1
|
Ziegler AC, Haider RS, Hoffmann C, Gräler MH. S1PR3 agonism and S1P lyase inhibition rescue mice in the severe state of experimental sepsis. Biomed Pharmacother 2024; 174:116575. [PMID: 38599060 DOI: 10.1016/j.biopha.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany
| | - Raphael S Haider
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, UK
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07740, Germany.
| |
Collapse
|
2
|
Komatsuya K, Kaneko K, Kasahara K. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2020; 21:ijms21155539. [PMID: 32748854 PMCID: PMC7432685 DOI: 10.3390/ijms21155539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed.
Collapse
|
3
|
Ramer R, Hinz B. Antitumorigenic targets of cannabinoids - current status and implications. Expert Opin Ther Targets 2016; 20:1219-35. [PMID: 27070944 DOI: 10.1080/14728222.2016.1177512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. AREAS COVERED The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. EXPERT OPINION The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.
Collapse
Affiliation(s)
- Robert Ramer
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
4
|
New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 314:43-116. [DOI: 10.1016/bs.ircmb.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Usatyuk PV, Burns M, Mohan V, Pendyala S, He D, Ebenezer DL, Harijith A, Fu P, Huang LS, Bear JE, Garcia JGN, Natarajan V. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. PLoS One 2013; 8:e63007. [PMID: 23667561 PMCID: PMC3648575 DOI: 10.1371/journal.pone.0063007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Profirovic J, Strekalova E, Urao N, Krbanjevic A, Andreeva AV, Varadarajan S, Fukai T, Hen R, Ushio-Fukai M, Voyno-Yasenetskaya TA. A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor. Angiogenesis 2012; 16:15-28. [PMID: 22903372 DOI: 10.1007/s10456-012-9296-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 08/07/2012] [Indexed: 01/09/2023]
Abstract
The 5-hydroxytryptamine type 4 receptor (5-HT(4)R) regulates many physiological processes, including learning and memory, cognition, and gastrointestinal motility. Little is known about its role in angiogenesis. Using mouse hindlimb ischemia model of angiogenesis, we observed a significant reduction of limb blood flow recovery 14 days after ischemia and a decrease in density of CD31-positive vessels in adductor muscles in 5-HT(4)R(-/-) mice compared to wild type littermates. Our in vitro data indicated that 5-HT(4)R endogenously expressed in endothelial cells (ECs) may promote angiogenesis. Inhibition of the receptor with 5-HT(4)R antagonist RS 39604 reduced EC capillary tube formation in the reconstituted basement membrane. Using Boyden chamber migration assay and wound healing "scratch" assay, we demonstrated that RS 39604 treatment significantly suppressed EC migration. Transendothelial resistance measurement and immunofluorescence analysis showed that a 5-HT(4)R agonist RS 67333 led to an increase in endothelial permeability, actin stress fiber and interendothelial gap formation. Importantly, we provided the evidence that 5-HT(4)R-regulated EC migration may be mediated by Gα13 and RhoA. Our results suggest a prominent role of 5-HT(4)R in promoting angiogenesis and identify 5-HT(4)R as a potential therapeutic target for modulating angiogenesis under pathological conditions.
Collapse
Affiliation(s)
- Jasmina Profirovic
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Inhibition of hypoxia-induced retinal neovascularization in mice with short hairpin RNA targeting Rac1, possibly via blockading redox signaling. Exp Eye Res 2011; 92:473-81. [PMID: 21414312 DOI: 10.1016/j.exer.2011.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 03/03/2011] [Accepted: 03/06/2011] [Indexed: 02/05/2023]
Abstract
NADPH oxidase-derived reactive oxygen species are involved in angiogenesis in vitro and regulated by ras-related C3 botulinum toxin substrate 1 (Rac1). This study has employed vector-based short hairpin RNA targeting Rac1 (Rac1-shRNA) to investigate the inhibitory effect on hypoxia-induced retinal neovascularization (RN) in vivo and the underlying mechanism. pSUPER-Rac1-shRNA was intravitreally injected into the mouse model of oxygen-induced retinopathy. RN was evaluated by FITC-dextran angiography and quantitated histologically. Expressions of Rac1, nuclear factor kappa B (NF-κB) subunit p65, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) were determined by real-time quantitative RT-PCR and western blotting. After intravitreal administration of pSUPER-Rac1-shRNA, retinal Rac1 gene expression was reduced by 72% at postnatal day 17 (P17). Retinal flat mount and quantification of the neovascular nuclei demonstrated that RN was significantly inhibited. Meanwhile, the expression levels of NF-κB and HIF-1α, the redox-dependent transcription factors, were significantly downregulated. HIF-1α and its downstream gene VEGF were found to be significantly decreased at both transcriptional and translational levels. Our findings not only suggest that Rac1 may be involved in the process of RN in mouse oxygen-induced retinopathy via regulating the redox signaling, but may also provide a novel therapeutic target for hypoxia-induced retinal neovascular diseases.
Collapse
|
8
|
Gil PR, Japtok L, Kleuser B. Sphingosine 1-phosphate mediates chemotaxis of human primary fibroblasts via the S1P-receptor subtypes S1P1 and S1P3 and Smad-signalling. Cytoskeleton (Hoboken) 2010; 67:773-83. [DOI: 10.1002/cm.20486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/26/2010] [Accepted: 09/09/2010] [Indexed: 11/09/2022]
|
9
|
Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cell Mol Biol Lett 2009; 14:424-41. [PMID: 19238330 PMCID: PMC6275620 DOI: 10.2478/s11658-009-0009-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 02/12/2009] [Indexed: 11/21/2022] Open
Abstract
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (EC(SK)) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. EC(SK) showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (EC(EV)). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in EC(SK). By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial.
Collapse
|
10
|
Wacker BK, Alford SK, Scott EA, Das Thakur M, Longmore GD, Elbert DL. Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the presence of sphingosine 1-phosphate. Biophys J 2007; 94:273-85. [PMID: 17827231 PMCID: PMC2134859 DOI: 10.1529/biophysj.107.109074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent chemokinetic agent for endothelial cells that is released by activated platelets. We previously developed Arg-Gly-Asp (RGD)-containing polyethylene glycol biomaterials for the controlled delivery of S1P to promote endothelialization. Here, we studied the effects of cell adhesion strength on S1P-stimulated endothelial cell migration in the presence of arterial levels of fluid shear stress, since an upward shift in optimal cell adhesion strengths may be beneficial for promoting long-term cell adhesion to materials. Two RGD peptides with different integrin-binding specificities were added to the polyethylene glycol hydrogels. A linear RGD bound primarily to beta(3) integrins, whereas a cyclic RGD bound through both beta(1) and beta(3) integrins. We observed increased focal adhesion formation and better long-term adhesion in flow with endothelial cells on linear RGD peptide, versus cyclic RGD, even though initial adhesion strengths were higher for cells on cyclic RGD. Addition of 100 nM S1P increased cell speed and random motility coefficients on both RGD peptides, with the largest increases found on cyclic RGD. For both peptides, much of the increase in cell migration speed was found for smaller cells (<1522 microm(2) projected area), although the large increases on cyclic RGD were also due to medium-sized cells (2288-3519 microm(2)). Overall, a compromise between high cell migration rates and long-term adhesion will be important in the design of materials that endothelialize after implantation.
Collapse
Affiliation(s)
- Bradley K Wacker
- Department of Biomedical Engineering and Center for Materials Innovation, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dyatlovitskaya EV. The role of lysosphingolipids in the regulation of biological processes. BIOCHEMISTRY (MOSCOW) 2007; 72:479-84. [PMID: 17573701 DOI: 10.1134/s0006297907050033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes data on the role of lysosphingolipids (glucosyl- and galactosylsphingosines, sphingosine-1-phosphate, sphingosine-1-phosphocholine) in the regulation of various biological processes in normal and pathological states.
Collapse
Affiliation(s)
- E V Dyatlovitskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia.
| |
Collapse
|
12
|
Thompson B, Ancellin N, Fernandez SM, Hla T, Sha'afi RI. Protein kinase Calpha and sphingosine 1-phosphate-dependent signaling in endothelial cell. Prostaglandins Other Lipid Mediat 2006; 80:15-27. [PMID: 16846783 DOI: 10.1016/j.prostaglandins.2006.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 11/20/2022]
Abstract
Protein kinase C (PKC)-mediated signal transduction pathways convert extracellular stimulation into a variety of cellular functions. However, the role of various PKC isoforms in sphingosine 1-phosphate (S1P)-stimulated endothelial cells is not well understood. PKCalpha and PKCepsilon activity are increased in endothelial cell cultures, and S1P receptor transfection studies indicate S1P(3) stimulates PKCalpha and S1P1 leads to PKCepsilon activity. Infection of endothelial cells with dominant negative (DN)PKCalpha adenovirus reduces cell migration and greatly inhibits morphogenesis in cells stimulated with S1P. This effect is specific to PKCalpha, as infection with DN PKCepsilon does not alter either migration or morphogenesis. The PKC-specific chemical inhibitor GF109203X also inhibits these two responses. Infection of endothelial cells with dominant negative PKCalpha reduces S1P-induced calcium rise. This maximal rise requires calcium uptake, but it does not require enzymatic activity of the kinase. Pretreatment of these cells with the PKC-specific inhibitor GF109203X does not inhibit S1P-induced calcium rise. S1P-induced morphogenesis but not cell migration is critically dependent on extracellular calcium. Pretreatment of endothelial cells with phorbol 12-myristate 13-acetate for 5min abolishes S1P-stimulated rise in calcium but had little or no effect on migration. The PMA-inhibited calcium rise can be prevented by PKC inhibitor or infection with dominant negative PKCalpha.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030-3505, USA
| | | | | | | | | |
Collapse
|
13
|
Dyatlovitskaya EV, Kandyba AG. Sphingolipids in tumor metastases and angiogenesis. BIOCHEMISTRY (MOSCOW) 2006; 71:347-53. [PMID: 16615853 DOI: 10.1134/s0006297906040018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review article summarizes data on the involvement of sphingolipids (sphingosine-1-phosphate, sphingosine-1-phosphocholine, neutral glycosphingolipids, and gangliosides) in tumor metastases and angiogenesis.
Collapse
Affiliation(s)
- E V Dyatlovitskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | |
Collapse
|
14
|
Donati C, Bruni P. Sphingosine 1-phosphate regulates cytoskeleton dynamics: implications in its biological response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2037-48. [PMID: 16890187 DOI: 10.1016/j.bbamem.2006.06.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 01/06/2023]
Abstract
The bioactive sphingolipid sphingosine 1-phosphate (S1P) elicits robust cytoskeletal rearrangement in a large variety of cell systems, mainly acting through a panel of specific cell surface receptors, named S1P receptors. Recent studies have begun to delineate the molecular mechanisms involved in the complex process responsible for cytoskeletal rearrangement following S1P ligation to its receptors. Notably, changes of cell shape and/or motility induced by S1P via cytoskeletal remodelling are functional to the biological action exerted by S1P which appears to be highly cell-specific. This review focuses on the current knowledge of the regulatory mechanisms of cytoskeleton dynamics elicited by S1P, with special emphasis on the relationship between cytoskeletal remodelling and the biological effects evoked by the sphingolipid in various cell types.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche, Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | | |
Collapse
|
15
|
Xue Y, Bi F, Zhang X, Zhang S, Pan Y, Liu N, Shi Y, Yao X, Zheng Y, Fan D. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer 2006; 118:2965-72. [PMID: 16395716 DOI: 10.1002/ijc.21763] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low oxygen tension can influence tumor progression by enhancing angiogenesis, a process that may involve Rho GTPases whose activities have been implicated in tumorigenesis and metastasis. In the present study, we show that hypoxia can increase the mRNA levels and intracellular activities of Rac1 and Cdc42 in a time-dependent manner. The hypoxia-stimulated activities of Rac1 and Cdc42 could be blocked by the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002 and the protein tyrosine kinase (PTK) inhibitor genistein but were not affected by the p38MAPK inhibitor SB203580 or the MEK-1 inhibitor PD98059, suggesting that the hypoxia-mediated signals were through PI3K and PTK. Correlating with the increased activities of Rac1 and Cdc42, the expression of the pro-angiogenesis factors HIF-1alpha and vascular endothelial growth factor (VEGF) was upregulated by hypoxia, whereas the expression of the tumor suppressors von Hippel-Lindau and p53 was down-regulated. Dominant negative N17Rac1 and N17Cdc42 could upregulate the expression of p53 and pVHL but downregulate that of HIF-1alpha and VEGF under hypoxia. Furthermore, the preconditioned medium from N17Rac1 or N17Cdc42-expressing gastric cancer cells was able to inhibit the proliferation of HUVECs. Our results indicate that PI3K and PTK-mediated activations of Rac1 and Cdc42 are involved in the hypoxia-induced production of angiogenesis-promoting factors and tumor suppressors, and suggest that the Rho family GTPases Rac1 and Cdc42 may contribute to the hypoxia-mediated angiogenesis.
Collapse
Affiliation(s)
- Yan Xue
- The State Key Laboratory of Cancer Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are endogenous bioactive lipids that participate in the regulation of mammalian cell proliferation, apoptosis, migration, and angiogenesis. These processes are each critical for successful embryogenesis, raising the possibility that lysophospholipid signaling may contribute to normal animal development. In fact, recent studies in developmental model systems have established that S1P and LPA are necessary for diverse developmental programs including those required for morphogenesis of vertebrate reproductive, cardiovascular and central and peripheral nervous systems (PNS), as well as the establishment of maternal-fetal circulation and the immune system. Genetic, morphological, and biochemical characterization of developmental model systems offer powerful approaches to elucidating the molecular mechanisms of lysophospholipid signaling and its contributions to animal development and postnatal physiology. In this review, the routes of S1P and LPA metabolism and our current understanding of lysophospholipid-mediated signal transduction in mammalian cells will be summarized. The evidence implicating lysophospholipid signaling in the development of specific vertebrate systems will then be reviewed, with an emphasis on signals mediated through G protein-coupled receptors of the Edg family. Lastly, recent insights derived from the study of simple metazoan models and implications regarding lysophospholipid signaling in organisms in which Edg receptors are not conserved will be explored.
Collapse
Affiliation(s)
- Julie D Saba
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609-1673, USA.
| |
Collapse
|
17
|
Yabu T, Tomimoto H, Taguchi Y, Yamaoka S, Igarashi Y, Okazaki T. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 2005; 106:125-34. [PMID: 15741222 DOI: 10.1182/blood-2004-09-3679] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Thalidomide, which is clinically recognized as an efficient therapeutic agent for multiple myeloma, has been thought to exert antiangiogenic action through an unknown mechanism. We here show a novel mechanism of thalidomide-induced antiangiogenesis in zebrafish embryos. Thalidomide induces the defect of major blood vessels, which is demonstrated by their morphologic loss and confirmed by the depletion of vascular endothelial growth factor (VEGF) receptors such as neuropilin-1 and Flk-1. Transient increase of ceramide content through activation of neutral sphingomyelinase (nSMase) precedes thalidomide-induced vascular defect in the embryos. Synthetic cell permeable ceramide, N-acetylsphingosine (C2-ceramide) inhibits embryonic angiogenesis as well as thalidomide. The blockade of ceramide generation by antisense morpholino oligonucleotides for nSMase prevents thalidomide-induced ceramide generation and vascular defect. In contrast to ceramide, sphingosine-1-phosphate (S1P) inhibits nSMase-dependent ceramide generation and restores thalidomide-induced embryonic vascular defect with an increase of expression of VEGF receptors. In human umbilical vein endothelial cells (HUVECs), thalidomide-induced inhibition of cell growth, generation of ceramide through nSMase, and depletion of VEGF receptors are restored to the control levels by pretreatment with S1P. These results suggest that thalidomide-induced antiangiogenic action is regulated by the balance between ceramide and S1P signal.
Collapse
Affiliation(s)
- Takeshi Yabu
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kieć-Wilk B, Polus A, Grzybowska J, Mikołajczyk M, Hartwich J, Pryjma J, Skrzeczyńska J, Dembińska-Kieć A. β-Carotene stimulates chemotaxis of human endothelial progenitor cells. Clin Chem Lab Med 2005; 43:488-98. [PMID: 15899670 DOI: 10.1515/cclm.2005.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAngiogenesis is a crucial process in tissue remodeling during growth, both in the embryo and the adult. In our study we concentrated on the direct effect of β-carotene on human umbilical cord originating from endothelial progenitor cells (EPCs). β-Carotene uptake by EPCs was measured using a HPLC method. The determination of cell surface antigens was performed by flow cytometry. The effect on cell proliferation was estimated by measuring bromo-deoxyuridine incorporation. The influence on the formation of a tubular-like structure was investigated in a 3D assay in matrigel. Quantitative gene expression was estimated using real-time PCR. We demonstrated that β-carotene in the physiological range of concentrations found in human blood is a potent activator of EPC chemotaxis, which is accompanied by a change in the expression of genes mediating cell adhesion and homing, but does not activate the final markers of endothelial differentiation. This study points to the prochemotactic and homing activity of β-carotene in undifferentiated endothelial cell progenitors for the first time, which may suggest a potential role of this carotenoid in progenitor cell therapy aimed at angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Beata Kieć-Wilk
- Department of Clinical Biochemistry, Medical College, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Galaria II, Fegley AJ, Nicholl SM, Roztocil E, Davies MG. Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration. J Surg Res 2004; 122:173-9. [PMID: 15555614 DOI: 10.1016/j.jss.2004.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine the role of rhosignaling in sphingosine-1-phosphate (S-1-P)-induced smooth muscle cell migration. BACKGROUND S-1-P is a bioactive sphingolipid released from activated platelets stimulating migration of smooth muscle cells (SMC) in vitro through Galphai G-proteins and MAPK activation. Rho is one of the key small GTPases required for cytoskeletal reorganization and MAPK activation during migration. We hypothesized that S-1-P-stimulated migration is regulated by the rho-signaling pathway. METHODS Rat arterial SMCs were cultured in vitro. Linear wound assays of migration were performed in the presence of S-1-P with and without C3 (a rho antagonist) and Y (Y27632, a Rho kinase inhibitor). Western blotting was performed for MEK1-ERK1/2 and MMK3/MKK6-p38(MAPK) phosphorylation after stimulation with S-1-P with and without pre-incubation with the inhibitors. Statistics were analyzed by one-way ANOVA. RESULTS S-1-P stimulated migration of SMCs in a wound assay (2-fold over control; P < 0.01), which was blocked by Rho inhibition (P < 0.05). S-1-P activated rho and induced a time-dependent increase in ERK1/2 and p38(MAPK) activation. In the presence of C3, MEK1 and ERK1/2 phosphorylation were significantly decreased, while MKK3/6 and p38(MAPK) phosphorylation were unchanged. In contrast, when rho kinase was inhibited, there was an increase in ERK1/2 and a decrease in p38(MAPK) phosphorylation. Rho kinase inhibition resulted in a decrease in MEK1/2 and MKK3/6 phosphorylation. CONCLUSIONS S-1-P differentially regulates the MAPK pathway through components of the rho pathway. Rho regulates ERK1/2 activation through MEK1/2, while Rho kinase negatively modulates ERK1/2 in a MEK1/2-independent manner and regulates p38(MAPK) through MKK3/6. This is the first description of differential MAPK regulation by a G-protein-coupled receptor through the rho pathway. Understanding signal transduction in SMCs will contribute to the development of molecular therapeutics for intimal hyperplasia.
Collapse
Affiliation(s)
- Irfan I Galaria
- Vascular Biology and Therapeutics Program, Division of Vascular Surgery, and Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
20
|
Duan HF, Wu CT, Lu Y, Wang H, Liu HJ, Zhang QW, Jia XX, Lu ZZ, Wang LS. Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. Exp Cell Res 2004; 298:593-601. [PMID: 15265705 DOI: 10.1016/j.yexcr.2004.04.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 04/26/2004] [Accepted: 04/30/2004] [Indexed: 01/12/2023]
Abstract
Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.
Collapse
Affiliation(s)
- Hai-Feng Duan
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li Y, Uruno T, Haudenschild C, Dudek SM, Garcia JGN, Zhan X. Interaction of cortactin and Arp2/3 complex is required for sphingosine-1-phosphate-induced endothelial cell remodeling. Exp Cell Res 2004; 298:107-21. [PMID: 15242766 DOI: 10.1016/j.yexcr.2004.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/06/2004] [Indexed: 11/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) induces capillary formation of endothelial cells on Matrigel in accompany with actin assembly and accumulation of cortactin and Arp2/3 complex at the cell-leading edge. Suppression of cortactin expression with a cortactin antisense oligo significantly impaired S1P-induced capillary formation, migration of endothelial cells, and actin assembly at the cell periphery. Overexpression of wild-type cortactin tagged by green fluorescent protein (GFP) increased the S1P-induced tube formation and cell motility, whereas the cells overexpressing the mutant formed poorly capillary network and became less motile in response to S1P. Analysis of distribution in Triton X-100 insoluble fractions demonstrated that the cortactin mutant inhibited the association of wild-type cortactin and Arp2/3 complex with the actin-enriched complex. Furthermore, actin polymerization at and distribution of Arp2/3 complex as well as endogenous cortactin into the cell-leading edge mediated by S1P was disturbed. These data suggest that the interaction between cortactin and Arp2/3 complex plays an important role in S1P-mediated remodeling of endothelial cells.
Collapse
Affiliation(s)
- Yansong Li
- Department of Experimental Pathology, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | |
Collapse
|
22
|
Fegley AJ, Tanski WJ, Roztocil E, Davies MG. Sphingosine-1-phosphate stimulates smooth muscle cell migration through galpha(i)- and pi3-kinase-dependent p38(MAPK) activation. J Surg Res 2003; 113:32-41. [PMID: 12943808 DOI: 10.1016/s0022-4804(03)00120-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S-1-P) is an extracellular mediator released in response to vessel injury. S-1-P binds to G-protein-coupled receptors, which can be Galpha(i)-, Galpha(q)-, or G(12/13)-linked. This study examines the role of p38 mitogen-activated protein kinase (p38(MAPK)) in vascular smooth muscle cell migration after stimulation with S-1-P, and pathways leading to p38(MAPK) activation. S-1-P has previously been shown to stimulate migration of vascular smooth muscle cells (VSMCs) in vitro through ERK1/2 and G(i). We hypothesized that S-1-P-induced VSMC migration is also dependent on p38(MAPK) activation through a G(i)-coupled extracellular receptor and phosphoinositide 3-kinase (PI3-K). METHODS VSMCs were cultured in vitro. A linear wound assay was performed in the presence of S-1-P and inhibitors of p38(MAPK) (SB203580) or epidermal growth factor (EGF) receptor kinase (AG1478). Chemotaxis stimulated by S-1-P was also assayed in a modified Boyden chamber with and without SB203580 pretreatment. Western blotting was performed to examine p38(MAPK) activation in response to S-1-P with and without SB203580, AG1478, or inhibitors of G(i) (pertussis toxin), PI3-K (Wortmannin and LY294002), or MEK1 (PD98059). Western blotting and immunoprecipitation for targets of p38(MAPK) (MAPKAP kinase-2) and PI3-K (Akt) were also performed.S-1-P stimulated migration of VSMCs in both wound and Boyden transwell assays. This migration was inhibited by SB203580 to the level of control, whereas AG478 had no effect. RESULTS S-1-P stimulated activation of p38(MAPK) that peaked at 10 min, as well as activation of MAPKAP kinase-2. Activation of p38(MAPK) was significantly inhibited by SB203580, pertussis toxin, Wortmannin, and LY294002, but not by PD98059 or AG1478; MAPKAP kinase-2 activation was inhibited by SB203580. Akt was activated by S-1-P at 3 to 5 min; this response was inhibited by Wortmannin and LY294002, but not by SB203580 or pertussis toxin. CONCLUSIONS S-1-P induced VSMC migration through a G(i)-linked and a PI3-K coupled, p38(MAPK)- dependent process. PI3-K appears to function upstream of p38(MAPK), but was not G(i)-dependent. S-1-P-stimulated activation of p38(MAPK) does not signal via transactivation of the EGF receptor. Understanding signal transduction will allow targeted molecular interventions to treat the response of a vessel to injury.
Collapse
Affiliation(s)
- Allison J Fegley
- Vascular Biology and Therapeutics Program, Division of Vascular Surgery, Department of Surgery, and Center for Cardiovascular Research, University of Rochester, Rochester, New York, USA
| | | | | | | |
Collapse
|
23
|
Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JGN. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol 2003; 285:L258-67. [PMID: 12626332 DOI: 10.1152/ajplung.00311.2002] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro and in vivo evidence indicates that circulating platelets affect both vascular integrity and hemostasis. How platelets enhance the permeability barrier of the vascular endothelium is not well understood. We measured the effect of isolated human platelets on human pulmonary artery endothelial cell (EC) barrier integrity by monitoring transmonolayer electrical resistance. EC barrier function was significantly increased by the addition of platelets ( approximately 40% maximum, 2.5 x 106 platelets/ml). Platelet supernatants, derived from 2.5 x 106 platelets/ml, reproduced the barrier enhancement and reversed the barrier dysfunction produced by the edemagenic agonist thrombin, which implicates a soluble barrier-promoting factor. The barrier-enhancing effect of platelet supernatants was heat stable but was attenuated by either charcoal delipidation (suggesting a vasoactive lipid mediator) or pertussis toxin, implying involvement of a Gialpha-coupled receptor signal transduction pathway. Sphingosine-1-phosphate (S1P), a sphingolipid that is released from activated platelets, is known to ligate G protein-coupled EC differentiation gene (EDG) receptors, increase EC electrical resistance, and reorganize the actin cytoskeleton (Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, and English D. J Clin Invest 108: 689-701, 2001). Infection of EC with an adenoviral vector expressing an antisense oligonucleotide directed against EDG-1 but not infection with control vector attenuated the barrier-enhancing effect of both platelet supernatants and S1P. These results indicate that a major physiologically relevant vascular barrier-protective mediator produced by human platelets is S1P.
Collapse
Affiliation(s)
- Kane L Schaphorst
- Division of Pulmonary and Critical Care Medicine and Center for Translational Respiratory Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224-6801, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nakajima M, Hayashi K, Katayama KI, Amano Y, Egi Y, Uehata M, Goto N, Kondo T. Wf-536 prevents tumor metastasis by inhibiting both tumor motility and angiogenic actions. Eur J Pharmacol 2003; 459:113-20. [PMID: 12524136 DOI: 10.1016/s0014-2999(02)02869-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The signaling pathway of Rho and Rho-associated coiled-coil forming protein kinase (ROCK) is involved in tumor metastasis. In the present study, we investigated the suppressive effect of a novel inhibitor of ROCK, Wf-536 [(+)-(R)-4-(1-Aminoethyl)-N-(4-pyridyl) benzamide monohydrochloride], on spontaneous tumor metastasis in vivo and analyzed its action on tumor cell motility and angiogenesis to clarify its action mechanism. Wf-536 (0.3-3 mg/kg/day) was found to inhibit Lewis lung carcinoma (LLC) metastasis and LLC-induced angiogenesis in orally treated mice; in vitro, it inhibited both invasion and migration by LLC cells and invasion, migration, and formation of capillary-like tubes on Matrigel by endothelial cells, without cytotoxicity or anti-proliferative action in either cell type. We conclude that Wf-536 has tumor anti-metastatic activity which may depend on inhibition of tumor motility and angiogenesis. The findings support its further clinical development as an anti-metastatic agent.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/prevention & control
- Carcinoma, Lewis Lung/secondary
- Cell Migration Inhibition
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Drug Screening Assays, Antitumor/methods
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Humans
- Intracellular Signaling Peptides and Proteins
- Lung Neoplasms/drug therapy
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Inbred C57BL
- Neoplasm Metastasis/prevention & control
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/prevention & control
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Pyridines/pharmacology
- Pyridines/therapeutic use
- rho-Associated Kinases
Collapse
Affiliation(s)
- Masahide Nakajima
- Pharmaceuticals Research Unit, Mitsubishi Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Kanagawa, 227-0033, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanski W, Roztocil E, Davies MG. Sphingosine-1-phosphate induces G(alphai)-coupled, PI3K/ras-dependent smooth muscle cell migration. J Surg Res 2002; 108:98-106. [PMID: 12443721 DOI: 10.1006/jsre.2002.6529] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sphingolipids such as sphingosine-1-phosphate (S-1-P) are potent extracellular mediators released in response to vessel injury. S-1-P binds to G-protein-coupled receptors, which can be either G(alphai) or G(alphaq) linked. This study examines the signaling pathways involved in vascular smooth muscle cell migration after stimulation by S-1-P. We hypothesized that S-1-P stimulates migration of smooth muscle cells that is dependent upon a G(alphai)-coupled receptor, ras, phosphoinositol 3-kinase (PI3-K), and ERK 1/2. METHODS Vascular smooth muscle cells were cultured in vitro. A linear wound assay and Boyden chamber assay of migration were employed in the presence of S-1-P and inhibitors of G(alphai) [pertussis toxin (PTx), 100 ng/ml], G(alphaq) (GP-2A, 10 microM), ras [manumycin A (MA), 10 microM], PI3-K [Wortmannin (Wn), 10 microM], and MEK1 [PD98059 (PD), 25 microM]. Western blotting was performed separately to examine p42/p44 MAP kinase (ERK 1/2) activation in response to S-1-P with these inhibitors. RESULTS S-1-P induced vascular smooth muscle cell migration. This response was decreased by preincubation with PTx, suggesting a receptor linked, G(alphai)-mediated response. Application of a G(alphaq) inhibitor did not affect this response. S-1-P induced ERK 1/2 phosphorylation in a time-dependent manner. This S-1-P-induced cell migration was PD-sensitive in the Boyden chamber assay, confirming that it is MEK1- and ERK1/2-dependent. Inhibition of ras with MA and PI3-K with Wn also reduced ERK phosphorylation and smooth muscle cell migration in response to S-1-P. CONCLUSIONS S-1-P induces smooth muscle cell migration through a G(alphai)-linked, ras- and PI3-K-coupled, ERK 1/2-dependent process. Understanding signal transduction will allow targeted molecular interventions to treat the response of a vessel to injury.
Collapse
Affiliation(s)
- William Tanski
- Vascular Biology and Therapeutics Program, Department of Surgery, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Sphingosine 1-phosphate is a novel lipid mediator which exerts various actions on endothelial cells and vascular smooth muscle cells. In this review, we discuss the latest findings about the molecule in vascular biology. RECENT FINDINGS It has been demonstrated that most sphingosine 1-phosphate-induced actions are mediated by the Edg-family of its receptors. Sphingosine 1-phosphate stimulates the migration and proliferation of endothelial cells and is cytoprotective towards them. The involvement of phosphoinositide 3-kinase and nitric oxide in sphingosine 1-phosphate downstream signaling in endothelial cells was recently reported, as was the enhancement of endothelial barrier integrity induced by the molecule. Sphingosine 1-phosphate inhibits migration of vascular smooth muscle cells and this inhibition was reported to be mediated by inhibition of Rac. Sphingosine 1-phosphate is concentrated in the lipoprotein fraction in plasma, and high-density lipoprotein exerted endothelial cytoprotection through its component of this molecule. SUMMARY Sphingosine 1-phosphate might play a critical role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Kenichi Tamama
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | |
Collapse
|
27
|
Schilling T, Repp H, Richter H, Koschinski A, Heinemann U, Dreyer F, Eder C. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCa1 Ca(2+)-dependent K(+) channels. Neuroscience 2002; 109:827-35. [PMID: 11927165 DOI: 10.1016/s0306-4522(01)00534-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of the lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid were studied in cultured murine microglia using the patch-clamp and video imaging techniques. Both lysophospholipids induced transient membrane hyperpolarization and K(+) current activation. The lysophospholipid-induced K(+) current was blocked by charybdotoxin or iberiotoxin, but was unaffected by apamin. In recordings with 1 microM intracellular free Ca(2+), Ca(2+)-dependent K(+) currents of microglia showed a similar pharmacological profile to lysophospholipid-induced currents. The Ca(2+)-dependent K(+) channels activated in microglia by lysophospholipids are most likely encoded by the IKCa1 channel gene. The presence of IKCa1 mRNA in microglia was demonstrated by reverse transcriptase-polymerase chain reaction studies. Ca(2+) imaging experiments revealed increases in the intracellular free Ca(2+) concentration of microglia to a mean value of about 400 nM after application of 1 microM sphingosine-1-phosphate or 1 microM lysophosphatidic acid. We suggest that the transient membrane hyperpolarization seen in microglia following exposure to sphingosine-1-phosphate or lysophosphatidic acid is caused by activation of IKCa1 Ca(2+)-dependent K(+) channels. Increases in the concentration of intracellular free Ca(2+) evoked by the lysophospholipids are sufficient to activate microglial Ca(2+)-dependent K(+) channels.
Collapse
Affiliation(s)
- T Schilling
- Institute of Physiology, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Beckner ME, Jagannathan S, Peterson VA. Extracellular angio-associated migratory cell protein plays a positive role in angiogenesis and is regulated by astrocytes in coculture. Microvasc Res 2002; 63:259-69. [PMID: 11969303 DOI: 10.1006/mvre.2001.2384] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular form of angio-associated migratory cell protein (AAMP), a recently discovered protein, plays a positive role in angiogenesis and can be regulated by astrocytes. Angiogenic activities are inhibited by an affinity-purified, polyclonal antibody generated to recombinant AAMP. Inhibition of endothelial cell tube formation was previously shown and now endothelial cell migration assays using this antibody show dose-dependent inhibition (75%) of endothelial cell migration. Also, antisense inhibition has been used to determine the effects of reducing total AAMP (extracellular and intracellular forms). An AAMP-specific antisense oligonucleotide that targets a region near its amino terminus, anti-MES, inhibits (45%) total AAMP production by bovine aortic endothelial cells (BAECs), compared to a negative control oligonucleotide. Paradoxically, comparable use of antisense-MES results in a 27% increase in BAEC motility. Decreased cellular production of total AAMP (via antisense) that results in an increase of endothelial migration contrasts with antibody inhibition of extracellular AAMP that decreases migration. This indicates compartment-specific roles for AAMP in angiogenesis. Transwell cocultures of human astrocytes and BAECs increase (53%) the amount of extracellular AAMP found associated with endothelial cells. Therefore, regulation of extracellular AAMP by astrocytes is hypothesized to aid in angiogenesis of the nervous system. Extracellular AAMP's positive role may be either as a promoter or as a permissive protein in this process.
Collapse
Affiliation(s)
- Marie E Beckner
- Division of Neuropathology, University of Pittsburgh, Pennsylvania 15213-2582, USA
| | | | | |
Collapse
|
29
|
Lu J, Xiao YJ, Baudhuin LM, Hong G, Xu Y. Role of ether-linked lysophosphatidic acids in ovarian cancer cells. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30153-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Levade T, Augé N, Veldman RJ, Cuvillier O, Nègre-Salvayre A, Salvayre R. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 2001; 89:957-68. [PMID: 11717151 DOI: 10.1161/hh2301.100350] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sphingolipids have emerged as a new class of lipid mediators. In response to various extracellular stimuli, sphingolipid turnover can be stimulated in vascular cells and cardiac myocytes. Subsequent generation of sphingolipid molecules such as ceramide, sphingosine, and sphingosine-1-phosphate, is followed by regulation of ion fluxes and activation of various signaling pathways leading to smooth muscle cell proliferation, endothelial cell differentiation or apoptotic cell death, cell contraction, retraction, or migration. The importance of sphingolipids in cardiovascular signaling is illustrated by recent observations implicating them in physiological processes such as vasculogenesis as well as in frequent pathological conditions, including atherosclerosis and its complications.
Collapse
Affiliation(s)
- T Levade
- INSERM U466, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | |
Collapse
|