1
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Wang R, Senay TE, Luo TT, Liu W, Regan JM, Salisbury NJH, Galloway DA, You J. Merkel cell polyomavirus protein ALTO modulates TBK1 activity to support persistent infection. PLoS Pathog 2024; 20:e1012170. [PMID: 39074144 PMCID: PMC11285941 DOI: 10.1371/journal.ppat.1012170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
While Merkel cell polyomavirus (MCPyV or MCV) is an abundant virus frequently shed from healthy skin, it is one of the most lethal tumor viruses in immunocompromised individuals, highlighting the crucial role of host immunity in controlling MCPyV oncogenic potential. Despite its prevalence, very little is known about how MCPyV interfaces with the host immune response to maintain asymptomatic persistent infection and how inadequate control of MCPyV infection triggers MCC tumorigenesis. In this study, we discovered that the MCPyV protein, known as the Alternative Large Tumor Open Reading Frame (ALTO), also referred to as middle T, effectively primes and activates the STING signaling pathway. It recruits Src kinase into the complex of STING downstream kinase TBK1 to trigger its autophosphorylation, which ultimately activates the subsequent antiviral immune response. Combining single-cell analysis with both loss- and gain-of-function studies of MCPyV infection, we demonstrated that the activity of ALTO leads to a decrease in MCPyV replication. Thus, we have identified ALTO as a crucial viral factor that modulates the STING-TBK1 pathway, creating a negative feedback loop that limits viral infection and maintains a delicate balance with the host immune system. Our study reveals a novel mechanism by which a tumorigenic virus-encoded protein can link Src function in cell proliferation to the activation of innate immune signaling, thereby controlling viral spread, and sustaining persistent infection. Our previous findings suggest that STING also functions as a tumor suppressor in MCPyV-driven oncogenesis. This research provides a foundation for investigating how disruptions in the finely tuned virus-host balance, maintained by STING, could alter the fate of MCPyV infection, potentially encouraging malignancy.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taylor E. Senay
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tiana T. Luo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James M. Regan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas J. H. Salisbury
- Pathogen-Associated Malignancies Integrated Research Center (PAM IRC), Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Pathogen-Associated Malignancies Integrated Research Center (PAM IRC), Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Rao N, Starrett GJ, Piaskowski ML, Butler KE, Golubeva Y, Yan W, Lawrence SM, Dean M, Garcia-Closas M, Baris D, Johnson A, Schwenn M, Malats N, Real FX, Kogevinas M, Rothman N, Silverman DT, Dyrskjøt L, Buck CB, Koutros S, Prokunina-Olsson L. Analysis of Several Common APOBEC-type Mutations in Bladder Tumors Suggests Links to Viral Infection. Cancer Prev Res (Phila) 2023; 16:561-570. [PMID: 37477495 PMCID: PMC10592262 DOI: 10.1158/1940-6207.capr-23-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
FGFR3 and PIK3CA are among the most frequently mutated genes in bladder tumors. We hypothesized that recurrent mutations in these genes might be caused by common carcinogenic exposures such as smoking and other factors. We analyzed 2,816 bladder tumors with available data on FGFR3 and/or PIK3CA mutations, focusing on the most recurrent mutations detected in ≥10% of tumors. Compared to tumors with other FGFR3/PIK3CA mutations, FGFR3-Y375C was more common in tumors from smokers than never-smokers (P = 0.009), while several APOBEC-type driver mutations were enriched in never-smokers: FGFR3-S249C (P = 0.013) and PIK3CA-E542K/PIK3CA-E545K (P = 0.009). To explore possible causes of these APOBEC-type mutations, we analyzed RNA sequencing (RNA-seq) data from 798 bladder tumors and detected several viruses, with BK polyomavirus (BKPyV) being the most common. We then performed IHC staining for polyomavirus (PyV) Large T-antigen (LTAg) in an independent set of 211 bladder tumors. Overall, by RNA-seq or IHC-LTAg, we detected PyV in 26 out of 1,010 bladder tumors with significantly higher detection (P = 4.4 × 10-5), 25 of 554 (4.5%) in non-muscle-invasive bladder cancers (NMIBC) versus 1 of 456 (0.2%) of muscle-invasive bladder cancers (MIBC). In the NMIBC subset, the FGFR3/PIK3CA APOBEC-type driver mutations were detected in 94.7% (18/19) of PyV-positive versus 68.3% (259/379) of PyV-negative tumors (P = 0.011). BKPyV tumor positivity in the NMIBC subset with FGFR3- or PIK3CA-mutated tumors was also associated with a higher risk of progression to MIBC (P = 0.019). In conclusion, our results support smoking and BKPyV infection as risk factors contributing to bladder tumorigenesis in the general patient population through distinct molecular mechanisms. PREVENTION RELEVANCE Tobacco smoking likely causes one of the most common mutations in bladder tumors (FGFR3-Y375C), while viral infections might contribute to three others (FGFR3-S249C, PIK3CA-E542K, and PIK3CA-E545K). Understanding the causes of these mutations may lead to new prevention and treatment strategies, such as viral screening and vaccination.
Collapse
Affiliation(s)
- Nina Rao
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel J Starrett
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mary L Piaskowski
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kelly E Butler
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yelena Golubeva
- Molecular Digital Pathology Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wusheng Yan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Scott M Lawrence
- Molecular Digital Pathology Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | | | - Francisco X Real
- CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Ameya G, Birri DJ. The molecular mechanisms of virus-induced human cancers. Microb Pathog 2023; 183:106292. [PMID: 37557930 DOI: 10.1016/j.micpath.2023.106292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Cancer is a serious public health problem globally. Many human cancers are induced by viruses. Understanding of the mechanisms by which oncogenic (tumorigenic) viruses induce cancer is essential in the prevention and control of cancer. This review covers comprehensive characteristics and molecular mechanisms of the main virus-attributed cancers caused by human papillomavirus, hepatitis B virus, hepatitis C virus, Epstein-Barr virus, human herpesvirus type 8, human T-cell lymphotropic virus, human polyomaviruses, Merkel cell polyomavirus, and HIV. Oncogenic viruses employ biological processes to replicate and avoid detection by host cell immune systems. Tumorigenic infectious agents activate oncogenes in a variety of ways, allowing the pathogen to block host tumour suppressor proteins, inhibit apoptosis, enhance cell proliferation, and promote invasion of host cells. Furthermore, this review assesses many pathways of viruses linked to cancer, including host cellular communication perturbation, DNA damage mechanisms, immunity, and microRNA targets that promote the beginning and progression of cancer. The current cancer prevention is primarily focused on non-communicable diseases, but infection-attributable cancer also needs attention to significantly reduce the rising cancer burden and related deaths.
Collapse
Affiliation(s)
- Gemechu Ameya
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Kotebe Metropolitan University, Addis Ababa, Ethiopia; Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
5
|
Zheng HC, Xue H, Sun HZ, Yun WJ, Cui ZG. The potential oncogenic effect of tissue-specific expression of JC polyoma T antigen in digestive epithelial cells. Transgenic Res 2023; 32:305-319. [PMID: 37247123 PMCID: PMC10409682 DOI: 10.1007/s11248-023-00352-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, 910-1193, Japan
| |
Collapse
|
6
|
Yang JF, Liu W, You J. Characterization of molecular mechanisms driving Merkel cell polyomavirus oncogene transcription and tumorigenic potential. PLoS Pathog 2023; 19:e1011598. [PMID: 37647312 PMCID: PMC10468096 DOI: 10.1371/journal.ppat.1011598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with approximately 80% of cases of Merkel cell carcinoma (MCC), an aggressive type of skin cancer. The incidence of MCC has tripled over the past twenty years, but there are currently very few effective targeted treatments. A better understanding of the MCPyV life cycle and its oncogenic mechanisms is needed to unveil novel strategies for the prevention and treatment of MCC. MCPyV infection and oncogenesis are reliant on the expression of the early viral oncoproteins, which drive the viral life cycle and MCPyV+ MCC tumor cell growth. To date, the molecular mechanisms regulating the transcription of the MCPyV oncogenes remain largely uncharacterized. In this study, we investigated how MCPyV early transcription is regulated to support viral infection and MCC tumorigenesis. Our studies established the roles of multiple cellular factors in the control of MCPyV gene expression. Inhibitor screening experiments revealed that the histone acetyltransferases p300 and CBP positively regulate MCPyV transcription. Their regulation of viral gene expression occurs through coactivation of the transcription factor NF-κB, which binds to the viral genome to drive MCPyV oncogene expression in a manner that is tightly controlled through a negative feedback loop. Furthermore, we discovered that small molecule inhibitors specifically targeting p300/CBP histone acetyltransferase activity are effective at blocking MCPyV tumor antigen expression and MCPyV+ MCC cell proliferation. Together, our work establishes key cellular factors regulating MCPyV transcription, providing the basis for understanding the largely unknown mechanisms governing MCPyV transcription that defines its infectious host cell tropism, viral life cycle, and oncogenic potential. Our studies also identify a novel therapeutic strategy against MCPyV+ MCC through specific blockage of MCPyV oncogene expression and MCC tumor growth.
Collapse
Affiliation(s)
- June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Wang R, Yang JF, Senay TE, Liu W, You J. Characterization of the Impact of Merkel Cell Polyomavirus-Induced Interferon Signaling on Viral Infection. J Virol 2023; 97:e0190722. [PMID: 36946735 PMCID: PMC10134799 DOI: 10.1128/jvi.01907-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) has been associated with approximately 80% of Merkel cell carcinoma (MCC), an aggressive and increasingly incident skin cancer. The link between host innate immunity, viral load control, and carcinogenesis has been established but poorly characterized. We previously established the importance of the STING and NF-κB pathways in the host innate immune response to viral infection. In this study, we further discovered that MCPyV infection of human dermal fibroblasts (HDFs) induces the expression of type I and III interferons (IFNs), which in turn stimulate robust expression of IFN-stimulated genes (ISGs). Blocking type I IFN downstream signaling using an IFN-β antibody, JAK inhibitors, and CRISPR knockout of the receptor dramatically repressed MCPyV infection-induced ISG expression but did not significantly restore viral replication activities. These findings suggest that IFN-mediated induction of ISGs in response to MCPyV infection is not crucial to viral control. Instead, we found that type I IFN exerts a more direct effect on MCPyV infection postentry by repressing early viral transcription. We further demonstrated that growth factors normally upregulated in wounded or UV-irradiated human skin can significantly stimulate MCPyV gene expression and replication. Together, these data suggest that in healthy individuals, host antiviral responses, such as IFN production induced by viral activity, may restrict viral propagation to reduce MCPyV burden. Meanwhile, growth factors induced by skin abrasion or UV irradiation may stimulate infected dermal fibroblasts to promote MCPyV propagation. A delicate balance of these mutually antagonizing factors provides a mechanism to support persistent MCPyV infection. IMPORTANCE Merkel cell carcinoma is an aggressive skin cancer that is particularly lethal to immunocompromised individuals. Though rare, MCC incidence has increased significantly in recent years. There are no lasting and effective treatments for metastatic disease, highlighting the need for additional treatment and prevention strategies. By investigating how the host innate immune system interfaces with Merkel cell polyomavirus, the etiological agent of most of these cancers, our studies identified key factors necessary for viral control, as well as conditions that support viral propagation. These studies provide new insights for understanding how the virus balances the effects of the host immune defenses and of growth factor stimulation to achieve persistent infection. Since virus-positive MCC requires the expression of viral oncogenes to survive, our observation that type I IFN can repress viral oncogene transcription indicates that these cytokines could be explored as a viable therapeutic option for treating patients with virus-positive MCC.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taylor E. Senay
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Passenger Pathogens on Physicians. Am J Infect Control 2022:S0196-6553(22)00759-3. [DOI: 10.1016/j.ajic.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
|
9
|
Yang JF, You J. Merkel cell polyomavirus and associated Merkel cell carcinoma. Tumour Virus Res 2022; 13:200232. [PMID: 34920178 PMCID: PMC8715208 DOI: 10.1016/j.tvr.2021.200232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a ubiquitous skin infection that can cause Merkel cell carcinoma (MCC), a highly lethal form of skin cancer with a nearly 50% mortality rate. Since the discovery of MCPyV in 2008, great advances have been made to improve our understanding of how the viral encoded oncoproteins contribute to MCC oncogenesis. However, our knowledge of the MCPyV infectious life cycle and its oncogenic mechanisms are still incomplete. The incidence of MCC has tripled over the past two decades, but effective treatments are lacking. Only recently have there been major victories in combatting metastatic MCC with the application of PD-1 immune checkpoint blockade. Still, these immune-based therapies are not ideal for patients with a medical need to maintain systemic immune suppression. As such, a better understanding of MCPyV's oncogenic mechanisms is needed in order to develop more effective and targeted therapies against virus-associated MCC. In this review, we discuss current areas of interest for MCPyV and MCC research and the progress made in elucidating both the natural host of MCPyV infection and the cell of origin for MCC. We also highlight the remaining gaps in our knowledge on the transcriptional regulation of MCPyV, which may be key to understanding and targeting viral oncogenesis for developing future therapies.
Collapse
Affiliation(s)
- June F Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
10
|
The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073702. [PMID: 35409061 PMCID: PMC8998536 DOI: 10.3390/ijms23073702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V− MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.
Collapse
|
11
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Structural Analysis of Merkel Cell Polyomavirus (MCPyV) Viral Capsid Protein 1 (VP1) in HIV-1 Infected Individuals. Int J Mol Sci 2020; 21:ijms21217998. [PMID: 33121182 PMCID: PMC7663277 DOI: 10.3390/ijms21217998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) viral protein 1 (VP1) is the capsid protein that mediates virus attachment to host cell receptors and is the major immune target. Given the limited data on MCPyV VP1 mutations, the VP1 genetic variability was examined in 100 plasma and 100 urine samples from 100 HIV+ individuals. Sequencing of VP1 DNA in 17 urine and 17 plasma specimens, simultaneously MCPyV DNA positive, revealed that 27 samples displayed sequences identical to VP1 of MCC350 strain. VP1 from two urine specimens had either Thr47Ser or Ile115Phe substitution, whereas VP1 of one plasma contained Asp69Val and Ser251Phe substitutions plus deletion (∆) of Tyr79. VP1 DNA in the remaining samples had mutations encoding truncated protein. Three-dimensional prediction models revealed that Asp69Val, Ser251Phe, and Ile115Phe caused neutral effects while Thr47Ser and Tyr79∆ produced a deleterious effect reducing VP1 stability. A549 cells infected with urine or plasma samples containing full-length VP1 variants with substitutions, sustained viral DNA replication and VP1 expression. Moreover, medium harvested from these cells was able to infect new A549 cells. In cells infected by samples with truncated VP1, MCPyV replication was hampered. In conclusion, MCPyV strains with unique mutations in the VP1 gene are circulating in HIV+ patients. These strains display altered replication efficiency compared to the MCC350 prototype strain in A549 cells.
Collapse
|
13
|
Yang JF, You J. Regulation of Polyomavirus Transcription by Viral and Cellular Factors. Viruses 2020; 12:E1072. [PMID: 32987952 PMCID: PMC7601649 DOI: 10.3390/v12101072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Polyomavirus infection is widespread in the human population. This family of viruses normally maintains latent infection within the host cell but can cause a range of human pathologies, especially in immunocompromised individuals. Among several known pathogenic human polyomaviruses, JC polyomavirus (JCPyV) has the potential to cause the demyelinating disease progressive multifocal leukoencephalopathy (PML); BK polyomavirus (BKPyV) can cause nephropathy in kidney transplant recipients, and Merkel cell polyomavirus (MCPyV) is associated with a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). While the mechanisms by which these viruses give rise to the relevant diseases are not well understood, it is clear that the control of gene expression in each polyomavirus plays an important role in determining the infectious tropism of the virus as well as their potential to promote disease progression. In this review, we discuss the mechanisms governing the transcriptional regulation of these pathogenic human polyomaviruses in addition to the best-studied simian vacuolating virus 40 (SV40). We highlight the roles of viral cis-acting DNA elements, encoded proteins and miRNAs that control the viral gene expression. We will also underline the cellular transcription factors and epigenetic modifications that regulate the gene expression of these viruses.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
14
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
15
|
Abstract
Viral infection underlies a significant share of the global cancer burden. Merkel cell polyomavirus (MCPyV) is the newest member of the human oncogenic virus family. Its discovery over a decade ago marked the beginning of an exciting era in human tumor virology. Since then, significant evidence has emerged to support the etiologic role of MCPyV in Merkel cell carcinoma (MCC), an extremely lethal form of skin cancer. MCPyV infection is widespread in the general population. MCC diagnoses have tripled over the past 20 years, but effective treatments are currently lacking. In this review, we highlight recent discoveries that have shaped our understanding of MCPyV oncogenic mechanism and host cellular tropism, as well as the molecular events occurring in the viral infectious life cycle. These insights will guide future efforts in developing novel virus-targeted therapeutic strategies for treating the devastating human cancers associated with this new tumorigenic virus.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| |
Collapse
|
16
|
Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae. Virol J 2020; 17:42. [PMID: 32220234 PMCID: PMC7099801 DOI: 10.1186/s12985-020-01310-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. METHODS Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). RESULTS In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. CONCLUSIONS This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future.
Collapse
|
17
|
McIlroy D, Halary F, Bressollette-Bodin C. Intra-patient viral evolution in polyomavirus-related diseases. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180301. [PMID: 30955497 DOI: 10.1098/rstb.2018.0301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human polyomaviruses show relatively little genetic polymorphism between isolates, indicating that these viruses are genetically stable between hosts. However, it has become increasingly clear that intra-host molecular evolution is a feature of some polyomavirus (PyV) infections in humans. Mutations inducing premature stop codons in the early region of the integrated Merkel cell PyV genome lead to the expression of a truncated form of the large tumour (LT) antigen that is critical for the transformation of Merkel cell carcinoma (MCC) cells. Non-coding control region (NCCR) rearrangements and point mutations in virion protein (VP) 1 have been described in both JCPyV and BKPyV infections. In the context of JCPyV infection, molecular evolution at both these loci allows the virus to replicate effectively in the central nervous system, thereby leading to the development of progressive multifocal leukoencephalopathy (PML). In BKPyV infection, NCCR rearrangements have been linked to higher rates of virus replication in the kidney, and are proposed to play a direct causal role in the development of PyV-associated nephropathy. In all three of these infections, therefore, intra-host viral evolution appears to be an essential component of the disease process. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Dorian McIlroy
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,2 Faculté des Sciences et des Techniques, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Franck Halary
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Céline Bressollette-Bodin
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,3 Faculté de Médecine, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France.,5 Service de Virologie, CHU Nantes , 44093 Nantes cedex 01 , France
| |
Collapse
|
18
|
Liu W, Krump NA, Herlyn M, You J. Combining DNA Damage Induction with BCL-2 Inhibition to Enhance Merkel Cell Carcinoma Cytotoxicity. BIOLOGY 2020; 9:biology9020035. [PMID: 32093022 PMCID: PMC7168258 DOI: 10.3390/biology9020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma (MCC) is a highly lethal skin cancer. MCC tumors rapidly develop resistance to the chemotherapies tested to date. While PD-1/PD-L1 immune checkpoint blockade has demonstrated success in MCC treatment, a significant portion of MCC patients are nonresponsive. Therefore, the pressing need for effective MCC chemotherapies remains. We screened a library of natural products and discovered that one compound, glaucarubin, potently reduced the viability of Merkel cell polyomavirus (MCPyV)-positive MCCs, while remaining nontoxic to primary human fibroblasts and MCPyV-negative MCC cell lines tested. Protein array and Western blot analyses revealed that glaucarubin induces DNA damage and PARP-1 cleavage that correlates with the loss of viability in MCC cells. However, high basal expression of the antiapoptotic factor BCL-2 allowed a subpopulation of cells to survive glaucarubin treatment. Previous studies have shown that, while targeting BCL-2 family proteins significantly decreases MCC cell viability, BCL-2 antisense therapy alone was insufficient to inhibit tumor growth in patients with advanced MCC. We discovered that treatment with an FDA-approved BCL-2 inhibitor in the context of glaucarubin-induced DNA damage led to near complete killing in multiple MCPyV-positive MCC cell lines that express high levels of BCL-2. The combination of DNA damage-induced apoptosis and BCL-2 inhibition thus represents a novel therapeutic strategy for MCPyV-positive MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (N.A.K.)
| | - Nathan A. Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (N.A.K.)
| | - Meenhard Herlyn
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (N.A.K.)
- Correspondence: ; Tel.: +1-215-573-6781
| |
Collapse
|
19
|
Csoboz B, Rasheed K, Sveinbjørnsson B, Moens U. Merkel cell polyomavirus and non-Merkel cell carcinomas: guilty or circumstantial evidence? APMIS 2020; 128:104-120. [PMID: 31990105 DOI: 10.1111/apm.13019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell carcinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV with MCC development has incited researchers to further investigate a possible role of this virus in other cancers. However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncoviruses such as high-risk human papillomaviruses and Epstein-Barr virus. The current review is focusing on the available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer in light of this.
Collapse
Affiliation(s)
- Balint Csoboz
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Chen ZC, Chang TL, Li CH, Su KW, Liu CC. Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device. Biosens Bioelectron 2019; 146:111581. [PMID: 31629228 PMCID: PMC7126615 DOI: 10.1016/j.bios.2019.111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/02/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Abstract
Rapid thermal cycling (RTC) in an on-chip device can perform DNA amplification in vitro through precise thermal control at each step of the polymerase chain reaction (PCR). This study reports a straightforward fabrication technique for patterning an on-chip graphene-based device with hole arrays, in which the mechanism of surface structures can achieve stable and uniform thermal control for the amplification of DNA fragments. A thin-film based PCR device was fabricated using picosecond laser (PS-laser) ablation of the multilayer graphene (MLG). Under the optimal fluence of 4.72 J/cm2 with a pulse overlap of 66%, the MLG can be patterned with arrays of 250 μm2 hole surface structures. A 354-bp DNA fragment of VP1, an effective marker for diagnosing the BK virus, was amplified on an on-chip device in less than 60 min. A thin-film electrode with the aforementioned MLG as the heater was demonstrated to significantly enhance temperature stability for each stage of the thermal cycle. The temperature control of the heater was performed by means of a developed programmable PCR apparatus. Our results demonstrated that the proposed integration of a graphene-based device and a laser-pulse ablation process to form a thin-film PCR device has cost benefits in a small-volume reagent and holds great promise for practical medical use of DNA amplification.
Collapse
Affiliation(s)
- Zhao-Chi Chen
- Department of Mechatronic Engineering, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Tien-Li Chang
- Department of Mechatronic Engineering, National Taiwan Normal University, Taipei, Taiwan, ROC.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Kai-Wen Su
- Integrated Science, University of British Columbia, Columbia, Canada
| | - Cheng-Che Liu
- Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
21
|
Arora R, Rekhi B, Chandrani P, Krishna S, Dutt A. Merkel cell polyomavirus is implicated in a subset of Merkel cell carcinomas, in the Indian subcontinent. Microb Pathog 2019; 137:103778. [PMID: 31600537 PMCID: PMC7166130 DOI: 10.1016/j.micpath.2019.103778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
Abstract
Merkel cell carcinoma is a rare, lethal cancer histopathologically composed of cells showing similarity with mechanoreceptor Merkel cells. Merkel cell tumors manifest in two distinct forms. While a virus called Merkel cell polyomavirus is involved in the pathogenesis of one form of Merkel tumors, the other is driven by ultraviolet (UV)-linked mutations. In this study we investigated 18 cases, from the Indian population, of Merkel cell carcinoma for immunohistochemical (IHC) expression of Merkel cell polyomavirus (MCV) T antigen, including 12 cases tested by PCR, to identify viral etiopathology. We tested the tumors with two sensitive antibodies (CM2B4 and Ab3), targeting the viral large T antigen protein and with PCR primers targeting the N terminus of T antigen. Overall, we observed 38.8% (7/18) tumors displaying positive IHC expression of Merkel cell polyomavirus T antigen and 25% (3/12) tumors showing positive results, by both, immunohistochemistry and PCR. This constitutes the first report from India showing implication of MCV in Merkel cell carcinomas. Moreover, this is one of the larger series of Merkel cell carcinomas, tested for MCV, by both immunohistochemistry and PCR, in this part of the world. These results further indicate that a slightly more number of such cases in India are likely to be caused by UV-linked damage, as opposed to Merkel cell polyomavirus mediated tumorigenesis, which is definitely implicated in a subset of cases.
Collapse
Affiliation(s)
- Reety Arora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.
| | - Bharat Rekhi
- Department of Surgical Pathology, Tata Memorial Centre, Parel, Mumbai, Maharashtra, India.
| | - Pratik Chandrani
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Amit Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
22
|
Infectious Entry of Merkel Cell Polyomavirus. J Virol 2019; 93:JVI.02004-18. [PMID: 30626687 DOI: 10.1128/jvi.02004-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small, nonenveloped tumor virus associated with an aggressive form of skin cancer, Merkel cell carcinoma (MCC). MCPyV infections are highly prevalent in the human population, with MCPyV virions being continuously shed from human skin. However, the precise host cell tropism(s) of MCPyV remains unclear: MCPyV is able to replicate within a subset of dermal fibroblasts, but MCPyV DNA has also been detected in a variety of other tissues. However, MCPyV appears different from other polyomaviruses, as it requires sulfated polysaccharides, such as heparan sulfates and/or chondroitin sulfates, for initial attachment. Like other polyomaviruses, MCPyV engages sialic acid as a (co)receptor. To explore the infectious entry process of MCPyV, we analyzed the cell biological determinants of MCPyV entry into A549 cells, a highly transducible lung carcinoma cell line, in comparison to well-studied simian virus 40 and a number of other viruses. Our results indicate that MCPyV enters cells via caveolar/lipid raft-mediated endocytosis but not macropinocytosis, clathrin-mediated endocytosis, or glycosphingolipid-enriched carriers. The viruses were internalized in small endocytic pits that led the virus to endosomes and from there to the endoplasmic reticulum (ER). Similar to other polyomaviruses, trafficking required microtubular transport, acidification of endosomes, and a functional redox environment. To our surprise, the virus was found to acquire a membrane envelope within endosomes, a phenomenon not reported for other viruses. Only minor amounts of viruses reached the ER, while the majority was retained in endosomal compartments, suggesting that endosome-to-ER trafficking is a bottleneck during infectious entry.IMPORTANCE MCPyV is the first polyomavirus directly implicated in the development of an aggressive human cancer, Merkel cell carcinoma (MCC). Although MCPyV is constantly shed from healthy skin, the MCC incidence increases among aging and immunocompromised individuals. To date, the events connecting initial MCPyV infection and subsequent transformation still remain elusive. MCPyV differs from other known polyomaviruses concerning its cell tropism, entry receptor requirements, and infection kinetics. In this study, we examined the cellular requirements for endocytic entry as well as the subcellular localization of incoming virus particles. A thorough understanding of the determinants of the infectious entry pathway and the specific biological niche will benefit prevention of virus-derived cancers such as MCC.
Collapse
|
23
|
Abstract
Merkel cell polyomavirus (MCPyV) infection can lead to Merkel cell carcinoma (MCC), a highly aggressive form of skin cancer. Mechanistic studies to fully investigate MCPyV molecular biology and oncogenic mechanisms have been hampered by a lack of adequate cell culture models. Here, we describe a set of protocols for performing and detecting MCPyV infection of primary human skin cells. The protocols describe the isolation of human dermal fibroblasts, preparation of recombinant MCPyV virions, and detection of virus infection by both immunofluorescent (IF) staining and in situ DNA-hybridization chain reaction (HCR), which is a highly sensitive fluorescence in situ hybridization (FISH) approach. The protocols herein can be adapted by interested researchers to identify other cell types or cell lines that support MCPyV infection. The described FISH approach could also be adapted for detecting low levels of viral DNAs present in the infected human skin.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | | | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
24
|
Haley CT, Mui UN, Vangipuram R, Rady PL, Tyring SK. Human oncoviruses: Mucocutaneous manifestations, pathogenesis, therapeutics, and prevention: Papillomaviruses and Merkel cell polyomavirus. J Am Acad Dermatol 2018; 81:1-21. [PMID: 30502418 DOI: 10.1016/j.jaad.2018.09.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
In 1964, the first human oncovirus, Epstein-Barr virus, was identified in Burkitt lymphoma cells. Since then, 6 other human oncoviruses have been identified: human papillomavirus, Merkel cell polyomavirus, hepatitis B and C viruses, human T-cell lymphotropic virus-1, and human herpesvirus-8. These viruses are causally linked to 12% of all cancers, many of which have mucocutaneous manifestations. In addition, oncoviruses are associated with multiple benign mucocutaneous diseases. Research regarding the pathogenic mechanisms of oncoviruses and virus-specific treatment and prevention is rapidly evolving. Preventative vaccines for human papillomavirus and hepatitis B virus are already available. This review discusses the mucocutaneous manifestations, pathogenesis, diagnosis, treatment, and prevention of oncovirus-related diseases. The first article in this continuing medical education series focuses on diseases associated with human papillomavirus and Merkel cell polyomavirus, while the second article in the series focuses on diseases associated with hepatitis B and C viruses, human T-cell lymphotropic virus-1, human herpesvirus-8, and Epstein-Barr virus.
Collapse
Affiliation(s)
| | | | - Ramya Vangipuram
- Center for Clinical Studies, Webster, Texas; Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Peter L Rady
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephen K Tyring
- Center for Clinical Studies, Webster, Texas; Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
25
|
Krump NA, Liu W, You J. Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 2018; 32:71-79. [PMID: 30278284 DOI: 10.1016/j.coviro.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Virus infection contributes to nearly 15% of human cancers worldwide. Many of the oncogenic viruses tend to cause cancer in immunosuppressed individuals, but maintain asymptomatic, persistent infection for decades in the general population. In this review, we discuss the tactics employed by two small DNA tumor viruses, Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV), to establish persistent infection. We will also highlight recent key findings as well as outstanding questions regarding the mechanisms by which HPV and MCPyV evade host immune control to promote their survival. Since persistent infection enables virus-induced tumorigenesis, identifying the mechanisms by which small DNA tumor viruses achieve latent infection may inform new approaches for preventing and treating their respective human cancers.
Collapse
Affiliation(s)
- Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Rasheed K, Abdulsalam I, Fismen S, Grimstad Ø, Sveinbjørnsson B, Moens U. CCL17/TARC and CCR4 expression in Merkel cell carcinoma. Oncotarget 2018; 9:31432-31447. [PMID: 30140381 PMCID: PMC6101144 DOI: 10.18632/oncotarget.25836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive neuroendocrine skin cancer. In more than 80% of the cases, Merkel cell polyomavirus (MCPyV) is a causal factor. The oncogenic potential of MCPyV is mediated through its viral oncoproteins, large T antigen (LT) and small t antigen (sT). To investigate the role of cytokines in MCC, a PCR array analysis for genes encoding inflammatory cytokines and receptors was performed on MCPyV-negative and MCPyV-positive MCC cell lines, respectively. We detected an increased expression of CCL17/TARC in the MCPyV-positive MKL2 cell line compared to the MCPyV-negative MCC13 cell line. Transfection studies in MCC13 cells with LT expression plasmid, and a luciferase reporter plasmid containing the CCL17/TARC promoter, exhibited stimulated promoter activity. Interestingly, the ectopic expression of CCL17/TARC upregulated MCPyV early and late promoter activities in MCC13 cells. Furthermore, recombinant CCL17/TARC activated both the mitogen-activated protein kinase and the NF-κB pathways. Finally, immunohistochemical staining on human MCC tissues showed a strong staining of CCL17/TARC and its receptor CCR4 in both LT-positive and -negative MCC. Taken together, CCL17/TARC and CCR4 may be a potential target in MCC therapy providing MCC patients with a better overall survival outcome.
Collapse
Affiliation(s)
- Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| | - Ibrahim Abdulsalam
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| | - Silje Fismen
- Department of Pathology, University Hospital of Northern Norway, N-9038, Tromsø, Norway
| | - Øystein Grimstad
- Department of Dermatology, University Hospital of Northern Norway, N-9038, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
27
|
van der Meijden E, Feltkamp M. The Human Polyomavirus Middle and Alternative T-Antigens; Thoughts on Roles and Relevance to Cancer. Front Microbiol 2018; 9:398. [PMID: 29568287 PMCID: PMC5852106 DOI: 10.3389/fmicb.2018.00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Approximately 15–20% of human cancer is related to infection, which renders them potentially preventable by antimicrobial or antiviral therapy. Human polyomaviruses (PyVs) are relevant in this regard, as illustrated by the involvement of Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma. The polyomavirus Small and Large tumor antigen (ST and LT) have been extensively studied with respect to their role in oncogenesis. Recently it was shown that a number of human PyVs, including MCPyV and the trichodysplasia spinulosa polyomavirus (TSPyV), express additional T-antigens called Middle T (MT) and alternative T (ALT). ALT is encoded by ORF5, also known as the alternative T open reading frame (ALTO), which also encodes the second exon of MT, and overlaps out-of-frame with the second exon of LT. Previously, MT was considered unique for oncogenic rodent polyomaviruses, and ALT was still unknown. In this mini-review, we want to point out there are important reasons to explore the involvement of MT and ALT in human cellular transformation. First, just like their rodent equivalents, MT and ALT probably disrupt cellular pathways that control signaling and proliferation. Second, expression of the MT and ALT-encoding ORF5/ALTO characterizes a monophyletic polyomavirus clade that includes human and animal PyVs with known oncogenic potential. And third, ORF5/ALTO is subject to strong positive selection aimed specifically at a short linear motif within MT and ALT that overlaps completely with the RB-binding motif in LT. The latter suggests tight interplay between these T-antigens with possible consequences for cell transformation.
Collapse
Affiliation(s)
- Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts. J Virol 2018; 92:JVI.01610-17. [PMID: 29167345 DOI: 10.1128/jvi.01610-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse (Mus musculus), rabbit (Oryctolagus cuniculus), rat (Rattus norvegicus), chimpanzee (Pan troglodytes), rhesus macaque (Macaca mulatta), patas monkey (Erythrocebus patas), common woolly monkey (Lagothrix lagotricha), red-chested mustached tamarin (Saguinus labiatus), and tree shrew (Tupaia belangeri). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression.IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). With the increasing number of MCC diagnoses, there is a need to better understand the virus and its oncogenic potential. However, studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. To pinpoint the best candidate for developing an MCPyV infection animal model, we examined MCPyV's ability to infect dermal fibroblasts isolated from various established model animals. Of the animal cell types we tested, chimpanzee dermal fibroblasts were the only isolates that supported the full MCPyV infectious cycle. To overcome the infection blockade in the other model animals, we constructed chimeric viruses that achieved robust MCPyV entry and oncogene expression in rat fibroblasts. Our results suggest that the rat may serve as an in vivo model to study MCV oncogenesis.
Collapse
|
29
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
30
|
Korup-Schulz SV, Lucke C, Moens U, Schmuck R, Ehlers B. Large T antigen variants of human polyomaviruses 9 and 12 and seroreactivity against their N terminus. J Gen Virol 2017; 98:704-714. [PMID: 28113048 DOI: 10.1099/jgv.0.000714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumour antigens (TAgs) of mammalian polyomaviruses (PyVs) are key proteins responsible for modulating the host cell cycle and are involved in virus replication as well as cell transformation and tumour formation. Here we aimed to identify mRNA sequences of known and novel TAgs encoded by the recently discovered human polyomaviruses 9 and 12 (HPyV9 and HPyV12) in cell culture. Synthetic viral genomes were transfected into human and animal cell lines. Gene expression occurred in most cell lines, as measured by quantitative PCR of cDNA copies of mRNA encoding major structural protein VP1. Large TAg- and small TAg-encoding mRNAs were detected in all cell lines, and additional spliced mRNAs were identified encoding TAg variants of 145 aa (HPyV9) and 84 aa (HPyV12). Using as antigens in ELISA the N-terminal 78 aa common to all respective TAg variants of HPyV9 and HPyV12, seroreactivity of 100 healthy blood donors, 54 patients with malignant diseases of the gastrointestinal tract (GIT) and 32 patients with non-malignant diseases of the GIT was analysed. For comparison, the corresponding TAg N termini of BK PyV (BKPyV) and Merkel cell PyV (MCPyV) were included. Frequent reactivity against HPyV9, HPyV12 and BKPyV TAgs, but not MCPyV TAg, was observed in all tested groups. This indicates expression activity of the early region of three human PyVs in healthy and diseased subjects.
Collapse
Affiliation(s)
- Sarah-Verena Korup-Schulz
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| | - Claudia Lucke
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| | - Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø, NO-9037 Tromsø, Norway
| | - Rosa Schmuck
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
31
|
Siebrasse EA, Nguyen NL, Willby MJ, Erdman DD, Menegus MA, Wang D. Multiorgan WU Polyomavirus Infection in Bone Marrow Transplant Recipient. Emerg Infect Dis 2016; 22:24-31. [PMID: 26691850 PMCID: PMC4696717 DOI: 10.3201/eid2201.151384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Virus was detected in the lung and trachea of a deceased patient. WU polyomavirus (WUPyV) was detected in a bone marrow transplant recipient with severe acute respiratory distress syndrome who died in 2001. Crystalline lattices of polyomavirus-like particles were observed in the patient’s lung by electron microscopy. WUPyV was detected in the lung and other tissues by real-time quantitative PCR and identified in the lung and trachea by immunohistochemistry. A subset of WUPyV-positive cells in the lung had morphologic features of macrophages. Although the role of WUPyV as a human pathogen remains unclear, these results clearly demonstrate evidence for infection of respiratory tract tissues in this patient.
Collapse
|
32
|
Liu W, MacDonald M, You J. Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol 2016; 20:20-27. [PMID: 27521569 DOI: 10.1016/j.coviro.2016.07.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Merkel cell polyomavirus is the only polyomavirus discovered to date that is associated with a human cancer. MCPyV infection is highly prevalent in the general population. Nearly all healthy adults asymptomatically shed MCPyV from their skin. However, in elderly and immunosuppressed individuals, the infection can lead to a lethal form of skin cancer, Merkel cell carcinoma. In the last few years, new findings have established links between MCPyV infection, host immune response, and Merkel cell carcinoma development. This review discusses these recent discoveries on how MCPyV interacts with host cells to achieve persistent infection and, in the immunocompromised population, contributes to MCC development.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margo MacDonald
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Functional Upregulation of the DNA Cytosine Deaminase APOBEC3B by Polyomaviruses. J Virol 2016; 90:6379-6386. [PMID: 27147740 DOI: 10.1128/jvi.00771-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The APOBEC3 family of DNA cytosine deaminases has important roles in innate immunity and cancer. It is unclear how DNA tumor viruses regulate these enzymes and how these interactions, in turn, impact the integrity of both the viral and cellular genomes. Polyomavirus (PyVs) are small DNA pathogens that contain oncogenic potentials. In this study, we examined the effects of PyV infection on APOBEC3 expression and activity. We demonstrate that APOBEC3B is specifically upregulated by BK polyomavirus (BKPyV) infection in primary kidney cells and that the upregulated enzyme is active. We further show that the BKPyV large T antigen, as well as large T antigens from related polyomaviruses, is alone capable of upregulating APOBEC3B expression and activity. Furthermore, we assessed the impact of A3B on productive BKPyV infection and viral genome evolution. Although the specific knockdown of APOBEC3B has little short-term effect on productive BKPyV infection, our informatics analyses indicate that the preferred target sequences of APOBEC3B are depleted in BKPyV genomes and that this motif underrepresentation is enriched on the nontranscribed stand of the viral genome, which is also the lagging strand during viral DNA replication. Our results suggest that PyV infection upregulates APOBEC3B activity to influence virus sequence composition over longer evolutionary periods. These findings also imply that the increased activity of APOBEC3B may contribute to PyV-mediated tumorigenesis. IMPORTANCE Polyomaviruses (PyVs) are a group of emerging pathogens that can cause severe diseases, including cancers in immunosuppressed individuals. Here we describe the finding that PyV infection specifically induces the innate immune DNA cytosine deaminase APOBEC3B. The induced APOBEC3B enzyme is fully functional and therefore may exert mutational effects on both viral and host cell DNA. We provide bioinformatic evidence that, consistent with this idea, BK polyomavirus genomes are depleted of APOBEC3B-preferred target motifs and enriched for the corresponding predicted reaction products. These data imply that the interplay between PyV infection and APOBEC proteins may have significant impact on both viral evolution and virus-induced tumorigenesis.
Collapse
|
34
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
35
|
Liu W, Yang R, Payne AS, Schowalter RM, Spurgeon ME, Lambert PF, Xu X, Buck CB, You J. Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host Microbe 2016; 19:775-87. [PMID: 27212661 DOI: 10.1016/j.chom.2016.04.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Infection with Merkel cell polyomavirus (MCPyV) can lead to Merkel cell carcinoma (MCC), a lethal form of skin cancer. However, the skin cell type productively infected by MCPyV remains a central question. We combined cell culture and ex vivo approaches to identify human dermal fibroblasts as natural host cells that support productive MCPyV infection. Based on this, we established a cell culture model for MCPyV infection, which will facilitate investigation of the oncogenic mechanisms for this DNA virus. Using this model, we discovered that induction of matrix metalloproteinase (MMP) genes by the WNT/β-catenin signaling pathway and other growth factors stimulates MCPyV infection. This suggests that MCC risk factors such as UV radiation and aging, which are known to stimulate WNT signaling and MMP expression, may promote viral infection and thus drive MCC. Our study also introduces the FDA-approved MEK antagonist trametinib as an effective inhibitor for controlling MCPyV infection.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruifeng Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel M Schowalter
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher B Buck
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Stamatiou DP, Derdas SP, Zoras OL, Spandidos DA. Herpes and polyoma family viruses in thyroid cancer. Oncol Lett 2016; 11:1635-1644. [PMID: 26998055 PMCID: PMC4774504 DOI: 10.3892/ol.2016.4144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is considered the most common malignancy that affects the endocrine system. Generally, thyroid cancer derives from follicular epithelial cells, and thyroid cancer is divided into well-differentiated papillary (80% of cases) and follicular (15% of cases) carcinoma. Follicular thyroid cancer is further divided into the conventional and oncocytic (Hürthle cell) type, poorly differentiated carcinoma and anaplastic carcinoma. Both poorly differentiated and anaplastic carcinoma can arise either de novo, or secondarily from papillary and follicular thyroid cancer. The incidence of thyroid cancer has significantly increased for both males and females of all ages, particularly for females between 55–64 years of age, from 1999 through 2008. The increased rates refer to tumors of all stages, though they were mostly noted in localized disease. Recently, viruses have been implicated in the direct regulation of epithelial-mesenchymal transition (EMT) and the development of metastases. More specifically, Epstein-Barr virus (EBV) proteins may potentially lead to the development of metastasis through the regulation of the metastasis suppressor, Nm23, and the control of Twist expression. The significant enhancement of the metastatic potential, through the induction of angiogenesis and changes to the tumor microenvironment, subsequent to viral infection, has been documented, while EMT also contributes to cancer cell permissiveness to viruses. A number of viruses have been identified to be associated with carcinogenesis, and these include lymphotropic herpesviruses, namely EBV and Kaposi's sarcoma-associated herpesvirus [KSHV, also known as human herpesvirus type 8 (HHV8)]; two hepatitis viruses, hepatitis B virus (HBV) and hepatitis C virus (HCV); human papillomaviruses (HPVs); human T cell lymphoma virus (HTLV); and a new polyomavirus, Merkel cell polyomavirus identified in 2008. In this review, we examined the association between thyroid cancer and two oncogenic virus families, the herpes and polyoma family viruses, and we discuss their potential role as causative agents in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Dimitris P Stamatiou
- Department of Surgical Oncology, University Hospital, University of Crete, Heraklion 71003, Greece; Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Stavros P Derdas
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Odysseas L Zoras
- Department of Surgical Oncology, University Hospital, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| |
Collapse
|
37
|
Tognon M, Corallini A, Manfrini M, Taronna A, Butel JS, Pietrobon S, Trevisiol L, Bononi I, Vaccher E, Barbanti-Brodano G, Martini F, Mazzoni E. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects. PLoS One 2016; 11:e0145720. [PMID: 26731525 PMCID: PMC4701414 DOI: 10.1371/journal.pone.0145720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18–65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral, Tumor/blood
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enzyme-Linked Immunosorbent Assay/methods
- Host-Pathogen Interactions/immunology
- Humans
- Middle Aged
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Phylogeny
- Polyomavirus Infections/blood
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- Protein Structure, Tertiary
- Rabbits
- Reproducibility of Results
- Simian virus 40/classification
- Simian virus 40/immunology
- Simian virus 40/physiology
- Tumor Virus Infections/blood
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
- Young Adult
Collapse
Affiliation(s)
- Mauro Tognon
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | | - Marco Manfrini
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Angelo Taronna
- Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silvia Pietrobon
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | | - Ilaria Bononi
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Emanuela Vaccher
- Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, Italy
| | | | - Fernanda Martini
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
- * E-mail: (EM); (FM)
| | - Elisa Mazzoni
- Sections of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
- * E-mail: (EM); (FM)
| |
Collapse
|
38
|
The Oncogenic Small Tumor Antigen of Merkel Cell Polyomavirus Is an Iron-Sulfur Cluster Protein That Enhances Viral DNA Replication. J Virol 2015; 90:1544-56. [PMID: 26608318 DOI: 10.1128/jvi.02121-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. IMPORTANCE MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus and its oncogenic ability remain to be investigated. In this report, we identify MCPyV sT as a novel Fe/S cluster protein and show that conserved cysteine clusters are important for sT's ability to enhance viral replication. Moreover, we show that sT sensitizes MCPyV replication to cidofovir inhibition. The discovery of Fe/S clusters in MCPyV sT opens new avenues to the study of the structure and functionality of this protein. Moreover, this study supports the notion that sT is a potential drug target for dampening MCPyV infection.
Collapse
|
39
|
Schrama D, Hesbacher S, Angermeyer S, Schlosser A, Haferkamp S, Aue A, Adam C, Weber A, Schmidt M, Houben R. Serine 220 phosphorylation of the Merkel cell polyomavirus large T antigen crucially supports growth of Merkel cell carcinoma cells. Int J Cancer 2015; 138:1153-62. [PMID: 26383606 DOI: 10.1002/ijc.29862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Merkel cell polyomavirus (MCPyV) is regarded as a major causal factor for Merkel cell carcinoma (MCC). Indeed, tumor cell growth of MCPyV-positive MCC cells is dependent on the expression of a truncated viral Large T antigen (LT) with an intact retinoblastoma protein (RB)-binding site. Here we determined the phosphorylation pattern of a truncated MCPyV-LT characteristically for MCC by mass spectrometry revealing MCPyV-LT as multi-phospho-protein phosphorylated at several serine and threonine residues. Remarkably, disruption of most of these phosphorylation sites did not affect its ability to rescue knockdown of endogenous T antigens in MCC cells indicating that phosphorylation of the respective amino acids is not essential for the growth promoting function of MCPyV-LT. However, alteration of serine 220 to alanine completely abolished the ability of MCPyV-LT to support proliferation of MCC cells. Conversely, mimicking the phosphorylated state by mutation of serine 220 to glutamic acid resulted in a fully functional LT. Moreover, MCPyV-LT(S220A) demonstrated reduced binding to RB in co-immunoprecipitation experiments as well as weaker induction of RB target genes in MCC cells. In conclusion, we provide evidence that phosphorylation of serine 220 is required for efficient RB inactivation in MCC and may therefore be a potential target for future therapeutic approaches.
Collapse
Affiliation(s)
- David Schrama
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Sonja Hesbacher
- Department of Dermatology, University Hospital Würzburg, Germany
| | | | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | - Annemarie Aue
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Christian Adam
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Alexandra Weber
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Marc Schmidt
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Germany
| |
Collapse
|
40
|
Siebrasse EA, Pastrana DV, Nguyen NL, Wang A, Roth MJ, Holland SM, Freeman AF, McDyer J, Buck CB, Wang D. WU polyomavirus in respiratory epithelial cells from lung transplant patient with Job syndrome. Emerg Infect Dis 2015; 21:103-6. [PMID: 25531075 PMCID: PMC4285236 DOI: 10.3201/eid2101.140855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We detected WU polyomavirus (WUPyV) in a bronchoalveolar lavage sample from lungs transplanted into a recipient with Job syndrome by using immunoassays specific for the WUPyV viral protein 1. Co-staining for an epithelial cell marker identified most WUPyV viral protein 1–positive cells as respiratory epithelial cells.
Collapse
|
41
|
Keller EX, Delbue S, Tognon M, Provenzano M. Polyomavirus BK and prostate cancer: a complex interaction of potential clinical relevance. Rev Med Virol 2015; 25:366-78. [PMID: 26308483 DOI: 10.1002/rmv.1851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
Several studies associating BK polyomavirus (BKPyV) and prostate cancer (PCa) suggested that this virus may exert its oncogenic activity at early stages of cancer development. The BKPyV oncogene, the large T antigen (LTag), has frequently been detected in areas of proliferative inflammatory atrophy, which is considered a precursor lesion leading to prostatic intraepithelial neoplasia and overt PCa. In a recently updated systematic review, the presence of BKPyV was significantly higher in PCa tissues than in healthy control tissues, providing an indication for a link between BKPyV infection and cancer risk. In addition, recent original investigations highlighted an association between expression of the virus and the clinical course of PCa. For example, by studying immune responses elicited against BKPyV LTag, a significant association between LTag positive cancer lesions and a peculiar regulatory profiling has been observed in PCa patients with evidence of disease recurrence after surgical radical prostatectomy. Lastly, a study carried out in a larger cohort of patients undergoing radical prostatectomy revealed the IgG response against LTag as an independent predictor of disease recurrence. Although a full picture of the mechanisms potentially responsible for the involvement of BKPyV in PCa is not available yet, continuing work on this topic should help to refine the potential role of BKPyV in PCa patients, perhaps revealing unsuspected associations with the clinical course of this disease.
Collapse
Affiliation(s)
- Etienne Xavier Keller
- Oncology Research Unit, Department of Urology and Division of Surgical Research, University and University Hospital of Zurich, Zurich, Switzerland
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Maurizio Provenzano
- Oncology Research Unit, Department of Urology and Division of Surgical Research, University and University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015; 7:3863-90. [PMID: 26193301 PMCID: PMC4517131 DOI: 10.3390/v7072802] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted.
Collapse
|
43
|
Characterization of T Antigens, Including Middle T and Alternative T, Expressed by the Human Polyomavirus Associated with Trichodysplasia Spinulosa. J Virol 2015; 89:9427-39. [PMID: 26136575 DOI: 10.1128/jvi.00911-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The polyomavirus tumor (T) antigens play crucial roles in viral replication, transcription, and cellular transformation. They are encoded by partially overlapping open reading frames (ORFs) located in the early region through alternative mRNA splicing. The T expression pattern of the trichodysplasia spinulosa-associated polyomavirus (TSPyV) has not been established yet, hampering further study of its pathogenic mechanisms and taxonomic relationship. Here, we characterized TSPyV T antigen expression in human cell lines transfected with the TSPyV early region. Sequencing of T antigen-encoded reverse transcription-PCR (RT-PCR) products revealed three splice donor and acceptor sites creating six mRNA splice products that potentially encode the antigens small T (ST), middle T (MT), large T (LT), tiny T, 21kT, and alternative T (ALTO). Except for 21kT, these splice products were also detected in skin of TSPyV-infected patients. At least three splice products were confirmed by Northern blotting, likely encoding LT, MT, ST, 21kT, and ALTO. Protein expression was demonstrated for LT, ALTO, and possibly MT, with LT detected in the nucleus and ALTO in the cytoplasm of transfected cells. Splice site and start codon mutations indicated that ALTO is encoded by the same splice product that encodes LT and uses internal start codons for initiation. The genuineness of ALTO was indicated by the identification of acetylated N-terminal ALTO peptides by mass spectrometry. Summarizing, TSPyV exhibits an expression pattern characterized by both MT and ALTO expression, combining features of rodent and human polyomaviruses. This unique expression pattern provides important leads for further study of polyomavirus-related disease and for an understanding of polyomavirus evolution. IMPORTANCE The human trichodysplasia spinulosa-associated polyomavirus (TSPyV) is distinguished among polyomaviruses for combining productive infection with cell-transforming properties. In the research presented here, we further substantiate this unique position by indicating expression of both middle T antigen (MT) and alternative T antigen (ALTO) in TSPyV. So far, none of the human polyomaviruses was shown to express MT, which is considered the most important viral oncoprotein of rodent polyomaviruses. Coexpression of ALTO and MT, which involves a conserved, recently recognized overlapping ORF subject to positive selection, has not been observed before for any polyomavirus. As a result of our findings, this study provides valuable new insights into polyomavirus T gene use and expression. Obviously, these insights will be instrumental in further study and gaining an understanding of TSPyV pathogenicity. More importantly, however, they provide important leads with regard to the interrelationship, functionality, and evolution of polyomaviruses as a whole, indicating that TSPyV is a suitable model virus to study these entities further.
Collapse
|
44
|
Polyomavirus interaction with the DNA damage response. Virol Sin 2015; 30:122-9. [PMID: 25910481 DOI: 10.1007/s12250-015-3583-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication-normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response (DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATM- and ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.
Collapse
|
45
|
The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses 2015; 7:1871-901. [PMID: 25866902 PMCID: PMC4411681 DOI: 10.3390/v7041871] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.
Collapse
|
46
|
Li TC, Iwasaki K, Katano H, Kataoka M, Nagata N, Kobayashi K, Mizutani T, Takeda N, Wakita T, Suzuki T. Characterization of self-assembled virus-like particles of Merkel cell polyomavirus. PLoS One 2015; 10:e0115646. [PMID: 25671590 PMCID: PMC4324643 DOI: 10.1371/journal.pone.0115646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
In our recombinant baculovirus system, VP1 protein of merkel cell polyomavirus (MCPyV), which is implicated as a causative agent in Merkel cell carcinoma, was self-assembled into MCPyV-like particles (MCPyV-LP) with two different sizes in insect cells, followed by being released into the culture medium. DNA molecules of 1.5- to 5-kb, which were derived from host insect cells, were packaged in large, ~50-nm spherical particles but not in small, ~25-nm particles. Structure reconstruction using cryo-electron microscopy showed that large MCPyV-LPs are composed of 72 pentameric capsomeres arranged in a T = 7 icosahedral surface lattice and are 48 nm in diameter. The MCPyV-LPs did not share antigenic determinants with BK- and JC viruses (BKPyV and JCPyV). The VLP-based enzyme immunoassay was applied to investigate age-specific prevalence of MCPyV infection in the general Japanese population aged 1–70 years. While seroprevalence of MCPyV increased with age in children and young individuals, its seropositivity in each age group was lower compared with BKPyV and JCPyV.
Collapse
Affiliation(s)
- Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumi Kobayashi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Tetsuya Mizutani
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
47
|
Wendzicki JA, Moore PS, Chang Y. Large T and small T antigens of Merkel cell polyomavirus. Curr Opin Virol 2015; 11:38-43. [PMID: 25681708 DOI: 10.1016/j.coviro.2015.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
Merkel cell polyomavirus (MCV) is the etiological agent of Merkel cell carcinoma (MCC), a rare and highly lethal human skin cancer. A natural component of skin flora, MCV becomes tumorigenic only after integration into the host DNA together with specific mutations to the viral genome. Research on MCV large T (LT) and small T (sT) antigens, the only viral products expressed in MCC, shows that these major oncoproteins not only possess biochemical functions found in common with other polyomavirus T antigens, but also demonstrate new cellular targets not described in previous polyomavirus models. This review provides a map of the relevant functional motifs and domains in MCV T antigens that have been identified, highlighting their roles in tumorigenesis.
Collapse
Affiliation(s)
- Justin A Wendzicki
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
48
|
Giacobbi NS, Gupta T, Coxon AT, Pipas JM. Polyomavirus T antigens activate an antiviral state. Virology 2015; 476:377-385. [PMID: 25589241 DOI: 10.1016/j.virol.2014.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/18/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV.
Collapse
Affiliation(s)
- Nicholas S Giacobbi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tushar Gupta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew T Coxon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
49
|
van der Meijden E, Wunderink HF, van der Blij-de Brouwer CS, Zaaijer HL, Rotmans JI, Bavinck JNB, Feltkamp MCW. Human polyomavirus 9 infection in kidney transplant patients. Emerg Infect Dis 2015; 20:991-9. [PMID: 24866095 PMCID: PMC4036759 DOI: 10.3201/eid2006.140055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This virus is frequently found within the first year after transplantation and in association with BK polyomavirus infection. Several human polyomaviruses of unknown prevalence and pathogenicity have been identified, including human polyomavirus 9 (HPyV9). To determine rates of HPyV9 infection among immunosuppressed patients, we screened serum samples from 101 kidney transplant patients in the Netherlands for HPyV9 DNA and seroreactivity. A total of 21 patients had positive results for HPyV9 DNA; positivity rates peaked at 3 months after transplantation, but the highest viral loads were measured just after transplantation. During 18 months of follow-up, HPyV9 seroprevalence increased from 33% to 46% among transplant patients; seroprevalence remained stable at ≈30% in a control group of healthy blood donors in whom no HPyV9 DNA was detected. Further analysis revealed an association between detection of HPyV9 and detection of BK polyomavirus but not of cytomegalovirus. Our data indicate that HPyV9 infection is frequent in kidney transplant patients, but the nature of infection—endogenous or donor-derived—and pathogenic potential of this virus remain unknown.
Collapse
|
50
|
Li J, Diaz J, Wang X, Tsang SH, You J. Phosphorylation of Merkel cell polyomavirus large tumor antigen at serine 816 by ATM kinase induces apoptosis in host cells. J Biol Chem 2014; 290:1874-84. [PMID: 25480786 DOI: 10.1074/jbc.m114.594895] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain.
Collapse
Affiliation(s)
- Jing Li
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Jason Diaz
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Xin Wang
- the Department of Molecular Genetics, Lerner Research Institute, Cleveland, Ohio 44295
| | - Sabrina H Tsang
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jianxin You
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|