1
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2024:10.1007/s00424-024-03037-5. [PMID: 39482558 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Sharifi S, Rostami F, Babaei Khorzoughi K, Rahmati M. Effect of time-restricted eating and intermittent fasting on cognitive function and mental health in older adults: A systematic review. Prev Med Rep 2024; 42:102757. [PMID: 38774517 PMCID: PMC11107340 DOI: 10.1016/j.pmedr.2024.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Objective Emerging evidence suggests that dietary interventions hold promise for promoting cognitive function and mental well-being in aging populations. This systematic review aimed to examine the potential relationship between Time-Restricted Eating (TRE) and Intermittent Fasting (IFA) with cognitive function and mental health in older adults. Methods A thorough exploration was undertaken on electronic databases such as PubMed, Scopus, Web of Science, Science Direct, and Google Scholar, up to October 2023, following PRISMA standards. The evaluation of the quality and potential bias in the incorporated articles involved the use of the Newcastle-Ottawa Scale and Consolidated Standards of Reporting Trials (CONSORT). Results From a total of 539 articles initially identified, eight studies met the eligibility criteria for inclusion in this review. Out of these eight studies, six focused on cognitive function, and 2 focused on mental health. The reviewed articles encompassed a wide range of population sizes, with the number of older adults studied varying from 10 to 1357, reflecting a diverse cohort of individuals. Conclusions.The findings suggest that TRE and IFA may have a positive impact on cognitive function and mental health in this population. However, additional research is needed to fully comprehend this relationship. Therefore, future research should specifically examine factors such as the duration and timing of the eating window in TRE, as well as the physical condition of older adults, to provide a more nuanced understanding of the cognitive and mental health benefits of TRE and IFA in older adults.
Collapse
Affiliation(s)
- Sina Sharifi
- Department of Geriatric and Psychiatric Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Fatemeh Rostami
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Kimia Babaei Khorzoughi
- Faculty of Education and Psychology, Islamic Azad University Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Mahmoud Rahmati
- Department of Geriatric and Psychiatric Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
3
|
Dong H, Wang S, Hu C, Wang M, Zhou T, Zhou Y. Neuroprotective Effects of Intermittent Fasting in the Aging Brain. ANNALS OF NUTRITION & METABOLISM 2024; 80:175-185. [PMID: 38631305 DOI: 10.1159/000538782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A major risk factor for neurodegenerative disorders is old age. Nutritional interventions that delay aging, such as calorie restriction (CR) and intermittent fasting (IF), as well as pharmaceuticals that affect the pathways linking nutrition and aging processes, have been developed in recent decades and have been shown to alleviate the effects of aging on the brain. SUMMARY CR is accomplished by alternating periods of ad libitum feeding and fasting. In animal models, IF has been shown to increase lifespan and slow the progression and severity of age-related pathologies such as cardiovascular and neurodegenerative diseases and cancer. According to recent research, dietary changes can help older people with dementia retain brain function. However, the mechanisms underlying the neuroprotective effect of IF on the aging brain and related questions in this area of study (i.e., the potential of IF to treat neurodegenerative disorders) remain to be examined. KEY MESSAGES This review addresses the hypothesis that IF may have translational potential in protecting the aged brain while summarizing the research supporting the putative neuroprotective mechanisms of IF in animal models. Additionally, given the emerging understanding of the connection between aging and dementia, our investigations may offer a fresh perspective on the use of dietary interventions for enhancing brain function and preventing dementia in elderly individuals. Finally, the absence of guidelines regarding the application of IF in patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge of the long-term effects of IF on dementia before it can be widely prescribed. In conclusion, IF may be an ancillary intervention for preserving memory and cognition in elderly individuals.
Collapse
Affiliation(s)
- Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Pharmaceutical and Medical Equipment, Ba Yi Orthopedic Hospital, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
4
|
Alharbi M, Stephan BC, Shannon OM, Siervo M. Does dietary nitrate boost the effects of caloric restriction on brain health? Potential physiological mechanisms and implications for future research. Nutr Metab (Lond) 2023; 20:45. [PMID: 37880786 PMCID: PMC10599060 DOI: 10.1186/s12986-023-00766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Dementia is a highly prevalent and costly disease characterised by deterioration of cognitive and physical capacity due to changes in brain function and structure. Given the absence of effective treatment options for dementia, dietary and other lifestyle approaches have been advocated as potential strategies to reduce the burden of this condition. Maintaining an optimal nutritional status is vital for the preservation of brain function and structure. Several studies have recognised the significant role of nutritional factors to protect and enhance metabolic, cerebrovascular, and neurocognitive functions. Caloric restriction (CR) positively impacts on brain function via a modulation of mitochondrial efficiency, endothelial function, neuro-inflammatory, antioxidant and autophagy responses. Dietary nitrate, which serves as a substrate for the ubiquitous gasotransmitter nitric oxide (NO), has been identified as a promising nutritional intervention that could have an important role in improving vascular and metabolic brain regulation by affecting oxidative metabolism, ROS production, and endothelial and neuronal integrity. Only one study has recently tested the combined effects of both interventions and showed preliminary, positive outcomes cognitive function. This paper explores the potential synergistic effects of a nutritional strategy based on the co-administration of CR and a high-nitrate diet as a potential and more effective (than either intervention alone) strategy to protect brain health and reduce dementia risk.
Collapse
Affiliation(s)
- Mushari Alharbi
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| | - Blossom Cm Stephan
- Curtin Dementia Centre of Excellence, EnAble Institute, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mario Siervo
- Curtin Dementia Centre of Excellence, EnAble Institute, Curtin University, Kent Street, Bentley, WA, 6102, Australia.
| |
Collapse
|
5
|
Caloric Restriction (CR) Plus High-Nitrate Beetroot Juice Does Not Amplify CR-Induced Metabolic Adaptation and Improves Vascular and Cognitive Functions in Overweight Adults: A 14-Day Pilot Randomised Trial. Nutrients 2023; 15:nu15040890. [PMID: 36839248 PMCID: PMC9962072 DOI: 10.3390/nu15040890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions with pleiotropic physiological functions. This pilot study investigates the combined effects of CR and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight and obese middle-aged and older adults. This was a two-arm, parallel randomized clinical trial including 29 participants allocated to CR + BRJ (n = 15) or CR alone (n = 14) for 14 days. Body composition, resting energy expenditure (REE), and hand-grip strength were measured. Resting blood pressure (BP) and microvascular endothelial function were measured, and Trail-Making Test A and B were used to assess cognitive function. Salivary nitrate and nitrite, and urinary nitrate and 8-isoprostane concentrations were measured. Changes in body composition, REE, and systolic and diastolic BP were similar between the two interventions (p > 0.05). The CR + BRJ intervention produced greater changes in average microvascular flux (p = 0.03), NO-dependent endothelial activity (p = 0.02), and TMT-B cognitive scores (p = 0.012) compared to CR alone. Changes in urinary 8-isoprostane were greater in the CR + BRJ group (p = 0.02), and they were inversely associated with changes in average microvascular flux (r = -0.53, p = 0.003). These preliminary findings suggest that greater effects on vascular and cognitive functions could be achieved by combining CR with dietary nitrate supplementation.
Collapse
|
6
|
Lissek T. Activity-Dependent Induction of Younger Biological Phenotypes. Adv Biol (Weinh) 2022; 6:e2200119. [PMID: 35976161 DOI: 10.1002/adbi.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Indexed: 01/28/2023]
Abstract
In several mammalian species, including humans, complex stimulation patterns such as cognitive and physical exercise lead to improvements in organ function, organism health and performance, as well as possibly longer lifespans. A framework is introduced here in which activity-dependent transcriptional programs, induced by these environmental stimuli, move somatic cells such as neurons and muscle cells toward a state that resembles younger cells to allow remodeling and adaptation of the organism. This cellular adaptation program targets several process classes that are heavily implicated in aging, such as mitochondrial metabolism, cell-cell communication, and epigenetic information processing, and leads to functional improvements in these areas. The activity-dependent gene program (ADGP) can be seen as a natural, endogenous cellular reprogramming mechanism that provides deep insight into the principles of inducible improvements in cell and organism function and can guide the development of therapeutic approaches for longevity. Here, these ADGPs are analyzed, exemplary critical molecular nexus points such as cAMP response element-binding protein, myocyte enhancer factor 2, serum response factor, and c-Fos are identified, and it is explored how one may leverage them to prevent, attenuate, and reverse human aging-related decline of body function.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Dietary Restriction and Rapamycin Affect Brain Aging in Mice by Attenuating Age-Related DNA Methylation Changes. Genes (Basel) 2022; 13:genes13040699. [PMID: 35456505 PMCID: PMC9030181 DOI: 10.3390/genes13040699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The fact that dietary restriction (DR) and long-term rapamycin treatment (RALL) can ameliorate the aging process has been reported by many researchers. As the interface between external and genetic factors, epigenetic modification such as DNA methylation may have latent effects on the aging rate at the molecular level. To understand the mechanism behind the impacts of dietary restriction and rapamycin on aging, DNA methylation and gene expression changes were measured in the hippocampi of different-aged mice. Examining the single-base resolution of DNA methylation, we discovered that both dietary restriction and rapamycin treatment can maintain DNA methylation in a younger state compared to normal-aged mice. Through functional enrichment analysis of genes in which DNA methylation or gene expression can be affected by DR/RALL, we found that DR/RALL may retard aging through a relationship in which DNA methylation and gene expression work together not only in the same gene but also in the same biological process. This study is instructive for understanding the maintenance of DNA methylation by DR/RALL in the aging process, as well as the role of DR and RALL in the amelioration of aging.
Collapse
|
8
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Adams MM. Environmental enrichment applied with sensory components prevents age-related decline in synaptic dynamics: Evidence from the zebrafish model organism. Exp Gerontol 2021; 149:111346. [PMID: 33838219 DOI: 10.1016/j.exger.2021.111346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Progression of cognitive decline with or without neurodegeneration varies among elderly subjects. The main aim of the current study was to illuminate the molecular mechanisms that promote and retain successful aging in the context of factors such as environment and gender, both of which alter the resilience of the aging brain. Environmental enrichment (EE) is one intervention that may lead to the maintenance of cognitive processing at older ages in both humans and animal subjects. EE is easily applied to different model organisms, including zebrafish, which show similar age-related molecular and behavioral changes as humans. Global changes in cellular and synaptic markers with respect to age, gender and 4-weeks of EE applied with sensory stimulation were investigated using the zebrafish model organism. Results indicated that EE increases brain weight in an age-dependent manner without affecting general body parameters like body mass index (BMI). Age-related declines in the presynaptic protein synaptophysin, AMPA-type glutamate receptor subunits and a post-mitotic neuronal marker were observed and short-term EE prevents these changes in aged animals, as well as elevates levels of the inhibitory scaffolding protein, gephyrin. Gender-driven alterations were observed in the levels of the glutamate receptor subunits. Oxidative stress markers were significantly increased in the old animals, while exposure to EE did not alter this pattern. These data suggest that EE with sensory stimulation exerts its effects mainly on age-related changes in synaptic dynamics, which likely increase brain resilience through specific cellular mechanisms.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
9
|
Savola E, Montgomery C, Waldron FM, Monteith KM, Vale P, Walling C. Testing evolutionary explanations for the lifespan benefit of dietary restriction in fruit flies (Drosophila melanogaster). Evolution 2021; 75:450-463. [PMID: 33320333 PMCID: PMC8609428 DOI: 10.1111/evo.14146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
Dietary restriction (DR), limiting calories or specific nutrients without malnutrition, extends lifespan across diverse taxa. Traditionally, this lifespan extension has been explained as a result of diet-mediated changes in the trade-off between lifespan and reproduction, with survival favored when resources are scarce. However, a recently proposed alternative suggests that the selective benefit of the response to DR is the maintenance of reproduction. This hypothesis predicts that lifespan extension is a side effect of benign laboratory conditions, and DR individuals would be frailer and unable to deal with additional stressors, and thus lifespan extension should disappear under more stressful conditions. We tested this by rearing outbred female fruit flies (Drosophila melanogaster) on 10 different protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (Pseudomonas entomophila), injured with a sterile pinprick, or unstressed. We monitored lifespan, fecundity, and measures of aging. DR extended lifespan and reduced reproduction irrespective of injury and infection. Infected flies on lower protein diets had particularly poor survival. Exposure to infection and injury did not substantially alter the relationship between diet and aging patterns. These results do not provide support for lifespan extension under DR being a side effect of benign laboratory conditions.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Clara Montgomery
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Fergal M Waldron
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Pedro Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Craig Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| |
Collapse
|
10
|
Currenti W, Godos J, Castellano S, Caruso G, Ferri R, Caraci F, Grosso G, Galvano F. Association between Time Restricted Feeding and Cognitive Status in Older Italian Adults. Nutrients 2021; 13:nu13010191. [PMID: 33435416 PMCID: PMC7827225 DOI: 10.3390/nu13010191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Due to the increased life expectancy, the prevalence of aging-related health conditions, such as cognitive impairment, dementia and Alzheimer’s disease is increasing. Among the modifiable risk factors, dietary factors have proved to be of primary importance in preserving and improving mental health and cognitive status in older adults, possibly through the modulation of adult neurogenesis, neuronal plasticity and brain signaling. Feeding/fasting timing manipulation has emerged as an innovative strategy to counteract and treat cognitive decline. The aim of this study was to investigate the association between the timing of the feeding period and cognitive status in a cross-sectional cohort of adults living in the Mediterranean area. Methods: Demographic and dietary characteristics of 883 adults living in Southern Italy (Sicily) were analyzed. Food frequency questionnaires were used to calculate the time window between the first and the last meal of an average day. Participants with an eating time window duration of more than 10 h were then identified, as well as those with eating time restricted to less than 10 h (TRF). Results: After adjusting for potential confounding factors, individuals adherent to TRF were less likely to have cognitive impairment, compared to those with no eating time restrictions [odds ratio (OR) = 0.28; 95% confidence intervals (CI): 0.07–0.90]; a similar association was found for individuals having breakfast (OR = 0.37, 95% CI: 0.16–0.89), but not for those having dinner. Conclusions: The results of this study reveal that time restricted eating may be positively associated with cognitive status, and thus exert plausible effects on brain health.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.)
| | - Justyna Godos
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (J.G.); (R.F.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy;
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (J.G.); (R.F.); (F.C.)
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (J.G.); (R.F.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.)
- Correspondence: ; Tel.: +39-0954-781-187
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (W.C.); (F.G.)
| |
Collapse
|
11
|
Dorling JL, van Vliet S, Huffman KM, Kraus WE, Bhapkar M, Pieper CF, Stewart T, Das SK, Racette SB, Roberts SB, Ravussin E, Redman LM, Martin CK. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev 2021; 79:98-113. [PMID: 32940695 PMCID: PMC7727025 DOI: 10.1093/nutrit/nuaa085] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Indexed: 02/04/2023] Open
Abstract
Caloric restriction (CR) is a strategy that attenuates aging in multiple nonhuman species. The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trials are part of a research program aiming to test the effects of CR on aging and longevity biomarkers in humans. Building on CALERIE phase 1, CALERIE phase 2 (CALERIE 2) was the largest study to date to assess sustained CR in healthy humans without obesity. In a 24-month randomized controlled trial comprising 218 participants at baseline, CALERIE 2 showed that moderate CR, 11.9% on average, induced improvements in aging-related biomarkers without adversely affecting psychological or behavioral outcomes. The objectives of this report are to summarize and review the highlights of CALERIE 2 and report previously unpublished results on eating disorder symptoms and cognitive function. This article specifically summarizes the physiological, psychological, aging, behavioral, and safety results of the trial. Also provided are research directions beyond CALERIE 2 that highlight important opportunities to investigate the role of CR in aging, longevity, and health span in humans.
Collapse
Affiliation(s)
- James L Dorling
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Kim M Huffman
- Duke University School of Medicine, Durham, North Carolina, USA
| | - William E Kraus
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Carl F Pieper
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Tiffany Stewart
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sai Krupa Das
- US Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Susan B Racette
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan B Roberts
- US Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
12
|
Gao Y, Zhu C, Li K, Cheng X, Du Y, Yang D, Fan X, Gaur U, Yang M. Comparative proteomics analysis of dietary restriction in Drosophila. PLoS One 2020; 15:e0240596. [PMID: 33064752 PMCID: PMC7567386 DOI: 10.1371/journal.pone.0240596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
To explore the underlying mechanism of dietary restriction (DR) induced lifespan extension in fruit flies at protein level, we performed proteome sequencing in Drosophila at day 7 (young) and day 42 (old) under DR and ad libitum (AL) conditions. A total of 18629 unique peptides were identified in Uniprot, corresponding to 3,662 proteins. Among them, 383 and 409 differentially expressed proteins (DEPs) were identified from comparison between DR vs AL at day 7 and 42, respectively. Bioinformatics analysis revealed that membrane-related processes, post-transcriptional processes, spliceosome and reproduction related processes, were highlighted significantly. In addition, expression of proteins involved in pathways such as spliceosomes, oxidative phosphorylation, lysosomes, ubiquitination, and riboflavin metabolism was relatively higher during DR. A relatively large number of DEPs were found to participate in longevity and age-related disease pathways. We identified 20 proteins that were consistently regulated during DR and some of which are known to be involved in ageing, such as mTORC1, antioxidant, DNA damage repair and autophagy. In the integration analysis, we found 15 genes that were stably regulated by DR at both transcriptional as well as translational levels. Our results provided a useful dataset for further investigations on the mechanism of DR and aging.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Chenxing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Keqin Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Xingyi Cheng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Yanjiao Du
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
14
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|
15
|
Rowland NE, Toth LA. Analytic and Interpretational Pitfalls to Measuring Fecal Corticosterone Metabolites in Laboratory Rats and Mice. Comp Med 2019; 69:337-349. [PMID: 31578162 DOI: 10.30802/aalas-cm-18-000119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Minimization and alleviation of stress are generally viewed as desirable aspects of laboratory animal management and use. However, achieving that goal requires an unambiguous and valid measure of stress. Glucocorticoid concentrations are commonly used as a physiologic index of stress. Measurement of glucocorticoids in blood, serum or plasma clearly reflects many types of both acute and chronic stress. However, the rapid rise in concentrations of circulating glucocorticoids that occurs even with relatively simple manipulations such as handling has led to the increased use of fecal glucocorticoid metabolite (FCM) assays, which provide a temporally integrated measure that may allow a more accurate interpretation of chronic stressors. In this review, we consider 3 aspects of glucocorticoids as a measure of stress. First, we discuss the analytic and interpretational pitfalls of using FCM concentrations as an index of stress in mice and rats. Second, we consider evidence that some degree of stress may benefit animals by priming physiologic and behavioral adaptations that render the animals more resilient in the face of stress. Finally, we use 2 situations-social housing and food restriction-to illustrate the concept of hormesis-a biologic phenomenon in which a low dose or intensity of a challenge has a beneficial effect, whereas exposure to high doses or intensities is detrimental.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, Florida;,
| | - Linda A Toth
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, Illinois
| |
Collapse
|
16
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
17
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019. [PMID: 30545444 PMCID: PMC6386225 DOI: 10.5483/bmbrep.2019.52.1.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| |
Collapse
|
18
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019; 52:56-63. [PMID: 30545444 PMCID: PMC6386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 10/07/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062,
Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229,
USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
19
|
Chapagain D, Virányi Z, Huber L, Serra J, Schoesswender J, Range F. Effect of Age and Dietary Intervention on Discrimination Learning in Pet Dogs. Front Psychol 2018; 9:2217. [PMID: 30487772 PMCID: PMC6246696 DOI: 10.3389/fpsyg.2018.02217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with a decline in cognitive functions such as learning, memory, attention, cognitive flexibility, and executive functions. Recent evidence indicates that interventions such as exercise, diet and cognitive training can be used to reduce the rate of age-dependent cognitive decline. In this study, we examined the changes in discrimination learning in older pet dogs, tested whether a dietary intervention counteracts a potential decline in learning and evaluated the influence of lifelong training on learning speed and cognitive flexibility. We included 115 pet dogs (>6 years) of 30 different breeds into one of two treatment groups: either a diet enriched with antioxidants, docosahexaenoic acid (DHA), Phosphatidylserine and tryptophan or a control diet for 1 year. Lifelong training was calculated for each dog using a questionnaire where owners filled their dog’s training experiences over years. Dogs were trained to discriminate different pictures at the start of the dietary intervention using a touch screen methodology. After 1 year of dietary intervention, they were tested on a main picture discrimination task where they were confronted with a discrimination of four new pictures. We used the total number of sessions needed to reach learning criterion as a measure of learning speed and the rate of correction trials as a measure of deficit in learning from feedback/cognitive flexibility. In the main discrimination task, we found an influence of neither age nor diet on the speed of learning and deficit in learning from feedback. We did not find any influence of lifelong training either. The null findings were further corroborated by Bayesian statistics. The null findings might be due to the fact that pet dogs live in a stimulating environment which may reduce the rate of cognitive decline and hinder finding an age or diet effect. Also, the similarity between the training and the main discrimination task might have made the main task too easy for the animals to solve. Further studies are warranted to assess the effect of enriched diets on pet dogs using tasks that measure cognitive functions with a higher sensitivity.
Collapse
Affiliation(s)
- Durga Chapagain
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Zsófia Virányi
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | | | - Julia Schoesswender
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Friederike Range
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria.,Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
20
|
Brown SM, Bush SJ, Summers KM, Hume DA, Lawrence AB. Environmentally enriched pigs have transcriptional profiles consistent with neuroprotective effects and reduced microglial activity. Behav Brain Res 2018; 350:6-15. [PMID: 29778628 PMCID: PMC6002610 DOI: 10.1016/j.bbr.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
Environmental enrichment (EE) is widely used to study the effects of external factors on brain development, function and health in rodent models, but very little is known of the effects of EE on the brain in a large animal model such as the pig. Twenty-four young pigs (aged 5 weeks at start of study, 1:1 male: female ratio) were housed in environmentally enriched (EE) pens and provided with additional enrichment stimulation (a bag filled with straw) once daily. Litter, weight and sex matched controls n= (24) were housed in barren (B) conditions. Behaviour was recorded on alternate days from study day 10. After 21 days, RNA-sequencing of the frontal cortex of male piglets culled one hour after the enrichment stimulation, but not those at 4 h after stimulation, showed upregulation of genes involved in neuronal activity and synaptic plasticity in the EE compared to the B condition. This result is mirrored in the behavioural response to the stimulation which showed a peak in activity around the 1 h time-point. By contrast, EE piglets displayed a signature consistent with a relative decrease in microglial activity compared to those in the B condition. These results confirm those from rodents, suggesting that EE may also confer neuronal health benefits in large mammal models, through a potential relative reduction in neuroinflammatory process and increase in neuroprotection driven by an enrichment-induced increase in behavioural activity.
Collapse
Affiliation(s)
- S M Brown
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| | - S J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - K M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - D A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; Mater Research Institute-UQ, Translational Research Institute, 37 Kent St, Woolloongabba, QLd, 4102, Australia
| | - A B Lawrence
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK; SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| |
Collapse
|
21
|
McMurphy T, Huang W, Queen NJ, Ali S, Widstrom KJ, Liu X, Xiao R, Siu JJ, Cao L. Implementation of environmental enrichment after middle age promotes healthy aging. Aging (Albany NY) 2018; 10:1698-1721. [PMID: 30036185 PMCID: PMC6075449 DOI: 10.18632/aging.101502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
With increases in life expectancy, it is vital to understand the dynamics of aging, their interaction with lifestyle factors, and the connections to age-related disease processes. Our work on environmental enrichment (EE), a housing environment boosting mental health, has revealed a novel anticancer and anti-obesity phenotype mediated by a brain-fat axis: the hypothalamic-sympathoneural-adipocyte (HSA) axis in young animals. Here we investigated EE effects on healthspan and lifespan when initiated after middle age. Short-term EE for six weeks activated the HSA axis in 10-month-old mice. Long-term EE for twelve months reduced adiposity, improved glucose tolerance, decreased leptin levels, enhanced motor abilities, and inhibited anxiety. In addition to adipose remodeling, EE decreased age-related liver steatosis, reduced hepatic glucose production, and increased glucose uptake by liver and adipose tissue contributing to the improved glycemic control. The EE-induced liver modulation was associated with a suppression of protein kinase Cε. Moreover, EE down-regulated the expression of inflammatory genes in the brain, adipose, and liver. EE initiated at 18-month of age significantly improved glycemic control and showed a trend of positive impact on mean lifespan. These data suggest that EE induces metabolic and behavioral adaptations that are shared by factors known to increase healthspan and lifespan.
Collapse
Affiliation(s)
- Travis McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle J. Widstrom
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jason J. Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Yin Z, Raj DD, Schaafsma W, van der Heijden RA, Kooistra SM, Reijne AC, Zhang X, Moser J, Brouwer N, Heeringa P, Yi CX, van Dijk G, Laman JD, Boddeke EWGM, Eggen BJL. Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging. Front Mol Neurosci 2018; 11:65. [PMID: 29593493 PMCID: PMC5857900 DOI: 10.3389/fnmol.2018.00065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD) or low-fat diet (LFD) during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS). Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake) on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32) in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Tongji Hospital, Tongji Medical College of HUST, Huazhong University of Science and Technology, Wuhan, China
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Divya D. Raj
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wandert Schaafsma
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roel A. van der Heijden
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Susanne M. Kooistra
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aaffien C. Reijne
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, Groningen, Netherlands
- Groningen Institute for Evolutionary Life Sciences, Department of Behavioral Neuroscience, University of Groningen, Groningen, Netherlands
| | - Xiaoming Zhang
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan van Dijk
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, Groningen, Netherlands
- Groningen Institute for Evolutionary Life Sciences, Department of Behavioral Neuroscience, University of Groningen, Groningen, Netherlands
- ESRIG Centre for Isotope Research, University of Groningen, Groningen, Netherlands
| | - Jon D. Laman
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik W. G. M. Boddeke
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J. L. Eggen
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
A cafeteria diet alters the decision making strategy and metabolic markers in Sprague-Dawley male rats. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Vozella V, Basit A, Misto A, Piomelli D. Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1502-1511. [DOI: 10.1016/j.bbalip.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
25
|
Hadem IKH, Majaw T, Kharbuli B, Sharma R. Beneficial effects of dietary restriction in aging brain. J Chem Neuroanat 2017; 95:123-133. [PMID: 29031555 DOI: 10.1016/j.jchemneu.2017.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/14/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Aging is a multifactorial complex process that leads to the deterioration of biological functions wherein its underlying mechanism is not fully elucidated. It affects the organism at the molecular and cellular level that contributes to the deterioration of structural integrity of the organs. The central nervous system is the most vulnerable organ affected by aging and its effect is highly heterogeneous. Aging causes alteration in the structure, metabolism and physiology of the brain leading to impaired cognitive and motor-neural functions. Dietary restriction (DR), a robust mechanism that extends lifespan in various organisms, ameliorates brain aging by reducing oxidative stress, improving mitochondrial function, activating anti-inflammatory responses, promoting neurogenesis and increasing synaptic plasticity. It also protects and prevents age-related structural changes. DR alleviates many age-associated diseases including neurodegeneration and improves cognitive functions. DR inhibits/activates nutrient signaling cascades such as insulin/IGF-1, mTOR, AMPK and sirtuins. Because of its sensitivity to energy status and hormones, AMPK is considered as the global nutrient sensor. This review will present an elucidative potential role of dietary restriction in the prevention of phenotypic features during aging in brain and its diverse mechanisms.
Collapse
Affiliation(s)
| | - Teikur Majaw
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Babiangshisha Kharbuli
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
26
|
Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 2017; 156:90-106. [DOI: 10.1016/j.pneurobio.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
|
27
|
Fung J, Berger A. Hyperinsulinemia and Insulin Resistance: Scope of the Problem. JOURNAL OF INSULIN RESISTANCE 2016. [DOI: 10.4102/jir.v1i1.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
No abstract available.
Collapse
|
28
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
29
|
A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 2015; 22:86-99. [PMID: 26094889 PMCID: PMC4509734 DOI: 10.1016/j.cmet.2015.05.012] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease, and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.
Collapse
|
30
|
Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: Insights from gene–environment interactions in Huntington's disease. Neurosci Biobehav Rev 2015; 52:178-92. [DOI: 10.1016/j.neubiorev.2015.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/13/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
|
31
|
Amer MG, Mazen NF, Mohamed NM. Role of calorie restriction in alleviation of age-related morphological and biochemical changes in sciatic nerve. Tissue Cell 2014; 46:497-504. [DOI: 10.1016/j.tice.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
32
|
Nam SM, Kim JW, Yoo DY, Yim HS, Kim DW, Choi JH, Kim W, Jung HY, Won MH, Hwang IK, Seong JK, Yoon YS. Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose. BMC Neurosci 2014; 15:116. [PMID: 25359614 PMCID: PMC4219098 DOI: 10.1186/s12868-014-0116-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/06/2014] [Indexed: 02/02/2023] Open
Abstract
Background Aging negatively affects adult hippocampal neurogenesis, and exercise attenuates the age-related reduction in adult hippocampal neurogenesis. In the present study, we used senescent mice induced by D-galactose to examine neural stem cells, cell proliferation, and neuronal differentiation with or without exercise treatment. D-galactose (100 mg/kg) was injected to six-week-old C57BL/6 J mice for 6 weeks to induce the senescent model. During these periods, the animals were placed on a treadmill and acclimated to exercise for 1 week. Then treadmill running was conducted for 1 h/day for 5 consecutive days at 10-12 m/min for 5 weeks. Results Body weight and food intake did not change significantly after D-galactose administration with/without treadmill exercise, although body weight and food intake was highest after treadmill exercise in adult animals and lowest after treadmill exercise in D-galactose-induced senescent model animals. D-galactose treatment significantly decreased the number of nestin (a neural stem cell marker), Ki67 (a cell proliferation marker), and doublecortin (DCX, a differentiating neuroblast marker) positive cells compared to those in the control group. In contrast, treadmill exercise significantly increased Ki67- and DCX-positive cell numbers in both the vehicle- and D-galactose treated groups. In addition, phosphorylated cAMP-response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) was significantly decreased in the D-galactose treated group, whereas exercise increased their expression in the subgranular zone of the dentate gyrus in both the vehicle- and D-galactose-treated groups. Conclusion These results suggest that treadmill exercise attenuates the D-galactose-induced reduction in neural stem cells, cell proliferation, and neuronal differentiation by enhancing the expression of pCREB and BDNF in the dentate gyrus of the hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0116-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Hee Sun Yim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea.
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
33
|
Effect of Resveratrol as Caloric Restriction Mimetic and Environmental Enrichment on Neurobehavioural Responses in Young Healthy Mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/545170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Caloric restriction and environmental enrichment have been separately reported to possess health benefits such as improvement in motor and cognitive functions. Resveratrol, a natural polyphenolic compound, has been reported to be caloric restriction mimetic. This study therefore aims to investigate the potential benefit of the combination of resveratrol as CR and EE on learning and memory, motor coordination, and motor endurance in young healthy mice. Fifty mice of both sexes were randomly divided into five groups of 10 animals each: group I animals received carboxymethylcellulose (CMC) orally per kg/day (control), group II animals were maintained on every other day feeding, group III animals received resveratrol 50 mg/kg, suspended in 10 g/L of (CMC) orally per kg/day, group IV animals received CMC and were kept in an enriched environment, and group V animals received resveratrol 50 mg/kg and were kept in EE. The treatment lasted for four weeks. On days 26, 27, and 28 of the study period, the animals were subjected to neurobehavioural evaluation. The results obtained showed that there was no significant change (P>0.05) in neurobehavioural responses in all the groups when compared to the control which indicates that 50 mg/kg of resveratrol administration and EE have no significant effects on neurobehavioural responses in young healthy mice over a period of four weeks.
Collapse
|
34
|
Pusic AD, Pusic KM, Kraig RP. What are exosomes and how can they be used in multiple sclerosis therapy? Expert Rev Neurother 2014; 14:353-5. [PMID: 24552578 DOI: 10.1586/14737175.2014.890893] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current treatment options for multiple sclerosis are limited and consist of immunosuppressors or agents to prevent immune infiltration of the brain. These therapies have potentially harmful side effects and do little to promote myelin repair. Instead, we suggest using exosomes, naturally occurring small vesicles that exert influence through the delivery of mRNA, microRNA and protein. Dendritic cells can be cultured from bone marrow and stimulated to release exosomes. When administered to the brain, these exosomes significantly increase myelination and improve remyelination following injury by prompting preoligodendrocytes to differentiate into myelin producing cells. Additionally, they are non-toxic and can easily cross the blood-brain barrier and, thus, have great potential as a therapeutic.
Collapse
Affiliation(s)
- Aya D Pusic
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
Doulames V, Lee S, Shea TB. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice. Int J Neurosci 2013; 124:369-76. [DOI: 10.3109/00207454.2013.848441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Chung K, Kim D, Park M, Choi Y, Kim N, Lee J, Yu B, Chung H. Recent advances in calorie restriction research on aging. Exp Gerontol 2013. [DOI: 10.1016/j.exger.2012.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Partadiredja G, Simpson R, Bedi KS. The effects of pre-weaning undernutrition on the expression levels of free radical deactivating enzymes in the mouse brain. Nutr Neurosci 2013; 8:183-93. [PMID: 16117186 DOI: 10.1080/10284150500133037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A mild degree of undernutrition brought about by restricting the amount of food in the diet is known to alter the life span of an animal. It has been hypothesised that this may be related to the effects of undernutrition on an animals anti-oxidant defense system. We have therefore, used real-time PCR (rt-PCR) techniques to determine the levels of mRNA expression for manganese superoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/ZnSOD), glutathione peroxidase 1 (GPx 1) and catalase in the brains of Quackenbush mice undernourished from conception until 21-post-natal days of age. It was found that 21- and 61-day-old undernourished mice had a deficit in the expression of Cu/ZnSOD in both the cerebellum and forebrain regions compared to age-matched controls. The expression of MnSOD was found to be greater in the cerebellum, but not the forebrain region, of 21-day-old undernourished mice. There were no significant differences in the expression of GPx 1 and catalase between control and undernourished or previously undernourished mice. Our results confirm that undernutrition during the early life of a mouse may disrupt some of the enzymes involved in the anti-oxidant defense systems.
Collapse
Affiliation(s)
- G Partadiredja
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
38
|
Baumans V, Van Loo PLP. How to improve housing conditions of laboratory animals: the possibilities of environmental refinement. Vet J 2012; 195:24-32. [PMID: 23127868 DOI: 10.1016/j.tvjl.2012.09.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 08/16/2012] [Accepted: 09/26/2012] [Indexed: 01/03/2023]
Abstract
Housing systems for captive animals have often been designed on the basis of economic and ergonomic considerations, such as equipment, costs, space, workload, ability to observe the animals and to maintain a certain degree of hygiene, with little or no consideration for animal welfare. Environmental refinement can be defined as any modification in the environment of captive animals that seeks to enhance the physical and psychological well-being of the animals by providing stimuli which meet the animals' species-specific needs. This article provides an overview of environmental factors that influence the well-being of captive animals with specific reference to the needs of the most common laboratory species. It is important to evaluate environmental refinement in terms of the benefit to the animal, by assessing the use of and preference for certain enrichment, the effect on behaviour, and the performance of species-typical behaviour on physiological parameters. It is also necessary to evaluate the impact of refinement on scientific outcome, including whether and how statistical power is affected. Communication and team work between animal welfare scientists, animal research scientists, institutional animal welfare officers, veterinarians and animal ethics committees, animal facility management and personnel, are essential for success.
Collapse
Affiliation(s)
- V Baumans
- Dept. Animals, Science and Society, Div. Laboratory Animal Science, Utrecht University, P.O. Box 80166, 3508 TD Utrecht, The Netherlands.
| | | |
Collapse
|
39
|
Willette AA, Coe CL, Colman RJ, Bendlin BB, Kastman EK, Field AS, Alexander AL, Allison DB, Weindruch RH, Johnson SC. Calorie restriction reduces psychological stress reactivity and its association with brain volume and microstructure in aged rhesus monkeys. Psychoneuroendocrinology 2012; 37:903-16. [PMID: 22119476 PMCID: PMC3311744 DOI: 10.1016/j.psyneuen.2011.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Heightened stress reactivity is associated with hippocampal atrophy, age-related cognitive deficits, and increased risk for Alzheimer's disease. This temperament predisposition may aggravate age-associated brain pathology or be reflective of it. This association may be mediated through repeated activation of the stress hormone axis over time. Dietary interventions, such as calorie restriction (CR), affect stress biology and may moderate the pathogenic relationship between stress reactivity and brain in limbic and prefrontal regions. METHODS Rhesus monkeys (Macaca mulatta) aged 19-31 years consumed either a standard diet (N=18) or were maintained on 30% CR relative to baseline intake (N=26) for 13-19 years. Behavior was rated in both normative and aversive contexts. Urinary cortisol was collected. Animals underwent magnetic resonance imaging and diffusion tensor imaging (DTI) to acquire volumetric and tissue microstructure data respectively. Voxel-wise statistics regressed a global stress reactivity factor, cortisol, and their interaction on brain indices across and between dietary groups. RESULTS CR significantly reduced stress reactivity during aversive contexts without affecting activity, orientation, or attention behavior. Stress reactivity was associated with less volume and tissue density in areas important for emotional regulation and the endocrine axis including prefrontal cortices, hippocampus, amygdala, and hypothalamus. CR reduced these relationships. A Cortisol by Stress Reactivity voxel-wise interaction indicated that only monkeys with high stress reactivity and high basal cortisol demonstrated lower brain volume and tissue density in prefrontal cortices, hippocampus, and amygdala. CONCLUSIONS High stress reactivity predicted lower volume and microstructural tissue density in regions involved in emotional processing and modulation. A CR diet reduced stress reactivity and regional associations with neural modalities. High levels of cortisol appear to mediate some of these relationships.
Collapse
Affiliation(s)
- Auriel A. Willette
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705 USA
| | - Christopher L. Coe
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705 USA,Harlow Primate Laboratory, Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, WI, 53715 USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Erik K Kastman
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Aaron S. Field
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53792 USA
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705 USA
| | - David B. Allison
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294 USA
| | - Richard H. Weindruch
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin National Primate Research Center, Madison, WI, 53715 USA
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin National Primate Research Center, Madison, WI, 53715 USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA,Send Correspondence to: Sterling C. Johnson, Geriatric Research Education and Clinical Center, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA, Telephone Number: (608) 256-1901, Facsimile Number: (608) 265-3091
| |
Collapse
|
40
|
Zucchi FCR, Yao Y, Metz GA. The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 2012; 3:96. [PMID: 22675331 PMCID: PMC3366387 DOI: 10.3389/fgene.2012.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/10/2012] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation modulates gene expression without altering the DNA sequence to facilitate rapid adjustments to dynamically changing environmental conditions. The formation of an epigenetic memory allows passing on this information to subsequent generations. Here we propose that epigenetic memories formed by adverse environmental conditions and stress represent a critical determinant of health and disease in the F3 generation and beyond. Transgenerational programming of epigenetic regulation may represent a key to understand adult-onset complex disease pathogenesis and cumulative effects of life span and familial disease etiology. Ultimately, the mechanisms of generating an epigenetic memory may become of potentially promising diagnostic and therapeutic relevance due to their reversible nature. Exploring the role of environmental factors, such as stress, in causing variations in epigenetic profiles may lead to new avenues of personalized, preventive medicine based on epigenetic signatures and interventions.
Collapse
Affiliation(s)
- Fabiola C R Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
41
|
Yildirim E, Erol K, Ulupinar E. Effects of sertraline on behavioral alterations caused by environmental enrichment and social isolation. Pharmacol Biochem Behav 2012; 101:278-87. [PMID: 22248860 DOI: 10.1016/j.pbb.2011.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 11/13/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Environmental conditions are known to play a critical role in the pathogenesis of affective disorders. In this study, the effects of sertraline, a selective serotonin (5-HT) reuptake inhibitor, on anxiety- and depression-like behaviors were investigated in rats reared in different housing conditions. Wistar rats of both sexes were divided into three groups according to their rearing conditions (Enriched = EC, Isolated = IC and Standard = SC), after weaning at postnatal day 21. While animals in control conditions were housed as a group of 4 rats in regular size plexiglass cages, social isolation groups were housed individually in metal cages. Animals in enriched conditions were housed as a group of 12 rats in specially designed cages equipped with different stimulating objects. Six weeks later, activitymeter, elevated plus maze, rotarod, grip, forced swimming and sucrose preference tests were applied to all animals and all of the tests were repeated after i.p. injection of sertraline (10 mg/kg/day) for 7 days. Environmental enrichment reduced the stereotypic behavior, improved the motor coordination and facilitated the learning skills in animals. However, housing conditions affected depression-like parameters, but not anxiety-like parameters. Sertraline treatment reduced the depression-like effect in EC and SC, but not in IC. It decreased anxiety-like behavior in IC while increased in EC. Socially isolated animals preferentially consumed more sucrose and water than the other groups, and interestingly, these differences became more significant following sertraline treatment. These results show that the responses of animals to anti-depressive drugs could be differentially affected by the behavioral consequences of the diverse housing conditions. Thus, to improve the treatment of depression; behavioral consequences of diverse housing conditions should be taken into consideration.
Collapse
Affiliation(s)
- Engin Yildirim
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, 26480 Eskisehir, Turkey.
| | | | | |
Collapse
|
42
|
Santin K, da Rocha RF, Cechetti F, Quincozes-Santos A, de Souza DF, Nardin P, Rodrigues L, Leite MC, Moreira JCF, Salbego CG, Gonçalves CA. Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus. Brain Res 2011; 1421:1-10. [PMID: 21974860 DOI: 10.1016/j.brainres.2011.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/27/2011] [Accepted: 08/02/2011] [Indexed: 01/29/2023]
Abstract
Physical activity has been related to antioxidant adaptations, which is associated with health benefits, including those to the nervous system. Additionally, available data suggest exercise and a caloric restriction regimen may reduce both the incidence and severity of neurological disorders. Therefore, our aim was to compare hippocampal redox status and glial parameters among sedentary, trained, caloric-restricted sedentary and caloric-restricted trained rats. Forty male adult rats were divided into 4 groups: ad libitum-fed sedentary (AS), ad libitum-fed exercise training (AE), calorie-restricted sedentary (RS) and calorie-restricted exercise training (RE). The caloric restriction (decrease of 30% in food intake) and exercise training (moderate in a treadmill) were carried out for 3 months. Thereafter hippocampus was surgically removed, and then redox and glial parameters were assessed. Increases in reduced glutathione (GSH) levels and total antioxidant reactivity (TAR) were observed in AE, RS and RE. The nitrite/nitrate levels decreased only in RE. We found a decrease in carbonyl content in AE, RS and RE, while no modifications were detected in thiobarbituric acid reactive substances (TBARS). Total reactive antioxidant potential (TRAP), superoxide dismutase (SOD) activity, S100B and glial fibrilary acid protein (GFAP) content did not change, but caloric restriction was able to increase glutamine synthetase (GS) activity in RS and glutamate uptake in RS and RE. Exercise training, caloric restriction and both combined can decrease oxidative damage in the hippocampus, possibly involving modulation of astroglial function, and could be used as a strategy for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Katiane Santin
- Department of Biochemistry, Institute of Health Basic Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Babikian T, Prins ML, Cai Y, Barkhoudarian G, Hartonian I, Hovda DA, Giza CC. Molecular and physiological responses to juvenile traumatic brain injury: focus on growth and metabolism. Dev Neurosci 2010; 32:431-41. [PMID: 21071915 DOI: 10.1159/000320667] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/20/2010] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI), one of the most frequent causes of neurologic and neurobehavioral morbidity in the pediatric population, can result in lifelong challenges not only for patients, but also for their families. Survivors of a brain injury experienced during childhood - when the brain is undergoing a period of rapid development - frequently experience unique challenges as the consequences of their injuries are overlaid on normal developmental changes. Experimental studies have significantly advanced our understanding of the mechanisms and underlying molecular underpinnings of the injury response and recovery process following a TBI in the developing brain. In this paper, normal and TBI-related alterations in growth, development and metabolism are comprehensively reviewed in the postweanling/juvenile age range in the rat (postnatal days 21-60). As part of this review, TBI-related changes in gene expression are presented, with a focus on the injury-induced alterations related to cerebral growth and metabolism, and discussed in the context of existing literature related to physiological and behavioral responses to experimental TBI. Increasing evidence from the existing literature and from our own gene microarray data indicates that molecular responses related to growth, development and metabolism may play a particularly important role in the injury response and the recovery trajectory following developmental TBI. While gene expression analysis shows many of these changes occur at the level of transcription, a comprehensive review of other studies suggests that the control of metabolic substrates may preferentially be regulated through changes in transporters and enzymatic activity. The interrelation between cellular metabolism and activity-dependent neuroplasticity shows great promise as an area for future study for an optimal translation of experimental data to clinical TBI, with the ultimate goal of guiding therapeutic interventions.
Collapse
Affiliation(s)
- Talin Babikian
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, Calif., USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The transcription factor NF-E2-related factor (NRF2) is a key regulator of several enzymatic pathways, including cytoprotective enzymes in highly metabolic organs. In this review, we summarize the ongoing research related to NRF2 activity in cancer development, focusing on in vivo studies using NRF2 knockout (KO) mice, which have helped in defining the crucial role of NRF2 in chemoprevention. The lower cancer protection observed in NRF2 KO mice under calorie restriction (CR) suggests that most of the beneficial effects of CR on the carcinogenesis process are likely mediated by NRF2. We propose that future interventions in cancer treatment would be carried out through the activation of NRF2 in somatic cells, which will lead to a delay or prevention of the onset of some forms of human cancers, and subsequently an extension of health- and lifespan.
Collapse
|
45
|
Arranz L, De Castro NM, Baeza I, Maté I, Viveros MP, De la Fuente M. Environmental Enrichment Improves Age-Related Immune System Impairment: Long-Term Exposure Since Adulthood Increases Life Span in Mice. Rejuvenation Res 2010; 13:415-28. [DOI: 10.1089/rej.2009.0989] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lorena Arranz
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Nuria M. De Castro
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Isabel Baeza
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Ianire Maté
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Maria Paz Viveros
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Mónica De la Fuente
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| |
Collapse
|
46
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
47
|
Dasuri K, Ebenezer P, Zhang L, Fernandez-Kim SO, Bruce-Keller AJ, Markesbery WR, Keller JN. Increased protein hydrophobicity in response to aging and Alzheimer disease. Free Radic Biol Med 2010; 48:1330-7. [PMID: 20188163 PMCID: PMC3175611 DOI: 10.1016/j.freeradbiomed.2010.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Increased levels of misfolded and damaged proteins occur in response to brain aging and Alzheimer disease (AD), which presumably increase the amount of aggregation-prone proteins via elevations in hydrophobicity. The proteasome is an intracellular protease that degrades oxidized and ubiquitinated proteins, and its function is known to be impaired in response to both aging and AD. In this study we sought to determine the potential for increased levels of protein hydrophobicity occurring in response to aging and AD, to identify the contribution of proteasome inhibition to increased protein hydrophobicity, and last to identify the contribution of ubiquitinated and oxidized proteins to the pool of hydrophobic proteins. In our studies we identified that aging and AD brain exhibited increases in protein hydrophobicity as detected using Bis ANS, with dietary restriction (DR) significantly decreasing age-related increases in protein hydrophobicity. Affinity chromatography purification of hydrophobic proteins from aging and AD brains identified increased levels of oxidized and ubiquitinated proteins in the pool of hydrophobic proteins. Pharmacological inhibition of the proteasome in neurons, but not astrocytes, resulted in an increase in protein hydrophobicity. Taken together, these data indicate that there is a relationship between increased protein oxidation and protein ubiquitination and elevations in protein hydrophobicity within the aging and the AD brain, which may be mediated in part by impaired proteasome activity in neurons. Our studies also suggest a potential role for decreased oxidized and hydrophobic proteins in mediating the beneficial effects of DR.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | | | - William R. Markesbery
- Departments of Pathology and Laboratory Medicine, and Neurology, Sanders-Brown Center on Aging, and Alzheimer's Disease Center, University of Kentucky College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Corresponding author: Dr Jeffrey N. Keller, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808-4124 (P): 225-763-3190;
| |
Collapse
|
48
|
Michell AW, Phillips W, Barker RA. Can endogenous stem cells be stimulated to repair the degenerating brain? J Pharm Pharmacol 2010; 56:1201-10. [PMID: 15482633 DOI: 10.1211/0022357044517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- A W Michell
- Department of Neurology, Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK.
| | | | | |
Collapse
|
49
|
Chan SL, Wei Z, Chigurupati S, Tu W. Compromised respiratory adaptation and thermoregulation in aging and age-related diseases. Ageing Res Rev 2010; 9:20-40. [PMID: 19800420 DOI: 10.1016/j.arr.2009.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.
Collapse
|
50
|
Kisby GE, Kohama SG, Olivas A, Churchwell M, Doerge D, Spangler E, de Cabo R, Ingram DK, Imhof B, Bao G, Kow YW. Effect of caloric restriction on base-excision repair (BER) in the aging rat brain. Exp Gerontol 2009; 45:208-16. [PMID: 20005284 DOI: 10.1016/j.exger.2009.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/21/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
Apyrimidinic/apurinic endonuclease (APE) is a key protein involved in the base-excision DNA repair (BER) pathway of oxidative DNA lesions. Using a novel oligonucleotide substrate, we demonstrate that APE activity in the frontal/parietal cortex (F/PCTX), cerebellum, brainstem, midbrain and hypothalamus declined with age in rats on an ad libitum (AL) diet. In contrast, APE activity for these brain regions was approximately 1.5-3 times higher in young, caloric restricted (CR) rats. Despite continuous CR treatment in all animals since six weeks of age, APE activity in the CR group started to decline by middle-age and continued into old age. However, CR maintained APE activity at a level that was significantly higher than that in AL rats across age and in the brain regions examined. Because Western analysis of APE, DNA polymerase beta and DNA ligase III levels in the F/PCTX of both CR and AL rats remained unchanged with age, this suggests that the increased APE activity in CR rats is the result of differential post-translational modification of APE.
Collapse
Affiliation(s)
- Glen E Kisby
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|