1
|
Vasukutty A, Pillarisetti S, Choi J, Kang SH, Park IK. CXCR4 Targeting Nanoplatform for Transcriptional Activation of Latent HIV-1 Infected T Cells. ACS APPLIED BIO MATERIALS 2024; 7:4831-4842. [PMID: 37586084 DOI: 10.1021/acsabm.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antiretroviral drugs are limited in their ability to target latent retroviral reservoirs in CD4+ T cells, highlighting the need for a T cell-targeted drug delivery system that activates the transcription of inactivated viral DNA in infected cells. Histone deacetylase inhibitors (HDACi) disrupt chromatin-mediated silencing of the viral genome and are explored in HIV latency reversal. But single drug formulations of HDACi are insufficient to elicit therapeutic efficacy, warranting combination therapy. Furthermore, protein kinase C activators (PKC) have shown latency reversal activity in HIV by activating the NF-κB signaling pathway. Combining HDACi (SAHA) with PKC (PMA) activators enhances HIV reservoir activation by promoting chromatin decondensation and subsequent transcriptional activation. In this study, we developed a mixed nanomicelle (PD-CR4) drug delivery system for simultaneous targeting of HIV-infected CD4+ T cells with two drugs, suberoylanilide hydroxamic acid (SAHA) and phorbol 12-myristate 13-acetate (PMA). SAHA is a HDACi that promotes chromatin decondensation, while PMA is a PKC agonist that enhances transcriptional activation. The physicochemical properties of the formulated PD-CR4 nanoparticles were characterized by NMR, CMC, DLS, and TEM analyses. Further, we investigated in vitro safety profiles, targeting efficacy, and transcriptional activation of inactivated HIV reservoir cells. Our results suggest that we successfully prepared a targeted PD system with dual drug loading. We have compared latency reversal efficacy of a single drug nanoformulation and combination drug nanoformulation. Final PD-SP-CR4 successfully activated infected CD4+ T cell reservoirs and showed enhanced antigen release from HIV reservoir T cells, compared with the single drug treatment group as expected. To summarize, our data shows PD-SP-CR4 has potential T cell targeting efficiency and efficiently activated dormant CD4+ T cells. Our data indicate that a dual drug-loaded particle has better therapeutic efficacy than a single loaded particle as expected. Hence, PD-CR4 can be further explored for HIV therapeutic drug delivery studies.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
2
|
Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17:1242254. [PMID: 37790586 PMCID: PMC10544353 DOI: 10.3389/fnins.2023.1242254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) emerges as a perturbing neurodegenerative malady, with a profound comprehension of its underlying pathogenic mechanisms continuing to evade our intellectual grasp. Within the intricate tapestry of human health and affliction, the enteric microbial consortium, ensconced within the milieu of the human gastrointestinal tract, assumes a role of cardinal significance. Recent epochs have borne witness to investigations that posit marked divergences in the composition of the gut microbiota between individuals grappling with AD and those favored by robust health. The composite vicissitudes in the configuration of the enteric microbial assembly are posited to choreograph a participatory role in the inception and progression of AD, facilitated by the intricate conduit acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this interlaced relationship remains enshrouded within the recesses of obscurity, poised for an exhaustive revelation. This review embarks upon the endeavor to focalize meticulously upon the mechanistic sway exerted by the enteric microbiota upon AD, plunging profoundly into the execution of interventions that govern the milieu of enteric microorganisms. In doing so, it bestows relevance upon the therapeutic stratagems that form the bedrock of AD's management, all whilst casting a prospective gaze into the horizon of medical advancements.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dong
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Zhang
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| |
Collapse
|
3
|
Zhao L, Chen X, Wu H, He Q, Ding L, Yang B. Strategies to synergize PD-1/PD-L1 targeted cancer immunotherapies to enhance antitumor responses in ovarian cancer. Biochem Pharmacol 2023; 215:115724. [PMID: 37524205 DOI: 10.1016/j.bcp.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) antibodies have developed rapidly but exhibited modest activity in ovarian cancer (OC), achieving a clinical response rate ranging from 5.9% to 19%. Current evidence indicate that the establishment of an integrated cancer-immunity cycle is a prerequisite for anti-PD-1/PD-L1 antibodies. Any impairment in this cycle, including lack of cancer antigens release, impaired antigen-presenting, decreased T cell priming and activation, less T cells that are trafficked or infiltrated in tumor microenvironment (TME), and low tumor recognition and killings, will lead to decreased infiltrated cytotoxic T cells to tumor bed and treatment failure. Therefore, combinatorial strategies aiming to modify cancer-immunity cycle and reprogram tumor immune microenvironment are of great interest. By far, various strategies have been studied to enhance responsiveness to PD-1/PD-L1 inhibitors in OC. Platinum-based chemotherapy increases neoantigens release; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) improve the function of antigen-presenting cells and promote the trafficking of T cells into tumors; epigenetic drugs help to complete the immune cycle by affecting multiple steps; immunotherapies like anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies reactivate T cells, and other treatment strategies like radiotherapy helps to increase the expression of tumor antigens. In this review, we will summarize the preclinical studies by analyzing their contribution in modifying the cancer immunity cycle and remodeling tumor environment, and we will also summarize recent progress in clinical trials and discuss some perspectives to improve these treatment strategies.
Collapse
Affiliation(s)
- Lin Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Kong SH, Ma L, Yuan Q, Liu X, Han Y, Xiang W, Liu DX, Zhang Y, Lu J. Inhibition of EZH2 alleviates SAHA-induced senescence-associated secretion phenotype in small cell lung cancer cells. Cell Death Discov 2023; 9:289. [PMID: 37543653 PMCID: PMC10404275 DOI: 10.1038/s41420-023-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Chemotherapy has been widely used in small cell lung cancer (SCLC) treatment in the past decades. However, SCLC is easy to recur after chemotherapy. The senescence of cancer cells during chemotherapy is one of the effective therapeutic strategies to inhibit the progression of cancer. Nevertheless, the senescence-associated secretion phenotype (SASP) promotes chronic inflammation of the cancer microenvironment and further accelerates the progression of tumors. Therefore, inducing the senescence of cancer cells and inhibiting the production of SASP factors during anticancer treatment have become effective therapeutic strategies to improve the anticancer effect of drugs. Here we reported that SCLC cells treated with an FDA-approved HDAC inhibitor SAHA underwent senescence and displayed remarkable SASP. In particular, SAHA promoted the formation of cytoplasmic chromatin fragments (CCFs) in SCLC cells. The increased CCFs in SAHA-treated SCLC cells were related to nuclear porin Tpr, which activated the cGAS-STING pathway, and promoted the secretion of SASP in cancer cells. Inhibition of EZH2 suppressed the increase of CCFs in SAHA-treated SCLC cells, weakened the production of SASP, and increased the antiproliferative effect of SAHA. Overall, our work affords new insight into the secretion of SASP in SCLC and establishes a foundation for constructing a new therapeutic strategy for SCLC patients.
Collapse
Affiliation(s)
- Sun-Hyok Kong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Science, University of Science, Pyongyang, 999091, Democratic People's Republic of Korea
| | - Lie Ma
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Qingxia Yuan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiangxiang Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weifang Xiang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
5
|
Greenfield G, McMullin MF. Epigenetics in myeloproliferative neoplasms. Front Oncol 2023; 13:1206965. [PMID: 37519812 PMCID: PMC10373880 DOI: 10.3389/fonc.2023.1206965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The myeloproliferative neoplasms (MPNs) are a group of acquired clonal disorders where mutations drive proliferative disease resulting in increased blood counts and in some cases end-stage myelofibrosis. Epigenetic changes are the reversible modifications to DNA- and RNA-associated proteins that impact gene activity without changing the DNA sequence. This review summarizes mechanisms of epigenetic changes and the nucleosome. The drivers and epigenetic regulators in MPNs are outlined. In MPNs, distinct patterns of epigenetic dysregulation have been seen in chronic and in advanced phases. Methylation age and histone modification are altered in MPNs and by further treatment. The alterations found in methylation age in MPNs and with treatment are discussed, and the changes in histone modification with Janus kinase (JAK) inhibition are evaluated. Currently available therapeutic areas where the epigenome can be altered are outlined. Thus, we review the current knowledge and understanding of epigenetics in MPN and consider further management options. Understanding the epigenome and its alteration in MPNs and epigenetic changes associated with the progression of disease will lead to advances in therapeutic options.
Collapse
|
6
|
Psilopatis I, Garmpis N, Garmpi A, Vrettou K, Sarantis P, Koustas E, Antoniou EA, Dimitroulis D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Nonni A, Nikolettos K, Fleckenstein FN, Zoumpouli C, Damaskos C. The Emerging Role of Histone Deacetylase Inhibitors in Cervical Cancer Therapy. Cancers (Basel) 2023; 15:cancers15082222. [PMID: 37190151 DOI: 10.3390/cancers15082222] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cervical carcinoma is one of the most common cancers among women globally. Histone deacetylase inhibitors (HDACIs) constitute anticancer drugs that, by increasing the histone acetylation level in various cell types, induce differentiation, cell cycle arrest, and apoptosis. The aim of the current review is to study the role of HDACIs in the treatment of cervical cancer. A literature review was conducted using the MEDLINE and LIVIVO databases with a view to identifying relevant studies. By employing the search terms "histone deacetylase" and "cervical cancer", we managed to identify 95 studies published between 2001 and 2023. The present work embodies the most up-to-date, comprehensive review of the literature centering on the particular role of HDACIs as treatment agents for cervical cancer. Both well-established and novel HDACIs seem to represent modern, efficacious anticancer drugs, which, alone or in combination with other treatments, may successfully inhibit cervical cancer cell growth, induce cell cycle arrest, and provoke apoptosis. In summary, histone deacetylases seem to represent promising future treatment targets in cervical cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- Department of Cytopathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kouraklis
- Department of Surgery, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Florian N Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 13353 Berlin, Germany
| | - Christina Zoumpouli
- Department of Pathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| |
Collapse
|
7
|
The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cell Mol Neurobiol 2023; 43:543-559. [PMID: 35347532 DOI: 10.1007/s10571-022-01209-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
Short-chain fatty acids (SCFAs) are monocarboxylates produced by the gut microbiota (GM) and result from the interaction between diet and GM. An increasing number of studies about the microbiota-gut-brain axis (MGBA) indicated that SCFAs may be a crucial mediator in the MGBA, but their roles have not been fully clarified. In addition, there are few studies directly exploring the role of SCFAs as a potential regulator of microbial targeted interventions in ischemic stroke, especially for clinical studies. This review summarizes the recent studies concerning the relationship between ischemic stroke and GM and outlines the role of SCFAs as a bridge between them. The potential mechanisms by which SCFAs affect ischemic stroke are described. Finally, the beneficial effects of SFCAs-mediated therapeutic measures such as diet, dietary supplements (e.g., probiotics and prebiotics), fecal microbiota transplantation, and drugs on ischemic brain injury are also discussed.
Collapse
|
8
|
Zulfiqar B, Farooq A, Kanwal S, Asghar K. Immunotherapy and targeted therapy for lung cancer: Current status and future perspectives. Front Pharmacol 2022; 13:1035171. [PMID: 36518665 PMCID: PMC9742438 DOI: 10.3389/fphar.2022.1035171] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/11/2022] [Indexed: 08/30/2023] Open
Abstract
Lung cancer has the highest incidence of morbidity and mortality throughout the globe. A large number of patients are diagnosed with lung cancer at the later stages of the disease. This eliminates surgery as an option and places complete dependence on radiotherapy or chemotherapy, and/or a combination of both, to halt disease progression by targeting the tumor cells. Unfortunately, these therapies have rarely proved to be effective, and this necessitates the search for alternative preventive approaches to reduce the mortality rate of lung cancer. One of the effective therapies against lung cancer comprises targeting the tumor microenvironment. Like any other cancer cells, lung cancer cells tend to use multiple pathways to maintain their survival and suppress different immune responses from the host's body. This review comprehensively covers the role and the mechanisms that involve the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lung adenocarcinoma and methods of treating it by altering the tumor microenvironment. It focuses on the insight and understanding of the lung cancer tumor microenvironment and chemokines, cytokines, and activating molecules that take part in angiogenesis and metastasis. The review paper accounts for the novel and current immunotherapy and targeted therapy available for lung cancer in clinical trials and in the research phases in depth. Special attention is being paid to mark out single or multiple genes that are required for malignancy and survival while developing targeted therapies for lung cancer treatment.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Asim Farooq
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Shahzina Kanwal
- Institute of Molecular Physiology at Shenzhen Bay Laboratory, Shenzhen, China
| | - Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
9
|
Zuzina AB, Balaban PM. Contribution of histone acetylation to the serotonin-mediated long-term synaptic plasticity in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:521-535. [PMID: 35943582 DOI: 10.1007/s00359-022-01562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 12/14/2022]
Abstract
Serotonin plays a decisive role in long-term synaptic plasticity and long-term memory in mollusks. Previously, we demonstrated that histone acetylation is a regulatory mechanism of long-term memory in terrestrial snail. At the behavioral level, many studies were done in Helix to elucidate the role of histone acetylation and serotonin. However, the impact of histone acetylation on long-term potentiation of synaptic efficiency in electrophysiological studies in Helix has been studied only in one paper. Here we investigated effects of serotonin, histone deacetylases inhibitors sodium butyrate and trichostatin A, and a serotonergic receptor inhibitor methiothepin on long-term potentiation of synaptic responses in vitro. We demonstrated that methiothepin drastically declined the EPSPs amplitudes when long-term potentiation was induced, while co-application either of histone deacetylase inhibitors sodium butyrate or trichostatin A with methiothepin prevented the weakening of potentiation. We showed that single serotonin application in combination with histone deacetylase blockade could mimic the effect of repeated serotonin applications and be enough for sustained long-lasting synaptic changes. The data obtained demonstrated that histone deacetylases blockade ameliorated deficits in synaptic plasticity induced by different paradigms (methiothepin treatment, the weak training protocol with single application of serotonin), suggesting that histone acetylation contributes to the serotonin-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Caetano MAF, Castelucci P. Role of short chain fatty acids in gut health and possible therapeutic approaches in inflammatory bowel diseases. World J Clin Cases 2022; 10:9985-10003. [PMID: 36246826 PMCID: PMC9561599 DOI: 10.12998/wjcc.v10.i28.9985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by inflammation in the gastrointestinal tract and include Ulcerative Colitis and Crohn’s Disease. These diseases are costly to health services, substantially reduce patients’ quality of life, and can lead to complications such as cancer and even death. Symptoms include abdominal pain, stool bleeding, diarrhea, and weight loss. The treatment of these diseases is symptomatic, seeking disease remission. The intestine is colonized by several microorganisms, such as fungi, viruses, and bacteria, which constitute the intestinal microbiota (IM). IM bacteria promotes dietary fibers fermentation and produces short-chain fatty acids (SCFAs) that exert several beneficial effects on intestinal health. SCFAs can bind to G protein-coupled receptors, such as GPR41 and GPR43, promoting improvements in the intestinal barrier, anti-inflammatory, and antioxidant effects. Thus, SCFAs could be a therapeutic tool for IBDs. However, the mechanisms involved in these beneficial effects of SCFAs remain poorly understood. Therefore, this paper aims to provide a review addressing the main aspects of IBDs, and a more detailed sight of SCFAs, focusing on the main effects on different aspects of the intestine with an emphasis on IBDs.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508900, SP, Brazil
| |
Collapse
|
11
|
Hauguel C, Ducellier S, Provot O, Ibrahim N, Lamaa D, Balcerowiak C, Letribot B, Nascimento M, Blanchard V, Askenatzis L, Levaique H, Bignon J, Baschieri F, Bauvais C, Bollot G, Renko D, Deroussent A, Prost B, Laisne MC, Michallet S, Lafanechère L, Papot S, Montagnac G, Tran C, Alami M, Apcher S, Hamze A. Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors. Eur J Med Chem 2022; 240:114573. [DOI: 10.1016/j.ejmech.2022.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
|
12
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
13
|
Pellerito C, Emanuele S, Giuliano M, Fiore T. Organotin(IV) complexes with epigenetic modulator ligands: New promising candidates in cancer therapy. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Li J, Yu M, Fu S, Liu D, Tan Y. Role of Selective Histone Deacetylase 6 Inhibitor ACY-1215 in Cancer and Other Human Diseases. Front Pharmacol 2022; 13:907981. [PMID: 35652048 PMCID: PMC9149003 DOI: 10.3389/fphar.2022.907981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The deacetylation process regulated by histone deacetylases (HDACs) plays an important role in human health and diseases. HDAC6 belongs to the Class IIb of HDACs family, which mainly modifies non-histone proteins located in the cytoplasm. HDAC6 plays a key role in tumors, neurological diseases, and inflammatory diseases. Therefore, targeting HDAC6 has become a promising treatment strategy in recent years. ACY-1215 is the first orally available highly selective HDAC6 inhibitor, and its efficacy and therapeutic effects are being continuously verified. This review summarizes the research progress of ACY-1215 in cancer and other human diseases, as well as the underlying mechanism, in order to guide the future clinical trials of ACY-1215 and more in-depth mechanism researches.
Collapse
Affiliation(s)
- Jianglei Li
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Meihong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| |
Collapse
|
15
|
Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022; 27:1908-1919. [PMID: 35236957 DOI: 10.1038/s41380-022-01479-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.,Department of Psychiatry, Flinders University College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
16
|
Song J, VanBuskirk JA, Merbs SL. Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. Int J Mol Sci 2022; 23:ijms23031408. [PMID: 35163334 PMCID: PMC8836077 DOI: 10.3390/ijms23031408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
One important role of epigenetic regulation is controlling gene expression in development and homeostasis. However, little is known about epigenetics' role in regulating opsin expression. Cell cultures (HEK 293, Y79, and WERI) producing different levels of opsins were treated with 5-aza-2'-deoxycytidine (5-Aza-dc) and/or sodium butyrate (SB) or suberoylanilide hydroxamic acid (SAHA) for 72 h. Global DNA methylation, site-specific methylation, and expressions of opsins were measured by LUMA assay, bisulfite pyrosequencing, and qPCR, respectively. Mouse retinal explants from wild-type P0/P1 pups were ex vivo cultured with/without 5-Aza-dc or SAHA for 6 days. The morphology of explants, DNA methylation, and expressions of opsins was examined. The drugs induced global DNA hypomethylation or increased histone acetylation in cells, including DNA hypomethylation of rhodopsin (RHO) and L-opsin (OPN1LW) and a concomitant increase in their expression. Further upregulation of RHO and/or OPN1LW in HEK 293 or WERI cells was observed with 5-Aza-dc and either SB or SAHA combination treatment. Mouse retinal explants developed normally but had drug-dependent differential DNA methylation and expression patterns of opsins. DNA methylation and histone acetylation directly regulate opsin expression both in vitro and ex vivo. The ability to manipulate opsin expression using epigenetic modifiers enables further study into the role of epigenetics in eye development and disease.
Collapse
Affiliation(s)
- Jin Song
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence: (J.S.); (S.L.M.)
| | - Julia A. VanBuskirk
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Shannath L. Merbs
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21287, USA
- Correspondence: (J.S.); (S.L.M.)
| |
Collapse
|
17
|
Shoubridge AP, Fourrier C, Choo JM, Proud CG, Sargeant TJ, Rogers GB. Gut Microbiome Regulation of Autophagic Flux and Neurodegenerative Disease Risks. Front Microbiol 2022; 12:817433. [PMID: 35003048 PMCID: PMC8733410 DOI: 10.3389/fmicb.2021.817433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
The gut microbiome-brain axis exerts considerable influence on the development and regulation of the central nervous system. Numerous pathways have been identified by which the gut microbiome communicates with the brain, falling largely into the two broad categories of neuronal innervation and immune-mediated mechanisms. We describe an additional route by which intestinal microbiology could mediate modifiable risk for neuropathology and neurodegeneration in particular. Autophagy, a ubiquitous cellular process involved in the prevention of cell damage and maintenance of effective cellular function, acts to clear and recycle cellular debris. In doing so, autophagy prevents the accumulation of toxic proteins and the development of neuroinflammation, both common features of dementia. Levels of autophagy are influenced by a range of extrinsic exposures, including nutrient deprivation, infection, and hypoxia. These relationships between exposures and rates of autophagy are likely to be mediated, as least in part, by the gut microbiome. For example, the suppression of histone acetylation by microbiome-derived short-chain fatty acids appears to be a major contributor to upregulation of autophagic function. We discuss the potential contribution of the microbiome-autophagy axis to neurological health and examine the potential of exploiting this link to predict and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Christopher G Proud
- Nutrition, Diabetes and Gut Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
18
|
Psilopatis I, Pergaris A, Giaginis C, Theocharis S. Histone Deacetylase Inhibitors: A Promising Therapeutic Alternative for Endometrial Carcinoma. DISEASE MARKERS 2021; 2021:7850688. [PMID: 34804263 PMCID: PMC8604582 DOI: 10.1155/2021/7850688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 01/16/2023]
Abstract
Endometrial carcinoma is the most common malignant tumor of the female genital tract in the United States. Epigenetic alterations are implicated in endometrial cancer development and progression. Histone deacetylase inhibitors are a novel class of anticancer drugs that increase the level of histone acetylation in many cell types, thereby inducing cell cycle arrest, differentiation, and apoptotic cell death. This review is aimed at determining the role of histone acetylation and examining the therapeutic potential of histone deacetylase inhibitors in endometrial cancer. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms histone deacetylase, histone deacetylase inhibitor, and endometrial cancer were employed, and we were able to identify fifty-two studies focused on endometrial carcinoma and published between 2001 and 2021. Deregulation of histone acetylation is involved in the tumorigenesis of both endometrial carcinoma histological types and accounts for high-grade, aggressive carcinomas with worse prognosis and decreased overall survival. Histone deacetylase inhibitors inhibit tumor growth, enhance the transcription of silenced physiologic genes, and induce cell cycle arrest and apoptosis in endometrial carcinoma cells both in vitro and in vivo. The combination of histone deacetylase inhibitors with traditional chemotherapeutic agents shows synergistic cytotoxic effects in endometrial carcinoma cells. Histone acetylation plays an important role in endometrial carcinoma development and progression. Histone deacetylase inhibitors show potent antitumor effects in various endometrial cancer cell lines as well as tumor xenograft models. Additional clinical trials are however needed to verify the clinical utility and safety of these promising therapeutic agents in the treatment of patients with endometrial cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Charité-University School of Medicine, Augustenburger Pl. 1, 13353 Berlin, Germany
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
19
|
Heath EI, Weise A, Vaishampayan U, Danforth D, Ungerleider RS, Urata Y. Phase Ia dose escalation study of OBP-801, a cyclic depsipeptide class I histone deacetylase inhibitor, in patients with advanced solid tumors. Invest New Drugs 2021; 40:300-307. [PMID: 34613570 DOI: 10.1007/s10637-021-01180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022]
Abstract
Background Dysregulation of histone deacetylases (HDACs) is common in cancer and is critical to the development and progression of the majority of tumors. This first-in-human Phase Ia study assessed the safety, efficacy, and pharmacokinetics (PK) of OBP-801, a cyclic depsipeptide class I HDAC inhibitor. Methods Adult patients with advanced solid tumors were treated in 3 dose cohorts (1.0 mg/m2, 2.0 mg/m2 or 2.8 mg/m2) of OBP-801 that was administered via intravenous infusion weekly. Initially, an accelerated titration design was used that was followed by a 3 + 3 dose escalation strategy. Primary objective was assessment of safety. Secondary objectives included determination of PK and objective response rate. Results Seventeen patients were enrolled, of which 8 patients were evaluable for efficacy. Drug-related ≥ Grade 3 treatment-emergent adverse events included abdominal pain, anemia, fatigue, gamma glutamyl-transferase increase, hypertriglyceridemia and vomiting. No dose-limiting toxicity was observed in the 1.0 mg/m2 cohort. The PK data showed that OBP-801 and its active metabolite OBP-801-SH exposure increased proportionally and more than proportionally, respectively. No accumulation of either agent was noticed after repeat administration. Best response was stable disease (37.5%), with one patient each in the three cohorts. Conclusion Further investigations of the OBP-801 1.0 mg/m2 dose will be needed to better understand the efficacy of the agent, either alone or in combination. Trial registration: NCT02414516 (ClinicalTrials.gov) registered on April 10, 2015.
Collapse
Affiliation(s)
- Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Amy Weise
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ulka Vaishampayan
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | - Yasuo Urata
- Oncolys BioPharma, Inc, Tokyo, 106-0032, Japan
| |
Collapse
|
20
|
Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF. Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Front Oncol 2021; 11:735940. [PMID: 34513712 PMCID: PMC8426582 DOI: 10.3389/fonc.2021.735940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Significant opportunities remain for pharmacologically enhancing the clinical effectiveness of proton and carbon ion-based radiotherapies to achieve both tumor cell radiosensitization and normal tissue radioprotection. We investigated whether pretreatment with the hydroxamate-based histone deacetylase inhibitors (HDACi) SAHA (vorinostat), M344, and PTACH impacts radiation-induced DNA double-strand break (DSB) induction and repair, cell killing, and transformation (acquisition of anchorage-independent growth in soft agar) in human normal and tumor cell lines following gamma ray and light ion irradiation. Treatment of normal NFF28 primary fibroblasts and U2OS osteosarcoma, A549 lung carcinoma, and U87MG glioma cells with 5–10 µM HDACi concentrations 18 h prior to cesium-137 gamma irradiation resulted in radiosensitization measured by clonogenic survival assays and increased levels of colocalized gamma-H2AX/53BP1 foci induction. We similarly tested these HDACi following irradiation with 200 MeV protons, 290 MeV/n carbon ions, and 350 MeV/n oxygen ions delivered in the Bragg plateau region. Unlike uniform gamma ray radiosensitization, effects of HDACi pretreatment were unexpectedly cell type and ion species-dependent with C-12 and O-16 ion irradiations showing enhanced G0/G1-phase fibroblast survival (radioprotection) and in some cases reduced or absent tumor cell radiosensitization. DSB-associated foci levels were similar for proton-irradiated DMSO control and SAHA-treated fibroblast cultures, while lower levels of induced foci were observed in SAHA-pretreated C-12 ion-irradiated fibroblasts. Fibroblast transformation frequencies measured for all radiation types were generally LET-dependent and lowest following proton irradiation; however, both gamma and proton exposures showed hyperlinear transformation induction at low doses (≤25 cGy). HDACi pretreatments led to overall lower transformation frequencies at low doses for all radiation types except O-16 ions but generally led to higher transformation frequencies at higher doses (>50 cGy). The results of these in vitro studies cast doubt on the clinical efficacy of using HDACi as radiosensitizers for light ion-based hadron radiotherapy given the mixed results on their radiosensitization effectiveness and related possibility of increased second cancer induction.
Collapse
Affiliation(s)
- Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Katherine Z Sanidad
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Hoang
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - James H Jardine
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Deborah J Keszenman
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Laboratorio de Radiobiología Médica y Ambiental, Grupo de Biofisicoquímica, Centro Universitario Regional Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Department of Radiation Oncology, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
21
|
Chang L, Ruiz P, Ito T, Sellers WR. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 2021; 39:466-479. [PMID: 33450197 PMCID: PMC8157671 DOI: 10.1016/j.ccell.2020.12.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Despite remarkable successes in the clinic, cancer targeted therapy development remains challenging and the failure rate is disappointingly high. This problem is partly due to the misapplication of the targeted therapy paradigm to therapeutics targeting pan-essential genes, which can result in therapeutics whereby efficacy is attenuated by dose-limiting toxicity. Here we summarize the key features of successful chemotherapy and targeted therapy agents, and use case studies to outline recurrent challenges to drug development efforts targeting pan-essential genes. Finally, we suggest strategies to avoid previous pitfalls for ongoing and future development of pan-essential therapeutics.
Collapse
Affiliation(s)
- Liang Chang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Ruiz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Takahiro Ito
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Sellers
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
22
|
Bassani A, Rocha MA, Rodrigues VLC, Santos DS, Nascimento JD, da Rosa JA, Mello MLS. Effects of sodium valproate on the chromatin of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae) under in vitro culture conditions. Acta Histochem 2021; 123:151695. [PMID: 33571696 DOI: 10.1016/j.acthis.2021.151695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Sodium valproate (VPA) is a classic anticonvulsive, a histone deacetylase inhibitor, and a chromatin remodeling inducer. When injected into specimens of Triatoma infestans, a vector of Chagas disease, VPA affects the chromatin supraorganization of chromocenter heterochromatin in only a few cells of the Malpighian tubules. To test whether this result was explained by the inaccessibility of all of the organ's cells to the drug, we investigated the nuclear phenotypes and global acetylation of lysine 9 in histone H3 (H3K9ac) in Malpighian tubules cultivated in vitro for 1-24 h in the presence of 0.05 mM-1 mM VPA. The present results revealed that the chromatin decondensation event in the chromocenter body, which was detected only under low VPA concentrations up to a 4-h treatment, was not frequent during organ culture, similar to the results for injected insects. Cultivation of T. infestans Malpighian tubules in vitro for 24 h revealed inadequate for cell preservation even in the absence of the drug. Immunofluorescence signals for H3K9ac following VPA treatment showed a slightly increased intensity in the euchromatin, but were never detected in the chromocenter bodies, except with great intensity at their periphery, where the 18S rDNA is located. In conclusion, when VPA affects the chromocenter heterochromatin in this animal cell model, it occurs through a pathway that excludes a classic global H3K9ac mark. Investigation of nonhistone proteins associated with histone methylation marks is still required to further explain the differential response of T. infestans chromatin to VPA.
Collapse
|
23
|
Ari F, Napieralski R, Akgun O, Magdolen V, Ulukaya E. Epigenetic modulators combination with chemotherapy in breast cancer cells. Cell Biochem Funct 2021; 39:571-583. [PMID: 33608886 DOI: 10.1002/cbf.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Despite the concerning adverse effects on tumour development, epigenetic drugs are very promising in cancer treatment. The aim of this study was to compare the differential effects of standard chemotherapy regimens (FEC: 5-fluorouracil plus epirubicine plus cyclophosphamide) in combination with epigenetic modulators (decitabine, valproic acid): (a) on gene methylation levels of selected tumour biomarkers (LINE-1, uPA, PAI-1, DAPK); (b) their expression status (uPA and PAI-1); (c) differentiation status (5meC and H3K27me3). Furthermore, cell survival as well as changes concerning the invasion capacity were monitored in cell culture models of breast cancer (MCF-7, MDA-MB-231). A significant overall decrease of cell survival was observed in the FEC-containing combination therapies for both cell lines. Methylation results showed a general tendency towards increased demethylation of the uPA and PAI-1 gene promoters for the MCF-7 cells, as well as the proapoptotic DAPK gene in the treatment regimens for both cell lines. The uPA and PAI-1 antigen levels were mainly increased in the supernatant of FEC-only treated MDA-MB-231 cells. DAC-only treatment induced an increase of secreted uPA protein in MCF-7 cell culture, while most of the VPA-containing regimens also induced uPA and PAI-1 expression in MCF-7 cell fractions. Epigenetically active substances can also induce a re-differentiation in tumour cells, as shown by 5meC, H3K27me3 applying ICC. SIGNIFICANCE OF THE STUDY: Epigenetic modulators especially in the highly undifferentiated and highly malignant MDA-MB-231 tumour cells significantly reduced tumour malignancy thus; further clinical studies applying specific combination therapies with epigenetic modulators may be warranted.
Collapse
Affiliation(s)
- Ferda Ari
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Therawis Diagnostics GmbH, Munich, Germany
| | - Oguzhan Akgun
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Engin Ulukaya
- Faculty of Medicine, Department of Clinical Biochemistry, Istinye University, Istanbul, Turkey
| |
Collapse
|
24
|
Kim HI, Seo SK, Chon SJ, Kim GH, Lee I, Yun BH. Changes in the Expression of TBP-2 in Response to Histone Deacetylase Inhibitor Treatment in Human Endometrial Cells. Int J Mol Sci 2021; 22:ijms22031427. [PMID: 33572677 PMCID: PMC7866992 DOI: 10.3390/ijms22031427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) induce apoptosis preferentially in cancer cells by caspase pathway activation and reactive oxygen species (ROS) accumulation. Suberoylanilide hydroxamic acid (SAHA), a HDACi, increases apoptosis via altering intracellular oxidative stress through thioredoxin (TRX) and TRX binding protein-2 (TBP-2). Because ROS accumulation, as well as the redox status determined by TBP-2 and TRX, are suggested as possible mechanisms for endometriosis, we queried whether SAHA induces apoptosis of human endometrial cells via the TRX–TBP-2 system in endometriosis. Eutopic endometrium from participants without endometriosis, and ectopic endometrium from patients with endometriosis, was obtained surgically. Human endometrial stromal cells (HESCs) and Ishikawa cells were treated with SAHA and cell proliferation was assessed using the CCK-8 assay. Real-time PCR and Western blotting were used to quantify TRX and TBP-2 mRNA and protein expression. After inducing oxidative stress, SAHA was applied. Short-interfering TRX (SiTRX) transfection was performed to see the changes after TRX inhibition. The mRNA and protein expression of TBP-2 was increased with SAHA concentrations in HESCs significantly. The mRNA TBP-2 expression was decreased after oxidative stress, upregulated by adding 2.5 μM of SAHA. The TRX/TBP-2 ratio decreased, apoptosis increased significantly, and SiTRX transfection decreased with SAHA. In conclusion, SAHA induces apoptosis by modulating the TRX/TBP-2 system, suggesting its potential as a therapeutic agent for endometriosis.
Collapse
Affiliation(s)
- Hye In Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gil Hospital, Gachon University College of Medicine, Inchon 21565, Korea;
| | - Ga Hee Kim
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (H.I.K.); (S.K.S.); (I.L.)
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2228-2230
| |
Collapse
|
25
|
Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis. Cell Death Dis 2020; 11:765. [PMID: 32943605 PMCID: PMC7499263 DOI: 10.1038/s41419-020-02916-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
TGFβ1 signaling is a critical driver of collagen accumulation in pulmonary fibrotic diseases and a well-characterized regulator of cancer associated fibroblasts (CAF) activation in lung cancer. Myofibroblasts induced by TGFβ1 and other factors are key players in the pathogenesis of lung fibrosis and tumor. Tremendous attention has been gained to targeting myofibroblasts in order to inhibit the progression of fibrosis and myofibroblast-induced tumor progression and metastasis. Here we determined the therapeutic efficacy of simultaneously targeting PI3K and HDAC pathways in lung myofibroblasts and CAF with a single agent and to evaluate biomarkers of treatment response. CUDC-907 is a first-in-class compound, functioning as a dual inhibitor of HDACs and PI3K/AKT pathway. We investigated its effects in counteracting the activity of TGFβ1-induced myofibroblasts/CAF in regard to cell proliferation, migration, invasion, apoptosis in vitro antifibrosis efficiency in vivo. We found that CUDC-907 inhibited myofibroblasts/CAF cell proliferation, migration and apoptosis in a dose-dependent manner and caused cell cycle arrest at G1-S phase. CUDC-907 not only inhibited myofibroblasts markers expression, but also significantly inhibited the phosphorylation level of AKT, mTOR, Smad2/3, and promoted acetylation of histones. Furthermore, the observed inhibitory effect was also confirmed in bleomycin-induced mice lung fibrosis and nude mouse transplanted tumor model. Overall, these data suggest that dual inhibition of HDAC and the tyrosine kinase signaling pathways with CUDC-907 is a promising treatment strategy for TGFβ1-induced lung and tumor fibrosis.
Collapse
|
26
|
Design and synthesis of imidazole based zinc binding groups as novel small molecule inhibitors targeting Histone deacetylase enzymes in lung cancer. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
de Campos Vidal B, Mello MLS. Sodium valproate (VPA) interactions with DNA and histones. Int J Biol Macromol 2020; 163:219-231. [PMID: 32619665 DOI: 10.1016/j.ijbiomac.2020.06.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Valproic acid/sodium valproate (VPA) constitutes a widely prescribed drug for the treatment of seizure disorders and is a well-known epigenetic agent, inducing the acetylation of histones and affecting the methylation status of DNA and histones, with consequences on gene expression. Because this drug has been recently reported to exert affinity for histone H1, and to a minor degree for DNA, in this work, we investigated a possible interaction of sodium valproate with DNA and histones H1 and H3 using high-performance polarization microscopy and Fourier-transform infrared (FTIR) microspectroscopy. The preparations under examination consisted of hemispheres resulting from drop-casting samples containing VPA-DNA and VPA-histone mixtures. The results indicated that VPA may interact with DNA and histones, inducing changes in the textural superstructure and molecular order of the DNA possibly through van der Waals forces, and in histone H1 and H3 conformations, probably as a result of electrostatic binding between the drug and protein amino acid residues. These results contribute to a better understanding of the pharmacological potential of VPA. The precise sites and mechanisms involved in these interactions would certainly benefit from investigations provided by complementary methodologies.
Collapse
Affiliation(s)
- Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
28
|
Yang F, Sun S, Wang C, Haas M, Yeo S, Guan JL. Targeted therapy for mTORC1-driven tumours through HDAC inhibition by exploiting innate vulnerability of mTORC1 hyper-activation. Br J Cancer 2020; 122:1791-1802. [PMID: 32336756 PMCID: PMC7283252 DOI: 10.1038/s41416-020-0839-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGOUND The mechanistic target of rapamycin complex 1 (mTORC1) is important in the development and progression of many cancers. Targeted cancer therapy using mTORC1 inhibitors is used for treatment of cancers; however, their clinical efficacies are still limited. METHODS We recently created a new mouse model for human lymphangiosarcoma by deleting Tsc1 in endothelial cells and consequent hyper-activation of mTORC1. Using Tsc1iΔEC tumour cells from this mouse model, we assessed the efficacies of histone deacetylase (HDAC) inhibitors as anti-tumour agents for mTORC1-driven tumours. RESULTS Unlike the cytostatic effect of mTORC1 inhibitors, HDAC inhibitors induced Tsc1iΔEC tumour cell death in vitro and their growth in vivo. Analysis of several HDAC inhibitors suggested stronger anti-tumour activity of class I HDAC inhibitor than class IIa or class IIb inhibitors, but these or pan HDAC inhibitor SAHA did not affect mTORC1 activation in these cells. Moreover, HDAC inhibitor-induced cell death required elevated autophagy, but was not affected by disrupting caspase-dependent apoptosis pathways. We also observed increased reactive oxygen species and endoplasmic reticulum stress in SAHA-treated tumour cells, suggesting their contribution to autophagic cell death, which were dependent on mTORC1 hyper-activation. CONCLUSION These studies suggest a potential new treatment strategy for mTORC1-driven cancers like lymphangiosarcoma through an alternative mechanism.
Collapse
Affiliation(s)
- Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Shaogang Sun
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
29
|
Zuzina AB, Vinarskaya AK, Balaban PM. Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:639-649. [PMID: 32409855 DOI: 10.1007/s00359-020-01422-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/17/2023]
Abstract
It is becoming increasingly clear that the long-term plasticity can be regulated via histone modifications. Many studies demonstrated the role of histone acetylation in acquisition, maintenance, and extinction of long-term memory. Nonetheless, the role of histone acetylation in memory reinstatement following its disruption by antimnemonic treatments was not studied in details. In terrestrial snails, we examined effects of the histone deacetylases inhibitors (HDACi) sodium butyrate (NaB) and trichostatin A (TSA) on reinstatement of the context fear memory impaired by antimnemonic agents such as protein synthesis blocker anisomycin (ANI) + reminding or a specific inhibitor of protein-kinase Mζ, zeta inhibitory peptide (ZIP). It was observed that both NaB and TSA applications restored the ANI-impaired context memory regardless of memory reactivation, while a combination of NaB or TSA plus memory reactivation (or additional training) was necessary for the effective reinstatement of the ZIP-impaired memory. Additionally, NaB injections significantly facilitated development of long-term memory in animals with weak memory, while no effect was observed in animals with strong memory. The data obtained confirmed the assumption that histone acetylation is a critical regulatory component of memory development and reinstatement.
Collapse
Affiliation(s)
- Alena B Zuzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alia Kh Vinarskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Phase I studies of vorinostat with ixazomib or pazopanib imply a role of antiangiogenesis-based therapy for TP53 mutant malignancies. Sci Rep 2020; 10:3080. [PMID: 32080210 PMCID: PMC7033174 DOI: 10.1038/s41598-020-58366-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
We performed two phase I trials of the histone deacetylase inhibitor vorinostat combined with either the vascular endothelial growth factor inhibitor pazopanib (NCT01339871) or the proteasome inhibitor ixazomib (NCT02042989) in patients with metastatic TP53 mutant solid tumors. Both trials followed a 3 + 3 dose-escalation design allowing for a dose expansion cohort of up to 14 additional patients with a specific tumor type. Patients had to have a confirmed TP53 mutation to be enrolled in NCT02042989. Among patients enrolled in NCT01339871, TP53 mutation status was determined for those for whom tumor specimens were available. The results of NCT01339871 were reported previously. Common treatment-related adverse events in NCT02042989 included anemia, thrombocytopenia, fatigue, nausea, vomiting, and diarrhea. Compared with patients with metastatic TP53 hotspot mutant solid tumors who were treated with ixazomib and vorinostat (n = 59), those who were treated with pazopanib and vorinostat (n = 11) had a significantly higher rate of clinical benefit, defined as stable disease lasting ≥6 months or an objective response (3.4% vs. 45%; p < 0.001), a significantly longer median progression-free survival duration (1.7 months [95% confidence interval (CI), 1.1–2.3] vs. 3.5 months [95% CI, 1.7–5.2]; p = 0.002), and a longer median overall survival duration (7.3 months [95% CI, 4.8–9.8] vs. 12.7 months [95% CI, 7.1–18.3]; p = 0.24). Our two phase I trials provide preliminary evidence supporting the use of antiangiogenisis-based therapy in patients with metastatic TP53 mutant solid tumors, especially in those with metastatic sarcoma or metastatic colorectal cancer.
Collapse
|
31
|
Nawaz M, Malik I, Hameed M, Hussain Kuthu Z, Zhou J. Modifications of histones in parasites as drug targets. Vet Parasitol 2020; 278:109029. [PMID: 31978703 DOI: 10.1016/j.vetpar.2020.109029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Post-translational modifications of histones and histone modifying enzymes play important roles in gene regulations and other physiological processes in parasites. Inhibitors of such modifying enzymes could be useful as novel therapeutics against parasitic diseases or as chemical probes for investigation of epigenetics. Development of parasitic histone modulators has got rapid expansion in the last few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Some of these compounds have been widely used in humans targeting cancer and are found non-toxic. This review summarizes the antiparasitic activities of histone and histone modifying enzymes inhibitors evaluated in last few years. As the current chemotherapy against parasites is still not satisfactory, therefore, such compounds represents good starting points for the discovery of effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
32
|
Zhang T, Wei D, Lu T, Ma D, Yu K, Fang Q, Zhang Z, Wang W, Wang J. CAY10683 and imatinib have synergistic effects in overcoming imatinib resistance via HDAC2 inhibition in chronic myeloid leukemia. RSC Adv 2020; 10:828-844. [PMID: 35494464 PMCID: PMC9048251 DOI: 10.1039/c9ra07971h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Imatinib (IM) is utilized for targeting the BCR-ABL fusion protein and as such, chronic myeloid leukemia (CML) is considered to be a curable disorder for which patients can achieve a long survival. However, 15-20% CML cases end up with IM resistance that will develop into the accelerated stage and eventually the blast crisis, thereby restricting the treatment choices and giving rise to a dismal survival rate. Histone deacetylases (HDACs) have been identified to modulate the oncogene as well as tumor suppressor gene activities, and they play crucial parts in tumorigenesis. It is found recently that IM combined with HDAC inhibitors (HDACi) can serve as a promising means of overcoming IM resistance in CML cases. Santacruzamate A (CAY10683) has been developed as one of the selective and powerful HDACi to resist HDAC2. Therefore, in this study, we aimed to examine whether CAY10683 combined with IM could serve as the candidate antitumor treatment for CML cases with IM resistance. The influences of CAY10683 combined with IM on the cell cycle arrest, apoptosis, and viability of CML cells with IM resistance were investigated, and it was discovered that the combined treatment exerted synergistic effects on managing the IM resistance. Moreover, further studies indicated that CAY10683 combined with IM mainly exerted synergistic effects through inhibiting HDAC2 in K562-R and LAMA84-R cells with IM resistance. Besides, the PI3K/Akt signal transduction pathway was found to mediate the HDAC2 regulation of CML cells with IM resistance. Eventually, it was also discovered, based on the xenograft mouse model, that the combined treatment dramatically suppressed CML proliferation in vivo. To sum up, findings in the current study indicate that CAY10683 combined with IM can be potentially used as the candidate treatment for CML with IM resistance.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Danna Wei
- Department of Hematology and Oncology, Guiyang Maternal and Child Health Hospital Guiyang 550002 PR China
| | - Tingting Lu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Kunlin Yu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China
| | - Zhaoyuan Zhang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Weili Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| | - Jishi Wang
- Department of Clinical Medical School, Guizhou Medical University Guiyang 550004 PR China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University Guiyang 550004 PR China +86 851 675 7898 +86 136 390 89646 .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center, Key Laboratory of Hematological Disease Diagnostic and Treatment Centre Guiyang 550004 PR China
| |
Collapse
|
33
|
Potential role of adjuvant drugs on efficacy of first line oral antitubercular therapy: Drug repurposing. Tuberculosis (Edinb) 2020; 120:101902. [DOI: 10.1016/j.tube.2020.101902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
|
34
|
Busnelli M, Manzini S, Chiesa G. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients 2019; 12:E79. [PMID: 31892152 PMCID: PMC7019666 DOI: 10.3390/nu12010079] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
It is widely recognized that the microorganisms inhabiting our gastrointestinal tract-the gut microbiota-deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.
Collapse
Affiliation(s)
| | | | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
35
|
Rocha MA, Veronezi GMB, Felisbino MB, Gatti MSV, Tamashiro WMSC, Mello MLS. Sodium valproate and 5-aza-2'-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci Rep 2019; 9:18236. [PMID: 31796828 PMCID: PMC6890691 DOI: 10.1038/s41598-019-54848-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Sodium valproate/valproic acid (VPA), a histone deacetylase inhibitor, and 5-aza-2-deoxycytidine (5-aza-CdR), a DNA methyltransferase 1 (DNMT1) inhibitor, induce DNA demethylation in several cell types. In HeLa cells, although VPA leads to decreased DNA 5-methylcytosine (5mC) levels, the demethylation pathway involved in this effect is not fully understood. We investigated this process using flow cytometry, ELISA, immunocytochemistry, Western blotting and RT-qPCR in G1 phase-arrested and proliferative HeLa cells compared to the presumably passive demethylation promoted by 5-aza-CdR. The results revealed that VPA acts predominantly on active DNA demethylation because it induced TET2 gene and protein overexpression, decreased 5mC abundance, and increased 5-hydroxy-methylcytosine (5hmC) abundance, in both G1-arrested and proliferative cells. However, because VPA caused decreased DNMT1 gene expression levels, it may also act on the passive demethylation pathway. 5-aza-CdR attenuated DNMT1 gene expression levels but increased TET2 and 5hmC abundance in replicating cells, although it did not affect the gene expression of TETs at any stage of the cell cycle. Therefore, 5-aza-CdR may also function in the active pathway. Because VPA reduces DNA methylation levels in non-replicating HeLa cells, it could be tested as a candidate for the therapeutic reversal of DNA methylation in cells in which cell division is arrested.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Giovana Maria Breda Veronezi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Maria Silvia Viccari Gatti
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Wirla M S C Tamashiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
36
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
37
|
Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rasappan P, Rathinavelu A. Cell Cycle Arrest and Cytotoxic Effects of SAHA and RG7388 Mediated through p21 WAF1/CIP1 and p27 KIP1 in Cancer Cells. ACTA ACUST UNITED AC 2019; 55:medicina55020030. [PMID: 30700046 PMCID: PMC6409969 DOI: 10.3390/medicina55020030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/31/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Alterations in gene expressions are often due to epigenetic modifications that can have a significant influence on cancer development, growth, and progression. Lately, histone deacetylase inhibitors (HDACi) such as suberoylanilide hydroxamic acid (SAHA, or vorinostat, MK0683) have been emerging as a new class of drugs with promising therapeutic benefits in controlling cancer growth and metastasis. The small molecule RG7388 (idasanutlin, R05503781) is a newly developed inhibitor that is specific for an oncogene-derived protein called MDM2, which is also in clinical trials for the treatment of various types of cancers. These two drugs have shown the ability to induce p21 expression through distinct mechanisms in MCF-7 and LNCaP cells, which are reported to have wild-type TP53. Our understanding of the molecular mechanism whereby SAHA and RG7388 can induce cell cycle arrest and trigger cell death is still evolving. In this study, we performed experiments to measure the cell cycle arrest effects of SAHA and RG7388 using MCF-7 and LNCaP cells. MATERIALS AND METHODS The cytotoxicity, cell cycle arrest, and apoptosis/necroptosis effects of the SAHA and RG7388 treatments were assessed using the Trypan Blue dye exclusion (TBDE) method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence assay with DEVD-amc substrate, and immunoblotting methods. RESULTS The RG7388 treatment was able to induce cell death by elevating p21WAF1/CIP1 through inhibition of MDM2 in LNCaP, but not in MCF-7 cells, even though there was evidence of p53 elevation. Hence, we suspect that there is some level of uncoupling of p53-mediated transcriptional induction of p21WAF1/CIP1 in MCF-7 cells. CONCLUSION Our results from MCF-7 and LNCaP cells confirmed that SAHA and RG7388 treatments were able to induce cell death via a combination of cell cycle arrest and cytotoxic mechanisms. We speculate that our findings could lead to the development of newer treatments for breast and prostate cancers with drug combinations including HDACi.
Collapse
Affiliation(s)
- Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University,Fort Lauderdale, FL 33314, USA.
- VRR Institute of Biomedical Science, Kattupakkam, Chennai 600056, India.
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University,Fort Lauderdale, FL 33314, USA.
| | | | - Shila Samuel
- VRR Institute of Biomedical Science, Kattupakkam, Chennai 600056, India.
| | - Periannan Rasappan
- VRR Institute of Biomedical Science, Kattupakkam, Chennai 600056, India.
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University,Fort Lauderdale, FL 33314, USA.
- College of Pharmacy, Health Professions Division, Nova Southeastern University,Fort Lauderdale, FL 33314, USA.
| |
Collapse
|
38
|
Berkowski WM, Gibson DJ, Seo S, Proietto LR, Whitley RD, Schultz GS, Plummer CE. Assessment of Topical Therapies for Improving the Optical Clarity Following Stromal Wounding in a Novel Ex Vivo Canine Cornea Model. ACTA ACUST UNITED AC 2018; 59:5509-5521. [DOI: 10.1167/iovs.17-23085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- William M. Berkowski
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| | - Daniel J. Gibson
- Institute for Wound Research, University of Florida, Gainesville, Florida, United States
| | - SooJung Seo
- Institute for Wound Research, University of Florida, Gainesville, Florida, United States
| | - Laura R. Proietto
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| | - R. David Whitley
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| | - Gregory S. Schultz
- Institute for Wound Research, University of Florida, Gainesville, Florida, United States
| | - Caryn E. Plummer
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
39
|
Trichostatin A induces Trypanosoma cruzi histone and tubulin acetylation: effects on cell division and microtubule cytoskeleton remodelling. Parasitology 2018; 146:543-552. [PMID: 30421693 DOI: 10.1017/s0031182018001828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.
Collapse
|
40
|
He B, Dai L, Zhang X, Chen D, Wu J, Feng X, Zhang Y, Xie H, Zhou L, Wu J, Zheng S. The HDAC Inhibitor Quisinostat (JNJ-26481585) Supresses Hepatocellular Carcinoma alone and Synergistically in Combination with Sorafenib by G0/G1 phase arrest and Apoptosis induction. Int J Biol Sci 2018; 14:1845-1858. [PMID: 30443188 PMCID: PMC6231215 DOI: 10.7150/ijbs.27661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The high activity of Histone deacetylases (HDACs) in hepatocellular carcinoma (HCC) usually positively correlates with poor prognosis of patients. Accordingly histone deacetylases inhibitors (HDACis) are considered to be potential agents treating patients with HCC. In our study, we evaluated effect of quisinostat alone and in combination with sorafenib in HCC cells via inducing G0/G1 phase arrest through PI3K/AKT/p21 pathway and apoptosis by JNK/c-Jun/caspase3 pathway in vitro and in vivo. The proliferation assay and flow cytometry were used to measure the viability, cell cycle and apoptosis. And Western blot assay was carried out to determine expression alternations of related proteins. Moreover HCCLM3 xenograft was further performed to detect antitumor effect of quisinostat in vivo. Here, we found that quisinostat impeded cell proliferation, and remarkably induced G0/G1 phase arrest and apoptosis in HCC cells in a dose-dependent manner. G0/G1 phase arrest was observed by alterations in PI3K/AKT/p21 proteins. Meanwhile the JNK, c-jun and caspase-3 were activated by quisinostat in a dose-dependent manner. Correspondingly quisinostat facilitated G0/G1 cycle arrest and apoptosis in HCC cells through PI3K/AKT/p21 pathways and JNK/c- jun/caspase3 pathways. Moreover, the potent tumor-suppressive effects facilitated by quisinostat, was significantly potentiated by combination with sorafenib in vitro and vivo. The combination treatment of quisinostat and sorafenib markedly suppressed cell proliferation and induced apoptosis in a synergistic manner. Moreover the therapy of quisinostat combined with sorafenib could apparently decrease tumor volume of a HCCLM3 xenograft model. Our study indicated that quisinostat, as a novel chemotherapy for HCC, exhibited excellent antitumor activity in vitro and vivo, which was even enhanced by the addition of sorafenib, implying combination of quisinostat with sorafenib a promising and alternative therapy for patients with advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longfei Dai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jingbang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanpeng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
41
|
Patel P, Rajak H. Development of hydroxamic acid derivatives as anticancer agent with the application of 3D-QSAR, docking and molecular dynamics simulations studies. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Zeb A, Park C, Son M, Rampogu S, Alam SI, Park SJ, Lee KW. Investigation of non-hydroxamate scaffolds against HDAC6 inhibition: A pharmacophore modeling, molecular docking, and molecular dynamics simulation approach. J Bioinform Comput Biol 2018; 16:1840015. [PMID: 29945500 DOI: 10.1142/s0219720018400152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proteins deacetylation by Histone deacetylase 6 (HDAC6) has been shown in various human chronic diseases like neurodegenerative diseases and cancer, and hence is an important therapeutic target. Since, the existing inhibitors have hydroxamate group, and are not HDAC6-selective, therefore, this study has designed to investigate non-hydroxamate HDAC6 inhibitors. Ligand-based pharmacophore was generated from 26 training set compounds of HDAC6 inhibitors. The statistical parameters of pharmacophore (Hypo1) included lowest total cost of 115.63, highest cost difference of 135.00, lowest RMSD of 0.70 and the highest correlation of 0.98. The pharmacophore was validated by Fischer's Randomization and Test Set validation, and used as screening tool for chemical databases. The screened compounds were filtered by fit value ([Formula: see text]), estimated Inhibitory Concentration (IC[Formula: see text]) ([Formula: see text]), Lipinski's Rule of Five and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Descriptors to identify drug-like compounds. Furthermore, the drug-like compounds were docked into the active site of HDAC6. The best docked compounds were selected having goldfitness score [Formula: see text] and [Formula: see text], and hydrogen bond interaction with catalytic active residues. Finally, three inhibitors having sulfamoyl group were selected by Molecular Dynamic (MD) simulation, which showed stable root mean square deviation (RMSD) (1.6-1.9[Formula: see text]Å), lowest potential energy ([Formula: see text][Formula: see text]kJ/mol), and hydrogen bonding with catalytic active residues of HDAC6.
Collapse
Affiliation(s)
- Amir Zeb
- * Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 660-701, Republic of Korea.,† System and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinjudaero, Jinju 52828, Republic of Korea
| | - Chanin Park
- * Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 660-701, Republic of Korea.,† System and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinjudaero, Jinju 52828, Republic of Korea
| | - Minky Son
- * Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 660-701, Republic of Korea.,† System and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinjudaero, Jinju 52828, Republic of Korea
| | - Shailima Rampogu
- * Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 660-701, Republic of Korea.,† System and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinjudaero, Jinju 52828, Republic of Korea
| | - Syed Ibrar Alam
- * Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 660-701, Republic of Korea.,† System and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinjudaero, Jinju 52828, Republic of Korea
| | - Seok Ju Park
- ‡ Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Republic of Korea
| | - Keun Woo Lee
- * Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 660-701, Republic of Korea.,† System and Synthetic Agrobiotech Center (SSAC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinjudaero, Jinju 52828, Republic of Korea
| |
Collapse
|
43
|
Arumugam A, Abdull Razis AF. Apoptosis as a Mechanism of the Cancer Chemopreventive Activity of Glucosinolates: a Review. Asian Pac J Cancer Prev 2018; 19:1439-1448. [PMID: 29936713 PMCID: PMC6103590 DOI: 10.22034/apjcp.2018.19.6.1439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/29/2018] [Indexed: 01/27/2023] Open
Abstract
Cruciferous vegetables are a rich source of glucosinolates that have established anti-carcinogenic activity. Naturally-occurring glucosinolates and their derivative isothiocyanates (ITCs), generated as a result of their enzymatic degradation catalysed by myrosinase, have been linked to low cancer incidence in epidemiological studies, and in animal models isothiocyanates suppressed chemically-induced tumorigenesis. The prospective effect of isothiocyanates as anti-carcinogenic agent has been much explored as cytotoxic against wide array of cancer cell lines and being explored for the development of new anticancer drugs. However, the mechanisms of isothiocyanates in inducing apoptosis against tumor cell lines are still largely disregarded. A number of mechanisms are believed to be involved in the glucosinolate-induced suppression of carcinogenesis, including the induction of apoptosis, biotransformation of xenobiotic metabolism, oxidative stress, alteration of caspase activity, angiogenesis, histone deacytylation and cell cycle arrest. The molecular mechanisms through which isothiocyanates stimulate apoptosis in cancer cell lines have not so far been clearly defined. This review summarizes the underlying mechanisms through which isothiocyanates modify the apoptotic pathway leading to cell death.
Collapse
Affiliation(s)
- Asvinidevi Arumugam
- Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | | |
Collapse
|
44
|
Clutton GT, Jones RB. Diverse Impacts of HIV Latency-Reversing Agents on CD8+ T-Cell Function: Implications for HIV Cure. Front Immunol 2018; 9:1452. [PMID: 29988382 PMCID: PMC6023971 DOI: 10.3389/fimmu.2018.01452] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral therapy regimens durably suppress HIV replication, but do not cure infection. This is partially attributable to the persistence of long-lived pools of resting CD4+ T-cells harboring latent replication-competent virus. Substantial clinical and pre-clinical research is currently being directed at purging this viral reservoir by combining pharmacological latency reversal with immune effectors, such as HIV-specific CD8+ T-cells, capable of eliminating reactivated targets-the so-called "shock-and-kill" approach. However, several studies indicate that the latency-reversing agents (LRAs) may affect CD8+ T-cell function. The current review aims to frame recent advances, and ongoing challenges, in implementing "shock-and-kill" strategies from the perspective of effectively harnessing CD8+ T-cells. We review and contextualize findings indicating that LRAs often have unintended impacts on CD8+ T-cell function, both detrimental and beneficial. We identify and attempt to bridge the gap between viral reactivation, as measured by the detection of RNA or protein, and bona fide presentation of viral antigens to CD8+ T-cells. Finally, we highlight factors on the effector (CD8+) and target (CD4+) cell sides that contribute to whether or not infected-cell recognition results in killing/elimination. These perspectives may contribute to an integrated view of "shock-and-kill," with implications for therapeutic development.
Collapse
Affiliation(s)
- Genevieve Tyndale Clutton
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - R. Brad Jones
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
- Infectious Disease Division, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
45
|
Acetylation of lysine 182 inhibits the ability of Mycobacterium tuberculosis DosR to bind DNA and regulate gene expression during hypoxia. Emerg Microbes Infect 2018; 7:108. [PMID: 29899473 PMCID: PMC5999986 DOI: 10.1038/s41426-018-0112-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/08/2022]
Abstract
The DosR regulon is believed to be a key factor in latency adaptation of Mycobacterium tuberculosis and is strongly induced by multiple stresses, including hypoxia. Previous studies have revealed reversible acetylation of the conserved core DNA-binding lysine residue 182 (K182) of DosR in M. tuberculosis. In this study, we demonstrated that acetylated K182 plays an important role in the DNA-binding ability of DosR and that acetylation of K182 completely abolished the affinity of DosR for DNA in vitro. Antibodies that specifically recognized acetyllysine at position 182 of DosR were used to monitor DosR acetylation. We found that in vitro acetylation of K182 could be removed by deacetylase Rv1151c and that either the deacetylase-deletion strain ∆npdA or treatment with a deacetylase inhibitor resulted in increased levels of K182 acetylation in vivo. The physiological significance of DosR acetylation was demonstrated by decreased levels of acetylated K182 in M. tuberculosis in response to hypoxia and by the effects of K182 acetylation on the transcript levels of DosR regulon genes. Since the DosR regulon plays a critical role during host infection by M. tuberculosis, our findings suggest that targeting DosR acetylation may be a viable strategy for antituberculosis drug development.
Collapse
|
46
|
Zhao ML, Wang W, Nie H, Cao SS, Du LF. In silico structure prediction and inhibition mechanism studies of AtHDA14 as revealed by homology modeling, docking, molecular dynamics simulation. Comput Biol Chem 2018; 75:120-130. [PMID: 29775968 DOI: 10.1016/j.compbiolchem.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs) play a significant role in the epigenetic mechanism by catalyzing deacetylation of lysine on histone in both animals and plants. HDACs involved in growth, development and response to stresses in plants. Arabidopsis thaliana histone deacetylase 14 (AtHDA14) is found to localize in the mitochondria and chloroplasts, and it involved in photosynthesis and melatonin biosynthesis. However, its mechanism of action was still unknowns so far. Therefore, in this study, we constructed AtHDA14 protein model using homology modeling method, validated using PROCHECK and presented using Ramachandran plots. We also performed virtual screening of AtHDA14 by docking with small molecule drugs and predicted their ADMET properties to select representative inhibitors. MD simulation for representative AtHDA14-ligand complexes was carried out to further research and reveal their stability and inhibition mechanism. Meanwhile, MM/PBSA method was utilized to obtain more valuable information about the residues energy contribution. Moreover, compared with four candidate inhibitors, we also found that compound 645533 and 6918837 might be a more potent AtHDA14 inhibitor than TSA (444732) and SAHA (5311). Therefore, compound 6445533 and 6918837 was anticipated to be a promising drug candidate for inhibition of AtHDA14.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Wang Wang
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Hu Nie
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Sha-Sha Cao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Lin-Fang Du
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
47
|
Attia SM, Al-Hamamah MA, Alotaibi MR, Harisa GI, Attia MM, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Investigation of belinostat-induced genomic instability by molecular cytogenetic analysis and pathway-focused gene expression profiling. Toxicol Appl Pharmacol 2018; 350:43-51. [PMID: 29733868 DOI: 10.1016/j.taap.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs), which regulate transcription and specific functions such as tumor suppression by p53, are frequently altered in tumors and have a contentious role in carcinogenesis. HDAC inhibitors, which have a long history of use in psychiatry and neurology, have recently been tested as possible treatments for tumors. Belinostat received regulatory approval in the USA on July 3, 2014, for use against peripheral T-cell lymphoma. However, the unavailability of information on belinostat genotoxicity in normal cells and the molecular mechanisms involved in the genetic instability after exposure to belinostat encouraged us to conduct this study. Our data showed that the exposure of mice to belinostat at the recommended human doses induced chromosome breakage, whole-chromosome lagging, and oxidative DNA damage in bone marrow cells in a dose-dependent manner. The expression levels of 84 genes involved in the DNA damage signaling pathway were evaluated by using an RT2 Profiler PCR array. Belinostat exposure altered the expression of 25 genes, with statistically significant changes observed in 17 genes. The array results were supported by RT-PCR and western blotting experiments. Collectively, our results showed that belinostat exposure caused oxidative DNA damage and downregulated the expression of genes involved in DNA damage repair, which may be responsible for belinostat-induced genomic instability. Thus, the clinical usage of this drug should be weighed against the hazards of carcinogenesis, and the observed genotoxicity profile of belinostat may support further development of efficient HDAC inhibitors with weaker genotoxicity.
Collapse
Affiliation(s)
- S M Attia
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia; Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - M A Al-Hamamah
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia
| | - M R Alotaibi
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia
| | - G I Harisa
- Kayyali Chair for Pharmaceutical Industry, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - M M Attia
- Plant Protection Department, College of Agriculture, Damanhour University, Damanhour, Egypt
| | - S F Ahmad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia
| | - M A Ansari
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia
| | - A Nadeem
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia
| | - S A Bakheet
- Pharmacology & Toxicology Department, Faculty of Pharmacy, King Saud University, P.O. 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Turner TB, Meza-Perez S, Londoño A, Katre A, Peabody JE, Smith HJ, Forero A, Norian LA, Straughn JM, Buchsbaum DJ, Randall TD, Arend RC. Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget 2018; 8:44159-44170. [PMID: 28498806 PMCID: PMC5546470 DOI: 10.18632/oncotarget.17395] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Expression of MHC class II pathway proteins in ovarian cancer correlates with prolonged survival. Murine and human ovarian cancer cells were treated with epigenetic modulators - histone deacetylase inhibitors and a DNA methyltransferase inhibitor. mRNA and protein expression of the MHC II pathway were evaluated by qPCR and flow cytometry. Treatment with entinostat and azacytidine of ID8 cells in vitro increased mRNA levels of Cd74, Ciita, and H2-Aa, H2-Eb1. MHC II and CD74 protein expression were increased after treatment with either agent. A dose dependent response in mRNA and protein expression was seen with entinostat. Combination treatment showed higher MHC II protein expression than with single agent treatment. In patient derived xenografts, CIITA, CD74, and MHC II mRNA transcripts were significantly increased after combination treatment. Expression of MHC II on ovarian tumors in MISIIR-Tag mice was increased with both agents relative to control. Combination treatment significantly reduced ID8 tumor growth in immune-competent mice. Epigenetic treatment increases expression of MHC II on ovarian cancer cells and impedes tumor growth. This approach warrants further study in ovarian cancer patients.
Collapse
Affiliation(s)
- Taylor B Turner
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angelina Londoño
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwini Katre
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacelyn E Peabody
- NIH Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haller J Smith
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andres Forero
- Department of Medicine, University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Straughn
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
49
|
Chidambaram A, Sundararaju K, Chidambaram RK, Subbiah R, Jayaraj JM, Muthusamy K, Vilwanathan R. Design, synthesis, and characterization of α, β-unsaturated carboxylic acid, and its urea based derivatives that explores novel epigenetic modulators in human non-small cell lung cancer A549 cell line. J Cell Physiol 2018; 233:5293-5309. [PMID: 29215703 DOI: 10.1002/jcp.26333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are a small molecule chemotherapeutics that target the chromatin remodeling through the regulation of histone and non-histone proteins. These inhibitors directed against histone deacetylase (HDAC) enzymes have become an important therapeutic tool in oncology; consequently, scientific efforts have fortified the quest for newer and novel HDACi, which forces the design of structurally innovative HDACi. Various urea containing compounds exhibited admirable anticancer activity. On the basis of these observations, we design and synthesize HDAC specific blocker molecules which are specifically besieged towards class I, class II, and class IV HDAC isoforms to enhance the structural assortment for HDACi. Through docking experiments, we identified that the compounds were tightly bound to the isoforms of the HDAC enzymes at their receptor regions. These derivatives potently inhibited the different isoforms, namely, class I, II, and IV of HDACs, by hyperacetylation of lysine residues in A549 cells. The mechanism of apoptosis is evident, regulating tumor suppressor genes and proteins, thereby facilitating the activation of the death receptor pathway by the tumor necrosis factor (TNF) receptor. These derivative facilitated the induction of reactive oxygen species (ROS) generation leading to downregulation of Bcl2 , and upregulation of Bax expression, thereby dysregulating mitochondrial membrane potential (ΔΨm ) to release cytochrome c, and activation of intrinsic pathway. These compounds downregulate the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway to inhibit cell growth, proliferation, and metastasis through the matrix metalloproteinases (MMPs) MMP2 and MMP9 in A549 cells. These results suggest that our designed urea based derivatives act as epigenetic targeting agents through HDAC inhibition.
Collapse
Affiliation(s)
- Anusha Chidambaram
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kavya Sundararaju
- Department of Chemistry, Vel Tech University, Chennai, Tamil Nadu, India
| | | | - Rajasekaran Subbiah
- Department of Biotechnology, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - John M Jayaraj
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Ravikumar Vilwanathan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
50
|
Guimarães DM, Almeida LO, Martins MD, Warner KA, Silva ARS, Vargas PA, Nunes FD, Squarize CH, Nör JE, Castilho RM. Sensitizing mucoepidermoid carcinomas to chemotherapy by targeted disruption of cancer stem cells. Oncotarget 2018; 7:42447-42460. [PMID: 27285758 PMCID: PMC5173147 DOI: 10.18632/oncotarget.9884] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/15/2016] [Indexed: 12/23/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common malignancy of salivary glands. The response of MEC to chemotherapy is unpredictable, and recent advances in cancer biology suggest the involvement of cancer stem cells (CSCs) in tumor progression and chemoresistance and radioresistance phenotype. We found that histone acetyltransferase inhibitors (HDACi) were capable of disrupting CSCs in MEC. Furthermore, administration of HDACi prior to Cisplatin (two-hit approach) disrupts CSCs and sensitizes tumor cells to Cisplatin. Our findings corroborate to emerging evidence that CSCs play a key role in tumor resistance to chemotherapy, and highlights a pharmacological two-hit approach that disrupts tumor resistance to conventional therapy.
Collapse
Affiliation(s)
- Douglas M Guimarães
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| | - Manoela D Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kristy A Warner
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Alan R S Silva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil
| | - Fabio D Nunes
- Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacques E Nör
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA.,Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|