaele Siano
- IFREMER, Centre de Brest, DYNECO/Pelagos, ZI de la Pointe du Diable CS 170, Plouzané, 29280, France
| | - Rachele Rossi
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, Naples, 80055, Italy
| | - Vittorio Soprano
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, Naples, 80055, Italy
| | - Diana Sarno
- Taxonomy and Identification of Marine Phytoplankton Service, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Adriana Zingone
- Ecology and Evolution of Plankton Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| |
Collapse
|
16
|
Krock B, Tillmann U, Voß D, Koch BP, Salas R, Witt M, Potvin É, Jeong HJ. New azaspiracids in Amphidomataceae (Dinophyceae). Toxicon 2012; 60:830-9. [DOI: 10.1016/j.toxicon.2012.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022]
|
17
|
Amphidoma languida sp. nov. (Dinophyceae) Reveals a Close Relationship between Amphidoma and Azadinium. Protist 2012; 163:701-19. [DOI: 10.1016/j.protis.2011.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/19/2011] [Accepted: 10/15/2011] [Indexed: 11/22/2022]
|
18
|
Kilcoyne J, Keogh A, Clancy G, LeBlanc P, Burton I, Quilliam MA, Hess P, Miles CO. Improved isolation procedure for azaspiracids from shellfish, structural elucidation of azaspiracid-6, and stability studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2447-2455. [PMID: 22329755 DOI: 10.1021/jf2048788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Azaspiracids are a group of lipophilic polyether toxins produced by the small dinoflagellate Azadinium spinosum. They may accumulate in shellfish and can result in illnesses when consumed by humans. Research into analytical methods, chemistry, metabolism, and toxicology of azaspiracids has been severely constrained by the scarcity of high-purity azaspiracids. Consequently, since their discovery in 1995, considerable efforts have been made to develop methods for the isolation of azaspiracids in sufficient amounts and purities for toxicological studies, in addition to the preparation of standard reference materials. A seven-step procedure was improved for the isolation of azaspiracids-1-3 (1, 2, and 3) increasing recoveries 2-fold as compared to previous methods and leading to isolation of sufficiently purified azaspiracid-6 (6) for structural determination by NMR spectroscopy. The procedure, which involved a series of partitioning and column chromatography steps, was performed on 500 g of Mytilus edulis hepatopancreas tissue containing ~14 mg of 1. Overall yields of 1 (52%), 2 (43%), 3 (43%), and 6 (38%) were good, and purities were confirmed by NMR spectroscopy. The structure of 6 was determined by one- and two-dimensional NMR spectroscopy and mass spectrometry. The stability of 6 relative to 1 was also assessed in three solvents in a short-term study that demonstrated the greatest stability in aqueous acetonitrile.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute, Renville, Oranmore, County Galway, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Quantitative analysis of azaspiracids in Azadinium spinosum cultures. Anal Bioanal Chem 2012; 403:833-46. [DOI: 10.1007/s00216-012-5849-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|
20
|
[Determination of azaspiracid-1 in shellfishes by liquid chromatography with tandem mass spectrometry]. Se Pu 2012; 28:363-7. [PMID: 20712117 DOI: 10.3724/sp.j.1123.2010.00363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of azaspiracid-1 (AZA1) in shellfishes was described. After being extracted using methanol and water (80:20, v/v), the extract was cleaned-up by solid phase extraction (SPE) of MAX column, then determined by using a reversed-phase high performance liquid chromatography (HPLC) isocratic program coupled with tandem mass spectrometry in selected reaction monitoring mode (SRM). And the extract was eluted with acetonitrile-water (80:20, v/v) on an Atlantis dC18 column (150 mm x 4.6 mm, 5.0 microm) with mobile phase containing 50 mmol/L formic acid and 2 mmol/L ammonium formate. The detection limit was 11.00 pg/g. The calibration curve was linear (R2 = 0.998 1) in the range of 48.85-2 442 ng/L. The average recoveries of the shellfish tissue extract at three spiked levels (36.64, 73.27, 146.54 pg/g) were from 75.8% to 82.5% (n = 6). The relative standard derivations (RSDs) were less than 10%. The 112 shellfish samples from the local markets of Dalian, Qingdao, Guangzhou were detected by the method, and AZA1 was detected in some samples from Dalian and Guangzhou. The results showed that the method is simple, rapid, sensitive and suitable for the detection of AZA1 in shellfishes.
Collapse
|
21
|
Anderson DM, Cembella AD, Hallegraeff GM. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. ANNUAL REVIEW OF MARINE SCIENCE 2012; 4:143-76. [PMID: 22457972 PMCID: PMC5373096 DOI: 10.1146/annurev-marine-120308-081121] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g., our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly, eutrophication and climate change are viewed and managed as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HAB science with an eye toward new concepts and approaches, emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.
Collapse
Affiliation(s)
- Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| | | | | |
Collapse
|
22
|
Potvin É, Jeong HJ, Kang NS, Tillmann U, Krock B. First Report of the Photosynthetic Dinoflagellate Genus Azadinium in the Pacific Ocean: Morphology and Molecular Characterization of Azadinium cf. poporum. J Eukaryot Microbiol 2011; 59:145-56. [DOI: 10.1111/j.1550-7408.2011.00600.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Éric Potvin
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul; 151-747; Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul; 151-747; Korea
| | - Nam Seon Kang
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul; 151-747; Korea
| | - Urban Tillmann
- Alfred Wegener Institute; Am Handelshafen 12; Bremerhaven; D-27570; Germany
| | - Bernd Krock
- Alfred Wegener Institute; Am Handelshafen 12; Bremerhaven; D-27570; Germany
| |
Collapse
|
23
|
O'Driscoll D, Skrabáková Z, O'Halloran J, van Pelt FNAM, James KJ. Mussels increase xenobiotic (azaspiracid) toxicity using a unique bioconversion mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3102-3108. [PMID: 21401083 DOI: 10.1021/es103612c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Azaspiracid Poisoning (AZP) is a human toxic syndrome which is associated with the consumption of bivalve shellfish. Unlike other shellfish, mussels contain a large array of azaspiracid analogs, many of which are suspected bioconversion products. These studies were conducted to elucidate the metabolic pathways of azaspiracid (AZA1) in the blue mussel (Mytilus edulis) and revealed that the main biotransformation product was the more toxic demethyl analog, AZA3. To elucidate the mechanism of this C-demethylation, an unprecedented xenobiotic bioconversion step in shellfish, AZA1 was fed to mussels that contained no detectable azaspiracids. Triple quadrupole mass spectrometry (MS) and high resolution Orbitrap MS were used to determine the uptake of AZA1 and the toxin profiles in three tissue compartments of mussels. The second most abundant bioconversion product was identified as AZA17, a carboxyl analog of AZA3, which is a key intermediate in the formation of AZA3. Also, two pairs of isomeric hydroxyl analogs, AZA4/AZA5 and AZA7/AZA8, have been confirmed as bioconversion products for the first time. Ultra high resolution (100 k) MS studies showed that the most probable structural assignment for AZA17 is 22-carboxy-AZA3 and a mechanism for its facile decarboxylation to form AZA3 has been proposed.
Collapse
Affiliation(s)
- Daniel O'Driscoll
- PROTEOBIO (Mass Spectrometry Centre), Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | |
Collapse
|
24
|
Canás IR, O’Callaghan K, Moroney C, Hamilton B, James KJ, Furey A. The development of a rapid method for the isolation of four azaspiracids for use as reference materials for quantitative LC–MS–MS methods. Anal Bioanal Chem 2010; 398:1477-91. [DOI: 10.1007/s00216-010-4007-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 11/25/2022]
|
25
|
Furey A, O'Doherty S, O'Callaghan K, Lehane M, James KJ. Azaspiracid poisoning (AZP) toxins in shellfish: Toxicological and health considerations. Toxicon 2010; 56:173-90. [DOI: 10.1016/j.toxicon.2009.09.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|
26
|
Abstract
Five major human toxic syndromes caused by the consumption of shellfish contaminated by algal toxins are presented. The increased risks to humans of shellfish toxicity from the prevalence of harmful algal blooms (HABs) may be a consequence of large-scale ecological changes from anthropogenic activities, especially increased eutrophication, marine transport and aquaculture, and global climate change. Improvements in toxin detection methods and increased toxin surveillance programmes are positive developments in limiting human exposure to shellfish toxins.
Collapse
|
27
|
López-Rivera A, O’Callaghan K, Moriarty M, O’Driscoll D, Hamilton B, Lehane M, James K, Furey A. First evidence of azaspiracids (AZAs): A family of lipophilic polyether marine toxins in scallops (Argopecten purpuratus) and mussels (Mytilus chilensis) collected in two regions of Chile. Toxicon 2010; 55:692-701. [DOI: 10.1016/j.toxicon.2009.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
28
|
Use of biosensors as alternatives to current regulatory methods for marine biotoxins. SENSORS 2009; 9:9414-43. [PMID: 22291571 PMCID: PMC3260648 DOI: 10.3390/s91109414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/12/2022]
Abstract
Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids) in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR) technology.
Collapse
|
29
|
Nzoughet JK, Hamilton JTG, Botting CH, Douglas A, Devine L, Nelson J, Elliott CT. Proteomics identification of azaspiracid toxin biomarkers in blue mussels, Mytilus edulis. Mol Cell Proteomics 2009; 8:1811-22. [PMID: 19390117 PMCID: PMC2722768 DOI: 10.1074/mcp.m800561-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/04/2009] [Indexed: 01/09/2023] Open
Abstract
Azaspiracids are a class of recently discovered algae-derived shellfish toxins. Their distribution globally is on the increase with mussels being most widely implicated in azaspiracid-related food poisoning events. Evidence that these toxins were bound to proteins in contaminated mussels has been shown recently. In the present study characterization of these proteins in blue mussels, Mytilus edulis, was achieved using a range of advanced proteomics tools. Four proteins present only in the hepatopancreas of toxin-contaminated mussels sharing identity or homology with cathepsin D, superoxide dismutase, glutathione S-transferase Pi, and a bacterial flagellar protein have been characterized. Several of the proteins are known to be involved in self-defense mechanisms against xenobiotics or up-regulated in the presence of carcinogenic agents. These findings would suggest that azaspiracids should now be considered and evaluated as potential tumorigenic compounds. The presence of a bacterial protein only in contaminated mussels was an unexpected finding and requires further investigation. The proteins identified in this study should assist with development of urgently required processes for the rapid depuration of azaspiracid-contaminated shellfish. Moreover they may serve as early warning indicators of shellfish exposed to this family of toxins.
Collapse
Affiliation(s)
- Judith K Nzoughet
- Institute of Agri-food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
30
|
Alvarez G, Uribe E, Avalos P, Mariño C, Blanco J. First identification of azaspiracid and spirolides in Mesodesma donacium and Mulinia edulis from Northern Chile. Toxicon 2009; 55:638-41. [PMID: 19631679 DOI: 10.1016/j.toxicon.2009.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
In an attempt to evaluate the risk for human consumption associated to the accumulation of lipophilic toxins by two commercially important bivalves: macha (Mesodesma donacium) and clam (Mulinia edulis) in Coquimbo Bay (Chile), monitoring of these species was carried out from March to September 2008. The samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to detect okadaic acid, dinophysistoxins, pectenotoxins, azaspiracids, yessotoxins and spirolides. Low levels of Azaspiracid-1 and 13-desmethyl C spirolide were found in both species. The toxins were detected at different dates throughout the monitoring period and in some cases both toxins were detected in the same sample. In all cases, the concentration of the toxins was below the limit of quantification of the technique used and therefore these detections are only indicative of a potential risk. This is the first report of the occurrence of these groups of toxins in Chile and suggests that it is necessary to monitor routinely these substances to warrant public health and shellfish exportations.
Collapse
Affiliation(s)
- Gonzalo Alvarez
- Centro de Investigacións Mariñas (Xunta de Galicia), Apto. 13, 36620 Vilanova de Arousa, Pontevedra, Spain.
| | | | | | | | | |
Collapse
|
31
|
Ueoka R, Ito A, Izumikawa M, Maeda S, Takagi M, Shin-ya K, Yoshida M, van Soest RW, Matsunaga S. Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin. Toxicon 2009; 53:680-4. [DOI: 10.1016/j.toxicon.2009.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
|
32
|
Detection of diarrheic shellfish poisoning and azaspiracid toxins in Moroccan mussels: comparison of the LC-MS method with the commercial immunoassay kit. Mar Drugs 2009; 6:587-94. [PMID: 19172196 PMCID: PMC2630846 DOI: 10.3390/md6040587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diarrheic shellfish poisoning (DSP) is a recurrent gastrointestinal illness in Morocco, resulting from consumption of contaminated shellfish. In order to develop a rapid and reliable technique for toxins detection, we have compared the results obtained by a commercial immunoassay-“DSP-Check” kit” with those obtained by LC-MS. Both techniques are capable of detecting the toxins in the whole flesh extract which was subjected to prior alkaline hydrolysis in order to detect simultaneously the esterified and non esterified toxin forms. The LC-MS method was found to be able to detect a high level of okadaic acid (OA), low level of dinophysistoxin-2 (DTX2), and surprisingly, traces of azaspiracids 2 (AZA2) in mussels. This is the first report of a survey carried out for azaspiracid (AZP) contamination of shellfish harvested in the coastal areas of Morocco. The “DSP-Check” kit was found to detect quantitatively DSP toxins in all contaminated samples containing only OA, provided that the parent toxins were within the range of detection and was not in an ester form. A good correlation was observed between the two methods when appropriate dilutions were performed. The immunoassay kit appeared to be more sensitive, specific and faster than LC-MS for determination of DSP in total shellfish extract.
Collapse
|
33
|
McCarron P, Kilcoyne J, Miles CO, Hess P. Formation of Azaspiracids-3, -4, -6, and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:160-169. [PMID: 19055365 DOI: 10.1021/jf8025138] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The azaspiracid (AZA) class of phycotoxins has been responsible for extended closures of shellfisheries in various locations around Europe, where levels of AZA1-3 are regulated in shellfish. Since their discovery in 1995, AZAs have been the focus of much research, resulting in the discovery of numerous analogues. During studies of procedures for processing of AZA-contaminated mussels ( Mytilus edulis ), an unusual phenomenon was observed involving AZA3. In uncooked tissues, AZA3 levels would increase significantly when heated for short periods of time in the absence of water loss. A similar increase in AZA3 concentrations occurred during storage of shellfish tissue reference materials for several months at temperatures as low as 4 degrees C. Concentrations of AZA1 and AZA2 did not change during these experiments. Several possible explanations were investigated, including an AZA3-specific matrix effect upon heating of tissues, release of AZA3 from the matrix, and formation of AZA3 from a precursor. Preliminary experiments indicated that toxin conversion was responsible, and more detailed studies focused on this possibility. LC-MS analysis of heating trials, deuterium labeling experiments, and kinetic studies demonstrated that a carboxylated AZA analogue, AZA17, undergoes rapid decarboxylation when heated to produce AZA3. Heat-induced decarboxylation of AZA19, AZA21, and AZA23 to form AZA6, AZA4, and AZA9, respectively, was also demonstrated. This finding is of great significance in terms of procedures used in the processing of shellfish for regulatory analysis, and it exemplifies the role that chemical analysis can play in understanding the contribution of metabolic processes to the toxin profiles observed in shellfish samples.
Collapse
Affiliation(s)
- Pearse McCarron
- Marine Environment and Food Safety Services, Marine Institute, Rinville, Oranmore, County Galway, Ireland.
| | | | | | | |
Collapse
|
34
|
Evans DA, Kvaernø L, Dunn TB, Beauchemin A, Raymer B, Mulder JA, Olhava EJ, Juhl M, Kagechika K, Favor DA. Total synthesis of (+)-azaspiracid-1. An exhibition of the intricacies of complex molecule synthesis. J Am Chem Soc 2008; 130:16295-309. [PMID: 19006391 PMCID: PMC3408805 DOI: 10.1021/ja804659n] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of the marine neurotoxin azaspiracid-1 has been accomplished. The individual fragments were synthesized by catalytic enantioselective processes: A hetero-Diels-Alder reaction to afford the E- and HI-ring fragments, a carbonyl-ene reaction to furnish the CD-ring fragment, and a Mukaiyama aldol reaction to deliver the FG-ring fragment. The subsequent fragment couplings were accomplished by aldol and sulfone anion methodologies. All ketalization events to form the nonacyclic target were accomplished under equilibrating conditions utilizing the imbedded configurations of the molecule to adopt one favored conformation. A final fragment coupling of the anomeric EFGHI-sulfone anion to the ABCD-aldehyde completed the convergent synthesis of (+)-azaspiracid-1.
Collapse
Affiliation(s)
- David A Evans
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alfonso C, Rehmann N, Hess P, Alfonso A, Wandscheer CB, Abuín M, Vale C, Otero P, Vieytes MR, Botana LM. Evaluation of Various pH and Temperature Conditions on the Stability of Azaspiracids and Their Importance in Preparative Isolation and Toxicological Studies. Anal Chem 2008; 80:9672-80. [DOI: 10.1021/ac801506d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carmen Alfonso
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Nils Rehmann
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Philipp Hess
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Amparo Alfonso
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Carolina B. Wandscheer
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - María Abuín
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Carmen Vale
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Paz Otero
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Mercedes R. Vieytes
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| | - Luis M. Botana
- Departamentos de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain, Marine Institute, Rinville, Oranmore, County Galway, Ireland, and School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin 4, Ireland
| |
Collapse
|
36
|
Chapela MJ, Reboreda A, Vieites JM, Cabado AG. Lipophilic toxins analyzed by liquid chromatography-mass spectrometry and comparison with mouse bioassay in fresh, frozen, and processed molluscs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8979-86. [PMID: 18778063 DOI: 10.1021/jf801572j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The search for alternative methods to the mouse bioassay (MBA) has intensified over recent years. The present work analyzes seven different species of shellfish (clams, small scallops, small clams, mussels, oysters, cockles, and edible whelks) in fresh, frozen boiled, and canned presentations using liquid chromatography-mass spectrometry (LC-MS/MS), and the results are compared with the same samples analyzed through MBA. The toxins studied were OA, DTX1, DTX2, YTX, PTX2, and AZA1, which are legislated in the EU, and SPX1, which is not regulated yet. Consistent results between LC-MS/MS and MBA were found in 69% of the samples, whereas 26% of MBA showed "false-positive" results with respect to the toxins analyzed. No "false negatives" were observed. The possibility of LC-MS/MS as an alternative or complementary technique to MBA is discussed.
Collapse
Affiliation(s)
- M J Chapela
- ANFACO-CECOPESCA, Col Univ 16, 36310 Vigo, Pontevedra, Spain
| | | | | | | |
Collapse
|
37
|
Vale C, Wandscheer C, Nicolaou K, Frederick MO, Alfonso C, Vieytes MR, Botana LM. Cytotoxic effect of azaspiracid-2 and azaspiracid-2-methyl ester in cultured neurons: Involvement of the c-Jun N-terminal kinase. J Neurosci Res 2008; 86:2952-62. [DOI: 10.1002/jnr.21731] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
First report on azaspiracid and yessotoxin groups detection in French shellfish. Toxicon 2008; 52:39-48. [DOI: 10.1016/j.toxicon.2008.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022]
|
39
|
LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Anal Bioanal Chem 2008; 392:797-803. [DOI: 10.1007/s00216-008-2221-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
|
40
|
Azaspiracid Shellfish Poisoning: A Review on the Chemistry, Ecology, and Toxicology with an Emphasis on Human Health Impacts. Mar Drugs 2008. [DOI: 10.3390/md6020039] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs 2008; 6:39-72. [PMID: 18728760 PMCID: PMC2525481 DOI: 10.3390/md20080004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/21/2008] [Accepted: 03/18/2008] [Indexed: 01/05/2023] Open
Abstract
Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit of 160 μg AZA/kg whole shellfish flesh was established by the EU in order to protect human health; however, in some cases, AZA concentrations far exceed the action level. Herein we discuss recent advances on the chemistry of various AZA analogs, review the ecology of AZAs, including the putative progenitor algal species, collectively interpret the in vitro and in vivo data on the toxicology of AZAs relating to human health issues, and outline the European legislature associated with AZAs.
Collapse
|
42
|
Purification of five azaspiracids from mussel samples contaminated with DSP toxins and azaspiracids. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 865:133-40. [DOI: 10.1016/j.jchromb.2008.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/19/2022]
|
43
|
Vale P, Bire R, Hess P. Confirmation by LC-MS/MS of azaspiracids in shellfish from the Portuguese north-western coast. Toxicon 2008; 51:1449-56. [PMID: 18471847 DOI: 10.1016/j.toxicon.2008.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 11/16/2022]
Abstract
The search for azaspiracids (AZAs) in shellfish on the Portuguese coast started in 2002, but the presence of these toxins could not be demonstrated until the summer of 2006. Analysis by liquid-chromatography-tandem mass spectrometry (LC-MS/MS) allowed the confirmation of AZA2 as a dominant compound, followed by AZA1, in blue mussel (Mytilus galloprovincialis), common cockle (Cerastoderma edule), clams (Venerupis senegalensis, Ruditapes decussatus), razor clam (Solen marginatus) and oyster (Crassostrea spp). Traces of AZA3 were found only in blue mussel. Total levels of AZA1-3 determined in the whole flesh by LC-MS/MS ranged from 1.6 to 6.1 microg/kg. The finding of low levels of AZAs since 2002 suggests a low risk level when compared with the highest risks posed by diarrhetic shellfish poisoning (DSP) and paralytic shellfish poisoning (PSP) toxins. However, the limited number of years studied might generate a misleading conclusion. The contamination with PSP is an example, as no contamination occurred for an extended period of time between 1996 and 2004, despite high levels having occurred outside this period. Thus, there appears overall a moderate likelihood of occurrence of AZAs in the range that may be relevant to consumers.
Collapse
Affiliation(s)
- Paulo Vale
- Instituto Nacional dos Recursos Biológicos, Avenida Brasília s/n, Lisbon, Portugal.
| | | | | |
Collapse
|
44
|
Stobo L, Lacaze JP, Scott A, Petrie J, Turrell E. Surveillance of algal toxins in shellfish from Scottish waters. Toxicon 2008; 51:635-48. [DOI: 10.1016/j.toxicon.2007.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/23/2007] [Accepted: 11/29/2007] [Indexed: 11/25/2022]
|
45
|
Chapter 13 Phycotoxins. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Rehmann N, Hess P, Quilliam MA. Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:549-558. [PMID: 18228242 DOI: 10.1002/rcm.3385] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Azaspiracids (AZAs) are a group of lipophilic marine biotoxins that were first discovered in blue mussels harvested in 1995 in Killary Harbour on the west coast of Ireland. At least eight people fell ill after the consumption of contaminated mussels and developed symptoms of nausea, stomach cramps, vomiting and severe diarrhoea. Until now, eleven different analogs of these toxins have been described, with a twelfth one theoretically postulated. This paper describes the detection and identification of twenty new analogs of azaspiracid, including dihydroxy-AZAs and carboxy-AZAs, using state-of-the-art techniques including ultra-performance liquid chromatography (UPLC) and tandem mass spectrometry (MS/MS). Blue mussels (Mytilus edulis) from a toxic event of the northwest coast of Ireland in 2005 were extracted and analysed using LC/MS. The mass spectra obtained from different instruments enabled identification of previously unknown analogs of azaspiracid with additional hydroxyl and carboxyl substituents. Mass fragmentation patterns of the dihydroxy-AZAs indicated the positions of these substituents to be at the C3 and C23 position. The previously theoretically postulated AZA12 was also observed in this study. Product ion spectra showed the presence of a unique fragment ion at m/z 408 for all C23-hydroxylated analogs. This fragmentation competes with the fragmentation leading to m/z 362, a fragment ion that has shown to be present in all AZAs. The novel analogs have not been seen in plankton or water samples and are believed to be metabolites of AZAs formed in mussels. All the new AZA analogs were present at low concentrations in the shellfish and it is probably safe to assume that they do not pose a risk for the shellfish consumer.
Collapse
Affiliation(s)
- Nils Rehmann
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland.
| | | | | |
Collapse
|
47
|
Vale C, Gómez-Limia B, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. The c-Jun-N-terminal kinase is involved in the neurotoxic effect of azaspiracid-1. Cell Physiol Biochem 2007; 20:957-66. [PMID: 17982278 DOI: 10.1159/000110456] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2007] [Indexed: 01/02/2023] Open
Abstract
AIMS Azaspiracids (AZAs) are marine phycotoxins with an unknown mechanism of action, recently implicated in human intoxications. The predominant analog in nature, AZA-1 targets several organs in vivo, including the central nervous system and exhibits high neurotoxicity in vitro. METHODS We used pharmacological tools to inhibit the cytotoxic effect of the toxin in primary cultured neurons. Immunocytochemical techniques in combination with confocal microscopy were employed to examine the cellular mechanisms involved in the neurotoxic effect of AZA-1. RESULTS Several targets for azaspiracid-induced neurotoxicity, specifically the cAMP pathway, or protein kinase C and phosphatidylinositol 3-kinase activation were excluded. Interestingly, the specific c-Jun-N-terminal protein kinase (JNK) inhibitor SP 600125 protected cultured neurons against AZA-induced cytotoxicity. Immunocytochemistry experiments showed that AZA-1 increased the amount of phosphorylated JNK and caused nuclear translocation of the active protein that was prevented by SP 600125. CONCLUSION Our data constitute the relationship between azaspiracid-induced cytotoxicity and specific modifications in cellular transduction signals, specifically we found that JNK activation is associated with the cytotoxic effect of the toxin. These results should provide the basis to identify the mechanism of action of this group of toxins.
Collapse
Affiliation(s)
- Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, USC, Lugo, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Determination of marine biotoxins relevant for regulations: from the mouse bioassay to coupled LC-MS methods. Anal Bioanal Chem 2007; 391:117-34. [DOI: 10.1007/s00216-007-1778-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
49
|
Structural confirmation and occurrence of azaspiracids in Scandinavian brown crabs (Cancer pagurus). Toxicon 2007; 51:93-101. [PMID: 17936866 DOI: 10.1016/j.toxicon.2007.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 11/24/2022]
Abstract
In 2005 and 2006, azaspiracids were for the first time detected in brown crabs (Cancer pagurus) from the west coast of Sweden and the north and north-west coast of Norway. Azaspiracids are marine toxins that have been detected in blue mussels in Europe in recent years. On some occasions, they have been responsible for human intoxications with symptoms similar to those occurring by consumption of shellfish contaminated with okadaic acid group toxins. While the latter toxin group has been reported to accumulate in green crabs and brown crabs, azaspiracids have previously only been reported to occur in bivalve molluscs. LC-MS analysis of the hepatopancreas (HP) and roe of brown crabs revealed the presence of azaspiracid-1, -2 and -3, but only very low levels were detected in the white meat from the claws or the main shell. Mass spectral data were recorded using two different mass spectrometers, one with a triple-quadrupole mass analyzer and one with a linear ion-trap mass analyzer. The identities of the toxins were confirmed by comparing retention times and mass spectra of azaspiracid standards and the detected toxins. Levels detected ranged from 1.4 microg/kg tissue up to as much as 733 microg/kg tissue, although the majority of samples analyzed were below the suggested regulatory limit of 170 microg/kg HP. Higher levels were detected in HP compared with roe. Very little azaspiracids were detected in mussels from the same locations at the same time, and no proposed microalgal source of azaspiracids was reported in the water previous to or at the time of collection of the toxic crabs.
Collapse
|
50
|
Frehi H, Couté A, Mascarell G, Perrette-Gallet C, Ayada M, Kara MH. Dinoflagellés toxiques et/ou responsables de blooms dans la baie d'Annaba (Algérie). C R Biol 2007; 330:615-28. [PMID: 17637442 DOI: 10.1016/j.crvi.2007.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 11/23/2022]
Abstract
We present here the first description of harmful and non-toxic red-tide dinoflagellates of the Annaba bay (Algeria), during 2002. The qualitative and quantitative phytoplankton analyses reveal the presence of eleven dinoflagellates; two species, Alexandrium catenella and Gymnodinium catenatum, are responsible for efflorescences and known to be harmful. Seven species, Dinophysis caudata, D. fortii, D. rapa, D. rotundata, D. tripos, Lingulodinium polyedrum, and Protoperidinium crassipes, are considered to produce a toxin. Two others, P. triestinum, and Scrippsiella trochoidea, have sometimes been associated with blooms. Analyses of physical and chemical parameters show that stations 1 and 2 are eutrophic, whereas station 3 is oligotrophic.
Collapse
Affiliation(s)
- Hocine Frehi
- Laboratoire Bioressources marines , université Badji-Mokhtar-Annaba, BP 12, El-Hadjar, 23000 Annaba, Algérie
| | | | | | | | | | | |
Collapse
|