1
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
2
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Xu XS, Liu T, Chen YJ, Wu XY, Cheng MX, Li JZ. MSR1-dependent efferocytosis improved ischemia-reperfusion injury following aged-donor liver transplantation in mice by regulating the pro-resolving polarisation of macrophages. Exp Cell Res 2024; 442:114212. [PMID: 39168433 DOI: 10.1016/j.yexcr.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Compared with young liver donors, aged liver donors are more susceptible to ischemia-reperfusion injury (IRI) following transplantation, which may be related to excessive inflammatory response and macrophage dysfunction, but the specific mechanism is unclear. Macrophage scavenger receptor 1 (MSR1) is a member of the scavenger receptor family, and plays an important regulatory role in inflammation response and macrophage function regulation. But its role in IRI following aged-donor liver transplantation is still unclear. This study demonstrates that MSR1 expression is decreased in macrophages from aged donor livers, inhibiting their efferocytosis and pro-resolving polarisation. Decreased MSR1 is responsible for the more severe IRI suffered by aged donor livers. Overexpression of MSR1 using F4/80-labelled AAV9 improved intrahepatic macrophage efferocytosis and promoted pro-resolving polarisation, ultimately ameliorating IRI following aged-donor liver transplantation. In vitro co-culture experiments further showed that overexpression of MSR1 promoted an increase in calcium concentration, which further activated the PI3K-AKT-GSK3β pathway, and induced the upregulation of β-catenin. Overall, MSR1-dependent efferocytosis promoted the pro-resolving polarisation of macrophages through the PI3K-AKT-GSK3β pathway-induced up-regulating of β-catenin leading to improved IRI following aged-donor liver transplantation.
Collapse
Affiliation(s)
- Xue-Song Xu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ya-Jun Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin-Yi Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ming-Xiang Cheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Jin-Zheng Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Chung KW, Kim DH, Jung HJ, Arulkumar R, Chung HY, Yu BP. Chronic Inflammation as an Underlying Mechanism of Ageing and Ageing-Related Diseases. Subcell Biochem 2023; 103:31-44. [PMID: 37120463 DOI: 10.1007/978-3-031-26576-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Age-related chronic inflammation is characterized as the unresolved low-grade inflammatory process underlying the ageing process and various age-related diseases. In this chapter, we review the age-related changes in the oxidative stress-sensitive pro-inflammatory NF-κB signaling pathways causally linked with chronic inflammation during ageing based on senoinflammation schema. We describe various age-related dysregulated pro- and anti-inflammatory cytokines, chemokines, and senescence-associated secretory phenotype (SASP), and alterations of inflammasome, specialized pro-resolving lipid mediators (SPM), and autophagy as major players in the chronic inflammatory intracellular signaling network. A better understanding of the molecular, cellular, and systemic mechanisms involved in chronic inflammation in the ageing process would provide further insights into the potential anti-inflammatory strategies.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Torrens-Mas M, Navas-Enamorado C, Wahl D, Sanchez-Polo A, Picca A, Oliver J, Roca P, Gonzalez-Freire M. Sex Specific Differences in Response to Calorie Restriction in Skeletal Muscle of Young Rats. Nutrients 2022; 14:4535. [PMID: 36364797 PMCID: PMC9658986 DOI: 10.3390/nu14214535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 10/05/2023] Open
Abstract
Calorie restriction (CR), defined as a reduction of the total calorie intake of 30% to 60% without malnutrition, is the only nutritional strategy that has been shown to extend lifespan, prevent or delay the onset of age-associated diseases, and delay the functional decline in a wide range of species. However, little is known about the effects of CR when started early in life. We sought to analyze the effects of CR in the skeletal muscle of young Wistar rats. For this, 3-month-old male and female rats were subjected to 40% CR or fed ad libitum for 3 months. Gastrocnemius muscles were used to extract RNA and total protein. Western blot and RT-qPCR were performed to evaluate the expression of key markers/pathways modulated by CR and affected by aging. CR decreased body and skeletal muscle weight in both sexes. No differences were found in most senescence, antioxidant, and nutrient sensing pathways analyzed. However, we found a sexual dimorphism in markers of oxidative stress, inflammation, apoptosis, and mitochondrial function in response to CR. Our data show that young female rats treated with CR exhibit similar expression patterns of key genes/pathways associated with healthy aging when compared to old animals treated with CR, while in male rats these effects are reduced. Additional studies are needed to understand how early or later life CR exerts positive effects on healthspan and lifespan.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Cayetano Navas-Enamorado
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Devin Wahl
- Department of Health & Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, CO 80521, USA
| | - Andres Sanchez-Polo
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Anna Picca
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
7
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
8
|
Belanova A, Chmykhalo V, Shkurat T, Trotsenko A, Zolotukhin P. Trimethylglycine betaine effects on NFκB, HIF1A and NFE2L2/AP-1 pathways, mitochondrial activity, glucose import, and levels of ROS, thiols and lipids in HeLa cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zhang S, Paul S, Kundu P. NF-κB Regulation by Gut Microbiota Decides Homeostasis or Disease Outcome During Ageing. Front Cell Dev Biol 2022; 10:874940. [PMID: 35846362 PMCID: PMC9285657 DOI: 10.3389/fcell.2022.874940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Human beings and their indigenous microbial communities have coexisted for centuries, which led to the development of co-evolutionary mechanisms of communication and cooperation. Such communication machineries are governed by sophisticated multi-step feedback loops, which typically begin with the recognition of microbes by pattern recognition receptors (PRRs), followed by a host transcriptional response leading to the release of effector molecules. Our gastrointestinal tract being the main platform for this interaction, a variety of host intestinal cells tightly regulate these loops to establish tolerance towards the microbial communities of the gut and maintain homeostasis. The transcription factor, nuclear factor kappa B (NF-κB) is an integral component of such a communication apparatus, which plays a critical role in determining the state of homeostasis or inflammation associated with dysbiosis in the host. Here we outline the crucial role of NF-κB in host response to microbial cues in the context of ageing and associated diseases.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Soumyajeet Paul
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Parag Kundu,
| |
Collapse
|
10
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
11
|
Kim SR, Heo JI, Park JW, Kang CM, Kim KS. Radiation-induced lipoprotein-associated phospholipase A2 increases lysophosphatidylcholine and induces endothelial cell damage. Toxicology 2021; 458:152841. [PMID: 34216699 DOI: 10.1016/j.tox.2021.152841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The cardiotoxicity of various anticancer therapies, including radiotherapy, can lead to cardiovascular complications. These complications can range from damaging cardiac tissues within the irradiation field to increasing the long-term risks of developing heart failure, coronary artery disease, and myocardial infarction. We analyzed radiation-induced metabolites capable of mediating critical biological processes, such as inflammation, senescence, and apoptosis. Previously, by applying QTOF-MASS analysis to irradiated human fibroblasts, we identified that metabolite sets of lysophosphatidylcholine (LPC) were increased in these cells. In this study, radiation-induced LPC accumulation in human aortic endothelial cells (HAECs) increased reactive oxygen species (ROS) production and senescence-associated-beta-galactosidase staining, in addition to decreasing their tube-forming ability. Knockdown of lipoprotein-associated phospholipase A2 (Lp-PLA2) with small interfering RNA (siRNA) inhibited the increased LPC production induced by radiation, and reduced the radiation-induced cell damage produced by ROS and oxidized low-density lipoprotein (LDL). Lp-PLA2 depletion abolished the induction of proinflammatory factors, such as interleukin 1β, tumor necrosis factor-alpha, matrix metalloproteinase 2, and matrix metalloproteinase 9, as well as adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and E-selection. Likewise, we showed that Lp-PLA2 expression was upregulated in the vasculature of irradiated rat, resulting in increased LPC production and LDL oxidation. Our data demonstrate that radiation-induced LPC production is a potential risk factor for cardiotoxicity that is mediated by Lp-PLA2 activity, suggesting that LPC and Lp-PLA2 offer potential diagnostic and therapeutic approaches to cardiovascular damage during radiotherapy.
Collapse
Affiliation(s)
- So-Ra Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea; School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34054, Republic of Korea
| | - Jong-Ik Heo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Jeong-Woo Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chang-Mo Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea; School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34054, Republic of Korea.
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea; School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
12
|
Pousa PA, Souza RM, Melo PHM, Correa BHM, Mendonça TSC, Simões-e-Silva AC, Miranda DM. Telomere Shortening and Psychiatric Disorders: A Systematic Review. Cells 2021; 10:1423. [PMID: 34200513 PMCID: PMC8227190 DOI: 10.3390/cells10061423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Telomeres are aging biomarkers, as they shorten while cells undergo mitosis. The aim of this study was to evaluate whether psychiatric disorders marked by psychological distress lead to alterations to telomere length (TL), corroborating the hypothesis that mental disorders might have a deeper impact on our physiology and aging than it was previously thought. A systematic search of the literature using MeSH descriptors of psychological distress ("Traumatic Stress Disorder" or "Anxiety Disorder" or "depression") and telomere length ("cellular senescence", "oxidative stress" and "telomere") was conducted on PubMed, Cochrane Library and ScienceDirect databases. A total of 56 studies (113,699 patients) measured the TL from individuals diagnosed with anxiety, depression and posttraumatic disorders and compared them with those from healthy subjects. Overall, TL negatively associates with distress-related mental disorders. The possible underlying molecular mechanisms that underly psychiatric diseases to telomere shortening include oxidative stress, inflammation and mitochondrial dysfunction linking. It is still unclear whether psychological distress is either a cause or a consequence of telomere shortening.
Collapse
Affiliation(s)
- Pedro A. Pousa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Raquel M. Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Paulo Henrique M. Melo
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Bernardo H. M. Correa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Tamires S. C. Mendonça
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Ana Cristina Simões-e-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Débora M. Miranda
- Department of Pediatrics, Laboratory of Molecular Medicine, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
13
|
Kim MJ, Kim DH, Bang E, Noh SG, Chun P, Yokozawa T, Moon HR, Chung HY. PPARα Agonist, MHY3200, Alleviates Renal Inflammation during Aging via Regulating ROS/Akt/FoxO1 Signaling. Molecules 2021; 26:3197. [PMID: 34073584 PMCID: PMC8198004 DOI: 10.3390/molecules26113197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022] Open
Abstract
PPARα is a ligand-dependent transcription factor and its activation is known to play an important role in cell defense through anti-inflammatory and antioxidant effects. MHY3200 (2-[4-(5-chlorobenzo[d]thiazol-2-yl)phenoxy]-2,2-difluoroacetic acid), a novel benzothiazole-derived peroxisome proliferator-activated receptor α (PPARα) agonist, is a synthesized PPARα activator. This study examined the beneficial effects of MHY3200 on age-associated alterations in reactive oxygen species (ROS)/Akt/forkhead box (FoxO) 1 signaling in rat kidneys. Young (7-month-old) and old (22-month-old) rats were treated with MHY3200 (1 mg/kg body weight/day or 3 mg/kg body weight/day) for two weeks. MHY3200 treatment led to a notable decrease in triglyceride and insulin levels in serum from old rats. The elevated kidney ROS level, serum insulin level, and Akt phosphorylation in old rats were reduced following MHY3200 treatment; moreover, FoxO1 phosphorylation increased. MHY3200 treatment led to the increased level of FoxO1 and its target gene, MnSOD. MHY3200 suppressed cyclooxygenase-2 expression by activating PPARα and inhibiting the activation of nuclear factor-κB (NF-κB) in the kidneys of old rats. Our results suggest that MHY3200 ameliorates age-associated renal inflammation by regulating NF-κB and FoxO1 via ROS/Akt signaling.
Collapse
Affiliation(s)
- Min Jo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea; (M.J.K.); (D.H.K.); (E.B.)
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea; (M.J.K.); (D.H.K.); (E.B.)
| | - EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea; (M.J.K.); (D.H.K.); (E.B.)
| | - Sang Gyun Noh
- Interdisciplinary Research Programme of Bioinformatics and Longevity Science, Department of Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea;
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gimhae 50834, Gyeongsangnam-do, Korea;
| | - Takako Yokozawa
- Graduate School Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan;
| | - Hyung Ryong Moon
- Department of Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea; (M.J.K.); (D.H.K.); (E.B.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Korea; (M.J.K.); (D.H.K.); (E.B.)
| |
Collapse
|
14
|
Dal Magro BM, Stone V, Klein CP, Maurmann RM, Saccomori AB, Dos Santos BG, August PM, Rodrigues KS, Conrado L, de Sousa FAB, Dreimeier D, Mello F, Matté C. Developmental programming: intrauterine caloric restriction promotes upregulation of mitochondrial sirtuin with mild effects on oxidative parameters in the ovaries and testes of offspring. Reprod Fertil Dev 2021; 32:763-773. [PMID: 32389177 DOI: 10.1071/rd19384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
According to the developmental origins of health and disease (DOHaD) hypothesis, changes in the maternal environment are known to reprogram the metabolic response of offspring. Known for its redox modulation, caloric restriction extends the lifespan of some species, which contributes to diminished cellular damage. Little is known about the effects of gestational caloric restriction, in terms of antioxidant parameters and molecular mechanisms of action, on the reproductive organs of offspring. This study assessed the effects of moderate (20%) caloric restriction on redox status parameters, molecular expression of sirtuin (SIRT) 1 and SIRT3 and histopathological markers in the ovaries and testes of adult rats that were subjected to gestational caloric restriction. Although enzyme activity was increased, ovaries from female pups contained high levels of oxidants, whereas testes from male pups had decreased antioxidant enzyme defences, as evidenced by diminished glyoxalase I activity and reduced glutathione content. Expression of SIRT3, a deacetylase enzyme related to cellular bioenergetics, was increased in both ovaries and testes. Previous studies have suggested that, in ovaries, diminished antioxidant metabolism can lead to premature ovarian failure. Unfortunately, there is little information regarding the redox profile in the testis. This study is the first to assess the redox network in both ovaries and testes, suggesting that, although intrauterine caloric restriction improves molecular mechanisms, it has a negative effect on the antioxidant network and redox status of reproductive organs of young adult rats.
Collapse
Affiliation(s)
- B M Dal Magro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - V Stone
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - C P Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - R M Maurmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - A B Saccomori
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - B G Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - P M August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - K S Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - L Conrado
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - F A B de Sousa
- Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - D Dreimeier
- Setor de Anatomia Patológica Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - F Mello
- Centro de Reprodução e Experimentação Animal, Universidade Federal do Rio Grande do Sul, Campus do Vale, Prédio 43.300, Agronomia, RS, 91509-900, Brazil
| | - C Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil; and Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil; and Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, R. Sarmento Leite, n° 500, Farroupilha, Porto Alegre, RS, 90050-170, Brazil; and Corresponding author.
| |
Collapse
|
15
|
MHY2013 Modulates Age-related Inflammation and Insulin Resistance by Suppressing the Akt/FOXO1/IL-1β Axis and MAPK-mediated NF-κB Signaling in Aged Rat Liver. Appl Immunohistochem Mol Morphol 2020; 28:579-592. [PMID: 32902936 DOI: 10.1097/pai.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic inflammation is a major risk factor underlying aging and age-associated diseases. It impairs normal lipid accumulation, adipose tissue function, and mitochondrial function, which eventually lead to insulin resistance. Peroxisome proliferator-activated receptors (PPARs) critically regulate gluconeogenesis, lipid metabolism, and the lipid absorption and breakdown process, and PPAR activity decreases in the liver during aging. In the present study, we investigated the ability of 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013), synthesized PPARα/PPARβ/PPARγ pan agonist, to suppress the inflammatory response and attenuate insulin resistance in aged rat liver. Six- and 20-month-old rats were divided into 4 groups: young and old rats fed ad libitum; and old rats fed ad libitum supplemented with MHY2013 (1 mg and 5 mg/kg/d for 4 wk). We found that MHY2013 supplementation efficiently downregulated the activity of nuclear factor-κB through JNK/ERK/p38 mitogen-activated protein kinase signaling in the liver of aged rats. In addition, MHY2013 treatment increased hepatic insulin signaling, and the downstream signaling activity of FOXO1, which is negatively regulated by Akt. Downregulation of Akt increases expression of FOXO1, which acts as a transcription factor and increases transcription of interleukin-1β, leading to hepatic inflammation. The major finding of this study is that MHY2013 acts as a therapeutic agent against age-related inflammation associated with insulin resistance by activating PPARα, PPARβ, and PPARγ. Thus, the study provides evidence for the anti-inflammatory properties of MHY2013, and the role it plays in the regulation of age-related alterations in signal transduction pathways.
Collapse
|
16
|
Sivaraman D, Arun M, Kannan R, Pradeep PS, Muralidharan P. Neurocognitive investigation of Morinda tinctoria against amyloid beta-induced oxidative insult and cognitive impairment in albino mice: A phytotherapeutic approach. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_284_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Chiang HY, Chu PH, Lee TH. MFG-E8 mediates arterial aging by promoting the proinflammatory phenotype of vascular smooth muscle cells. J Biomed Sci 2019; 26:61. [PMID: 31470852 PMCID: PMC6716880 DOI: 10.1186/s12929-019-0559-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Among older adults, arterial aging is the major factor contributing to increased risk for cardiovascular disease-related morbidity and mortality. The chronic vascular inflammation that accompanies aging causes diffuse intimal-medial thickening of the arterial wall, thus increasing the vulnerability of aged vessels to vascular insults. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a biomarker for aging arteries. This integrin-binding glycoprotein, induced by angiotensin II, facilitates vascular smooth muscle cell (VSMC) proliferation and invasion in aging vasculatures. This study investigated whether MFG-E8 directly mediates the initial inflammatory responses in aged arteries or VSMCs. METHODS A model of neointimal hyperplasia was induced in the common carotid artery (CCA) of aged mice to exacerbate age-associated vascular remodeling. Recombinant MFG-E8 (rMFG-E8) was administered to the injured artery using Pluronic gel to accentuate the effect on age-related vascular pathophysiology. The MFG-E8 level, leukocyte infiltration, and proinflammatory cell adhesion molecule (CAM) expression in the arterial wall were evaluated through immunohistochemistry. By using immunofluorescence and immunoblotting, the activation of the critical proinflammatory transcription factor nuclear factor (NF)-κB in the injured CCAs was analyzed. Immunofluorescence, immunoblotting, and quantitative real-time polymerase chain reaction were conducted using VSMCs isolated from the aortas of young and aged mice to assess NF-κB nuclear translocation, NF-κB-dependent gene expression, and cell proliferation. The extent of intimal-medial thickening in the injured vessels was analyzed morphometrically. Finally, Transwell migration assay was used to examine VSMC migration. RESULTS Endogenous MFG-E8 expression in aged CCAs was significantly induced by ligation injury. Aged CCAs treated with rMFG-E8 exhibited increased leukocyte extravasation, CAM expression, and considerably increased NF-κB activation induced by rMFG-E8 in the ligated vessels. Exposure of early passage VSMCs from aged aortas to rMFG-E8 substantially increased NF-κB activation, proinflammatory gene expression, and cell proliferation. However, rMFG-E8 attenuated VSMC migration. CONCLUSIONS MFG-E8 promoted the proinflammatory phenotypic shift of aged VSMCs and arteries, rendering the vasculature prone to vascular diseases. MFG-E8 may constitute a novel therapeutic target for retarding the aging processes in such vessels.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
18
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019. [PMID: 30545444 PMCID: PMC6386225 DOI: 10.5483/bmbrep.2019.52.1.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| |
Collapse
|
19
|
Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Neurotox Res 2019; 36:583-601. [PMID: 31055770 DOI: 10.1007/s12640-019-00047-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | | | - Md Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
20
|
Derous D, Mitchell SE, Green CL, Wang Y, Han JDJ, Chen L, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: X. Transcriptomic Responses of Epididymal Adipose Tissue. J Gerontol A Biol Sci Med Sci 2019; 73:279-288. [PMID: 28575190 PMCID: PMC5861923 DOI: 10.1093/gerona/glx101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Calorie restriction (CR) leads to a remarkable decrease in adipose tissue mass and increases longevity in many taxa. Since the discovery of leptin, the secretory abilities of adipose tissue have gained prominence in the responses to CR. We quantified transcripts of epididymal white adipose tissue of male C57BL/6 mice exposed to graded levels of CR (0–40% CR) for 3 months. The numbers of differentially expressed genes (DEGs) involved in NF-κB, HIF1-α, and p53 signaling increased with increasing levels of CR. These pathways were all significantly downregulated at 40% CR relative to 12 h ad libitum feeding. In addition, graded CR had a substantial impact on DEGs associated with pathways involved in angiogenesis. Of the 497 genes differentially expressed with graded CR, 155 of these genes included a signal peptide motif. These putative signaling proteins were involved in the response to ketones, TGF-β signaling, negative regulation of insulin secretion, and inflammation. This accords with the previously established effects of graded CR on glucose homeostasis in the same mice. Overall these data suggest reduced levels of adipose tissue under CR may contribute to the protective impact of CR in multiple ways linked to changes in a large population of secreted proteins.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Jing Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences, Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle
- Department of Biology, University of Washington, Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- Address correspondence to: John R. Speakman, PhD, DSc, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK. E-mail:
| |
Collapse
|
21
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019; 52:56-63. [PMID: 30545444 PMCID: PMC6386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 10/07/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062,
Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229,
USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
22
|
Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018; 9:1162. [PMID: 30405405 PMCID: PMC6204759 DOI: 10.3389/fphar.2018.01162] [Citation(s) in RCA: 556] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
23
|
Koh EM, Lee EK, Song CH, Song J, Chung HY, Chae CH, Jung KJ. Ferulate, an Active Component of Wheat Germ, Ameliorates Oxidative Stress-Induced PTK/PTP Imbalance and PP2A Inactivation. Toxicol Res 2018; 34:333-341. [PMID: 30370008 PMCID: PMC6195880 DOI: 10.5487/tr.2018.34.4.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 12/23/2022] Open
Abstract
Ferulate is a phenolic compound abundant in wheat germ and bran and has been investigated for its beneficial activities. The aim of the present study is to evaluate the efficacy of ferulate against the oxidative stress-induced imbalance of protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and serine/threonine protein phosphatase 2A (PP2A), in connection with our previous finding that oxidative stress-induced imbalance of PTKs and PTPs is linked with proinflammatory nuclear factor-kappa B (NF-κB) activation. To test the effects of ferulate on this process, we utilized two oxidative stress-induced inflammatory models. First, YPEN-1 cells were pretreated with ferulate for 1 hr prior to the administration of 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). Second, 20-month-old Sprague-Dawley rats were fed ferulate for 10 days. After ferulate treatment, the activities of PTKs, PTPs, and PP2A were measured because these proteins either directly or indirectly promote NF-κB activation. Our results revealed that in YPEN-1 cells, ferulate effectively suppressed AAPH-induced increases in reactive oxygen species (ROS) and NF-κB activity, as well as AAPH-induced PTK activation. Furthermore, ferulate also inhibited AAPH-induced PTP and PP2A inactivation. In the aged kidney model, ferulate suppressed aging-induced activation of PTKs and ameliorated aging-induced inactivation of PTPs and PP2A. Thus, herein we demonstrated that ferulate could modulate PTK/PTP balance against oxidative stress-induced inactivation of PTPs and PP2A, which is closely linked with NF-κB activation. Based on these results, the ability of ferulate to modulate oxidative stress-related inflammatory processes is established, which suggests that this compound could act as a novel therapeutic agent.
Collapse
Affiliation(s)
- Eun Mi Koh
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Eun Kyeong Lee
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Chi Hun Song
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Jeongah Song
- Animal Model Research Center, Korea Institute of Toxicology, Jeonbuk, Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
| | | | - Kyung Jin Jung
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Korea.,Department of Human and Environmental Toxicology, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
24
|
Yao K, Zhao YF. Aging modulates microglia phenotypes in neuroinflammation of MPTP-PD mice. Exp Gerontol 2018; 111:86-93. [DOI: 10.1016/j.exger.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
|
25
|
Abstract
Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Elisa Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
The effects of graded levels of calorie restriction: XI. Evaluation of the main hypotheses underpinning the life extension effects of CR using the hepatic transcriptome. Aging (Albany NY) 2018; 9:1770-1824. [PMID: 28768896 PMCID: PMC5559174 DOI: 10.18632/aging.101269] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022]
Abstract
Calorie restriction (CR) may extend longevity by modulating the mechanisms involved in aging. Different hypotheses have been proposed for its main mode of action. We quantified hepatic transcripts of male C57BL/6 mice exposed to graded levels of CR (0% to 40% CR) for three months, and evaluated the responses relative to these various hypotheses. Of the four main signaling pathways implied to be linked to the impact of CR on lifespan (insulin/insulin like growth factor 1 (IGF-1), nuclear factor-kappa beta (NF-ĸB), mechanistic target of rapamycin (mTOR) and sirtuins (SIRTs)), all the pathways except SIRT were altered in a manner consistent with increased lifespan. However, the expression levels of SIRT4 and SIRT7 were decreased with increasing levels of CR. Changes consistent with altered fuel utilization under CR may reduce reactive oxygen species production, which was paralleled by reduced protection. Downregulated major urinary protein (MUP) transcription suggested reduced reproductive investment. Graded CR had a positive effect on autophagy and xenobiotic metabolism, and was protective with respect to cancer signaling. CR had no significant effect on fibroblast growth factor-21 (FGF21) transcription but affected transcription in the hydrogen sulfide production pathway. Responses to CR were consistent with several different hypotheses, and the benefits of CR on lifespan likely reflect the combined impact on multiple aging related processes.
Collapse
|
27
|
Tsai KL, Wang CT, Kuo CH, Cheng YY, Ma HI, Hung CH, Tsai YJ, Kao CL. The potential role of epigenetic modulations in BPPV maneuver exercises. Oncotarget 2018; 7:35522-35534. [PMID: 27203679 PMCID: PMC5094942 DOI: 10.18632/oncotarget.9446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
Benign paroxysmal positional vertigo (BPPV) is one of the most common complaints encountered in clinics and is strongly correlated with advanced age or, possibly, degeneration. Redistribution exercises are the most effective approaches to treat BPPV, and canalith repositioning procedure (CRP) cure most BPPV cases. However, the mechanisms through which the treatment modulates systemic molecules in BPPV patients remain largely unknown. In this study, we report that the miR-34a and Sirtuin 1 (SIRT1) genes correlated with the treatment effects of CRP in BPPV subjects. We found that miR-34a expression was largely inhibited and SIRT1 expression was significantly reversed after BPPV maneuver treatment. We also confirmed that the PPAR-γ, PGC-1 and FoxO gene expressions were decreased immediately after canalith repositioning procedure (CRP) for BPPV, and were largely increased after a complete cure of BPPV. Moreover, we observed that after a complete recovery of BPPV, the ROS concentrations, pro-inflammatory cytokine concentrations and p53 expression levels were attenuated. We conclude that BPPV treatment might involve some epigenetic regulations through the mediation of miR-34a, SIRT1 functions and repression of redox status.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-To Wang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital; Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yuan-Yang Cheng
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine National Yang-Ming University, Taipei, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital; Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
28
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
29
|
Salvadores N, Sanhueza M, Manque P, Court FA. Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Front Neurosci 2017; 11:451. [PMID: 28928628 PMCID: PMC5591337 DOI: 10.3389/fnins.2017.00451] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Aging constitutes the main risk factor for the development of neurodegenerative diseases. This represents a major health issue worldwide that is only expected to escalate due to the ever-increasing life expectancy of the population. Interestingly, axonal degeneration, which occurs at early stages of neurodegenerative disorders (ND) such as Alzheimer's disease, Amyotrophic lateral sclerosis, and Parkinson's disease, also takes place as a consequence of normal aging. Moreover, the alteration of several cellular processes such as proteostasis, response to cellular stress and mitochondrial homeostasis, which have been described to occur in the aging brain, can also contribute to axonal pathology. Compelling evidence indicate that the degeneration of axons precedes clinical symptoms in NDs and occurs before cell body loss, constituting an early event in the pathological process and providing a potential therapeutic target to treat neurodegeneration before neuronal cell death. Although, normal aging and the development of neurodegeneration are two processes that are closely linked, the molecular basis of the switch that triggers the transition from healthy aging to neurodegeneration remains unrevealed. In this review we discuss the potential role of axonal degeneration in this transition and provide a detailed overview of the literature and current advances in the molecular understanding of the cellular changes that occur during aging that promote axonal degeneration and then discuss this in the context of ND.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Mario Sanhueza
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| |
Collapse
|
30
|
Zhang J, Rane G, Dai X, Shanmugam MK, Arfuso F, Samy RP, Lai MKP, Kappei D, Kumar AP, Sethi G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev 2016; 25:55-69. [PMID: 26616852 DOI: 10.1016/j.arr.2015.11.006] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases.
Collapse
|
31
|
Hytti M, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Kauppinen A. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation. Sci Rep 2015; 5:17645. [PMID: 26619957 PMCID: PMC4664957 DOI: 10.1038/srep17645] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/03/2015] [Indexed: 01/09/2023] Open
Abstract
Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD.
Collapse
Affiliation(s)
- Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland
| | - Niina Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.B. 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland
| |
Collapse
|
32
|
Nozad A, Safari MB, Saboory E, Derafshpoor L, Mohseni Moghaddam P, Ghaffari F, Naseri M. Caloric Restriction and Formalin-Induced Inflammation: An Experimental Study in Rat Model. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e22590. [PMID: 26421173 PMCID: PMC4584080 DOI: 10.5812/ircmj.22590v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/06/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Acute and chronic inflammations are difficult to control. Using chemical anti-inflammatory medications along with their complications considerably limit their use. According to Traditional Iranian Medicine (TIM), there is an important relation between inflammation and Imtila (food and blood accumulation in the body); food reduction or its more modern equivalent Caloric Restriction (CR) may act against both Imtila and inflammation. OBJECTIVES This experimental study aimed to investigate the effect of 30% reduction in daily calorie intake on inflammation in rats. MATERIALS AND METHODS A total of 18 male rats (Rattus rattus) weighing 220 to 270 g were obtained. Then, the inflammation was induced by injecting formalin in their paws. Next, the rats were randomized by generating random numbers into two equal groups (9 + 9) putting on either normal diet (controls) or a similar diet with 30% reduction of calorie (cases). Paw volume changes were recorded twice per day by one observer in both groups using a standard plethysmometer for 8 consecutive days. Serum C-reactive protein (CRP), Erythrocyte Sedimentation Rate (ESR), complete blood count (erythrocyte, platelet, and white blood cell) and hemoglobin were compared between the groups. RESULTS Decline of both body weight and paw volume was significantly more prominent in the case than in the control rats within the study period (P < 0.001 and < 0.001, respectively). Paw volume decrease was more prominent after day 3. On day 8, serum CRP-positive (1 or 2 +) rats were more frequent in ad libitum fed group comparing with those received CR (33.3% vs. 11.1%). This difference, however, was insignificant (P = 0.58). At the same time, mean ESR was significantly higher in the control rats comparing with that in the case group (29.00 ± 2.89 h vs. 14.00 ± 1.55 h; P = 0.001). Other serum parameters were not significantly different between the two groups at endpoint. CONCLUSIONS Rats fed with a 30% calorie-restricted diet in comparison with to ad libitum fed controls for 8 days had significantly more prominent regression of inflammation.
Collapse
Affiliation(s)
- Aisan Nozad
- Traditional Iranian Medicine Department, Medicine Faculty, Shahed University, Tehran, IR Iran
| | - Mir Bahram Safari
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Leila Derafshpoor
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, IR Iran
| | | | - Farzaneh Ghaffari
- School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohsen Naseri
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, IR Iran
- Corresponding Author: Mohsen Naseri, Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, IR Iran. Tel: +98-9143418085, Fax: + 98-2166464321, E-mail:
| |
Collapse
|
33
|
Abstract
AbstractEnergy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.
Collapse
|
34
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
35
|
Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.045] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Choi J, Lee SE, Lee JH, Kim GS, Noh HJ, Kim SY. Persicaria orientalis and Potentilla fragarioides Extracts Inhibit NF-κB Translocation and Nitric Oxide Production in LPS-stimulated RAW 264.7 Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.3839/jabc.2014.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Wu W, Wang X, Xiang Q, Meng X, Peng Y, Du N, Liu Z, Sun Q, Wang C, Liu X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct 2014; 5:158-66. [PMID: 24326685 DOI: 10.1039/c3fo60400d] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astaxanthin (AST) is a carotenoid pigment which possesses potent antioxidative, anti-inflammatory, and neuroprotective properties. The aim of this study was to investigate whether administration of AST had protective effects on D-galactose-induced brain aging in rats, and further examined its protective mechanisms. The results showed that AST treatment significantly restored the activities of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), and increased glutathione (GSH) contents and total antioxidant capacity (T-AOC), but decreased malondialdehyde (MDA), protein carbonylation and 8-hydroxy-2- deoxyguanosine (8-OHdG) levels in the brains of aging rats. Furthermore, AST increased the ratio of Bcl-2/Bax, but decreased the expression of Cyclooxygenase-2 (COX-2) in the brains of aging rats. Additionally, AST ameliorated histopathological changes in the hippocampus and restored brain derived neurotrophic factor (BDNF) levels in both the brains and hippocampus of aging rats. These results suggested that AST could alleviate brain aging, which may be due to attenuating oxidative stress, ameliorating hippocampus damage, and upregulating BDNF expression.
Collapse
Affiliation(s)
- Wanqiang Wu
- College of Food Science and Engineering, Northwest A&F University, 28. Xi-nong Road, Yangling 712100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sung B, Park S, Ha YM, Kim DH, Park CH, Jung KJ, Kim MS, Kim YJ, Kim MK, Moon JO, Yokozawa T, Kim ND, Yu BP, Chung HY. Salicylideneamino-2-thiophenol modulates nuclear factor-κB through redox regulation during the aging process. Geriatr Gerontol Int 2014; 15:211-9. [PMID: 25164597 DOI: 10.1111/ggi.12255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 12/29/2022]
Abstract
AIM Many intracellular components have been implicated in the regulation of redox homeostasis, but homeostasis can be unbalanced by reactive species (RS), which also probably contribute to underlying inflammatory processes. Nuclear factor-κB (NF-κB) is a well-known redox-sensitive transcription factor that controls the genes responsible for regulating inflammation. METHODS In the present study, the authors investigated the effect of short-term salicylideneamino-2-thiophenol (SAL-2) administration on the modulation of pro-inflammatory NF-κB through redox regulation in aged rats. In addition, we compared the effects of SAL-2 and caloric restriction (CR) on inflammation and redox balance. The subjects were 24-month-old (old) Fischer 344 rats administered SAL-2 (10 mg/kg/day) by dietary supplementation or placed on a 30% restricted diet for 10 days, and 6-month-old (young) rats fed ad libitum for 10 days. RESULTS We found that NF-κB activation and the expressions of its related genes (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, cyclooxygenase-2 and inducible nitric oxide synthase) were suppressed by SAL-2 supplementation in old CR rats to the levels observed in young rats. In addition, our molecular studies showed that the inhibitory effect of SAL-2 on the activation of NF-κB was mediated by the ability of SAL-2 to block the nuclear translocations of cytosolic thioredoxin and redox factor-1. CONCLUSION These findings strongly indicate that SAL-2 stabilizes age-related redox imbalance and modulates the signal transduction pathway involved in the age-associated molecular inflammatory process.
Collapse
Affiliation(s)
- Bokyung Sung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH, Peng J, Tang H, Yu KL, Zhang C, Ren Z, Jiang ZS. SIRT1 in cardiovascular aging. Clin Chim Acta 2014; 437:106-14. [PMID: 25063737 DOI: 10.1016/j.cca.2014.07.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with aging as the key independent risk factor. Effective interventions are necessary to delay aging. Sirtuin1 (SIRT1), a NAD(+)-dependent histone deacetylase, is closely related to lifespan extension. SIRT1 exerts beneficial effects on aging and age-related diseases, such as atherosclerosis. In this review, we summarize the current knowledge on the functions of SIRT1 in cardiovascular aging, focusing on the underlying molecular mechanisms, including inhibition of oxidative stress and inflammation, and induction of autophagy. We also demonstrate that moderate up-regulation or activation of SIRT1 in cardiovascular aging and age-related CVD may confer important application values.
Collapse
Affiliation(s)
- Xin-Yuan Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Yuan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Mi-Hua Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Hui Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Kang-Lun Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China.
| |
Collapse
|
40
|
Lee J, Cho JY, Kim WK. Anti-inflammation effect of Exercise and Korean red ginseng in aging model rats with diet-induced atherosclerosis. Nutr Res Pract 2014; 8:284-91. [PMID: 24944773 PMCID: PMC4058562 DOI: 10.4162/nrp.2014.8.3.284] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/27/2013] [Accepted: 03/17/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to investigate the effects of exercise (EX) and Korean red ginseng (KRG) on inflammation mechanism in aging model rats with diet-induced atherosclerosis. MATERIALS/METHODS Forty-eight male Sprague-Dawley rats were divided into 6 groups: Young control (Y-C), Aging control (A-C), A-C with HFD (AHF), AHF with EX (AHF-EX), AHF-EX with KRG (AHF-EX+RG), and AHF with KRG (AHF-RG). Aging was induced by D-gal (100mg/kg) and atherosclerosis was induced by HFD (60% fat) for 9 weeks. The experimental rats were performed swimming (60 min/day, 5 days/week) and supplied KRG orally (dose of 200 mg/kg) for 8 weeks. All rat aorta samples were harvested for biochemical and immunohistochemical analyses. REULTS The EX and KRG supplementation significantly inhibited body weight and levels of TC, TG, LDL-C, and enhance of HDL-C compared with untreated AHF groups. AHF-EX, AHF-EX+RG, and AHF-RG group showed a decreased plasma CRP and increase plasma NO activities compared to AHF group. In addition, these groups revealed reduced 4-HNE, NF-kB, TNF-α, IL-6, COX-2, ICAM-1, VCAM-1 and enhanced eNOS expression in the aorta. CONCLUSION These results suggest that EX alone, KRG alone, and combined treatment of EX and KRG may be an effective anti-inflammatory therapeutic for the atherosclerosis, possibly acting via the decreased of CRP and pro-inflammation proteins and the increased NO and eNOS.
Collapse
Affiliation(s)
- Jin Lee
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, 138-763, Korea
| | - Won-Kyu Kim
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea
| |
Collapse
|
41
|
Choi YJ, Kim HS, Lee J, Chung J, Lee JS, Choi JS, Yoon TR, Kim HK, Chung HY. Down-regulation of oxidative stress and COX-2 and iNOS expressions by dimethyl lithospermate in aged rat kidney. Arch Pharm Res 2014; 37:1032-8. [PMID: 24469601 DOI: 10.1007/s12272-014-0332-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Oxidative stress has been proposed to be a major cause of aging and many age-related diseases. Peroxynitrite (ONOO(-)), formed from the reaction of superoxide ((•)O2 (-)) and nitric oxide (NO), is a cytotoxic species that can oxidize various cellular components, such as proteins, lipids, and DNA. The present study investigated whether dimethyl lithospermate (DML), isolated from Salvia miltiorrhiza, modulates age-related increases of ONOO(-), NO, and reactive species (RS) levels and expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). For this study, 20-month-old rats were intraperitoneally injected with 5 or 10 mg/kg/day of DML, and 6-month-old rats were used as young control animals. Our results indicated that DML reduces ONOO(-) levels in a dose-dependent manner. The data also revealed that DML has significant inhibitory effects on NO metabolites and RS generation in a dose-dependent manner during aging. Furthermore, the results of Western blot analysis revealed that DML treatment reduces age-associated increases in COX-2 and iNOS expressions. Thus, this study found that DML caused the decrease of renal oxidative stress and COX-2 and iNOS expressions in aged rats. The significance of the present study is the finding of DML in its potential application against the aging process.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Choi YJ, Uehara Y, Park JY, Kim SJ, Kim SR, Lee HW, Moon HR, Chung HY. MHY884, a newly synthesized tyrosinase inhibitor, suppresses UVB-induced activation of NF-κB signaling pathway through the downregulation of oxidative stress. Bioorg Med Chem Lett 2014; 24:1344-8. [PMID: 24508132 DOI: 10.1016/j.bmcl.2014.01.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 01/31/2023]
Abstract
The skin is the primary target of prolonged and repeated ultraviolet (UVB) irradiation which induces cutaneous inflammation and pigmentation. Nuclear factor κB (NF-κB) is the major factor mediating UVB-induced inflammatory responses through the expression of various proinflammatory proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We have previously reported that the synthetic novel compound 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) strongly suppressed tyrosinase activity and melanin synthesis in B16F10 melanoma cells. In the present study, we investigated the effect of MHY884 on the inhibition of UVB-induced NF-κB activation and its proinflammatory downstream proteins through the suppression of oxidative stress in an in vivo model of photoaging. Generation of reactive oxygen species (ROS) and peroxynitrite was measured in vitro and in B16F10 melanoma cells to verify the scavenging activity of MHY884. MHY884 suppressed oxidative stress both in vitro and in the melanoma cells in a dose-dependent manner. Next, melanin-possessing hairless mice were pre-treated with MHY884 and then irradiated with UVB repeatedly. Topical application of MHY884 attenuated UVB-induced oxidative stress, resulting in reduced NF-κB activity. Pre-treatment with MHY884 inhibited Akt and IκB kinase α/β signaling pathways, leading to decreased translocation and phosphorylation of p65, a subunit of NF-κB. This result correlated with the expression levels of iNOS and COX-2 in the skin of MHY884-treated mice. Thus, the novel tyrosinase inhibitor MHY884 suppressed NF-κB activation signaling pathway by scavenging UVB-induced oxidative stress. The discovery of MHY884, a novel tyrosinase inhibitor that targets NF-κB signaling, is significant, because this compound is a promising protective agent against UVB-induced skin damage.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Yohei Uehara
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Ji Young Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Seong Jin Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - So Ra Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Hee Won Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
43
|
Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 2014; 66:88-99. [PMID: 23743291 PMCID: PMC4017324 DOI: 10.1016/j.freeradbiomed.2013.05.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Yun Shi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
44
|
Wanders D, Ghosh S, Stone KP, Van NT, Gettys TW. Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging. Biofactors 2014; 40:13-26. [PMID: 23813805 PMCID: PMC3796060 DOI: 10.1002/biof.1111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 02/06/2023]
Abstract
Calorie restriction (CR) without malnutrition increases lifespan and produces significant improvements in biomarkers of metabolic health. The improvements are attributable in part to effects of CR on energy balance, which limit fat accumulation by restricting energy intake. Normal age-associated increases in adiposity and insulin resistance are associated with development of a systemic proinflammatory state, while chronic CR limits fat deposition and expression of inflammatory markers. Dietary methionine restriction (MR) has emerged as an effective CR mimetic because it produces a comparable extension in lifespan. MR also reduces adiposity through a compensatory increase in energy expenditure that effectively limits fat accumulation, but essentially nothing is known about the effects of MR on systemic inflammation. Here, we review the relationships between these two interventions and discuss their transcriptional impact. In addition, using tissues from rats after long-term consumption of CR or MR diets, transcriptional profiling was used to examine retrospectively the systems biology of 59 networks of molecules annotated to inflammation. Transcriptional effects of both diets occurred primarily in white adipose tissue and liver, and the responses to MR were far more robust than those to CR. The primary transcriptional targets of MR in both liver and white adipose tissue were phagocytes and macrophages, where expression of genes associated with immune cell infiltration and quantity was reduced. These findings support the conclusion that anti-inflammatory responses produced by CR and MR are not strictly dependent upon reduced adiposity but are significantly influenced by the metabolic mechanisms through which energy balance is altered.
Collapse
Affiliation(s)
- Desiree Wanders
- Laboratories of Nutrient Sensing and Adipocyte Signaling, Baton Rouge, LA
| | - Sujoy Ghosh
- Computational Biology Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kirsten P. Stone
- Laboratories of Nutrient Sensing and Adipocyte Signaling, Baton Rouge, LA
| | - Nancy T. Van
- Laboratories of Nutrient Sensing and Adipocyte Signaling, Baton Rouge, LA
| | - Thomas W. Gettys
- Laboratories of Nutrient Sensing and Adipocyte Signaling, Baton Rouge, LA
| |
Collapse
|
45
|
Chung K, Kim D, Park M, Choi Y, Kim N, Lee J, Yu B, Chung H. Recent advances in calorie restriction research on aging. Exp Gerontol 2013. [DOI: 10.1016/j.exger.2012.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Kim SR, Jung YR, An HJ, Kim DH, Jang EJ, Choi YJ, Moon KM, Park MH, Park CH, Chung KW, Bae HR, Choi YW, Kim ND, Chung HY. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. PLoS One 2013; 8:e73877. [PMID: 24066081 PMCID: PMC3774756 DOI: 10.1371/journal.pone.0073877] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/23/2013] [Indexed: 12/04/2022] Open
Abstract
Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling.
Collapse
Affiliation(s)
- So Ra Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yu Ri Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hye Jin An
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eun Ji Jang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Kyoung Mi Moon
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Chan Hum Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ha Ram Bae
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yung Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
47
|
Boehm AM, Rosenstiel P, Bosch TCG. Stem cells and aging from a quasi-immortal point of view. Bioessays 2013; 35:994-1003. [PMID: 24037777 DOI: 10.1002/bies.201300075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding aging and how it affects an organism's lifespan is a fundamental problem in biology. A hallmark of aging is stem cell senescence, the decline of functionality, and number of somatic stem cells, resulting in an impaired regenerative capacity and reduced tissue function. In addition, aging is characterized by profound remodeling of the immune system and a quantitative decline of adequate immune responses, a phenomenon referred to as immune-senescence. Yet, what is causing stem cell and immune-senescence? This review discusses experimental studies of potentially immortal Hydra which have made contributions to answering this question. Hydra transcription factor FoxO has been shown to modulate both stem cell proliferation and innate immunity, lending strong support to a role of FoxO as critical rate-of-aging regulator from Hydra to human. Constructing a model of how FoxO responds to diverse environmental factors provides a framework for how stem cell factors might contribute to aging.
Collapse
Affiliation(s)
- Anna-Marei Boehm
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | |
Collapse
|
48
|
Jin Jung K, Hyun Kim D, Kyeong Lee E, Woo Song C, Pal Yu B, Young Chung H. Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-κB in aged rat kidney. Free Radic Biol Med 2013; 61:206-17. [PMID: 23583701 DOI: 10.1016/j.freeradbiomed.2013.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/05/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
The molecular inflammation hypothesis of aging proposes that redox dysregulation causes an age-related activation of NF-κB and its signaling to upregulate various proinflammatory genes. In the present study, we focused on the inactive form of the protein phosphastase 2A (PP2A). More specifically, we aimed to define the correlation between PP2A inactivation and NF-κB activation by age-related oxidative stress. Experimentations were designed to determine the effect of oxidative stress-induced PP2A inactivation on NF-κB activity, utilizing prooxidants t-BHP and AAPH, the PTP inhibitor Na3VO4, and the PP2A inhibitor Calyculin A and PP2A siRNA, in HEK293T cells. We also assessed the phosphorylation of PP2A catalytic subunit (PP2Ac) and the activities of PP2A and NF-κB in aged rat kidney, utilizing aging-retarding 40% calorie restriction (CR) -60% of food intake and inflammation-triggering LPS paradigms. Results revealed that an oxidative stress-induced PTK/PTP imbalance led to phosphorylation of PP2Ac, following exposures to t-BHP, AAPH, and Na3VO4 in HEK293T cells. Subsequently, we found that Calyculin A and PP2A siRNA activates NIK/IKK and MAPKs, leading to upregulation of NF-κB and its dependent oxidative stress. Also, the contrasting relation between PP2A inactivation and NF-κB activation was confirmed by AAPH-induced oxidative status in mice, and non-induced normal status or LPS-induced inflammatory status in aged rats while the antioxidative, anti-inflammatory, anti-aging effects of CR significantly blunted these actions. Thus, we present evidence that PP2A inactivation via PTK/PTP imbalance provoked by oxidative stress causes NF-κB activation, which contributes to the accumulation of oxidative stress in aged rat kidney.
Collapse
Affiliation(s)
- Kyung Jin Jung
- Analytical Center, Korea Institute of Toxicology, Yuseong, Daejeon 305-343, Republic of Korea; Department of Pharmacy, College of Pharmacy and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Eun Kyeong Lee
- Department of Pharmacy, College of Pharmacy and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea; Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Chang Woo Song
- Analytical Center, Korea Institute of Toxicology, Yuseong, Daejeon 305-343, Republic of Korea
| | - Byung Pal Yu
- Department of Pharmacy, College of Pharmacy and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea; Department of Physiology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
49
|
Abstract
The endothelium plays a critical role in the maintenance of cardiovascular health by producing nitric oxide and other vasoactive materials. Aging is associated with a gradual decline in this functional aspect of endothelial regulation of cardiovascular homeostasis. Indeed, age is an independent risk factor for cardiovascular diseases and is in part an important factor in the increased exponential mortality rates from vascular disease such as myocardial infarction and stroke that occurs in the ageing population. There are a number of mechanisms suggested to explain age-related endothelial dysfunction. However, recent scientific studies have advanced the notion of oxidative stress and inflammation as the two major risk factors underlying aging and age-related diseases. Regular physical activity, known to have a favorable effect on cardiovascular health, can also improve the function of the ageing endothelium by modulating oxidative stress and inflammatory processes, as we discuss in this paper.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
50
|
Shen B, Li J, Gao L, Zhang J, Yang B. Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol Cell Biochem 2013; 378:137-44. [PMID: 23456481 PMCID: PMC3634987 DOI: 10.1007/s11010-013-1604-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
The expression level of CC-chemokine receptor 5 (CCR5) is enhanced post inflammatory stimulations and might play a crucial role on inflammatory cells infiltration post myocardial ischemia. The purpose of this study was to evaluate the role of CCR5 on myocardial ischemia-reperfusion (I/R) injury in rats. Adult male rats were randomized to sham group, I/R group (I/R, 30 min coronary artery occlusion followed by 2-h reperfusion), ischemic preconditioning (I/R + Pre), CCR5 antibody group [I/R + CCR5Ab (0.2 mg/kg)], and CCR5 agonist group [I/R + CCR5Ago, RNATES (0.1 mg/kg)], n = 12 each group. The serum level of creatine kinase (CK) and tumor necrosis factor α (TNF-α) were measured by ELISA. Myocardial infarction size and myeloperoxidase (MPO) activity were determined. Myocardial protein expression of CCR5 and intercellular adhesion molecule-1 (ICAM-1) were evaluated by Western blotting and immunohistochemistry staining, respectively. Myocardial nuclear factor-kappa B (NF-κB) activity was assayed by electrophoretic mobility shift assay. Myocardial CCR5 protein expression was significantly reduced in I/R + Pre group (P < 0.05 vs. I/R) and further reduced in I/R + CCR5Ab group (P < 0.05 vs. I/R + Pre). LVSP and ±dP/dt(max) were significantly lower while serum CK and TNF-α as well as myocardial MPO activity, ICAM-1 expression, and NF-κB activity were significantly higher in I/R group than in sham group (all P < 0.05), which were significantly reversed by I/R + Pre (all P < 0.05 vs. I/R) and I/R + CCR5Ab (all P < 0.05 vs. I/R + Pre) while aggravated by I/R + CCR5Ago (all P < 0.05 vs. I/R). Our results suggest that blocking CCR5 attenuates while enhancing CCR5 aggravates myocardial I/R injury through modulating inflammatory responses in rat heart.
Collapse
Affiliation(s)
- Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People’s Republic of China
| | - Jun Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People’s Republic of China
| | - Jieyu Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People’s Republic of China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|