1
|
Ibor OR, Eni G, Andem AB, Bassey IU, Arong GA, Asor J, Regoli F, Arukwe A. Biotransformation and oxidative stress responses in relation to tissue contaminant burden in Clarias gariepinus exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. CHEMOSPHERE 2020; 253:126630. [PMID: 32278189 DOI: 10.1016/j.chemosphere.2020.126630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, we have investigated biotransformation and oxidative stress responses in relation to tissue contaminant burden in the African sharptooth catfish (Clarias gariepinus) exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. Fish were exposed to simulated leachate, diluted to 0:0 (negative control), 1:10, 1:50, 1:100 and phenanthrene (a PAH: 50 μg/L used as a positive control) for 3, 7 and 14 days. Hepatic transcripts for cat, sod1, gpx1, gr, gst, cyp1a, cyp2d3, and cyp27 were analyzed by real-time PCR, while enzymatic assays for ethoxyresorufin O-deethylase (EROD), buthoxyresorufin O-deethylase (BROD), methoxyresorufin O-deethylase (MROD), pentoxyresorufin O-deethylase (PROD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), uridine diphospho-glucuronosyltransferase (UDPGT) and lipid peroxidase (LPO) were measured using standard methods. In addition, protein expression for CYP1A, CYP3A and metallotheionin (MT) were measured by immunoblotting. Fish muscle samples were analyzed for selected group of contaminants after 14 days exposure showing significantly high uptake of heavy metals (Cd, Hg and Pb), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, organochlorine (OC) and organophosphate pesticides in exposed fish. We observed significant concentration- and time-specific increases in biotransformation and oxidative stress responses at transcript and functional (enzyme and protein) levels, that paralleled tissue contaminants bioaccumulation patterns, after exposure to the simulated leachates. Our results highlighted the potential environmental, wildlife and public health consequences from improper solid waste disposal. In addition, it also provides a scientific basis for local sensitization and inform legislative decisions and policy formulation towards sustainable environmental management of solid wastes in Nigeria and other developing countries.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria; Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| | - George Eni
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Andem B Andem
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Ini U Bassey
- Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Gabriel A Arong
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria.
| | - Joe Asor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway.
| |
Collapse
|
2
|
Yamamoto FY, Diamante GD, Santana MS, Santos DR, Bombardeli R, Martins CC, Oliveira Ribeiro CA, Schlenk D. Alterations of cytochrome P450 and the occurrence of persistent organic pollutants in tilapia caged in the reservoirs of the Iguaçu River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:670-682. [PMID: 29775944 DOI: 10.1016/j.envpol.2018.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Environmental chemicals originating from human activities, such as persistent organic pollutants (POPs), may interfere with the endocrine system of aquatic organisms. The effect of these chemicals on biota and human populations is of high public concern but remains poorly understood, especially in aquatic environments of South America. The aim of this study was to investigate the bioavailability of POPs and the related effects in caged male tilapia (Oreochromis niloticus) in four cascading reservoirs of the Iguaçu River, Southern Brazil. POPs including organochlorine pesticides (OCPs), polychlorinated biphenyl (PCBs), and polybrominated diphenyl ethers (PBDEs) were determined in the reservoir water and tissue samples of tilapia after two months of exposure. The PCB levels in water (14.7 ng L-1) were 14 times higher than the limits permitted by the Brazilian legislation in the Salto Santiago (SS) reservoir. Similarly, concentrations of aldrin and its metabolites (6.05 ng L-1) detected in the water sample of the Salto Osório (SO) reservoir were also above the permitted limits. RT-qPCR analysis revealed different transcript levels of cytochrome P450 enzymes (CYP1A and CYP3A) in the liver among the four groups, with induced activity in tilapia from the SS reservoir. Quantification of the CYP3A mRNA expression and catalytic activity showed higher values for fish caged at the SS reservoir. The fish from this site also had a higher number of eosinophils observed in the testes. Although overt measurements of endocrine disruption were not observed in caged fish, alteration of CYP enzymes with co-occurrence of organochlorine contaminants in water may suggest bioavailability of contaminants from agricultural sources to biota. Additional studies with feral or caged animals for a longer duration may be necessary to evaluate the risks of the waterways to humans and wildlife.
Collapse
Affiliation(s)
- F Y Yamamoto
- Cell Biology Department, Federal University of Parana, Curitiba, Brazil.
| | - G D Diamante
- Department of Environmental Sciences, University of California Riverside, Riverside, United States
| | - M S Santana
- Cell Biology Department, Federal University of Parana, Curitiba, Brazil
| | - D R Santos
- Cell Biology Department, Federal University of Parana, Curitiba, Brazil
| | - R Bombardeli
- Research Center in Environmental Aquaculture, Western University of Parana, Toledo, Brazil
| | - C C Martins
- Center for Marine Studies, Federal University of Parana, Pontal do Parana, Brazil
| | | | - D Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, United States
| |
Collapse
|
3
|
Ferreira M, Santos P, Rey-Salgueiro L, Zaja R, Reis-Henriques MA, Smital T. The first demonstration of CYP1A and the ABC protein(s) gene expression and activity in European seabass (Dicentrarchus labrax) primary hepatocytes. CHEMOSPHERE 2014; 100:152-159. [PMID: 24342362 DOI: 10.1016/j.chemosphere.2013.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 06/03/2023]
Abstract
Primary hepatocytes are a model for studying various effects of different xenobiotics, including detoxification strategies. In this study we have isolated and cultured European seabass (Dicentrarchus labrax) primary hepatocytes and assessed gene transcription and activity of CYP1A (phase I of cellular detoxification) and ABCC1 and ABCC2 (phase III) transport proteins after exposure to benzo(a)pyrene (BaP). A dose dependent increase in Abcc2 and Cyp1a mRNA transcripts was observed in seabass primary hepatocytes upon exposure to BaP. The activity of ABC proteins, as key mediators of the multixenobiotic resistance (MXR), was further confirmed by assessing the accumulation of the model fluorescence substrate rhodamine 123 in the absence and presence of model inhibitors. A weak interaction between BaP and ABC proteins was observed. CYP1A dependent ethoxyresorufin-O-deeethylase (EROD) activity was significantly induced by the presence of BaP. After the 24h exposure period only 10% of the initial BaP was present in the incubation medium, clearly demonstrating biotransformation potential of primary seabass hepatocytes. Furthermore, the presence of the 3-hydroxybenzo(a)pyrene, a BaP metabolite, in the medium implies its active efflux. In conclusion, we showed that seabass primary hepatocytes do express important elements of the cellular detoxification machinery and may be a useful in vitro model for studying basic cellular detoxification mechanisms and their interaction with environmental contaminants.
Collapse
Affiliation(s)
- Marta Ferreira
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Pedro Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS/UP - Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Professor Abel Salazar, 2, 4099-003 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ledicia Rey-Salgueiro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Roko Zaja
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Maria Armanda Reis-Henriques
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Johanning K, Hancock G, Escher B, Adekola A, Bernhard MJ, Cowan-Ellsberry C, Domoradzki J, Dyer S, Eickhoff C, Embry M, Erhardt S, Fitzsimmons P, Halder M, Hill J, Holden D, Johnson R, Rutishauser S, Segner H, Schultz I, Nichols J. Assessment of metabolic stability using the rainbow trout (Oncorhynchus mykiss) liver S9 fraction. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.10.1-28. [PMID: 22896006 DOI: 10.1002/0471140856.tx1410s53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the result as in vivo intrinsic clearance. Additional guidance is provided on the care and handling of test animals, design and interpretation of preliminary studies, and development of analytical methods. Although initially developed to predict metabolism impacts on chemical accumulation by fish, these procedures can be used to support a broad range of scientific and risk assessment activities including evaluation of emerging chemical contaminants and improved interpretation of toxicity testing results. These protocols have been designed for rainbow trout and can be adapted to other species as long as species-specific considerations are modified accordingly (e.g., fish maintenance and incubation mixture temperature). Rainbow trout is a cold-water species. Protocols for other species (e.g., carp, a warm-water species) can be developed based on these procedures as long as the specific considerations are taken into account.
Collapse
Affiliation(s)
- Karla Johanning
- KJohanning Consultancy, Pura Vida Connections LLC, Austin, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ellesat KS, Yazdani M, Holth TF, Hylland K. Species-dependent sensitivity to contaminants: an approach using primary hepatocyte cultures with three marine fish species. MARINE ENVIRONMENTAL RESEARCH 2011; 72:216-224. [PMID: 21963059 DOI: 10.1016/j.marenvres.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
There is limited knowledge about the sensitivity of different fish species to environmental pollutants. Such information is pivotal in risk assessment and to understand why some species appear to be more tolerant to contaminants than others. The aim of the current study was to evaluate whether primary hepatocyte cultures of three marine fish species could be established in the field and whether their sensitivity to selected contaminants would differ. Primary hepatocyte cultures of three marine fish species (plaice, long rough dab, Atlantic cod) were established and exposed for 24 h to copper (20-2500 mg L⁻¹) and statins (1-200 mg L⁻¹). Endpoints were esterase activity, metabolic activity and reduced glutathione (GSH) content, all using fluorescent probes. Flatfish hepatocytes were more susceptible to copper and statin exposure than hepatocytes from cod. This study has shown that species-dependent differences in contaminant sensitivity can be investigated using primary hepatocyte cultures.
Collapse
|
6
|
Precision-Cut Liver Slices of Salmo salar as a tool to investigate the oxidative impact of CYP1A-mediated PCB 126 and 3-methylcholanthrene metabolism. Toxicol In Vitro 2010; 25:335-42. [PMID: 20946947 DOI: 10.1016/j.tiv.2010.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
Abstract
Fish isolated cell systems have long been used to predict in vivo toxicity of man-made chemicals. In present study, we tested the suitability of Precision-Cut Liver Slices (PCLS) as an alternative to these models that allows the evaluation of a global tissue response to toxicants, to investigate oxidative stress response to cytochrome P450 1A (CYP1A) induction in fish liver. PCLS of Salmo salar were exposed for 21 h to increasing doses of 3-methylcholanthrene (3-MC) and Polychlorobiphenyl 126 (PCB 126). 3-MC (25 μM) strongly induced CYP1A transcription. In dose-response analysis (25-100 μM), EROD activity was strongly increased at intermediate 3-MC concentrations. We found the counter-intuitive decline of EROD at the highest 3-MC doses to result from reversible competition with ethoxyresorufin. No increases of H(2)O(2) production, antioxidant enzymes activities or oxidative damage to lipids were found with 3-MC treatments. PCLS subjected to PCB 126 (2-200 nM) showed increased contamination levels and a parallel increased CYP1A mRNA synthesis and EROD activity. H(2)O(2) production tended to increase but no oxidative damage to lipids was found. As antioxidant enzymes activities declined at the highest PCB 126 dose, it is suggested that longer incubation periods could be required to generate oxidative stress in PCLS.
Collapse
|
7
|
Scornaienchi ML, Thornton C, Willett KL, Wilson JY. Functional differences in the cytochrome P450 1 family enzymes from zebrafish (Danio rerio) using heterologously expressed proteins. Arch Biochem Biophys 2010; 502:17-22. [PMID: 20599672 PMCID: PMC2945726 DOI: 10.1016/j.abb.2010.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 11/29/2022]
Abstract
Mammalian cytochrome P450 1 (CYP1) genes are well characterized, but in other vertebrates only the functions of CYP1A genes have been well studied. We determined the catalytic activity of zebrafish CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1 proteins using 11 fluorometric substrates and benzo[a]pyrene (BaP). The resorufin-based substrates, 7-ethoxyresorufin, 7-methoxyresorufin, and 7-benzyloxyresorufin, were well metabolized by all CYP1s except CYP1D1. CYP1A metabolized nearly all substrates tested, although rates for non-resorufin substrates were typically lower than resorufin-based substrates. Zebrafish CYP1s did not metabolize 7-benzyloxyquinoline, 3-[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin or 7-methoxy-4-(aminomethyl)-coumarin. CYP1B1 and CYP1C2 had the highest rates of BaP metabolism. 3-Hydroxy-BaP was a prominent metabolite for all but CYP1D1. CYP1A showed broad specificity and had the highest metabolic rates for nearly all substrates. CYP1C1 and CYP1C2 had similar substrate specificity. CYP1D1 had very low activities for all substrates except BaP, and a different regioselectivity for BaP, suggesting that CYP1D1 function may be different from other CYP1s.
Collapse
Affiliation(s)
| | - Cammi Thornton
- Department of Pharmacology, University of Mississippi, University, MS, USA
| | | | - Joanna Y. Wilson
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Smith EM, Wilson JY. Assessment of cytochrome P450 fluorometric substrates with rainbow trout and killifish exposed to dexamethasone, pregnenolone-16alpha-carbonitrile, rifampicin, and beta-naphthoflavone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:324-333. [PMID: 20167382 DOI: 10.1016/j.aquatox.2010.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/23/2009] [Accepted: 01/05/2010] [Indexed: 05/28/2023]
Abstract
Cytochrome P450s (CYPs) are important xenobiotic metabolizing proteins. While their functions are well understood in mammals, CYP function in non-mammalian vertebrate systems is much less defined, with function often inferred from mammalian data, assuming similar function across vertebrate species. In this study, we investigate whether in vivo treatment with known mammalian CYP inducers can alter the in vitro catalytic activity of fish microsomes using eleven fluorescent CYP-mediated substrates. We investigate the basal metabolism and induction potential for hepatic CYPs in two fish species, rainbow trout (Oncorhynchus mykiss) and killifish (Fundulus heteroclitus). Species differences were found in the baseline metabolism of these substrates. Killifish have significantly higher metabolic rates for all tested substrates except 7-benzyloxyquinoline and 7-benzyloxy-4-trifluoromethylcoumarin (both mammalian CYP3A substrates); significant differences were also seen between male and female killifish. Treatment with dexamethasone, pregnenolone-16alpha-carbonitrile, and rifampicin did not cause broad, measurable CYP induction in either fish species. In trout, dexamethasone (100 mg kg(-1)) significantly induced 3-cyano-7-ethoxycoumarin metabolism and rifampicin (100 mg kg(-1)) induced the dealkylation of 7-methoxyresorufin, although both were highly variable. Female killifish exposed to pregnenolone-16alpha-carbonitrile (100 mg kg(-1)) showed significantly higher metabolism of 7-pentoxyresorufin. Overall, dexamethasone, pregnenolone-16alpha-carbonitrile and rifampicin did not appear to consistently increase CYP activity in fish. Trout treated with 10 or 50 mg kg(-1) beta-naphthoflavone (BNF), a CYP1A inducer, showed significantly induced activity across almost all substrates tested, exceptions being 7-benzyloxyquinoline, 7-benzyloxy-4-trifluoromethylcoumarin and dibenzylfluorescein. 7-Methoxy-4-(aminomethyl)coumarin, a typical CYP2D substrate in mammals, was not metabolized by untreated fish liver microsomes; however, treatment with BNF significantly induced the metabolism of this substrate in trout. Induced substrate metabolism in BNF-treated microsomes was only correlated across selective substrates, suggesting that BNF induces multiple CYPs in fish liver. These include the known BNF inducible CYP1s plus a number of as yet unidentified fish CYPs. Overall, many of these catalytic assays could be valuable tools for identification of the function of specific CYP subfamilies and individual isoforms in fish.
Collapse
Affiliation(s)
- Emily M Smith
- Department of Biology, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | |
Collapse
|
9
|
Gagné F, Fortier M, Yu L, Osachoff HL, Skirrow RC, van Aggelen G, Gagnon C, Fournier M. Immunocompetence and alterations in hepatic gene expression in rainbow trout exposed to CdS/CdTe quantum dots. ACTA ACUST UNITED AC 2010; 12:1556-65. [DOI: 10.1039/c0em00031k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Assessment of metabolic capabilities of PLHC-1 and RTL-W1 fish liver cell lines. Cell Biol Toxicol 2009; 25:611-22. [DOI: 10.1007/s10565-008-9116-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
11
|
Deguchi Y, Wu NX, Toyoizumi T, Masuda S, Nagaoka H, Watanabe T, Totsuka Y, Wakabayashi K, Kinae N. Application of a new bioassay technique using goldfish for assessment of water toxicity. ENVIRONMENTAL TOXICOLOGY 2008; 23:720-727. [PMID: 18344213 DOI: 10.1002/tox.20379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There are a variety of chemicals in aquatic environment, so it is important to assess the toxicity. The biomarkers such as induction of DNA damage, micronuclei, vitellogenin, and hepatic P450 in fish are known to be effective for monitoring genotoxic and/or estrogenic chemicals. However, there is little study to use these biomarkers in same fish. Goldfish (Carassius auratus) is widely used and is suitable in size to collect blood or organs. In this study, validity of multiple-biomarkers in goldfish was checked using standard chemicals and applied in the river water. Ho River, which flows through the textile dyeing factory in Shizuoka Prefecture, Japan, was reported to show genotoxicity toward Salmonella typhimurium TA98 and YG1024. When the goldfish were exposed to Ho River, DNA damage, estrogenic activity, and CYP1A induction were observed. Through the study, it was assumed that not only mutagens/carcinogens but also endocrine disrupting chemicals and poly aromatic hydrocarbons were present in Ho River. Therefore, chemical identification should be required. We could evaluate both genotoxicity and estrogenic activity simultaneously, so goldfish might be a good experimental model for estimation of chemical contamination levels in aquatic environment.
Collapse
Affiliation(s)
- Yuya Deguchi
- Graduate School of Nutritional and Environmental Sciences, COE Program in the 21st Century, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Della Torre C, Corsi I, Arukwe A, Valoti M, Focardi S. Interactions of 2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguilla (Linnaeus, 1758). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:798-805. [PMID: 18407354 DOI: 10.1016/j.ecoenv.2008.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 02/29/2008] [Accepted: 03/01/2008] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to investigate the interaction of 2,4,6-trinitrotoluene (TNT) with liver biotransformation enzymes in European eel Anguilla anguilla (Linnaeus, 1758). Eels were exposed to 0.5, 1 and 2.5mg/l nominal concentrations of TNT for 6 and 24h. Modulation of CYP1A1, UDPGT and GST genes was investigated by real-time PCR. Total CYP450 content, NADPH cytochrome c reductase activity, CYP1A and CYP2B-like activities, such as EROD, MROD and BROD, as well as GST and UDPGT activities, were measured by biochemical assays. An in vitro study was performed on EROD in order to evaluate catalytic modulation by TNT. No modulation of the CYP1A1 gene or protein was observed in TNT-exposed eels. On the other hand, a significant decline of EROD and MROD activities was observed in vivo. An increase in NADPH cyt c reductase, and phase II enzymes (UDPGT and GST) were observed at both gene expression and activity levels. The overall results indicated that TNT is a potential competitive inhibitor of CYP1A activities. A TNT metabolic pathway involving NADPH cyt c reductase and phase II enzymes is also suggested.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Environmental Sciences G. Sarfatti, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
13
|
Arukwe A, Nordtug T, Kortner TM, Mortensen AS, Brakstad OG. Modulation of steroidogenesis and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to water-soluble fraction of crude oil. ENVIRONMENTAL RESEARCH 2008; 107:362-370. [PMID: 18396270 DOI: 10.1016/j.envres.2008.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
The induction of CYP enzyme activities, particularly CYP1A1, through the aryl hydrocarbon receptor (AhR) in most vertebrate species is among the most studied biochemical response to planar and aromatic organic contaminant exposure. Since P450 families play central roles in the oxidative metabolism of a wide range of exogenous and endogenous compounds, interactions between the biotransformation processes and reproductive physiological responses are inevitable. Steroidogenesis is the process by which specialized cells in specific tissues, such as the gonad, brain (neurosteroids) and kidney, synthesize steroid hormones. In the present study, we evaluated the effects of water-soluble fraction (WSF) of crude oil on the xenobiotic biotransformation and steroidogenic processes in the head (brain) and whole-body tissue of a model species by transcript analysis using quantitative (real-time) polymerase chain reaction (qPCR), enzyme activities and steroid hormone (testosterone: T and 17beta-estradiol: E2) levels using enzyme immune assay (EIA). Our data showed that exposure of fish to WSF produced an apparent concentration-specific increase of AhR1, CYP1A1 and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) mRNA levels, and decrease of AhR2. On the activity level, WSF produced concentration-specific increase of ethoxyresorufin O-deethylase (EROD), benzyloxyresorufin (BROD) methoxyresorufin (MROD) and pentoxyresorufin (PROD) activities in whole-body tissue. In the steroidogenic pathway, WSF exposure produced apparent concentration-specific decrease of ER* and ERbeta, steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleavage (P450scc), P450aromA and P450aromB mRNA expression. For steroid hormones, while T levels decreased, E2 levels increased in an apparent WSF concentration-specific manner. In general, the xenobiotic biotransformation and estrogenic responses showed negative relationship after exposure of zebrafish to WSF, suggesting an interaction between these physiological pathways. The relationship between WSF mediated changes in brain StAR, P450scc, 3beta-HSD, ER*alpha, ERbeta, P450aromA, P450aromB and whole-body steroid hormone levels suggests that the experimental animals might be experiencing altered neurosteroidogenesis probably through increased activity level of the biotransformation system. Thus, these responses might represent sensitive diagnostic tools for short-term and acute exposure of fish or other aquatic organisms to WSF.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology NTNU, Høgskoleringen 5, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
14
|
Rempel MA, Schlenk D. Effects of Environmental Estrogens and Antiandrogens on Endocrine Function, Gene Regulation, and Health in Fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:207-52. [DOI: 10.1016/s1937-6448(08)00605-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Hartl MGJ, Kilemade M, Sheehan D, Mothersill C, O'Halloran J, O'Brien NM, van Pelt FNAM. Hepatic biomarkers of sediment-associated pollution in juvenile turbot, Scophthalmus maximus L. MARINE ENVIRONMENTAL RESEARCH 2007; 64:191-208. [PMID: 17320945 DOI: 10.1016/j.marenvres.2007.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 12/20/2006] [Accepted: 01/05/2007] [Indexed: 05/14/2023]
Abstract
Hatchery-reared turbot (Scophthalmus maximus L.) were exposed for 3 weeks, under laboratory conditions, to sediment collected from polluted sites in Cork Harbour and a reference site at Ballymacoda, Co. Cork, Ireland. The potential of surficial sediment for inducing hepatic biomarkers was assessed at two levels of biological organisation: expression of cytochrome P450 [Western blotting analysis and 7-ethoxy-resorufin O-dealkylase (EROD), 7-benzoxy resorufin O-dealkylase (BROD), 7-methoxy resorufin O-dealkylase (MROD), 7-pentoxy-resorufin O-dealkylase (PROD) activities] and DNA integrity (Comet assay). Positive controls were generated, either by exposing turbot to cadmium chloride-spiked seawater (Comet assay) or to beta-naphthaflavone by intraperitoneal injection (cytochrome P450 induction). The induction of cytochrome P450 activity (EROD, MROD and PROD) in animals following a 7-day exposure to contaminated sediments was significantly higher than those exposed to reference site sediment and remained elevated thereafter; BROD was not induced. DNA single-strand breaks were also significantly higher following exposure to contaminated sediments throughout the experiment. Although no direct correlation between induction of alkoxyresorufin O-dealkylase activities and a particular chemical class was established, the induction of MROD and PROD activities in fish exposed to sediments containing complex contaminant mixtures, appeared to be more sensitive than conventional EROD activity assays. We conclude from the present laboratory study that S. maximus is a suitable sentinel species for the assessment of moderately contaminated sediments and therefore allows for the further development of this model for future, ecologically relevant, field studies.
Collapse
Affiliation(s)
- Mark G J Hartl
- Environmental Research Institute, University College Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
16
|
Mortensen AS, Arukwe A. Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT). Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:431-41. [PMID: 17344101 DOI: 10.1016/j.cbpc.2007.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/20/2022]
Abstract
Multiple biological effects of tributyltin (TBT) on juvenile salmon have been investigated. Fish were exposed for 7 days to waterborne TBT at nominal concentrations of 50 and 250 microg/L dissolved in dimethyl sulfoxide (DMSO). Hepatic samples were analyzed for gene expression patterns in the hormonal and xenobiotic biotransformation pathways using validated real-time PCR method. Immunochemical and several cytochrome P450 (CYP)-mediated enzyme activity (ethoxyresorufin: EROD, benzyloxyresorufin: BROD, methoxyresorufin: MROD and pentoxyresorufin: PROD) assays were analyzed. Our data show that TBT produced concentration-specific decrease of estrogen receptor-alpha (ERalpha), vitellogenin (Vtg), zona radiata protein (Zr-protein) and increase of estrogen receptor-beta (ERbeta) and androgen receptor-beta (ARbeta) in the hormonal pathway. In the xenobiotic biotransformation pathway, TBT produced apparent increase and decrease at respective low and high concentration, on aryl hydrocarbon receptor-alpha (AhRalpha), AhR nuclear translocator (ARNT) and AhR repressor (AhRR) mRNA. The expression of CYP1A1 and GST showed a TBT concentration-dependent decrease. The AhRbeta, CYP3A and uridine diphosphoglucuronosyl transferase (UGT) mRNA expressions were significantly induced after exposure to TBT. Immunochemical analysis of CYP3A and CYP1A1 protein levels confirmed the TBT effects observed at the transcriptional levels. The effect of TBT on the biotransformation enzyme gene expressions partially co-related but did not directly parallel enzyme activity levels for EROD, BROD, MROD and PROD. In general, these findings confirm previous reports on the endocrine effects of TBT, in addition to effects on hepatic CYP1A isoenzyme at the transcriptional level that transcends to protein and enzymatic levels. The induced expression patterns of CYP3A and UGT mRNA after TBT exposure, suggest the involvement of CYP3A and UGT in TBT metabolism in fish. The effect of TBT on CYP3A is proposed to represent another hormonal effect of TBT not previously reported in any fish or lower vertebrate. The proposed androgenic effect is supported by the observation that TBT also induced ARbeta mRNA expression in a concentration-specific manner. To our knowledge, this is the first study that has simultaneously studied multiple responses after exposure to TBT in fish.
Collapse
Affiliation(s)
- Anne Skjetne Mortensen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway
| | | |
Collapse
|
17
|
Stanic B, Andric N, Zoric S, Grubor-Lajsic G, Kovacevic R. Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in sterlet (Acipenser ruthenus L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 65:395-402. [PMID: 16194569 DOI: 10.1016/j.ecoenv.2005.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 08/04/2005] [Accepted: 08/18/2005] [Indexed: 05/04/2023]
Abstract
The response of wild fish to pollutants was studied in sterlet (Acipenser ruthenus L.) collected in 2001 and 2002 at two sampling sites in the Danube River near Novi Sad (Serbia): in the vicinity of the oil refinery and at the Danube-Begec, remote from the oil refinery and considered a reference site. The following biomarkers were measured in sterlet collected from these two sites: the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px), and glutathione S-transferase and the induction of CYP1A1 in liver and the activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase in serum. The results demonstrated increase in the activity of SOD and GSH-Px in sterlet collected from the Danube-oil refinery (DOR) compared to that from the reference site, while no differences were found in other enzymes. In conclusion, the overall results suggest that an alteration in the activity of SOD and GSH-Px during the observed period reflects the presence of certain prooxidative compounds that can lead to oxidative stress in the liver of sterlet at the DOR site.
Collapse
Affiliation(s)
- Bojana Stanic
- Department of Biology and Ecology, 2 Dositeja Obradovica Square, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia and Montenegro
| | | | | | | | | |
Collapse
|
18
|
Torre CD, Corsi I, Alcaro L, Amato E, Focardi S. The involvement of cytochrome P450 system in the fate of 2,4,6-trinitrotoluene (TNT) in European eel [Anguilla anguilla (Linnaeus, 1758)]. Biochem Soc Trans 2006; 34:1228-30. [PMID: 17073791 DOI: 10.1042/bst0341228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TNT (2,4,6-trinitrotoluene) was the most common nitro aromatic explosive available in World War II ammunitions. The presence of ordnance dumped at sea might represent a great concern for marine species living close to dumping sites and the toxicological properties of the chemicals released into the marine environments need to be evaluated. The aim of the present study is to investigate the involvement of CYP (cytochrome P450) system in the metabolism of TNT in marine organisms by using the European eel [Anguilla anguilla (Linnaeus, 1758)] as model species. In vivo exposure to sublethal concentration of TNT (0.5, 1 and 2.5 mg/l) leads to a significant decrease in the phase I CYP1A catalytic activities such as EROD (7-ethoxyresorufin-O-de-ethylase) and MROD (7-methoxyresorufin-O-de-ethylase). On the opposite, a significant increase in NADPH cytochrome c reductase activity as well as phase II UDP-glucuronosyltransferase activity is observed. An inhibition at enzyme level is hypothesized for both CYP1A enzymes, also confirmed by a similar decrease observed after in vitro exposure. An active role of NADPH cytochrome c reductase and phase II enzymes in the TNT metabolism may also be hypothesized.
Collapse
Affiliation(s)
- C Della Torre
- Department of Environmental Sciences 'G. Sarfatti', University of Siena, Via Mattioli, 4, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
19
|
Murphy MB, Hecker M, Coady KK, Tompsett AR, Jones PD, Newsted JL, Wong HL, du Preez LH, Solomon KR, Carr JA, Smith EE, Kendall RJ, Van der Kraak G, Giesy JP. Sediment TCDD-EQs and EROD and MROD activities in Ranid frogs from agricultural and nonagricultural sites in Michigan (USA). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 51:467-77. [PMID: 16788744 DOI: 10.1007/s00244-005-0183-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 12/26/2005] [Indexed: 05/10/2023]
Abstract
In vitro studies have demonstrated atrazine-mediated induction of 7-ethoxyresorufin O-deethylase (EROD) activity. EROD is an enzyme active in the metabolism of many compounds, including many xenobiotics. These studies have suggested that atrazine may affect reproductive function by altering steroid metabolism. The goal of this study was to determine whether relationships could be detected between measured atrazine concentrations in surface waters and the liver-somatic index (LSI) and EROD and 7-methoxyresorufin O-deethylase (MROD) activities in the livers of ranid frogs. In addition, sediment dioxin toxic equivalents (TCDD-EQs) were determined using the H4IIE-luc cell bioassay. Adult and juvenile green frogs (Rana clamitans), bullfrogs (R. catesbeiana), and Northern leopard frogs (R. pipiens) were collected from areas with extensive corn cultivation and areas where there was little agricultural activity in south central Michigan in the summer of 2003. Atrazine concentrations at nonagricultural sites ranged from less than the limit of quantification (0.17 microg atrazine/L) to 0.23 microg atrazine/L and did not exceed 1.2 microg atrazine/L at agricultural sites. Sediment TCDD-EQs were measurable only at one agricultural site. Of the measured parameters, only LSI values in adult male frogs differed significantly between agricultural and nonagricultural sites, with greater values observed at agricultural sites. In green frogs, EROD and MROD activities were measurable in both adult and juvenile frogs and were similar among sites. Median EROD activities ranged from 13 to 21 pmol/min/mg protein in adult male green frogs and from 5 to 13 pmol/min/mg protein in adult female green frogs. Juvenile frogs had greater EROD and MROD activities than adult frogs. Bullfrogs and leopard frogs had greater activities than did green frogs. Atrazine concentrations were significantly and negatively correlated with MROD activity in adult male green frogs (Spearman R = -0.800). LSI and EROD and MROD activities of adult female or juvenile green frogs were not significantly correlated with atrazine concentrations. These results suggest that atrazine does not appear to have a consistent association with EROD or MROD activities in wild-caught green frogs.
Collapse
Affiliation(s)
- M B Murphy
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Poelmans S, Verslycke T, Monteyne E, Noppe H, Verheyden K, Janssen CR, De Brabander HF. Testosterone metabolism in Neomysis integer following exposure to benzo(a)pyrene. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:405-12. [PMID: 16815059 DOI: 10.1016/j.cbpb.2006.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/25/2006] [Accepted: 03/31/2006] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (BaP), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96 h to 0.43, 2.39, 28.83, 339.00 and 1,682.86 microg BaP L(-1) and a solvent control, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC-MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1,682.86 microg BaP L(-1) as compared to the control animals.
Collapse
Affiliation(s)
- S Poelmans
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Research Group Veterinary Public Health and Zoonoses, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Copper-mediated regio- and stereoselective 12β-hydroxylation of steroids with molecular oxygen and an unexpected 12β-chlorination. Tetrahedron 2005. [DOI: 10.1016/j.tet.2004.10.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Parente TEM, De-Oliveira ACAX, Silva IB, Araujo FG, Paumgartten FJR. Induced alkoxyresorufin-O-dealkylases in tilapias (Oreochromis niloticus) from Guandu river, Rio de Janeiro, Brazil. CHEMOSPHERE 2004; 54:1613-1618. [PMID: 14675840 DOI: 10.1016/j.chemosphere.2003.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The activity of fish monooxygenases has been extensively used as a monitoring tool to detect contamination of water bodies by cytochrome P450-inducing agents. In this study we evaluated the activities of ethoxy- (EROD), methoxy- (MROD) and pentoxy- (PROD) resorufin-O-dealkylases in the liver of Nile tilapias (Oreochromis niloticus) collected at the Guandu river, at a reference clean site (Lake 1) and at two other sampling sites (Lakes 2 and 3) in Rio de Janeiro state, Brazil. Alkoxyresorufin-O-dealkylases were measured fluorimetrically in the hepatic S9 fraction. EROD (17.7-fold), MROD (14.2-fold) as well as PROD activities were considerably higher in tilapias from Guandu river. A moderate increase of EROD (5.0-fold) and MROD (5.4-fold) was also found in tilapias from Lake 3. These findings suggest that Guandu river watershed, the main source of urban drinking water supply in Rio de Janeiro, is polluted with CYP1A-inducing xenobiotics. Furthermore, we also found a good linear relationship between EROD and MROD, a finding that agrees with the hypothesis that the two reactions are catalysed by the same CYP1A isoform in O. niloticus.
Collapse
Affiliation(s)
- Thiago E M Parente
- Laboratory of Environmental Toxicology, Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil 4325, Rio de Janeiro RJ 21045-900, Brazil
| | | | | | | | | |
Collapse
|