1
|
He X, Zhang H, Zhong J, Wang J, Wu K, Wen X. Regulatory mechanism of Elovl6 in lipid metabolism, antioxidant capacity, and immune function in Scylla paramamosain revealed by Ap-1. Int J Biol Macromol 2024; 283:137700. [PMID: 39551296 DOI: 10.1016/j.ijbiomac.2024.137700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
In mammals, elongation of very long-chain fatty acids protein 6 (ELOVL6) play a role in both the elongation of fatty acids and the development of associated inflammation. However, the function and transcriptional regulatory mechanisms of Elovl6 in invertebrates are poorly understood. This study aimed to examine the function of Elovl6 and its transcriptional regulatory mechanism in Scylla paramamosain. RNA interference experiments showed that elovl6 knockdown significantly affected the synthesis and catabolism of hepatopancreatic lipids, leading to an increase in triglyceride levels and saturated fatty acid content, and a decrease in polyunsaturated fatty acid content. Notably, antioxidant capacity and immune function were also impaired, with decreased activity of antioxidant enzymes and immune-related genes. To investigate the transcription regulation of elovl6, a 2212-bp promoter fragment upstream of elovl6 was cloned and characterized. Analysis of the luciferase reporter showed that Ap-1 regulates elovl6 transcription via the -353 to -343 binding site. In vivo injection of the Ap-1 inhibitor T-5224 verified its inhibitory effect on elovl6 expression, with results similar to those of elovl6 knockdown, indicating that Ap-1 regulates lipid metabolism, antioxidant capacity, and immune function via Elovl6.
Collapse
Affiliation(s)
- Xianda He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Juncheng Zhong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China.
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Xu M, Liu J, Yu J, Wang J, Li H, Zhong T, Hao Y, Li Z, Wang J, Huang X, Wang H, Tian Y, Zhao H, Wei Q, Zhang X. Methyl-β-cyclodextrin Enhances Tumor Cellular Uptake and Accumulation of α-Linolenic Acid-Paclitaxel Conjugate Nanoparticles. Mol Pharm 2024. [PMID: 39495317 DOI: 10.1021/acs.molpharmaceut.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Improving nanomedicine uptake by tumor cells is key to achieving intracellular drug delivery. In this study, we found that methyl-β-cyclodextrin (MβCD) can significantly promote the intracellular accumulation of nanoparticulated α-linolenic acid-paclitaxel conjugates (ALA-PTX NPs) via enhanced clathrin-mediated endocytosis and limited degradation in lysosomes. Our in vitro results indicated that MβCD not only reduced the plasma membrane cholesterol content and increased plasma membrane fluidity, leading to ALA-PTX NPs being more easily incorporated into the plasma membrane, further enhancing membrane fluidity and making the plasma membrane more susceptible to tensile deformation, forming intracellular vesicles to enhance ALA-PTX NP cellular uptake, but also destroyed lysosomes and then limited ALA-PTX NPs' degradation in lysosomes. In HepG2 tumor-bearing mice, MβCD was also able to enhance the antitumor activity of ALA-PTX NPs in vivo. Moreover, we found that MβCD specifically promoted PUFA-paclitaxel conjugate NP cellular uptake. The cellular uptake of PTX liposome which shares an endocytosis pathway with ALA-PTX NPs could be enhanced by MβCD combined with ALA or ALA-PTX NPs. Therefore, we suggested that MβCD combined with polyunsaturated fatty acid-conjugation would be an effective strategy for improving intracellular delivery of nanoparticulated chemotherapeutic drugs used for combination administration to enhance antitumor efficiency.
Collapse
Affiliation(s)
- Meiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingwen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanli Hao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yubo Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingchao Wei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
4
|
Riedel S, Abel S, Burger HM, Swanevelder S, Gelderblom WCA. Fumonisin B 1 protects against long-chained polyunsaturated fatty acid-induced cell death in HepG2 cells - implications for cancer promotion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184310. [PMID: 38479610 DOI: 10.1016/j.bbamem.2024.184310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fumonisin B1 (FB1), a food-borne mycotoxin, is a cancer promoter in rodent liver and augments proliferation of initiated cells while inhibiting the growth of normal hepatocytes by disrupting lipid biosynthesis at various levels. HepG2 cancer cells exhibited resistance to FB1-induced toxic effects presumably due to their low content of polyunsaturated fatty acids (PUFA) even though FB1-typical lipid changes were observed, e.g. significantly increased phosphatidylethanolamine (PE), decreased sphingomyelin and cholesterol content, increased sphinganine (Sa) and sphinganine/sphingosine ratio, increased C18:1ω-9, decreased C20:4ω-6 content in PE and decreased C20:4ω-6_PC/PE ratio. Increasing PUFA content of HepG2 cells with phosphatidylcholine (PC) vesicles containing C20:4ω-6 (SAPC) or C22:6ω-3 (SDPC) disrupted cell survival, cellular redox status and induced oxidative stress and apoptosis. A partially protective effect of FB1 was evident in PUFA-enriched HepG2 cells which may be related to the FB1-induced reduction in oxidative stress and the disruption of key cell membrane constituents indicative of a resistant lipid phenotype. Interactions between different ω-6 and ω-3 PUFA, membrane constituents including cholesterol, and the glycerophospho- and sphingolipids and FB1 in this cell model provide further support for the resistant lipid phenotype and its role in the complex cellular effects underlying the cancer promoting potential of the fumonisins.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Stefan Abel
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Hester-Mari Burger
- Unit of Research Integrity, Research Directorate, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Sonja Swanevelder
- Biostatistics Research Unit, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa.
| | - Wentzel C A Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
5
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Panjeta A, Kaur K, Sharma R, Verma I, Preet S. Human Intestinal Defensin 5 Ameliorates the Sensitization of Colonic Cancer Cells to 5-Fluorouracil. Arch Med Res 2024; 55:102966. [PMID: 38330831 DOI: 10.1016/j.arcmed.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND AIM The increasing dilemma of multidrug-resistant cancer cells in response to currently available chemotherapeutic drugs and their associated side effect(s), calls for the investigation of alternative anticancer advances and molecules. Therefore, the present study aimed to elucidate the combinatorial potential against colon cancer of human defensin 5 in combination with 5-fluorouracil (5-FU), and against 5-FU resistant colon tumor cells. METHODS The in vivo combinatorial potential of HD-5 with 5-FU was elucidated in terms of tumor morphometrics, apoptosis assay, surface morphology histology of the colon(s), and transcriptional alterations. Changes in membrane dynamics with mucin expression were evaluated by fluorescence microscopy and histochemistry. The in vitro activity of the peptide/drug conjunction was explored by phase contrast microscopy, MTT, LDH assay, and AO/EtBr staining. Chemoresistance to 5-FU was determined by phase contrast microscopy, MTT assay, annexin V-FITC/PI flow cytometry, and MDR-1, Bak, and Bax expression. RESULTS In vivo decreases in tumor parameters, with a marked increase in apoptosis and neutrophil infiltrations indicated restoration of normal architecture with improved mucin content in the treated colons. This happened with substantial changes in key molecular markers of the intrinsic apoptotic cascade. Membrane dynamics revealed that peptides and chemotherapeutic drugs could bind to cancerous cells by taking advantage of altered levels of membrane fluidity. CONCLUSION Peptide treatment of drug-resistant Caco-2 cells promotes enhanced 5-FU uptake, in contrast to when cells were treated with 5-FU alone. Hence, HD-5 as an adjunct to 5-FU, exhibited strong cancer cell killing even against 5-FU-resistant tumorigenic cells.
Collapse
Affiliation(s)
- Anshul Panjeta
- Department of Biophysics, BMS Block II, South Campus, Panjab University, Chandigarh, India
| | - Khushpreet Kaur
- Department of Biochemistry, Research Block-A, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rinkle Sharma
- Department of Biochemistry, Research Block-A, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Research Block-A, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Simran Preet
- Department of Biophysics, BMS Block II, South Campus, Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Liu L, Zhang Q, Wang C, Guo H, Mukwaya V, Chen R, Xu Y, Wei X, Chen X, Zhang S, Zhou M, Dou H. Single-Cell Diagnosis of Cancer Drug Resistance through the Differential Endocytosis of Nanoparticles between Drug-Resistant and Drug-Sensitive Cancer Cells. ACS NANO 2023; 17:19372-19386. [PMID: 37781914 DOI: 10.1021/acsnano.3c07030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single-cell diagnosis of cancer drug resistance is highly relevant for cancer treatment, as it can be used to identify the subpopulations of drug-resistant cancer cells, reveal the sensitivity of cancer cells to treatment, and monitor the progress of cancer drug resistance. However, simple and effective methods for cancer drug resistance detection at the single-cell level are still lacking in laboratory and clinical studies. Inspired by the fact that nanoparticles with diverse physicochemical properties would generate distinct and specific interactions with drug-resistant and drug-sensitive cancer cells, which have distinctive molecular signatures, here, we have synthesized a library of fluorescent nanoparticles with various sizes, surface charges, and compositions (SiO2 nanoparticles (SNPs), organic PS-co-PAA nanoparticles (ONPs), and ZIF-8 nanoparticles (ZNPs)), thus demonstrating that the composition has a critical influence on the interaction of nanoparticles with drug-resistant cancer cells. Furthermore, the clathrin/caveolae-independent endocytosis of ZNPs together with the P-glycoprotein-related decreased cell membrane fluidity resulted in a lower cellular accumulation of ZNPs in drug-resistant cancer cells, consequently causing the distinct cellular accumulation of ZNPs between the drug-resistant and drug-sensitive cancer cells. This difference was further quantified by detecting the fluorescence signals generated by the accumulation of nanoparticles at the single-cell level via flow cytometry. Our findings provide another insight into the nanoparticle-cell interactions and offer a promising platform for the diagnosis of cancer drug resistance of various cancer cells and clinical cancer samples at the single-cell level.
Collapse
Affiliation(s)
- Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Qiurui Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Rong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
8
|
Xu X, Kwong CHT, Li J, Wei J, Wang R. "Zombie" Macrophages for Targeted Drug Delivery to Treat Acute Pneumonia. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37291057 DOI: 10.1021/acsami.3c06025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A cell-based drug delivery system has emerged as a promising drug delivery platform. Due to their innate inflammatory tropism, natural and engineered macrophages have exhibited targeted accumulation in inflammatory tissues, which has allowed targeted delivery of medicine for the treatment of a variety of inflammatory diseases. Nevertheless, live macrophages may take up the medicine and metabolize it during preparation, storage, and in vivo delivery, sometimes causing unsatisfactory therapeutic efficacy. In addition, live macrophage-based drug delivery systems are usually freshly prepared and injected, due to the poor stability that does not allow storage. "Off-the-shelf" products would be indeed conducive to the timely therapy of acute diseases. Herein, a cryo-shocked macrophage-based drug delivery system was developed via supramolecular conjugation of cyclodextrin (CD)-modified "zombie" macrophages and adamantane (ADA)-functionalized nanomedicine. "Zombie" macrophages exhibited a much better storage stability over time than their counterpart live macrophage drug carriers and maintained cell morphology, membrane integrity, and biological functions. In an acute pneumonia mouse model, "zombie" macrophages carried quercetin-loaded nanomedicine, hand-in-hand, to the inflammatory lung tissues and effectively alleviated the inflammation in mice.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
9
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Wang T, Liu X, Qu X, Li Y, Liang X, Wu J. Lipid response of hepatocellular carcinoma cells to anticancer drug detected on nanostructure-assisted LDI-MS platform. Talanta 2021; 235:122817. [PMID: 34517673 DOI: 10.1016/j.talanta.2021.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
High heterogeneity of hepatocellular carcinoma (HCC) tumor has become an obstacle to select effective therapy for the treatment of HCC patients. Methods that can guide the decision on therapy choice for HCC treatment are highly demanded. Evaluating the drug response of heterogeneous tumor cells at the molecular level can help to reveal the toxicity mechanism of anticancer drugs and provide more information than current cell-based chemosensitivity assays. In the present work, nanostructure-assisted laser desorption/ionization mass spectrometry (NALDI-MS) was used to investigate the lipid response of HCC cells to anticancer drugs. Three types of HCC cells (LM3, Hep G2, Huh7) were treated with sorafenib, doxorubicin hydro-chloride, and cisplatin. We found that the lipid profiles of HCC cells changed a lot after the drug treatment, and the degree of lipid changes was related to the cell viability. Two pairs of fatty acids C16:1/C16:0 and C18:1/C18:0 were found to be strongly related to the viability of HCC cells after drug treatment, and were more sensitive than Methyl-thiazolyl tetrazolium (MTT) assay. Accordingly, they can act as sensitive and comprehensive indexes to evaluate the drug susceptibility of HCC cells. In addition, the peak ratio of several neighboring phospholipids displayed high correlation with drug response of specific cell subtype to specific drug. The ratio of neighboring lipids may be traced back to the activity of enzyme and gene expression which regulate the lipidomic pathway. This method provides drug response of heterogenous tumor cells at molecular level and could be a potential candidate to precise tumor chemosensitivity assay.
Collapse
Affiliation(s)
- Tao Wang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyue Liu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuetong Qu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuexin Li
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis 2021; 20:150. [PMID: 34717628 PMCID: PMC8557557 DOI: 10.1186/s12944-021-01581-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt. .,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
12
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Besse L, Besse A, Stolze SC, Sobh A, Zaal EA, van der Ham AJ, Ruiz M, Phuyal S, Büchler L, Sathianathan M, Florea BI, Borén J, Ståhlman M, Huber J, Bolomsky A, Ludwig H, Hannich JT, Loguinov A, Everts B, Berkers CR, Pilon M, Farhan H, Vulpe CD, Overkleeft HS, Driessen C. Treatment with HIV-Protease Inhibitor Nelfinavir Identifies Membrane Lipid Composition and Fluidity as a Therapeutic Target in Advanced Multiple Myeloma. Cancer Res 2021; 81:4581-4593. [PMID: 34158378 DOI: 10.1158/0008-5472.can-20-3323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9-based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI-refractory multiple myeloma. SIGNIFICANCE: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.
Collapse
Affiliation(s)
- Lenka Besse
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
| | - Andrej Besse
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sara C Stolze
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lorina Büchler
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marc Sathianathan
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julia Huber
- Department of Medicine I, Wilhelminen Cancer Research Institute, Klinik Ottakring, Vienna, Austria
| | - Arnold Bolomsky
- Department of Medicine I, Wilhelminen Cancer Research Institute, Klinik Ottakring, Vienna, Austria
| | - Heinz Ludwig
- Department of Medicine I, Wilhelminen Cancer Research Institute, Klinik Ottakring, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christopher D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Christoph Driessen
- Laboratory of Experimental Oncology, Clinic for Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
14
|
Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol 2021; 141:235-256. [PMID: 33417012 PMCID: PMC7847444 DOI: 10.1007/s00401-020-02254-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The microtubule-associated protein tau has a critical role in Alzheimer's disease and other tauopathies. A proposed pathomechanism in the progression of tauopathies is the trans-synaptic spreading of tau seeds, with a role for exosomes which are secretory nanovesicles generated by late endosomes. Our previous work demonstrated that brain-derived exosomes isolated from tau transgenic rTg4510 mice encapsulate tau seeds with the ability to induce tau aggregation in recipient cells. We had also shown that exosomes can hijack the endosomal pathway to spread through interconnected neurons. Here, we reveal how tau seeds contained within internalized exosomes exploit mechanisms of lysosomal degradation to escape the endosome and induce tau aggregation in the cytosol of HEK293T-derived 'tau biosensor cells'. We found that the majority of the exosome-containing endosomes fused with lysosomes to form endolysosomes. Exosomes induced their permeabilization, irrespective of the presence of tau seeds, or whether the exosomal preparations originated from mouse brains or HEK293T cells. We also found that permeabilization is a conserved mechanism, operating in both non-neuronal tau biosensor cells and primary neurons. However, permeabilization of endolysosomes only occurred in a small fraction of cells, which supports the notion that permeabilization occurs by a thresholded mechanism. Interestingly, tau aggregation was only induced in cells that exhibited permeabilization, presenting this as an escape route of exosomal tau seeds into the cytosol. Overexpression of RAB7, which is required for the formation of endolysosomes, strongly increased tau aggregation. Conversely, inhibition of lysosomal function with alkalinizing agents, or by knocking-down RAB7, decreased tau aggregation. Together, we conclude that the enzymatic activities of lysosomes permeabilize exosomal and endosomal membranes, thereby facilitating access of exosomal tau seeds to cytosolic tau to induce its aggregation. Our data underscore the importance of endosomal membrane integrity in mechanisms of cellular invasion by misfolded proteins that are resistant to lysosomal degradation.
Collapse
|
15
|
Shimolina LE, Gulin AA, Paez-Perez M, López-Duarte I, Druzhkova IN, Lukina MM, Gubina MV, Brooks NJ, Zagaynova EV, Kuimova MK, Shirmanova MV. Mapping cisplatin-induced viscosity alterations in cancer cells using molecular rotor and fluorescence lifetime imaging microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200248R. [PMID: 33331150 PMCID: PMC7744042 DOI: 10.1117/1.jbo.25.12.126004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander A. Gulin
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Miguel Paez-Perez
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Ismael López-Duarte
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Irina N. Druzhkova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| | - Margarita V. Gubina
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nicolas J. Brooks
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Elena V. Zagaynova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina K. Kuimova
- Imperial College London, Faculty of Natural Sciences, Department of Chemistry, London, United Kingdom
| | - Marina V. Shirmanova
- Privolzhsky Research Medical University, Institute of Experimental Oncology and Biomedical Technologies, Nizhny Novgorod, Russia
| |
Collapse
|
16
|
Panjeta A, Preet S. Anticancer potential of human intestinal defensin 5 against 1, 2-dimethylhydrazine dihydrochloride induced colon cancer: A therapeutic approach. Peptides 2020; 126:170263. [PMID: 31981594 DOI: 10.1016/j.peptides.2020.170263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
The escalating predicament of multidrug resistant cancer cells and associated side effects of conventional chemotherapy necessitates the exploration of alternative anticancer therapies. The present study evaluated anticancer therapeutic potential of human defensin 5 (HD-5) against colon cancer. The in vivo anticancer efficacy of HD-5 against 1,2-dimethylhydrazine (DMH) induced colon cancer was elucidated in terms of tumor biostatistics, number of aberrant crypt foci (ACF), in situ apoptosis assay,changes in morphological as well as histological architecture of colon(s). The direct interaction of peptide was investigated by incubating peptide with normal and/or cancerous colonocytes followed by phase contrast, Hoechst 3342 and AO/PI staining as well as confocal microscopy. Changes in membrane dynamics were evaluated by MC 540 and N-NBD-PE staining. In vivo decrease(s) in tumor parameters, number of aberrant crypt foci along with marked increase in the rate of apoptosis was observed.H&E staining revealed neutrophils infiltration and restoration of normal architecture in treated colon(s) which was consistent with scanning electron microscopic observations. Furthermore, non-membranolytic mechanism was found to be acquired by peptide as it could traverse cell membrane gaining access to nucleus and cytoplasm thereby disintegrating cellular architecture. MC 540 and NBD-PE staining revealed that peptide could bind to cancerous cells by taking advantage of altered fluidity levels. Our results indicated that HD-5 exhibited strong cancer cell killing and does not affect normal host cells. The peptide can be exploited as promising option to combat developing menace of colon cancer and/or can at least be used as an adjunct to present day chemotherapies.
Collapse
Affiliation(s)
- Anshul Panjeta
- Department of Biophysics, Basic Medical Sciences, Block II, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Block II, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Zhang C, He LJ, Zhu YB, Fan QZ, Miao DD, Zhang SP, Zhao WY, Liu XP. Piperlongumine Inhibits Akt Phosphorylation to Reverse Resistance to Cisplatin in Human Non-Small Cell Lung Cancer Cells via ROS Regulation. Front Pharmacol 2019; 10:1178. [PMID: 31680961 PMCID: PMC6798055 DOI: 10.3389/fphar.2019.01178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022] Open
Abstract
Resistance is a major concern when administering chemotherapy to patients with non-small cell lung cancer (NSCLC). Chemosensitizer are agents that can reverse resistance to chemotherapeutic drugs, thereby enhancing the chemosensitivity of tumor cells. Thus, their development will improve therapeutic efficacy in cancer. However, few effective chemosensitizer have been identified to date. Piperlongumine (PL) has been shown to effectively reverse resistance to chemotherapeutic drugs in several types of cancers. However, the mechanisms associated with the chemotherapy resistance reversal effect of PL and its regulation of target factors in chemotherapy resistance cells are still unclear. This study investigated the reversal effect of PL both in vitro and in vivo, and provided evidence that PL inhibited the phosphorylation of Akt via the accumulation of reactive oxygen species in chemotherapy resistance cells. Consequently, various Akt activation-dependent genes caused a reduction of drug efflux and induction of apoptosis in cisplatin-resistant A549 NSCLC cells. Our results indicate that Akt phosphorylation may play a functional role in the reversal effect of PL and contribute, at least in part, to the treatment outcomes of patients with chemotherapy resistance.
Collapse
Affiliation(s)
- Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China.,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Lian-Jun He
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Yi-Bao Zhu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Dong-Dong Miao
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Wen-Ying Zhao
- Oncology Department, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China.,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| |
Collapse
|
18
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Shehadeh A, Bruck-Haimson R, Saidemberg D, Zacharia A, Herzberg S, Ben-Meir A, Moussaieff A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J 2019; 33:10291-10299. [PMID: 31219705 DOI: 10.1096/fj.201900318rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Follicular fluid (FF) is a liquid that surrounds the ovum. Its metabolite and, specifically, its lipid content have been associated with oocyte development. To characterize possible association between the lipid composition of FF and the outcome of pregnancy, we carried out a lipidomics study and compared the abundance of lipids from FF of patients with positive and negative outcomes. We found a differential lipid network wiring in positive-outcome FF, with a significant decrease (∼2 fold; P < 0.001) in triacylglycerol levels and higher accumulation (10-50%; P < 0.001) of membrane lipids groups (phospholipids and sphingolipids). In addition to this major metabolic alteration, other lipid groups such as cholesteryl esters showed lower levels in positive-outcome patients, whereas derivatives of vitamin D were highly accumulated in positive-outcome FF, supporting previous studies that associate vitamin D levels in FF to pregnancy outcome. Our data also point to specific lipid species with a differential accumulation pattern in positive-outcome FF that predicted pregnancy in a receiver operating characteristic analysis. Altogether, our results suggest that FF lipid network is associated with the oocyte development, with possible implications in diagnostics and treatment.-Shehadeh, A., Bruck-Haimson, R., Saidemberg, D., Zacharia. A., Herzberg, S., Ben-Meir, A., Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome.
Collapse
Affiliation(s)
- Alaa Shehadeh
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anish Zacharia
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel Herzberg
- IVF Unit, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Assaf Ben-Meir
- IVF Unit, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Acetyl-11-keto-β-boswellic acid modulates membrane dynamics in benzo(a)pyrene-induced lung carcinogenesis. Mol Cell Biochem 2019; 460:17-27. [PMID: 31165316 DOI: 10.1007/s11010-019-03566-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/27/2019] [Indexed: 01/13/2023]
Abstract
Membrane fluidity is the most important physiochemical property of cell membranes and governs its functional attributes. The current investigations were undertaken to understand the potential role of acetyl-11-keto-β-boswellic acid (AKBA), if any, on regulation of membrane dynamics under conditions of benzo(a)pyrene (BaP)-induced lung carcinogenesis in female rats. The animals were divided into five groups which included (I) Normal control, (II) Vehicle treated (olive oil), (III) BaP treated, (IV) AKBA treated and (V) BaP + AKBA treated. BaP was administered at a dose level of 50 mg/kg b.wt. in olive oil orally twice a week for 4 weeks. AKBA was given at a dose level of 50 mg/kg b.wt. in olive oil orally thrice a week for 24 weeks. In addition, AKBA was also administered at a similar dose to BaP-treated animals 4 weeks prior to BaP administration and continued for another 20 weeks. The lipid profile and membrane dynamics were analysed in lung tissue. Total lipids, phospholipids content, membrane fluidity, polarization and order of membrane were significantly (p ≤ 0.001) increased in BaP-exposed animals. However, significant decrease was observed in glycolipids, cholesterol, microviscosity and anisotropy levels compared with normal control animals. Appreciable improvements in above indices were recorded when AKBA was administered to BaP-treated animals. Moreover, the structural variations observed in Fourier-transform infrared spectroscopy spectrum were also normalized in BaP-treated rats with AKBA supplementation. This suggests that the AKBA has a potential role in improving membrane fluidity and associated lipid content in BaP-induced lung carcinogenesis.
Collapse
|
21
|
Lopes-de-Araújo J, Reis S, Nunes C. Topotecan effect on the structure of normal and cancer plasma membrane lipid models: A multi-model approach. Eur J Pharm Sci 2018; 123:515-523. [DOI: 10.1016/j.ejps.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
22
|
Gambade A, Zreika S, Guéguinou M, Chourpa I, Fromont G, Bouchet AM, Burlaud-Gaillard J, Potier-Cartereau M, Roger S, Aucagne V, Chevalier S, Vandier C, Goupille C, Weber G. Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells. Oncotarget 2018; 7:23785-800. [PMID: 26993604 PMCID: PMC5029663 DOI: 10.18632/oncotarget.8122] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/28/2016] [Indexed: 12/20/2022] Open
Abstract
Expression of the antimicrobial peptide hCAP18/LL-37 is associated to malignancy in various cancer forms, stimulating cell migration and metastasis. We report that LL-37 induces migration of three cancer cell lines by activating the TRPV2 calcium-permeable channel and recruiting it to pseudopodia through activation of the PI3K/AKT pathway. Ca2+ entry through TRPV2 cooperated with a K+ efflux through the BKCa channel. In a panel of human breast tumors, the expression of TRPV2 and LL-37 was found to be positively correlated. The D-enantiomer of LL-37 showed identical effects as the L-peptide, suggesting that no binding to a specific receptor was involved. LL-37 attached to caveolae and pseudopodia membranes and decreased membrane fluidity, suggesting that a modification of the physical properties of the lipid membrane bilayer was the underlying mechanism of its effects.
Collapse
Affiliation(s)
- Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France
| | - Sami Zreika
- Department of Medical Lab Technology, Jinan University, Tripoli, Lebanon
| | - Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,Ion Channel Network Canceropole Grand Ouest, Nantes, France
| | | | - Gaëlle Fromont
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,Ion Channel Network Canceropole Grand Ouest, Nantes, France.,CHRU Hôpital Bretonneau, Tours, France
| | - Ana Maria Bouchet
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,Ion Channel Network Canceropole Grand Ouest, Nantes, France
| | | | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,Ion Channel Network Canceropole Grand Ouest, Nantes, France
| | - Sébastien Roger
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | | | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,Ion Channel Network Canceropole Grand Ouest, Nantes, France
| | - Caroline Goupille
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,CHRU Hôpital Bretonneau, Tours, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours, France.,Université François Rabelais, Tours, France
| |
Collapse
|
23
|
Garg S, Swaminathan V, Dhavala S, Kiebish MA, Sarangarajan R, Narain NR. CoQ 10 selective miscibility and penetration into lipid monolayers with lower lateral packing density. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1173-1179. [PMID: 28366515 DOI: 10.1016/j.bbamem.2017.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
Abstract
CoQ10 is ubiquitously present in eukaryotic cells. It acts as electron carrier in the electron transport chain of the inner membrane of the mitochondria to facilitate aerobic cellular respiration. A highly stable lipid nanodispersion formulation containing CoQ10 (BPM31510) is currently in clinical investigation for treatment of cancer. This study was designed to determine whether biophysical interactions between CoQ10 and lipid, in part, explain the observed stability and cellular accumulation of CoQ10 in cells and tissues. A lipid monolayer at the air-water interface was used as an experimental membrane model to measure CoQ10 penetration and solubility. Lipid monolayers with varying proportions of CoQ10 were laterally compressed to measure CoQ10 miscibility and lateral organization. Additionally, lipid monolayers with varying lateral packing densities were spread at the air-water interface and CoQ10 was injected in proximity to measure its rate of penetration. Our results demonstrate that CoQ10 selectively penetrates into lipid monolayers with a lower lateral packing density, and is excluded by monolayers of higher packing densities. Data also indicates that CoQ10-lipid mixing is non-ideal. CoQ10 presence in lipid monolayers is biphasic, with one phase occupying the interstitial space between the DMPC lipids, and the other phase is present as pure CoQ10 domains. This work provides further insight into mechanism of action of CoQ10 based formulations that can significantly increase intracellular CoQ10 concentration to show pleotropic effects on cellular functions.
Collapse
Affiliation(s)
- Sumit Garg
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01710, USA.
| | | | - Sirisha Dhavala
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01710, USA.
| | | | | | - Niven R Narain
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01710, USA.
| |
Collapse
|
24
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|
25
|
Ross T, Jakubzig B, Grundmann M, Massing U, Kostenis E, Schlesinger M, Bendas G. The molecular mechanism by which saturated lysophosphatidylcholine attenuates the metastatic capacity of melanoma cells. FEBS Open Bio 2016; 6:1297-1309. [PMID: 28255537 PMCID: PMC5324772 DOI: 10.1002/2211-5463.12152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Lysophophatidylcholine (LysoPC) is an abundant constituent in human plasma. Patients with malignant cancer diseases have attenuated LysoPC plasma levels, and thus LysoPC has been examined as a metabolic biomarker for cancer prediction. Preclinical studies have shown that solid tumor cells drastically degrade LysoPCs by incorporating their free fatty acids into cell membrane phospholipids. In this way, LysoPC C18:0 reduced the metastatic spread of murine melanoma B16.F10 cells in mice. Although membrane rigidification may have a key role in the attenuation of metastasis, evidence for this has yet to be shown. Therefore, the present study aimed to determine how LysoPC reduces the metastatic capacity of B16.F10 cells. Following cellular preincubation with LysoPC C18:0 at increasing concentrations and lengths of time, cell migration was most significantly attenuated with 450 μm LysoPC C18:0 at 72 h. Biosensor measurements suggest that, despite their abundance in B16.F10 cells, LysoPC‐sensitive G protein‐coupled receptors do not appear to contribute to this effect. Instead, the attenuated migration appears to result from changes in cell membrane properties and their effect on underlying signaling pathways, most likely the formation of focal adhesion complexes. Treatment with 450 μm LysoPC C18:0 activates protein kinase C (PKC)δ to phosphorylate syndecan‐4, accompanied by deactivation of PKCα. Subsequently, focal adhesion complex formation was attenuated, as confirmed by the reduced activity of focal adhesion kinase (FAK). Interestingly, 450 μm LysoPC C18:1 did not affect FAK activity, explaining its lower propensity to affect migration and metastasis. Therefore, membrane rigidification by LysoPC C18:0 appears to prevent the formation of focal adhesion complexes, thus affecting integrin activity as a key for metastatic melanoma spread.
Collapse
Affiliation(s)
- Thomas Ross
- Department of Pharmaceutical Chemistry II University of Bonn Germany
| | - Bastian Jakubzig
- Department of Pharmaceutical Chemistry II University of Bonn Germany
| | | | - Ulrich Massing
- Andreas Hettich GmbH & Co. KGF&E Lifescience Applications Freiburg Germany; Faculty of Chemistry & Pharmacy University of Freiburg Germany
| | - Evi Kostenis
- Department of Pharmaceutical Biology University of Bonn Germany
| | | | - Gerd Bendas
- Department of Pharmaceutical Chemistry II University of Bonn Germany
| |
Collapse
|
26
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
27
|
van den Tempel N, Horsman MR, Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia 2016; 32:446-54. [PMID: 27086587 DOI: 10.3109/02656736.2016.1157216] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for the clinical use of hyperthermia. These advances are converging with a better understanding of the physiological and molecular effects of hyperthermia. Therefore, we are now at a juncture where the parameters that will influence the efficacy of hyperthermia in cancer treatment can be optimised in a more systematic and rational manner. In addition, the novel insights in hyperthermia's many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help design novel future treatments.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - Michael R Horsman
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Roland Kanaar
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| |
Collapse
|
28
|
Raghunathan K, Ahsan A, Ray D, Nyati MK, Veatch SL. Membrane Transition Temperature Determines Cisplatin Response. PLoS One 2015; 10:e0140925. [PMID: 26484687 PMCID: PMC4618528 DOI: 10.1371/journal.pone.0140925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced resistance may be due to certain changes in the bio-physical properties of plasma membranes. Giant plasma membrane vesicles (GPMVs) isolated from cortical cytoskeleton exhibit a miscibility transition between a single liquid phase at high temperature and two distinct coexisting liquid phases at low temperature. The temperature at which this transition occurs is hypothesized to reflect the magnitude of membrane heterogeneity at physiological temperature. We find that addition of cisplatin to vesicles isolated from cisplatin-sensitive cells result in a lowering of this miscibility transition temperature, whereas in cisplatin-resistant cells such treatment does not affect the transition temperature. To explore if this is a cause or consequence of cisplatin resistance, we tested if addition of cisplatin in combination with agents that modulate GPMV transition temperatures can affect cisplatin sensitivity. We found that cells become more sensitive to cisplatin when isopropanol, an agent that lowers GPMV transition temperature, was combined with cisplatin. Conversely, cells became resistant to cisplatin when added in combination with menthol that raises GPMV transition temperatures. These data suggest that changes in plasma membrane heterogeneity augments or suppresses signaling events initiated in the plasma membranes that can determine response to cisplatin. We postulate that desired perturbations of membrane heterogeneity could provide an effective therapeutic strategy to overcome cisplatin resistance for certain patients.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mukesh K. Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
29
|
Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants. Molecules 2015; 20:18923-66. [PMID: 26501254 PMCID: PMC6332185 DOI: 10.3390/molecules201018923] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
Abstract
In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction’s applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.
Collapse
|
30
|
Selective flow-induced vesicle rupture to sort by membrane mechanical properties. Sci Rep 2015; 5:13163. [PMID: 26302783 PMCID: PMC4548244 DOI: 10.1038/srep13163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023] Open
Abstract
Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.
Collapse
|
31
|
Deacon JC, Engelman DM, Barrera FN. Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP. Arch Biochem Biophys 2014; 565:40-8. [PMID: 25444855 DOI: 10.1016/j.abb.2014.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022]
Abstract
pHLIPs are a family of soluble ∼36 amino acid peptides, which bind to membrane surfaces. If the environment is acidic, a pHLIP folds and inserts across the membrane to form a stable transmembrane helix, thus preferentially locating itself in acidic tissues. Since tumors and other disease tissues are acidic, pHLIPs' low-pH targeting behavior leads to applications as carriers for diagnostic and surgical imaging agents. The energy of membrane insertion can also be used to promote the insertion of modestly polar, normally cell-impermeable cargos across the cell membrane into the cytosol of targeted cells, leading to applications in tumor-targeted delivery of therapeutic molecules. We review the biochemical and biophysical basis of pHLIPs' unique properties, diagnostic and therapeutic applications, and the principles upon which translational applications are being developed.
Collapse
Affiliation(s)
- John C Deacon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Donald M Engelman
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Francisco N Barrera
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
32
|
Ide Y, Waki M, Ishizaki I, Nagata Y, Yamazaki F, Hayasaka T, Masaki N, Ikegami K, Kondo T, Shibata K, Ogura H, Sanada N, Setou M. Single cell lipidomics of SKBR-3 breast cancer cells by using time-of-flight secondary-ion mass spectrometry. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yoshimi Ide
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
- Department of Surgery I; Hamamatsu University School of Medicine; Japan
| | - Michihiko Waki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | | | - Yasuyuki Nagata
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
- Oncology Center; Hamamatsu University School of Medicine; Japan
| | - Fumiyoshi Yamazaki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Noritaka Masaki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Koji Ikegami
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Takeshi Kondo
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Kiyoshi Shibata
- Equipment Center; Hamamatsu University School of Medicine; Japan
| | - Hiroyuki Ogura
- Department of Surgery I; Hamamatsu University School of Medicine; Japan
| | | | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| |
Collapse
|
33
|
Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells. PLoS One 2014; 9:e89136. [PMID: 24586549 PMCID: PMC3930703 DOI: 10.1371/journal.pone.0089136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells exhibit a characteristic response to hyperthermic treatment, involving morphological and cytoskeletal alterations and the induction of heat shock protein synthesis. Small GTPases of the Ras superfamily are known to serve as molecular switches which mediate responses to extracellular stimuli. We addressed here how small GTPase Rac1 integrates signals from heat stress and simultaneously induces various cellular changes in mammalian cells. As evidence that Rac1 is implicated in the heat shock response, we first demonstrated that both mild (41.5°C) and severe (43°C) heat shock induced membrane translocation of Rac1. Following inhibition of the activation or palmitoylation of Rac1, the size of its plasma membrane-bound pool was significantly decreased while the heat shock-induced alterations in the cytoskeleton and cell morphology were prevented. We earlier documented that the size distribution pattern of cholesterol-rich rafts is temperature dependent and hypothesized that this is coupled to the triggering mechanism of stress sensing and signaling. Interestingly, when plasma membrane localization of Rac1 was inhibited, a different and temperature independent average domain size was detected. In addition, inhibition of the activation or palmitoylation of Rac1 resulted in a strongly decreased expression of the genes of major heat shock proteins hsp25 and hsp70 under both mild and severe heat stress conditions.
Collapse
|
34
|
Membrane lipid profile alterations are associated with the metabolic adaptation of the Caco-2 cells to aglycemic nutritional condition. J Bioenerg Biomembr 2013; 46:45-57. [DOI: 10.1007/s10863-013-9531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
|
35
|
Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, Gungor B, Haracska L, Bogdanovics G, Torok Z, Horvath I, Vigh L. Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes. Int J Hyperthermia 2013; 29:491-9. [DOI: 10.3109/02656736.2013.808765] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Sharma G, Rani I, Kansal S, Bhatnagar A, Agnihotri N. Alterations in Mitochondrial Membrane in Chemopreventive Action of Fish Oil. Cancer Invest 2013; 31:231-40. [DOI: 10.3109/07357907.2013.780076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Sloniec J, Schnurr M, Witte C, Resch-Genger U, Schröder L, Hennig A. Biomembrane interactions of functionalized cryptophane-A: combined fluorescence and 129Xe NMR studies of a bimodal contrast agent. Chemistry 2013; 19:3110-8. [PMID: 23319433 DOI: 10.1002/chem.201203773] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Indexed: 12/19/2022]
Abstract
Fluorescent derivatives of the (129)Xe NMR contrast agent cryptophane-A were obtained by functionalization with near infrared fluorescent dyes DY680 and DY682. The resulting conjugates were spectrally characterized, and their interaction with giant and large unilamellar vesicles of varying phospholipid composition was analyzed by fluorescence and NMR spectroscopy. In the latter, a chemical exchange saturation transfer with hyperpolarized (129)Xe (Hyper-CEST) was used to obtain sufficient sensitivity. To determine the partitioning coefficients, we developed a method based on fluorescence resonance energy transfer from Nile Red to the membrane-bound conjugates. This indicated that not only the hydrophobicity of the conjugates, but also the phospholipid composition, largely determines the membrane incorporation. Thereby, partitioning into the liquid-crystalline phase of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was most efficient. Fluorescence depth quenching and flip-flop assays suggest a perpendicular orientation of the conjugates to the membrane surface with negligible transversal diffusion, and that the fluorescent dyes reside in the interfacial area. The results serve as a basis to differentiate biomembranes by analyzing the Hyper-CEST signatures that are related to membrane fluidity, and pave the way for dissecting different contributions to the Hyper-CEST signal.
Collapse
Affiliation(s)
- Jagoda Sloniec
- Division 1.10 Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schlaepfer IR, Hitz CA, Gijón MA, Bergman BC, Eckel RH, Jacobsen BM. Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel. Mol Cell Endocrinol 2012; 363:111-21. [PMID: 22922095 PMCID: PMC4671297 DOI: 10.1016/j.mce.2012.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022]
Abstract
Progestins induce lipid accumulation in progesterone receptor (PR)-positive breast cancer cells. We speculated that progestin-induced alterations in lipid biology confer resistance to chemotherapy. To examine the biology of lipid loaded breast cancer cells, we used a model of progestin-induced lipid synthesis. T47D (PR-positive) and MDA-MB-231 (PR-negative) cell lines were used to study progestin response. Oil red O staining of T47D cells treated with progestin showed lipid droplet formation was PR dependent, glucose dependent and reduced sensitivity to docetaxel. This protection was not observed in PR-negative MDA-MB-231 cells. Progestin treatment induced stearoyl CoA desaturase-1 (SCD-1) enzyme expression and chemical inhibition of SCD-1 diminished lipid droplets and cell viability, suggesting the importance of lipid stores in cancer cell survival. Gas chromatography/mass spectroscopy analysis of phospholipids from progestin-treated T47D cells revealed an increase in unsaturated fatty acids, with oleic acid as most abundant. Cells surviving docetaxel treatment also contained more oleic acid in phospholipids, suggesting altered membrane fluidity as a potential mechanism of chemoresistance mediated in part by SCD-1. Lastly, intact docetaxel molecules were present within progestin induced lipid droplets, suggesting a protective quenching effect of intracellular lipid droplets. Our studies suggest the metabolic adaptations produced by progestin provide novel metabolic targets for future combinatorial therapies for progestin-responsive breast cancers.
Collapse
Affiliation(s)
- Isabel R. Schlaepfer
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Carolyn A. Hitz
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Miguel A. Gijón
- Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Bryan C. Bergman
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Robert H. Eckel
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Britta M. Jacobsen
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| |
Collapse
|
39
|
Ho CS J, Rydström A, Trulsson M, Bålfors J, Storm P, Puthia M, Nadeem A, Svanborg C. HAMLET: functional properties and therapeutic potential. Future Oncol 2012; 8:1301-13. [DOI: 10.2217/fon.12.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein–lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.
Collapse
Affiliation(s)
- James Ho CS
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Anna Rydström
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Maria Trulsson
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Johannes Bålfors
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Petter Storm
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Manoj Puthia
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Aftab Nadeem
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| |
Collapse
|
40
|
Cadenas C, Vosbeck S, Hein EM, Hellwig B, Langer A, Hayen H, Franckenstein D, Büttner B, Hammad S, Marchan R, Hermes M, Selinski S, Rahnenführer J, Peksel B, Török Z, Vígh L, Hengstler JG. Glycerophospholipid profile in oncogene-induced senescence. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1256-68. [DOI: 10.1016/j.bbalip.2011.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 11/27/2022]
|
41
|
Membrane physical properties influence transmembrane helix formation. Proc Natl Acad Sci U S A 2012; 109:14422-7. [PMID: 22908237 DOI: 10.1073/pnas.1212665109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pHLIP peptide has three states: (I) soluble in aqueous buffer, (II) bound to the bilayer surface at neutral pH, and (III) inserted as a transmembrane (TM) helix at acidic pH. The membrane insertion of pHLIP at low pH can be used to target the acidic tissues characteristic of different diseases, such as cancer. We find that the α-helix content of state II depends on lipid acyl chain length but not cholesterol, suggesting the helicity of the bound state may be controlled by the bilayer elastic bending modulus. Experiments with the P20G variant show the proline residue in pHLIP reduces the α-helix content of both states II and III. We also observe that the membrane insertion pKa is influenced by membrane physical properties, following a biphasic pattern similar to the membrane thickness optima observed for the function of eukaryotic membrane proteins. Because tumor cells exhibit altered membrane fluidity, we suggest this might influence pHLIP tumor targeting. We used a cell insertion assay to determine the pKa in live cells, observing that the properties in liposomes held in the more complex plasma membrane. Our results show that the formation of a TM helix is modulated by both the conformational propensities of the peptide and the physical properties of the bilayer. These results suggest a physical role for helix-membrane interactions in optimizing the function of more complex TM proteins.
Collapse
|
42
|
Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J 2012; 443:525-34. [DOI: 10.1042/bj20111837] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
EGCG [(−)-epigallocatechin-3-O-gallate], the major polyphenol of green tea, has cancer chemopreventive and chemotherapeutic activities. EGCG selectively inhibits cell growth and induces apoptosis in cancer cells without adversely affecting normal cells; however, the underlying molecular mechanism in vivo is unclear. In the present study, we show that EGCG-induced apoptotic activity is attributed to a lipid-raft clustering mediated through 67LR (67 kDa laminin receptor) that is significantly elevated in MM (multiple myeloma) cells relative to normal peripheral blood mononuclear cells, and that aSMase (acid sphingomyelinase) is critical for the lipid-raft clustering and the apoptotic cell death induced by EGCG. We also found that EGCG induces aSMase translocation to the plasma membrane and PKCδ (protein kinase Cδ) phosphorylation at Ser664, which was necessary for aSMase/ceramide signalling via 67LR. Additionally, orally administered EGCG activated PKCδ and aSMase in a murine MM xenograft model. These results elucidate a novel cell-death pathway triggered by EGCG for the specific killing of MM cells.
Collapse
|
43
|
Li X, Yuan YJ. Lipidomic Analysis of Apoptotic Hela Cells Induced by Paclitaxel. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:655-64. [DOI: 10.1089/omi.2011.0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xia Li
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
44
|
Huang HY, Niu JL, Zhao LM, Lu YH. Reversal effect of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:1086-1092. [PMID: 21596545 DOI: 10.1016/j.phymed.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/29/2011] [Accepted: 04/16/2011] [Indexed: 05/26/2023]
Abstract
Multi drug resistance (MDR) is a major obstacle in the chemotherapeutic treatment of many human cancers. 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a chalcone, isolated from the buds of Cleistocalyx operculatus, has been shown to have antitumor effects on human carcinoma SMMC-7721 cells in vitro and in vivo. In this paper, we studied the reversal effect and the mechanism of DMC on human hepatocellular carcinoma drug-resistant cells BEL-7402/5-FU in vitro. Administration of DMC reversed the multi-drug resistance of human hepatocellular carcinoma BEL-7402/5-FU cells significantly. DMC enhanced the sensitivity of BEL-7402/5-FU cells to 5-fluorouracil (5-FU) and doxorubicin (DOX). Staining with Hoechst 33258 and flow cytometric analysis showed that DMC has apoptosis-inducing effect on BEL-7402/5-FU cells. It could also increase the concentration of 5-FU in the resistant multi-drug-resistant cells. We also observed that over-expression of the multi-drug resistance-associated protein (MRP1) and of the glutathione S-transferase π (GST-π) contributed to MDR in BEL-7402/5-FU cells. The mRNA expressions of MRP1 and GST-π and the protein expression of MRP1 were decreased by DMC. These data demonstrated that DMC could effectively reverse MDR in BEL-7402/5-FU cells.
Collapse
Affiliation(s)
- Hai-ya Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | | | | | | |
Collapse
|
45
|
Yang HY, Zhao L, Yang Z, Zhao Q, Qiang L, Ha J, Li ZY, You QD, Guo QL. Oroxylin a reverses multi-drug resistance of human hepatoma BEL7402/5-FU cells via downregulation of P-glycoprotein expression by inhibiting NF-κB signaling pathway. Mol Carcinog 2011; 51:185-95. [DOI: 10.1002/mc.20789] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 12/18/2022]
|
46
|
Bonneau L, Gerbeau-Pissot P, Thomas D, Der C, Lherminier J, Bourque S, Roche Y, Simon-Plas F. Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:2150-9. [PMID: 20674542 DOI: 10.1016/j.bbamem.2010.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/12/2010] [Accepted: 07/23/2010] [Indexed: 12/31/2022]
Abstract
The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level. This filipin concentration triggers a rapid and transient NADPH oxidase-dependent production of reactive oxygen species, together with an increase in both medium alkalinization and conductivity. Pharmacological inhibition studies suggest that these signaling events may be regulated by phosphorylations and free calcium. By conducting FRAP experiments using the di-4-ANEPPDHQ probe and spectrofluorimetry using the Laurdan probe, we provide evidence for a filipin-induced increase in PM viscosity that is also regulated by phosphorylations. We conclude that filipin triggers ligand-independent signaling responses in plant cells. The present findings strongly suggest that changes in PM sterol availability could act as a sensor of the modifications of cell environment in plants leading to adaptive cell responses through regulated signaling processes.
Collapse
|
47
|
Balogh G, Péter M, Liebisch G, Horváth I, Török Z, Nagy E, Maslyanko A, Benko S, Schmitz G, Harwood JL, Vígh L. Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1036-47. [PMID: 20430110 DOI: 10.1016/j.bbalip.2010.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/17/2022]
Abstract
Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A(2) and C). A phospholipase C-diacylglycerol lipase-monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kaur J, Sanyal SN. Alterations in membrane fluidity and dynamics in experimental colon cancer and its chemoprevention by diclofenac. Mol Cell Biochem 2010; 341:99-108. [PMID: 20336351 DOI: 10.1007/s11010-010-0441-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 03/11/2010] [Indexed: 11/26/2022]
Abstract
We examined the role of membrane fluidity and dynamics as important early events in the carcinogenic transformation of colonic epithelial cells. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used to induce initial stages of colon cancer and diclofenac was used for chemoprevention. To determine alterations of membrane fluidity of rat colonic epithelial cells, fluidity (inverse of fluorescence polarization) and order parameter were studied with 1,6-diphenylhexatriene (DPH) polarization. Order parameter as well as fluorescence polarization was found to be significantly decreased, thus demonstrating an increase in the fluidity of the membrane. To further confirm the fluidity changes, microviscosity of the cell membrane was studied using pyrene excimer formation, which showed a significant decrease in microviscosity and hence elevated membrane fluidity (translational diffusion). The colonocytes were stained with merocyanine 540 (MC540) to further elaborate the changes in membrane fluidity and lipid packing. The increased number of colonocytes showing high MC540 fluorescence pointed towards the wide spaces and hence, high fluidity in the membrane after DMH treatment. Membrane dynamics studies, i.e., lipid phase separation and membrane phase state were carried out using N-NBD-PE and Laurdan, respectively. We saw a transition from the gel to a more liquid crystalline state of the membrane in the Laurdan experiment. Further more percentage quenching (%Q) value of N-NBD-PE showed less phase separation (or domain formation). Diclofenac co-administration with DMH was successful in reverting the changes observed, confirming the role of these anti-inflammatory drugs in considerable lipid affinity and consequently in the chemoprevention of early stages of colon cancer.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Panjab University, Chandigarh 160 014, India
| | | |
Collapse
|
49
|
HAMLET interacts with lipid membranes and perturbs their structure and integrity. PLoS One 2010; 5:e9384. [PMID: 20186341 PMCID: PMC2826418 DOI: 10.1371/journal.pone.0009384] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/03/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. METHODOLOGY/PRINCIPAL FINDINGS We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. CONCLUSIONS/SIGNIFICANCE The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.
Collapse
|
50
|
Olson ED, Nelson J, Griffith K, Nguyen T, Streeter M, Wilson-Ashworth HA, Gelb MH, Judd AM, Bell JD. Kinetic evaluation of cell membrane hydrolysis during apoptosis by human isoforms of secretory phospholipase A2. J Biol Chem 2010; 285:10993-1002. [PMID: 20139082 DOI: 10.1074/jbc.m109.070797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some isoforms of secretory phospholipase A(2) (sPLA(2)) distinguish between healthy and damaged or apoptotic cells. This distinction reflects differences in membrane physical properties. Because various sPLA(2) isoforms respond differently to properties of artificial membranes such as surface charge, they should also behave differently as these properties evolve during a dynamic physiological process such as apoptosis. To test this idea, S49 lymphoma cell death was induced by glucocorticoid (6-48 h) or calcium ionophore. Rates of membrane hydrolysis catalyzed by various concentrations of snake venom and human groups IIa, V, and X sPLA(2) were compared after each treatment condition. The data were analyzed using a model that evaluates the adsorption of enzyme to the membrane surface and subsequent binding of substrate to the active site. Results were compared temporally to changes in membrane biophysics and composition. Under control conditions, membrane hydrolysis was confined to the few unhealthy cells present in each sample. Increased hydrolysis during apoptosis and necrosis appeared to reflect substrate access to adsorbed enzyme for the snake venom and group X isoforms corresponding to weakened lipid-lipid interactions in the membrane. In contrast, apoptosis promoted initial adsorption of human groups V and IIa concurrent with phosphatidylserine exposure on the membrane surface. However, this observation was inadequate to explain the behavior of the groups V and IIa enzymes toward necrotic cells where hydrolysis was reduced or absent. Thus, a combination of changes in cell membrane properties during apoptosis and necrosis capacitates the cell for hydrolysis differently by each isoform.
Collapse
Affiliation(s)
- Erin D Olson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|