1
|
Finnie J. Neurologic disease produced by Rathayibacter toxicus-derived corynetoxins. Hum Exp Toxicol 2023; 42:9603271231165672. [PMID: 37133421 DOI: 10.1177/09603271231165672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Corynetoxins, members of the tunicamycin group of antibiotics, are produced by the bacterium, Rathayibacter toxicus. They cause a severe neurologic disorder in domestic livestock, are hepatotoxins, and can damage retinal photoreceptors. For these toxins to be ingested by livestock, the bacterium must first be transported onto host plants by adhering to nematode larvae. In the infected seed heads, bacterial galls (gumma) then form. While corynetoxicity occurs most commonly in Australia, it has occurred sporadically in other countries and, due to the widespread global distribution of the bacterium, nematode, and host plants, there is great potential for further spread, particularly as the range of host plant species and nematode vectors identified for R. toxicus is increasing. Since many animal species are susceptible to corynetoxins poisoning, it is likely that humans would also be vulnerable if exposed to these potent, lethal toxins.
Collapse
Affiliation(s)
- John Finnie
- Division of Research and Innovation and Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
3
|
Lin S, Zhou L, Dong Y, Yang Q, Yang Q, Jin H, Yuan T, Zhou S. Alpha-(1,6)-fucosyltransferase (FUT8) affects the survival strategy of osteosarcoma by remodeling TNF/NF-κB2 signaling. Cell Death Dis 2021; 12:1124. [PMID: 34857735 PMCID: PMC8640016 DOI: 10.1038/s41419-021-04416-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022]
Abstract
Glycosylation is an important modification of membrane proteins that results in functional changes in many cellular activities, from cell-cell recognition to regulatory signaling. Fucosyltransferase 8 (FUT8) is the sole enzyme responsible for core fucosylation, and aberrant fucosylation by dysregulated expression of fucosyltransferases is responsible for the growth of various types of carcinomas. However, the function of FUT8 in the progress of osteosarcoma (OS) has not been reported. In this study, we found that FUT8 is expressed at lower levels in patients with OS and in human OS cell lines such as MNNG/HOS, U2OS, and 143B, suggesting that attenuated expression of FUT8 is involved in the growth and progression of OS. Mechanistically, FUT8 affects the survival strategy of OS by modifying core-fucosylation levels of TNF receptors (TNFRs). Lower fucosylation of TNFRs activates the non-canonical NF-κB signaling pathway, and in turn, decreases mitochondria-dependent apoptosis in OS cells. Together, our results point to FUT8 being a negative regulator of OS that enhances OS-cell apoptosis and suggests a novel therapeutic strategy for treating OS.
Collapse
Affiliation(s)
- Shanyi Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lenian Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Dong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingcheng Yang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hanqiang Jin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Yuan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
4
|
Conversion of 2-deoxyglucose-induced growth inhibition to cell death in normoxic tumor cells. Cancer Chemother Pharmacol 2013; 72:251-62. [PMID: 23700291 DOI: 10.1007/s00280-013-2193-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/10/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Inhibition of glucose metabolism has recently become an attractive target for cancer treatment. Accordingly, since 2-deoxyglucose (2-DG) competes effectively with glucose, it has come under increasing scrutiny as a therapeutic agent. The initial response of tumor cells to 2-DG is growth inhibition, which is thought to conserve energy and consequently protect cells from its ATP-lowering effects as a glycolytic inhibitor. However, since 2-DG also mimics mannose and thereby interferes with N-linked glycosylation, the question is raised of how this sugar analog inhibits tumor cell growth and whether the mechanism by which it protects cells can be manipulated to convert 2-DG-induced growth inhibition to cell death. METHODS Cell growth and death were measured via counting viable and dead cells based on trypan blue exclusion. Markers of ATP reduction and the unfolded protein response (UPR) were detected by Western blot. Protein functions were manipulated through chemical compounds, siRNA and the use of gene-specific wild-type and knock-out mouse embryonic fibroblasts (MEFs). RESULTS At 2-DG concentrations that can be achieved in human plasma without causing significant side effects, we find (a) It induces growth inhibition predominantly by interference with glycosylation, which leads to accumulation of unfolded proteins in the endoplasmic reticulum activating the UPR; (b) Inhibition of PERK (but not ATF6 or IRE1), a major component of the UPR, leads to conversion of 2-DG-induced growth inhibition to cell death and (c) secondarily to PERK, inhibition of GCN2, a kinase that is activated in response to low intracellular glutamine, increases 2-DG's cytotoxic effects in PERK -/- MEFs. CONCLUSIONS Overall, these findings present a novel anticancer strategy that can be translated into therapeutic gain as they uncover the metabolic target PERK, and to a lesser degree GCN2, that when inhibited convert 2-DG's static effect to a toxic one in tumor cells growing under normoxia.
Collapse
|
5
|
Banerjee DK. N-glycans in cell survival and death: cross-talk between glycosyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:1338-46. [PMID: 22326428 PMCID: PMC3499948 DOI: 10.1016/j.bbagen.2012.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/12/2012] [Accepted: 01/27/2012] [Indexed: 11/25/2022]
Abstract
Asparagine-linked (N-linked) protein glycosylation is one of the most important protein modifications. N-glycans with "high mannose", "hybrid", or "complex" type sugar chains participate in a multitude of cellular processes. These include cell-cell/cell-matrix/receptor-ligand interaction, cell signaling/growth and differentiation, to name a few. Many diseases such as disorders of blood clotting, congenital disorder of glycosylation, diseases of blood vessels, cancer, neo-vascularization, i.e., angiogenesis essential for breast and other solid tumor progression and metastasis are associated with N-glycan expression. Biosynthesis of N-glycans requires multiple steps and multiple cellular compartments. Following transcription and translation the proteins migrate to the endoplasmic reticulum (ER) lumen to acquire glycan chain(s) with a defined glycoform, i.e., a tetradecasaccharide. These are further modified, i.e., edited in ER lumen and in Golgi prior to moving to their respective destinations. The tetradecasaccharide is pre-assembled on a poly-isoprenoid lipid called dolichol, and becomes an essential component of the supply chain. Therefore, dolichol cycle synthesizing the lipid-linked oligosaccharide (LLO) is a hallmark for all N-linked glycoproteins. It is expected that there is a great deal of cross-talk between the participating glycosyltransferases and any missed step would express defective N-glycans that could have fatal consequences. The positive impact of the structurally altered N-glycans could lead to discovery of an N-glycan signature for a disease and/or help developing glycotherapeutic treating cancer or other human diseases. The purpose of this review is to identify the gaps of N-glycan biology and help developing appropriate technology for biomedical applications. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067.
| |
Collapse
|
6
|
Jordão FM, Kimura EA, Katzin AM. Isoprenoid biosynthesis in the erythrocytic stages of Plasmodium falciparum. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:134-41. [PMID: 21881768 DOI: 10.1590/s0074-02762011000900018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022] Open
Abstract
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Collapse
Affiliation(s)
- Fabiana Morandi Jordão
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
7
|
Macedo CSD, Schwarz RT, Todeschini AR, Previato JO, Mendonça-Previato L. Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation - A Review. Mem Inst Oswaldo Cruz 2010; 105:949-56. [DOI: 10.1590/s0074-02762010000800001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/16/2010] [Indexed: 11/22/2022] Open
|
8
|
Garénaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J, Michalski JC, Cacan R, Guérardel Y, Schwarz RT. The Dual Origin of Toxoplasma gondii N-Glycans. Biochemistry 2008; 47:12270-6. [DOI: 10.1021/bi801090a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Estelle Garénaux
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Hosam Shams-Eldin
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Frederic Chirat
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Ulrike Bieker
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Jörg Schmidt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Jean-Claude Michalski
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - René Cacan
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Yann Guérardel
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Ralph T. Schwarz
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq cedex, France, and Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| |
Collapse
|
9
|
Brown JR, Crawford BE, Esko JD. Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 2008; 42:481-515. [PMID: 18066955 DOI: 10.1080/10409230701751611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.
Collapse
|
10
|
Hellerqvist CG, Sweetman BJ. Mass spectrometry of carbohydrates. METHODS OF BIOCHEMICAL ANALYSIS 2006; 34:91-143. [PMID: 2157133 DOI: 10.1002/9780470110553.ch2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C G Hellerqvist
- School of Medicine, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
11
|
Finnie JW. Review of corynetoxins poisoning of livestock, a neurological disorder produced by a nematode-bacterium complex. Aust Vet J 2006; 84:271-7. [PMID: 16911226 DOI: 10.1111/j.1751-0813.2006.00019.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J W Finnie
- Veterinary Services Division and Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science
| |
Collapse
|
12
|
Hiro S, Usuki Y, Iio H. Synthesis of the sugar moiety of TIME-EA4, a glycopeptide isolated from silkworm diapause eggs. Carbohydr Res 2006; 341:1796-802. [PMID: 16697998 DOI: 10.1016/j.carres.2006.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 03/26/2006] [Accepted: 04/12/2006] [Indexed: 11/22/2022]
Abstract
We describe the efficient synthesis of the tetrasaccharide, 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl-(1-->6)-2,4-di-O-acetyl-3-O-allyl-beta-D-mannopyranosyl-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl azide, which is the protected form of the sugar unit of TIME-EA4 that is isolated from the diapausing eggs of the silkworm, Bombyx mori. The beta-linked D-mannoside of the tetrasaccharide was obtained using the conventional oxidation-reduction method for inversion of the configuration at the C-2 hydroxyl group of beta-D-glucoside. The reduction was effected with NaBH(4) in a methanolic solution in a ratio of 98:2 in favor of the beta-D-mannoside that was obtained in 87% yield.
Collapse
Affiliation(s)
- Shouji Hiro
- Department of Material Science, Graduate School of Science, Osaka City University, Japan
| | | | | |
Collapse
|
13
|
Siriwardena A, Strachan H, El-Daher S, Way G, Winchester B, Glushka J, Moremen K, Boons GJ. Potent and Selective Inhibition of Class II α-D-Mannosidase Activity by a Bicyclic Sulfonium Salt. Chembiochem 2005; 6:845-8. [PMID: 15800866 DOI: 10.1002/cbic.200400397] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aloysius Siriwardena
- Université de Picardie Jules Verne, Faculté des Sciences, Laboratoire des Glucides, FRE 2779, 33, rue Saint Leu, 80039 Amiens, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chakraborti T, Sarkar D, Ghosh DK. Immune complex antigens as a tool in serodiagnosis of kala-azar. Mol Cell Biochem 2003; 253:191-8. [PMID: 14619969 DOI: 10.1023/a:1026095328695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 63 kDa surface antigen of Leishmania promastigotes is one of the most important virulent factors in establishing the host parasite relationship. This glycoprotein is revealed by surface iodination study as well as by metabolic labeling and immunoblot methods. In search of this specific antigen for serodiagnosis, immune complexes (ICs) were isolated from kala-azar patient sera and analysed by SDS-PAGE and Western immunoblotting. The immunoblot of kala-azar IC with patient sera, anti-promastigote sera and anti gp63 sera detected the major antigen of 55 kDa. This recognition suggests that 55 kDa antigen and gp63 have common antigenic epitope(s). Normal IC did not react with anti gp63 sera indicating absence of this antigen in normal IC. To confirm the parasitic origin of the 55 kDa antigen of kala-azar IC, in vitro IC was formed with parasite antigen and acid dissociated kala-azar IC antibody. This indicated the antigenic similarity of the 55 kDa antigen and gp63 antigen of the parasite. This also suggested that the former antigen may have been processed from gp63. In summary, identification of parasite antigen (55 kDa) in IC of kala-azar patients' sera may be useful in developing a serodiagnostic assay of visceral leishmaniasis. Several other antigens are visualized in kala-azar IC when developed with patient sera. But specificity and efficacy of these antigens have not yet been evaluated in serodiagnosis of the disease.
Collapse
Affiliation(s)
- Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India.
| | | | | |
Collapse
|
15
|
Carpintero M, Bastida A, García-Junceda E, Jiménez-Barbero J, Fernández-Mayoralas A. Synthesis of Carba- and C-Fucopyranosides and Their Evaluation as α-Fucosidase Inhibitors − Analysis of an Unusual Conformation Adopted by an Amino-C-fucopyranoside. European J Org Chem 2001. [DOI: 10.1002/1099-0690(200111)2001:21<4127::aid-ejoc4127>3.0.co;2-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Davis-Fleische KM, Brigstock DR, Besner GE. Site-directed mutagenesis of heparin-binding EGF-like growth factor (HB-EGF): analysis of O-glycosylation sites and properties. Growth Factors 2001; 19:127-43. [PMID: 11769972 DOI: 10.3109/08977190109001081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a 22 kDa, O-glycosylated protein. HeLa cells infected with a recombinant vaccinia virus expressing human HB-EGF produced a secreted, bioactive protein, with Mr 22,000 that was decreased to 14,000 by treatment with O-glycanase. Site-directed mutagenesis of HB-EGF cDNA using oligonucleotide- and PCR-directed techniques was performed to change the potential glycosylation sites, Thr75 and Thr85, to alanine residues to prevent O-glycosylation. Purification and characterization of the mutant proteins demonstrated that: (i) both O-glycosylation sites of HB-EGF are utilized, (ii) HB-EGF secretion does not require O-glycosylation, (iii) removal of O-glycans does not affect proteolytic cleavage of the HB-EGF precursor, nor does it influence HB-EGF intracellular trafficking or subcellular localization, and (iv) HB-EGF produced by HeLa cells is heavily sialylated. Comparisons between glycosylation mutants and wild-type HB-EGF revealed no significant apparent differences in receptor binding activity.
Collapse
Affiliation(s)
- K M Davis-Fleische
- Department of Surgery, The Ohio State University and Children's Hospital, Columbus 43205, USA
| | | | | |
Collapse
|
17
|
Jepson S, Brogan IJ, Stoddart RW, Hutchinson IV. Mycophenolic acid does not inhibit protein glycosylation in T lymphocytes. Transpl Immunol 2000; 8:169-75. [PMID: 11147697 DOI: 10.1016/s0966-3274(00)00023-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mycophenolic acid inhibits guanosine nucleotide synthesis and has been shown to be a potent inhibitor of lymphocyte proliferation as well as being effective at decreasing the incidence of graft rejection. Guanosine nucleosides are essential for protein glycosylation and many cell surface proteins including adhesion molecules, which are important for graft infiltration and rejection, are glycoproteins. There have been conflicting reports concerning the ability of MPA to interfere with glycosylation in lymphoid cells. Therefore, the purpose of this study was to investigate the effects of MPA on cell surface protein glycosylation in lymphoid cells. METHODS Cells were cultured in the presence of increasing concentrations of MPA for different lengths of time and stained with fluorescent-labelled lectins specific for either mannose or fucose residues on glycoproteins. Analysis was then performed by flow cytometry. RESULTS MPA treatment had no effect on the binding of either fucose or mannose-specific lectins to Con A stimulated human PBLs and rat lymph node lymphocytes or to a CEMC7a T cell line. CONCLUSION The results show that, contrary to previous reports, MPA does not affect cell surface glycosylation in T cells using T cells from different sources of both human and non-human origin.
Collapse
Affiliation(s)
- S Jepson
- School of Biological Sciences, The University of Manchester, UK.
| | | | | | | |
Collapse
|
18
|
Lige B, Ma S. Glycosylation of the cationic peanut peroxidase gene expressed in transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 156:55-63. [PMID: 10908805 DOI: 10.1016/s0168-9452(00)00233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The major cationic peanut (Arachis hypogaea) peroxidase, secreted into the extracellular space, is a glycoprotein with three N-linked glycans (polysaccharides) which are connected to the peptide backbone at Asn-60, Asn-144 and Asn-185. In this report, a C-terminal histidine-tagged cationic peanut peroxidase gene was expressed in transgenic tobacco (Nicotiana tabacum). Tissue of the transgenic tobacco was cultured in suspension culture and the his-tagged peroxidase was purified in large quantities from 14-day-old suspension culture. The number of glycans, glycosylation sites and the chemical nature of glycan moieties attached to cationic peanut peroxidase expressed in transgenic tobacco were examined. Cationic peanut peroxidase isolated from the above transgenic tobacco had the identical number of complex glycans, attached at the same glycosylation sites as on cationic peanut peroxidase isolated from peanut suspension culture. Monosaccharide components of these glycans are N-acetylglucosamine (GlcNAc), mannose (Man), fucose (Fuc), xylose (Xyl) and galactose (Gal), the same sugars as found in native cationic peanut peroxidase.
Collapse
Affiliation(s)
- B Lige
- Department of Plant Sciences, University of Western Ontario, Ont., N6A 5B7, London, Canada
| | | |
Collapse
|
19
|
Berhe S, Gerold P, Kedees MH, Holder AA, Schwarz RT. Plasmodium falciparum: merozoite surface proteins 1 and 2 are not posttranslationally modified by classical N- or O-glycans. Exp Parasitol 2000; 94:194-7. [PMID: 10831385 DOI: 10.1006/expr.1999.4481] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Berhe
- Med. Zentrum füur Hygiene und Med. Mikrobiologie, Philipps-Universität, Robert-Koch Strasse 17, Marburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Nie G, Reading NS, Aust SD. Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium. Arch Biochem Biophys 1999; 365:328-34. [PMID: 10328828 DOI: 10.1006/abbi.1999.1180] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two types of glycosylated peroxidases are secreted by the white-rot fungus Phanerochaete chrysosporium, lignin peroxidase (LiP) and manganese peroxidase (MnP). The thermal stabilities of recombinant LiPH2, LiPH8, and MnPH4, which were expressed without glycosylation in Escherichia coli, were lower than those of corresponding native peroxidases isolated from P. chrysosporium. Recovery of thermally inactivated recombinant enzyme activities was higher than with that of the thermally inactivated native peroxidases. Removal of N-linked glycans from native LiPH8 and MnPH4 did not affect enzyme activities or thermal stabilities of the enzymes. Although LiPH2, LiPH8, and MnPH4 contained O-linked glycans, only the O-linked glycans from MnPH4 could be removed by O-glycosidase, and the glycan-depleted MnPH4 exhibited essentially the same activity as nondeglycosylated MnPH4, but thermal stability decreased. Periodate-treated MnPH4 exhibited even lower thermal stability than O-glycosidase treated MnPH4. The role of O-linked glycans in protein stability was also evidenced with LiPH2 and LiPH8. Based on these data, we propose that neither N- nor O-linked glycans are likely to have a direct role in enzyme activity of native LiPH2, LiPH8, and MnPH4 and that only O-linked glycans may play a crucial role in protein stability of native peroxidases.
Collapse
Affiliation(s)
- G Nie
- Biotechnology Center, Utah State University, Logan, Utah, 84322-4705, USA
| | | | | |
Collapse
|
21
|
Cai B, Tomida A, Mikami K, Nagata K, Tsuruo T. Down-regulation of epidermal growth factor receptor-signaling pathway by binding of GRP78/BiP to the receptor under glucose-starved stress conditions. J Cell Physiol 1998; 177:282-8. [PMID: 9766525 DOI: 10.1002/(sici)1097-4652(199811)177:2<282::aid-jcp10>3.0.co;2-c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GRP78/BiP, a molecular chaperone in the endoplasmic reticulum, is induced under such adverse conditions for cell survival as glucose starvation. Induction of GRP78 has been shown to coincide with G1 cell cycle arrest, which is an important cellular defense system. In this study, we investigated involvement of GRP78 in the mechanism of growth arrest by using human epidermoid carcinoma A431 cells. Under a chemical stress condition with 2-deoxyglucose, GRP78 was induced 3-4-fold. In the stressed cells, an underglycosylated form of epidermal growth factor receptor (EGFR) was produced and the mature form was decreased. We found that the molecular chaperone GRP78 in the endoplasmic reticulum formed a stable complex with the underglycosylated EGFR but did not with the mature form. This complex formation occurred specifically under the stress conditions, and the complex was dissociated upon removal of the stress. Treatment of the GRP78-underglycosylated EGFR complex with ATP resulted in a release of the underglycosylated EGFR from GRP78, indicating that the complex could be formed through the chaperone function of GRP78. In accordance with the complex formation with endoplasmic reticulum-resident GRP78, the underglycosylated EGFR could not be translocated to the cell surface. As a result, EGF could not induce expression of cyclin D3, a G1 cyclin, in the stressed cells, whereas it did in non-stressed cells. These results indicated that, in the stressed cells, GRP78 participated in down-regulation of EGF-signaling pathway by forming a stable complex with EGFR and inhibiting EGFR translocation to the cell surface.
Collapse
Affiliation(s)
- B Cai
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Eckert V, Blank M, Mazhari-Tabrizi R, Mumberg D, Funk M, Schwarz RT. Cloning and functional expression of the human GlcNAc-1-P transferase, the enzyme for the committed step of the dolichol cycle, by heterologous complementation in Saccharomyces cerevisiae. Glycobiology 1998; 8:77-85. [PMID: 9451016 DOI: 10.1093/glycob/8.1.77] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gene for the human dolichol cycle GlcNAc-1-P transferase (ALG7/GPT) was cloned by screening a human lung fibroblast cDNA library. The library was constructed in a Saccharomyces cerevisiae expression vector, and the positive clone was identified by complementation of the conditional lethal S.cerevisiae strain YPH-A7-GAL. This strain was constructed by replacing the endogenous promoter of the GPT-gene by the stringently regulated GAL1-promoter. This construct allows to specifically suppress the endogenous enzyme activity. The insert of the positive clone displayed an open reading frame of 1200 nucleotides, coding for a putative protein of 400 amino acids with a calculated molecular weight of 44.7 kDa. The deduced protein sequence shows a homology of over 90% when compared with other mammalian GPT sequences, thus resembling the close phylogenetic relationship between mammalian species. This homology however decreases to 40-50% when compared to more distantly related organisms such as S.cerevisiae , Schizosaccharomyces pombe , or Leishmania amazonensis . Biochemical characterization of the recombinant protein showed that it is functionally expressed in the S.cerevisiae strain YPH-A7-GAL. GlcNAc- and GlcNAc2-PP-Dolichol biosynthesis could be shown with isolated S.cerevisiae membranes from cells harboring the recombinant plasmid and grown on glucose thus suppressing transcription of the endogenous gene. Synthesis could be stimulated by dolicholphosphate and was inhibited by tunicamycin. These results show that we have cloned the human GlcNAc-1-P transferase by heterologous complementation in S. cerevisiae, a strategy that may be useful for the cloning and characterization of glycosyltransferases from a variety of organisms.
Collapse
Affiliation(s)
- V Eckert
- Medizinisches Zentrum für Hygiene und Med. Mikrobiologie, Robert Koch Strasse 17, Philipps-Universität-Marburg, D-35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Tönjes RR, Limbach C, Löwer R, Kurth R. Expression of human endogenous retrovirus type K envelope glycoprotein in insect and mammalian cells. J Virol 1997; 71:2747-56. [PMID: 9060628 PMCID: PMC191397 DOI: 10.1128/jvi.71.4.2747-2756.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human endogenous retrovirus type K (HERV-K) family codes for the human teratocarcinoma-derived retrovirus (HTDV) particles. The existence of the envelope protein (ENV) of HERV-K encoded by the subgenomic env mRNA has not yet been demonstrated. To study the genetic requirements for successful expression of ENV, we have constructed a series of recombinant HERV-K env expression vectors for infection and transfection experiments in insect cells and mammalian cells, respectively. Six baculovirus constructs bearing full-length or truncated HERV-K env with or without homologous or heterologous signal peptides were used for infections of insect cells. All recombinant baculoviruses yielded ENV proteins with the expected molecular masses. The full-length 80- to 90-kDa HERV-K ENV protein including the cORF leader sequence was glycosylated in insect cells. In addition, the 14-kDa cORF protein was expressed due to splicing of the full-length env mRNA. The ENV precursor protein is not cleaved to the surface (SU) and transmembrane (TM) glycoproteins; it does not appear on the surface of infected insect cells and is not secreted into the medium. For ENV expression in COS cells, plasmid vectors harboring the cytomegalovirus immediate-early promoter/intron A element and the tissue plasminogen activator (t-PA) signal peptide or the homologous HERV-K signal peptide upstream of the env gene were employed. Glycosylated and uncleaved ENV was expressed as in GH teratocarcinoma cells but at higher levels. The heterologous t-PA signal sequence was instrumental for expression of HERV-K ENV on the cell surface. Hence, we have shown for the first time that the HERV-K env gene has the potential to be expressed as a full-length envelope protein with appropriate glycosylation. In addition, our data provide explanations for the lack of infectivity of HERV-K/HTDV particles.
Collapse
|
25
|
|
26
|
Wolucka BA, Rozenberg R, de Hoffmann E, Chojnacki T. Desorption chemical ionization tandem mass spectrometry of polyprenyl and dolichyl phosphates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:958-964. [PMID: 24203610 DOI: 10.1016/1044-0305(96)80514-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/1995] [Revised: 04/03/1996] [Accepted: 04/03/1996] [Indexed: 06/02/2023]
Abstract
Negative-ion desorption chemical ionization (DCI) tandem mass spectrometry was applied to the analysis of nanomole quantities of semisynthetic polyisoprenyl phosphates, the chain length of which ranged from 7 to 20 isoprene units. The DCI spectrum of all the compounds tested show the presence of independently generated ions [M-HPO3-H](-), [M-H3PO2-H](-) and [M-H3PO4-H](-) resulting from the loss of a part of or the entire phosphate group of a polyisoprenyl-P. In tandem mass spectrometry, the [M-H3PO4-H](-) fragment produces series of ions 68 mass units apart, indicative of the polyisoprenoid nature of a compound. Studies with deuterated and α-saturated polyisoprenyl phosphates demonstrated that fragmentations of the [M-H3PO4-H](-) ion proceed from both ends (α and ω) of a polyisoprenoid chain and may occur at either allylic (A) or vinylic (V) sites. Fragments of masses equal to [n×68 - 1] and [n×68 - 13] (where n is the number of isoprene units and 3≤n is less than the total number of isoprene residues within a polyisoprenoid chain) comprise the αA and ωV series, respectively, and represent the most abundant ions in tandem mass spectra of the [M-H3PO4-H](-) fragment of polyprenyl phosphates, α-Saturated dolichyl phosphates can be distinguished easily from corresponding polyprenyl phosphates not only on the basis of a 2-u shift of the [M-H3PO4-H](-) ion and the α series of fragments, but also because of the presence of an additional (A+14) series of ions 14 u heavier than fragments resulting from the allylic cleavages of an α-saturated polyisoprenoid chain. Possible mechanisms of the collision-induced dissociation reactions of polyprenyl phosphates are discussed.
Collapse
Affiliation(s)
- B A Wolucka
- Department of Chemistry, University of Louvain, Place Louis Pasteur 1/1B, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
27
|
Wolucka BA, de Hoffmann E, Rush JS, Waechter CJ. Determination of the anomeric configuration of glycosyl esters of nucleoside pyrophosphates and polyisoprenyl phosphates by fast-atom bombardment tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:541-549. [PMID: 24203426 DOI: 10.1016/1044-0305(96)00020-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/1995] [Revised: 01/12/1996] [Accepted: 01/17/1996] [Indexed: 06/02/2023]
Abstract
Collision-induced dissociation of the deprotonated molecules of glycosyl esters of nucleoside pyrophosphates and polyisoprenyl (dolichyl and polyprenyl) phosphates results in distinct fragmentation patterns that depend on cis-trans configuration of the phosphodiester and 2″ (or 2', respectively)-hydroxyl groups of the glycosyl residue. At the collision-offset voltage of 0. 5 V, sugar nucleotides with cis configuration produce only one very abundant fragment of nucleoside monophosphate, whereas compounds with trans configuration give weak signals for nucleoside di- and mono-phosphates and their dehydration products. These fragmentation patterns are largely preserved at higher collision energy, with the exception that, for sugar nucleotides with trans configuration, the characteristic signals are much more abundant and a novel diagnostic fragment of [ribosyl(deoxyribosyl)-5'-P2O5 - H](-) is generated. In the case of polyisoprenyl-P-sugars, polyisoprenyl phosphate ion is the only fragment observed for compounds with trans configuration, whereas in compounds with cis configuration, this ion is accompanied by another abundant fragment, which is derived from the cleavage across the sugar ring and corresponds to [polyisoprenyl-PO4-(C2H3O)](-). The relative intensity ratio of the latter ion to the [polyisoprenyl-HPO4](-) ion is close to 1 for compounds with cis configuration, but it is only about 0. 01 for compounds with trans configuration. This ratio may serve, therefore, as a diagnostic value for determination of the anomeric configuration of glycosyl esters of polyisoprenyl phosphates. It is proposed that the observed differences in fragmentation patterns of cis-trans sugar nucleotides and polyisoprenyl-P-sugars could be explained in terms of kinetic stereoelectronic effect, and a speculative mechanism of fragmentation of compounds with trans configuration is presented. For compounds with cis configuration, formation of a hydrogen bond between the C-2″(2') hydroxyl and the phosphate group could play a crucial role in directing the specific fragmentation reactions. Consequently, the described empirical rules would hold only for compounds that have a free 2″(2')-hydroxyl group and no alternative charge location. Owing to its simplicity, sensitivity, and tolerance of impurities, fast-atom bombardment-tandem mass spectrometry represents a suitable method for determination of the anomeric linkage of glycosyl esters of nucleoside pyrophosphates and polyisoprenyl phosphates if the absolute configuration of glycosyl residue is known and the compound fulfills the above-mentioned requirements.
Collapse
Affiliation(s)
- B A Wolucka
- Department of Chemistry, University of Louvain, Place Louis Pasteur I/IB, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
28
|
Chapter 1a Normal and pathological catabolism of glycoproteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Wong CH, Halcomb RL, Ichikawa Y, Kajimoto T. Enzyme in der organischen Synthese: das Problem der molekularen Erkennung von Kohlenhydraten (Teil 2). Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070505] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Chapter 5 Biosynthesis 7. How Can N-Linked Glycosylation and Processing Inhibitors be Used to Study Carbohydrate Synthesis and Function. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Laupichler L, Sowa CE, Thiem J. Synthesis and structural studies of asparagine-modified 2-deoxy-alpha-N-glycopeptides associated with the renin-angiotensin system. Bioorg Med Chem 1994; 2:1281-94. [PMID: 7757424 DOI: 10.1016/s0968-0896(00)82079-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Following addition of N-iodosuccinimide to glycals, reductive hydrogenolysis and ring opening gave 2-deoxy-alpha-N-glycopeptides carrying a deaminated asparagine unit. This reaction could be performed employing glucal, galactal, L-rhamnal, L-fucal and lactal to give the corresponding glycoconjugate building blocks 11, 12, 17, 22, 27 and 32. Further NIS-mediated glycosylation of the rhamno derivative 21 led to simple trisaccharide peptide adducts 45. Peptide synthesis of the gluco building unit with different preassembled oligopeptides afforded glycoconjugates 36, 39, 41 and 42 assumed to be of interest as potential inhibitors of the renin-angiotensin system.
Collapse
Affiliation(s)
- L Laupichler
- Universität Hamburg, Institut für Organische Chemie, Germany
| | | | | |
Collapse
|
32
|
Wolucka B, McNeil M, de Hoffmann E, Chojnacki T, Brennan P. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31657-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Braisted JE, Raymond PA. Continued search for the cellular signals that regulate regeneration of dopaminergic neurons in goldfish retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 76:221-32. [PMID: 8149588 DOI: 10.1016/0165-3806(93)90210-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intraocular injections of low doses (0.7-1.4 mM estimated intraocular concentration) of 6-hydroxydopamine (6OHDA) selectively destroy dopaminergic neurons in the inner nuclear layer (INL) of goldfish retina, and they never regenerate. However, injection of a higher dose of 6OHDA (2.9 mM) destroys > 30% (but not all) of the cells in both the INL and the outer nuclear layer (ONL), but within 3 weeks, neurons in both the INL (including dopaminergic neurons) and the ONL regenerate. We hypothesize that the regenerated neurons derive from mitotic rod precursors in the ONL and that damage to the surrounding micro-environment (i.e. destruction of photoreceptors) triggers the regenerative response. To directly test this hypothesis, we selectively ablated > 99% of dopaminergic neurons (with low doses of 6OHDA) and up to 55% of rod photoreceptors (with tunicamycin), and asked whether the dopaminergic neurons regenerated, as evidenced by double immunolabeling with anti-tyrosine hydroxylase and anti-bromodeoxyuridine. After 38 days, the number of bromodeoxyuridine-immunoreactive rod nuclei was increased 2.4-fold compared to controls, but no regenerated dopaminergic neurons were found. These data suggest that although the rate of rod production increases, rod precursors do not alter their normal pathway of development to replace dopaminergic neurons in the INL when damage to the ONL is limited to destruction of rods.
Collapse
Affiliation(s)
- J E Braisted
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | |
Collapse
|
34
|
Bay S, Namane A, Cantacuzene D. Enzymatic synthesis of disaccharide-serine and peptide conjugates. Bioorg Med Chem Lett 1993. [DOI: 10.1016/s0960-894x(01)80708-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Wetzel MG, Bendala-Tufanisco E, Besharse JC. Tunicamycin does not inhibit transport of phosphatidylinositol to Xenopus rod outer segments. JOURNAL OF NEUROCYTOLOGY 1993; 22:397-412. [PMID: 8315416 DOI: 10.1007/bf01195560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tunicamycin inhibits the dolichol pathway for N-linked glycosylation of proteins, including photoreceptor opsin, and causes a buildup of tubulo-vesicular profiles in the intersegmental space between photoreceptor rod inner and outer segments associated with disruption of new disc assembly. We tested the hypothesis that a tunicamycin lesion in photoreceptors would block lipid transport into the outer segment. Adult Xenopus retinas were preincubated in dim red light with 20 micrograms ml-1 of tunicamycin for one hour followed by incubation in the light for 2-6 h with tunicamycin plus either [3H]mannose, [3H]leucine, [2-(3)H]glycerol or [3H]myo-inositol. Tunicamycin caused accumulation of tubulo-vesicular membranes in the intersegmental space and significantly reduced both [3H]leucine and [3H]mannose incorporation into the basal region of rod outer segments. However, tunicamycin had no effect on [3H]glycerol incorporation into the rod outer segment phospholipids. After 5 h incubation with [3H]glycerol, radiolabel in outer segment fractions was associated primarily with phosphatidylinositol in both control and tunicamycin treated retinas. Quantitative light microscope autoradiography of both [3H]glycerol and [3H]inositol labelled retinas showed diffuse labelling over the entire rod outer segment in both control and tunicamycin treated retinas with no accumulation of radioactivity in the basal discs of control retinas or in the tubulo-vesicular structures in the intersegmental space of tunicamycin treated retinas. Our results indicate that despite the morphological disruption and inhibition of glycoprotein transport to outer segments after tunicamycin treatment, transport of labelled phosphatidylinositol occurs normally. These data add to a growing body of evidence separating the lipid and protein transport pathways to the outer segment.
Collapse
Affiliation(s)
- M G Wetzel
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City 66160-7400
| | | | | |
Collapse
|
36
|
Schwarz RT, Tomavo S. The current status of the glycobiology of Toxoplasma gondii: glycosylphosphatidylinositols, N- and O-linked glycans. RESEARCH IN IMMUNOLOGY 1993; 144:24-31. [PMID: 8451515 DOI: 10.1016/s0923-2494(05)80092-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R T Schwarz
- Zentrum für Hygiene und Medizinische Mikrobiologie, Philipps-Universität Marburg, Germany
| | | |
Collapse
|
37
|
Elbein AD. The Use of Glycosylation Inhibitors to Study Glycoconjugate Function. CELL SURFACE AND EXTRACELLULAR GLYCOCONJUGATES 1993. [PMCID: PMC7155559 DOI: 10.1016/b978-0-12-589630-6.50009-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Overdijk B, Beem EP, Van der Wal CJ, Jongenelen CA. Lysosomal beta-hexosaminidase is highly resistant towards proteolytic degradation in vitro. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1793-800. [PMID: 1451915 DOI: 10.1016/0020-711x(92)90130-s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. A partially purified enzyme preparation of beta-hexosaminidase from human fibroblasts was treated with proteases and the effect on its molecular weight and enzymatic activity was studied. 2. Both the forms A and B of the enzyme appeared to be resistant to a protease treatment that degraded the majority of the contaminating proteins to a large extent. 3. The same result was obtained with enzyme preparations from cells treated with tunicamycin. 4. Also the molecular weights of the individual polypeptide chains of the enzyme were not decreased, as was shown by SDS-PAGE, followed by immuno-blotting.
Collapse
Affiliation(s)
- B Overdijk
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Whitford M, Faulkner P. A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine. J Virol 1992; 66:3324-9. [PMID: 1583718 PMCID: PMC241110 DOI: 10.1128/jvi.66.6.3324-3329.1992] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A structural glycopeptide, gp41, derived from the occluded virus of the baculovirus Autographa californica nuclear polyhedrosis virus was characterized. The peptide specifically bound wheat germ agglutinin but was not recognized by a panel of seven other lectins. Reactivity with wheat germ agglutinin was eliminated by treatment of gp41 with beta-N-acetylglucosaminidase, indicating that N-acetylglucosamine (GlcNAc) was present as terminal residues. gp41 was efficiently galactosylated by galactosyltransferase only in the presence of Nonidet P-40, suggesting that GlcNAc residues are not exposed on the surface of the virion. Metabolic labelling of gp41 with [3H]GlcNAc occurred in the presence of tunicamycin. The carbohydrate was released by alkaline borohydride treatment and comigrated with N-acetylglucosaminitol in descending paper chromatography. The data indicate that gp41 contains single residues of GlcNAc O glycosidically linked to the polypeptide chain. Evidence suggesting that gp41 is located in the region between the envelope membrane and the capsid (defined here as the tegument) of the occluded virus is also presented.
Collapse
Affiliation(s)
- M Whitford
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
40
|
Sjöberg EM, Fries E. Biosynthesis of bikunin (urinary trypsin inhibitor) in rat hepatocytes. Arch Biochem Biophys 1992; 295:217-22. [PMID: 1586149 DOI: 10.1016/0003-9861(92)90509-u] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the major sulfated proteins secreted by rat hepatocytes contains a low-sulfated chondroitin sulfate chain and its apparent molecular mass upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis shifts from 40 to 28 kDa upon chondroitinase ABC treatment (E. M. Sjöberg and E. Fries, 1990, Biochem. J. 272, 113-118). These properties suggest that this protein is the rat homologue of the major trypsin inhibitor of human urine which was recently named bikunin. In serum, bikunin occurs mainly as a subunit of the pre-alpha-inhibitor and the inter-alpha-inhibitor; in these proteins it is covalently linked to the other polypeptides through its chondroitin sulfate chain. Bikunin has been shown to be synthesized by liver cells as a 42-kDa precursor, in which it is linked to alpha 1-microglobulin by two basic amino acids. We have isolated bikunin from rat urine and prepared antibodies against it. In rat hepatocytes pulse-labeled with [35S]methionine, these antibodies precipitated a labeled protein of 42 kDa. Upon chase, three different labeled proteins were recognized by the antibodies in the medium: one protein of 40 kDa (free bikunin), one of 125 kDa (presumably pre-alpha-inhibitor), and one greater than 240 kDa (possibly a protein related to the inter-alpha-inhibitor). Pulse-chase experiments with [35S]sulfate showed that these proteins occurred intracellularly as precursors containing alpha 1-microglobulin. These results demonstrate that the completion of the chondroitin sulfate chain and its coupling to other polypeptide chains occur before the cleavage of the alpha 1-microglobulin/bikunin precursor.
Collapse
Affiliation(s)
- E M Sjöberg
- Department of Medical and Physiological Chemistry, University of Uppsala, Sweden
| | | |
Collapse
|
41
|
Pan Y, De Gespari R, Warren C, Elbein A. Formation of unusual mannosamine-containing lipid-linked oligosaccharides in Madin-Darby canine kidney cell cultures. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50378-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:815-25. [PMID: 1374032 DOI: 10.1111/j.1432-1033.1992.tb16846.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study investigates protein glycosylation in the asexual intraerythrocytic stage of the malaria parasite, Plasmodium falciparum, and the presence in the infected erythrocyte of the respective precursors. In in vitro cultures, P. falciparum can be metabolically labeled with radioactive sugars, and its multiplication can be affected by glycosylation inhibitors, suggesting the capability of the parasite to perform protein-glycosylation reactions. Gel-filtration analysis of sugar-labeled malarial proteins before and after specific cleavage of N-glycans or O-glycans, respectively, revealed the majority of the protein-bound sugar label to be incorporated into O-glycans, but only little (7-12% of the glucosamine label) or no N-glycans were found. Analysis of the nucleotide sugar and sugar-phosphate fraction showed that radioactive galactose, glucosamine, fucose and ethanolamine were converted to their activated derivatives required for incorporation into protein. Mannose was mainly recovered as a bisphosphate, whereas the level of radiolabeled GDP-mannose was below the detection limit. The analysis of organic-solvent extracts of sugar-labeled cultures showed no evidence for the formation by the parasite of dolichol cycle intermediates, the dedicated precursors in protein N-glycosylation. Consistently, the amount of UDP-N-acetylglucosamine formed did not seem to be affected by the presence of tunicamycin in the culture. Oligosaccharyl-transferase activity was not detectable in a lysate of P. falciparum, using exogenous glycosyl donors and acceptors. Our studies show that O-glycosylation is the major form of protein glycosylation in intraerythrocytic P. falciparum, whereas there is little or no protein N-glycosylation. A part of these studies has been published in abstract form [Dieckmann-Schuppert, A., Hensel, J. and Schwarz, R. T. (1991) Biol. Chem. Hoppe-Seyler 372, 645].
Collapse
Affiliation(s)
- A Dieckmann-Schuppert
- Zentrum für Hygiene und Medizinische Mikrobiologie, University of Marburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
43
|
Mutero A, Fournier D. Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46001-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Yeo TK, Senger DR, Dvorak HF, Freter L, Yeo KT. Glycosylation is essential for efficient secretion but not for permeability-enhancing activity of vascular permeability factor (vascular endothelial growth factor). Biochem Biophys Res Commun 1991; 179:1568-75. [PMID: 1930196 DOI: 10.1016/0006-291x(91)91752-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hyperpermeability of the microvasculature supplying solid tumors is largely attributable to a heterodimeric Mr 34,000-43,000 tumor-secreted protein, vascular permeability factor. Upon reduction, the vascular permeability factor secreted by line 10 tumor cells is resolved by SDS-PAGE into 3 discrete bands of Mr 24,000, 19,500, and 15,000. We demonstrate here that line 10 vascular permeability factor is an N-linked glycoprotein. Nonglycosylated vascular permeability factor migrates on reduced SDS-PAGE as two bands of Mr 20,000 and 15,000. Pulse-chase studies demonstrated that all three chains of native vascular permeability factor were secreted rapidly following synthesis and at equal rates, with a cellular half-retention time of approximately 37 min. When glycosylation was prevented by tunicamycin, individual bands of nonglycosylated vascular permeability factor were also secreted at equivalent rates, but much more slowly (approximately 60 min) than native glycoprotein. Both glycosylated and nonglycosylated forms of vascular permeability factor were equally potent at increasing dermal vessel permeability.
Collapse
Affiliation(s)
- T K Yeo
- Department of Pathology, Beth Israel Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
45
|
Hindsgaul O, Kaur K, Srivastava G, Blaszczyk-Thurin M, Crawley S, Heerze L, Palcic M. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55207-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Wakefield LM, Kondaiah P, Hollands RS, Winokur TS, Sporn MB. Addition of a C-terminal extension sequence to transforming growth factor-beta 1 interferes with biosynthetic processing and abolishes biological activity. Growth Factors 1991; 5:243-53. [PMID: 1663772 DOI: 10.3109/08977199109000288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-beta 1 (TGF-beta 1) is synthesized and secreted as a biologically latent complex. It has been proposed that one role of the latent complex is to prevent premature interaction of ligand and receptor intracellularly during biosynthesis (Wakefield et al., J. Cell Biol. (1987) 105, 965-975). To test this hypothesis, the endoplasmic reticulum retention sequence Lys-Asp-Glu-Leu (KDEL) was added to the C-terminus of the wildtype TGF-beta 1 coding sequence, and to a construct in which mutagenesis of two cysteine residues in the precursor pro region results in the synthesis and secretion of active, as opposed to latent, TGF-beta. Addition of either SEKDEL, or the control sequence SEKDVS to the TGF-beta 1 protein abolished biological activity. Western blot analysis indicated that the extended gene products are synthesized, but that the extension sequence partially interferes with the normal dimerization of the protein product, and totally inhibits the normal proteolytic processing and glycosylation of the precursor protein. The data suggest that correct folding of the highly conserved C terminus of TGF-beta 1 is critical for subsequent proteolytic cleavage and glycosylation at sites that are quite distant in the primary sequence. Thus molecular strategies for the generation of TGF-beta antagonists or superagonists should avoid extensive modification of this region of the molecule. Since synthesis of the endogenous TGF-beta 1 is unaffected by the presence of the mutated analog, the data further indicate that transfection with the KDEL-extended TGF-beta 1 sequence cannot be used as a dominant negative mutation to prevent secretion of the endogenous TGF-beta protein.
Collapse
Affiliation(s)
- L M Wakefield
- Laboratory of Chemoprevention, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
47
|
Olden K, Breton P, Grzegorzewski K, Yasuda Y, Gause BL, Oredipe OA, Newton SA, White SL. The potential importance of swainsonine in therapy for cancers and immunology. Pharmacol Ther 1991; 50:285-90. [PMID: 1754603 DOI: 10.1016/0163-7258(91)90046-o] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Swainsonine, an indolizidine alkaloid, was initially used in biomedical research as a tool to investigate the biosynthesis and function of asparagine-linked 'complex' type oligosaccharide moieties of glycoproteins. Recently, swainsonine has generated interest in its potential use as an anticancer agent with reports that it (i) inhibits tumor growth and metastasis, (ii) augments natural killer (NK) and macrophage-mediated tumor cell killing, and (iii) stimulates bone marrow cell proliferation. The antineoplastic activity of swainsonine can be explained at least in part by augmentation of immune effector mechanisms. The potential application of swainsonine as an anticancer agent is discussed.
Collapse
Affiliation(s)
- K Olden
- Howard University Cancer Center, Washington, DC 20060
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kéry V. Lectin-carbohydrate interactions in immunoregulation. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:631-40. [PMID: 1864441 DOI: 10.1016/0020-711x(91)90031-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- V Kéry
- Research Institute of Rheumatic Diseases, Nábrezie Ivana Krasku, Piectany, Czechoslovakia
| |
Collapse
|
49
|
O-glycopeptides: a simple β-stereoselective glycosidation of serine and threonine via a favorable hydrogen bonding pattern. Tetrahedron Lett 1991. [DOI: 10.1016/s0040-4039(00)74833-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Nandan D, Cates GA, Ball EH, Sanwal BD. Partial characterization of a collagen-binding, differentiation-related glycoprotein from skeletal myoblasts. Arch Biochem Biophys 1990; 278:291-6. [PMID: 2158279 DOI: 10.1016/0003-9861(90)90263-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 46-kDa glycoprotein, gp46, which binds collagen has been purified to homogeneity from L6 rat skeletal myoblasts. The procedure involves extraction of crude myoblast membranes with 1% sodium dodecyl sulfate followed by concanavalin A affinity chromatography and preparative gel electrophoresis. The sequence of 15 N-terminal amino acids had some resemblance to a sequence in myosin light chains. The oligosaccharide chains of the glycoprotein can be released by treatment with endoglycosidase H, suggesting that gp46 has high-mannose type of glycans. Galactose and sialic acid are not detected in the purified protein. gp46 is widely distributed and conserved in different cell lines as determined by immunoblotting using a monoclonal anti-gp46 antibody. High levels of gp46 were found in several fibroblastic and myogenic cell lines, but not in a hematopoietic cell line. Undifferentiated F9 embryonal carcinoma cells lacked gp46 but the glycoprotein was induced when the cells were made to differentiate in the presence of retinoic acid. Broad survey of gp46 in different cell lines also suggests that it is present mainly in those cell lines which attach to the substratum and produce collagens. Although the function of gp46 is not yet known, the evidence suggests that it is developmentally regulated and is probably involved in the synthesis or assembly of collagen in the endoplasmic reticulum.
Collapse
Affiliation(s)
- D Nandan
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|