1
|
Rudra B, Mukhopadhyay B. Synthesis of the conjugation ready tetrasaccharide repeating unit of the O-polysaccharide from Halomonas fontilapidosi KR26. Carbohydr Res 2025; 549:109371. [PMID: 39742801 DOI: 10.1016/j.carres.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Synthesis of the tetrasaccharide repeating unit of the O-polysaccharide from Halomonas fontilapidosi KR26 was accomplished through a convergent [2 + 2]-block strategy using rationally protected monosaccharide synthons derived from commercially available sugars. The target tetrasaccharide was synthesized in the form of its 2-azidoethyl glycoside to ensure further conjugation with specific aglycons without hampering the reducing end stereochemistry. Use of only acyl/aryl protecting groups was targeted to keep the terminal azido-group intact for the utilization of "Click chemistry" for further conjugations.
Collapse
Affiliation(s)
- Bijoy Rudra
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
2
|
Delar E, Tigherghar Y, Girard L, Haddad M, Ramassamy C, Legault J, Gauthier C. Synthesis and pharmacological evaluation of nature-inspired phenacyl glycosides. Carbohydr Res 2024; 545:109281. [PMID: 39357144 DOI: 10.1016/j.carres.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Phenylethanoid glycosides are a well-studied class of bioactive compounds found throughout the plant kingdom. In contrast, research on the synthesis and pharmacological activity of phenacyl glycosides, a specific subgroup of phenylethanoid glycosides with a ketone functionality at the alpha position of the phenol ring, has been limited. In this study, we report the synthesis, cytotoxic, antiviral, and anti-inflammatory evaluation of a series of 18 4'-hydroxyphenacyl glycosides. These compounds consist of six different sugar residues (β-d-glucose, β-d-galactose, α-l-arabinose, β-d-xylose, α-l-rhamnose, and β-d-glucuronic acid) and display three distinct methoxylation patterns at the phenacyl ring, similar to the substitution motifs of anthocyanins. We obtained the target phenacyl glycosides in high yield and stereoselectivity through the coupling of benzoyl-protected trichloroacetimidate glycosyl donors and corresponding acetophenones. Our work represents the first total synthesis of the natural products 4'-hydroxyphenacyl-β-d-glucopyranoside (1) and 4'-hydroxy-3'-methoxyphenacyl-β-d-glucopyranoside (2). None of the phenacyl glycosides showed cytotoxicity against the tested cell lines. Notably, several of the synthesized compounds exhibited antiviral activity, with natural product 2 being the most active against herpes simplex virus type 1, while phenacyl arabinoside 9 and natural product 2 were the most active against human coronavirus OC43. Natural product 2 significantly inhibited the production of interleukin-6 in lipopolysaccharide-stimulated microglia cells. Overall, our findings highlight the importance of the sugar residue and phenacyl ring substitution pattern in modulating the antiviral activity of phenacyl glycosides. Natural product 2 and phenacyl arabinoside 9 emerge as promising leads for the development of antiviral agents.
Collapse
Affiliation(s)
- Emmanilo Delar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Yanis Tigherghar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Laurie Girard
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada; Unité Mixte de Recherche INRS-UQAC, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada
| | - Mohamed Haddad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jean Legault
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada; Unité Mixte de Recherche INRS-UQAC, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada; Unité Mixte de Recherche INRS-UQAC, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada.
| |
Collapse
|
3
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
4
|
Tian D, Chen G, Wang X, Zhang HJ. Modular Access to Functionalized Oxetanes as Benzoyl Bioisosteres. J Am Chem Soc 2024; 146:18011-18018. [PMID: 38905313 DOI: 10.1021/jacs.4c04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Bioisosterism is a valuable principle exploited in drug discovery to fine-tune physicochemical properties of bioactive compounds. Functionalized 3-aryl oxetanes, as an important class of bioisosteres for benzoyl groups (highly prevalent structures in approved drugs), have been rarely utilized in agrochemicals and pharmaceuticals due to significant synthetic challenges. Here, we present a modular synthetic strategy based on the unexplored yet readily available reagents, oxetanyl trichloroacetimidates, inspired by Schmidt glycosylation, enabling easy access to a library of functionalized oxetanes. This operationally simple protocol leverages the vast existing libraries of aryl halides and various nucleophiles. The power and generality of this approach is demonstrated by late-stage functionalization of complex molecules, as well as the rapid synthesis of oxetane analogues of bioactive molecules and marketed drugs. Preliminary mechanistic study suggests that the oxygen atom in the oxetane ring plays a crucial role in stabilizing the carbocation intermediates.
Collapse
Affiliation(s)
- Dayu Tian
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaocheng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Jun Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Sylla B, Jost G, Lavoie S, Legault J, Gauthier C, Pichette A. Synthesis and cytotoxicity evaluation of d- and l-sugar-containing mono- and bidesmosidic ursane-type saponins. Bioorg Med Chem 2024; 106:117737. [PMID: 38718553 DOI: 10.1016/j.bmc.2024.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Ursolic acid and uvaol are naturally occurring triterpenoids that exhibit a broad spectrum of pharmacological activities, including cytotoxicity. However, a primary challenge in the development of ursane-type pentacyclic triterpenoids for pharmacological use is their poor aqueous solubility, which can impede their effectiveness as therapeutics agents. In this study, we present the facile synthesis of ursolic acid monodesmosides and uvaol bidesmosides, incorporating naturally occurring and water-soluble pentoses and deoxyhexose sugar moieties of opposite d- and l-configurations at the C3 or C3/C28 positions of the ursane core. The twenty synthetic saponins were evaluated in vitro for their cytotoxicity against lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Notably, all the bidesmosidic uvaol saponins were shown to be cytotoxic as compared to their non-cytotoxic parent triterpenoid. For each series of ursane-type saponins, the most active compounds were 3-O-α-l-arabinopyranosyl ursolic acid (3h) and 3,28-di-O-α-l-rhamnopyranosyl uvaol (4f), showing IC50 values in the low micromolar range against A549 and DLD-1 cancer lines.
Collapse
Affiliation(s)
- Balla Sylla
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Gilles Jost
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Serge Lavoie
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Jean Legault
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada; Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec G7H 2B1, Canada
| | - Charles Gauthier
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada; Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec G7H 2B1, Canada.
| | - André Pichette
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada.
| |
Collapse
|
6
|
Uriel C, Grenier D, Herranz F, Casado N, Bañuelos J, Rebollar E, Garcia-Moreno I, Gomez AM, López JC. De Novo Access to BODIPY C-Glycosides as Linker-Free Nonsymmetrical BODIPY-Carbohydrate Conjugates. J Org Chem 2024; 89:4042-4055. [PMID: 38438277 PMCID: PMC10949249 DOI: 10.1021/acs.joc.3c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Recent years have witnessed an increasing interest in the synthesis and study of BODIPY-glycoconjugates. Most of the described synthetic methods toward these derivatives involve postfunctional modifications of the BODIPY core followed by the covalent attachment of the fluorophore and the carbohydrate through a "connector". Conversely, few de novo synthetic approaches to linker-free carbohydrate-BODIPY hybrids have been described. We have developed a reliable modular, de novo, synthetic strategy to linker-free BODIPY-sugar derivatives using the condensation of pyrrole C-glycosides with a pyrrole-carbaldehyde derivative mediated by POCl3. This methodology allows labeling of carbohydrate biomolecules with fluorescent-enough BODIPYs within the biological window, stable in aqueous media, and able to display singlet oxygen generation.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Dylan Grenier
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Florian Herranz
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Natalia Casado
- Departamento
de Química Física, Universidad
del Pais Vasco, UPV-EHU, Apartado 644, Bilbao 48080, Spain
| | - Jorge Bañuelos
- Departamento
de Química Física, Universidad
del Pais Vasco, UPV-EHU, Apartado 644, Bilbao 48080, Spain
| | - Esther Rebollar
- Instituto
de Química y Física Blas Cabrera, CSIC, Serrano 119, Madrid 28006, Spain
| | | | - Ana M. Gomez
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - J. Cristobal López
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
7
|
Papp R, Trimble L, Fretland AJ, Manohar R, Phipps R, Kvaerno L, Perryman AL, Reynolds G, Black WC. Identification and Biosynthesis of an N-Glucuronide Metabolite of Camonsertib. Drug Metab Dispos 2024; 52:DMD-AR-2023-001611. [PMID: 38378703 DOI: 10.1124/dmd.123.001611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
Camonsertib is a novel ATR kinase inhibitor in clinical development for advanced cancers targeting sensitizing mutations. This article describes the identification and biosynthesis of an N-glucuronide metabolite of camonsertib. This metabolite was first observed in human hepatocyte incubations and was subsequently isolated to determine the structure, evaluate its stability as part of bioanalytical method development and for use as a standard for estimating its concentration in Phase I samples. The N-glucuronide was scaled-up using a purified bacterial culture preparation and was subsequently isolated using preparative chromatography. The bacterial culture generated sufficient material of the glucuronide to allow for one- and two-dimensional 1H and 13C NMR structural elucidation and further bioanalytical characterization. The NOE data combined with the gradient HMBC experiment and molecular modeling, strongly suggests that the point of attachment of the glucuronide results in the formation of (2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-(5-(4-((1R,3r,5S)-3-hydroxy-8-oxabicyclo[3.2.1]octan-3-yl)-6-((R)-3-methylmorpholino)-1H-pyrazolo[3,4-b]pyridin-1-yl)-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-carboxylic acid. Significance Statement This is the first report of a glucuronide metabolite of camonsertib formed by human hepatocyte incubations. This study reveals the structure of an N-glucuronide metabolite of camonsertib using detailed elucidation by one- and two-dimensional NMR after scale-up using a novel bacterial culture approach yielding significant quantities of a purified metabolite.
Collapse
Affiliation(s)
- Robert Papp
- Drug Metabolism and Pharmacokinetics, Repare Therapeutics, Inc., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
9
|
Sethi S, Jana NC, Panda S, Maharana SK, Bagh B. Copper(i)-catalyzed click chemistry in deep eutectic solvent for the syntheses of β-d-glucopyranosyltriazoles. RSC Adv 2023; 13:10424-10432. [PMID: 37020881 PMCID: PMC10069229 DOI: 10.1039/d3ra01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In the last two decades, click chemistry has progressed as a powerful tool in joining two different molecular units to generate fascinating structures with a widespread application in various branch of sciences. copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, also known as click chemistry, has been extensively utilized as a versatile strategy for the rapid and selective formation of 1,4-disubstituted 1,2,3-triazoles. The successful use of CuAAC reaction for the preparation of biologically active triazole-attached carbohydrate-containing molecular architectures is an emerging area of glycoscience. In this regard, a well-defined copper(i)-iodide complex (1) with a tridentate NNO ligand (L1) was synthesized and effectively utilized as an active catalyst. Instead of using potentially hazardous reaction media such as DCM or toluene, the use of deep eutectic solvent (DES), an emerging class of green solvent, is advantageous for the syntheses of triazole-glycohybrids. The present work shows, for the first time, the successful use of DES as a reaction medium to click various glycosides and terminal alkynes in the presence of sodium azide. Various 1,4-disubstituted 1,2,3-glucopyranosyltriazoles were synthesized and the pure products were isolated by using a very simple work-up process (filtration). The reaction media was recovered and recycled in five consecutive runs. The presented catalytic protocol generated very minimum waste as reflected by a low E-factor (2.21-3.12). Finally, the optimized reaction conditions were evaluated with the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| |
Collapse
|
10
|
Upadhyaya K, Osorio-Morales N, Crich D. Can Side-Chain Conformation and Glycosylation Selectivity of Hexopyranosyl Donors Be Controlled with a Dummy Ligand? J Org Chem 2023; 88:3678-3696. [PMID: 36877600 PMCID: PMC10028612 DOI: 10.1021/acs.joc.2c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Nicolas Osorio-Morales
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Adachi R, Matsushita T, Koyama T, Hatano K, Matsuoka K. Use of a Longer Aglycon Moiety Bearing Sialyl α(2→3) Lactoside on the Glycopolymer for Lectin Evaluation. Polymers (Basel) 2023; 15:polym15040998. [PMID: 36850281 PMCID: PMC9959589 DOI: 10.3390/polym15040998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
A polymerizable alcohol having 9 PEG repeats was prepared in order to mimic an oligosaccharide moiety. Sialyl α(2→3) lactose, which is known as a sugar moiety of GM3 ganglioside, was also prepared, and the polymerizable alcohol was condensed with the sialyl α(2→3) lactose derivative to afford the desired glycomonomer, which was further polymerized with or without acrylamide to give water-soluble glycopolymers. The glycopolymers had higher affinities than those of glycopolymers having sialyl lactose moieties with shorter aglycon moieties.
Collapse
Affiliation(s)
- Ryota Adachi
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Takahiko Matsushita
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
- Correspondence: ; Tel.: +81-7088194601
| |
Collapse
|
12
|
Lin MH, Wolf JB, Sletten ET, Cambié D, Danglad-Flores J, Seeberger PH. Enabling Technologies in Carbohydrate Chemistry: Automated Glycan Assembly, Flow Chemistry and Data Science. Chembiochem 2023; 24:e202200607. [PMID: 36382494 DOI: 10.1002/cbic.202200607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The synthesis of defined oligosaccharides is a complex task. Several enabling technologies have been introduced in the last two decades to facilitate synthetic access to these valuable biomolecules. In this concept, we describe the technological solutions that have advanced glycochemistry using automated glycan assembly, flow chemistry and data science as examples. We highlight how the synergies between these different technologies can further advance the field, with progress toward the realization of a self-driving lab for glycan synthesis.
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jakob B Wolf
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Dario Cambié
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
13
|
Kahriman N, Serdaroğlu V, Aydın A, Türkmenoğlu B, Usta A. Diastereoselective Synthesis, Characterization, Investigation of Anticancer, Antibacterial Activities, In Silico Approaches and DNA/BSA Binding Affinities of Novel Pyrimidine-Sugar Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Yadav MS, Jaiswal MK, Kumar S, Singh SK, Ansari FJ, Tiwari VK. One-pot expeditious synthesis of glycosylated esters through activation of carboxylic acids using trichloroacetonitrile. Carbohydr Res 2022; 521:108674. [PMID: 36126412 DOI: 10.1016/j.carres.2022.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Acetimidates, a valuable intermediate has been well explored as versatile synthon in a number of organic transformations particularly as suitable donors in glycosylation reactions. Herein, we explored acetimidates to furnish high-to-excellent yield of diverse glycosylated esters under one-pot mild reaction condition. The commercially available trichloroacetonitrile is implemented for the activation of carboxylic acid via in situ generation of trichloroacetimidate, which was subsequently attacked by sugar alcohols to deliver high-to-excellent yields of desired glycosylated esters. The devised method has some notable features such as metal-free condition, one-pot mild reaction condition, easy-handling, high-to-excellent yields, and broad substrate scope.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022; 61:e202200818. [DOI: 10.1002/anie.202200818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
16
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
17
|
Cai L, Chen Q, Guo J, Liang Z, Fu D, Meng L, Zeng J, Wan Q. Recyclable Fluorous-Tag Assisted Two-Directional Oligosaccharide Synthesis Enabled by Interrupted Pummerer Reaction Mediated Glycosylation. Chem Sci 2022; 13:8759-8765. [PMID: 35975149 PMCID: PMC9350600 DOI: 10.1039/d2sc01700h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a novel fluorous-tag assisted two-directional oligosaccharide assembly strategy, which combines the advantages of solution-phase synthesis and solid-phase synthesis. A well-designed fluorous-tag was decorated on the latent anomeric...
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qi Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jian Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Zhihua Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
18
|
Ni M, Stancanelli E, Kayal Y, Candido M, Guerrini M, Vlodavsky I, Naggi A, Liu J, Petitou M. Chemoenzymatic Synthesis of D‐Glucaro‐δ‐lactam Containing Oligosaccharides as Putative Heparanase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Minghong Ni
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni” via G. Colombo 81 20133 Milan Italy
| | - Eduardo Stancanelli
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni” via G. Colombo 81 20133 Milan Italy
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy University of North Carolina Chapel Hill NC 27599 USA
| | - Yasmin Kayal
- Cancer and Vascular Biology Research Center Rappaport Faculty of Medicine Technion Haifa 31096 Israel
| | - Marialuisa Candido
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni” via G. Colombo 81 20133 Milan Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni” via G. Colombo 81 20133 Milan Italy
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center Rappaport Faculty of Medicine Technion Haifa 31096 Israel
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni” via G. Colombo 81 20133 Milan Italy
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy University of North Carolina Chapel Hill NC 27599 USA
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni” via G. Colombo 81 20133 Milan Italy
| |
Collapse
|
19
|
Preparation of glycopolymers having sialyl α2 → 3 lactose moieties as the potent inhibitors for mumps virus. Bioorg Med Chem Lett 2021; 52:128389. [PMID: 34600036 DOI: 10.1016/j.bmcl.2021.128389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/16/2022]
Abstract
A water-soluble glycomonomer having a sialyl α2 → 3 lactose (SLac) moiety was prepared from a known imidate derivative of the SLac and an acrylamide alcohol by means of Schmidt's protocol followed by transesterification. Polymerization of the monomer proceeded in water as the solvent in the presence of ammonium persulfate (APS)-tetramethylethylenediamine (TEMED). Since acryl amide (AAm) was used as a regulator for the arrangement of sugar density, three kinds of glycopolymers having different sugar densities were obtained. Infection inhibition assays of mumps virus (MuV) for Vero cells using the glycopolymers were performed, and the results showed that a glycopolymer having a low sugar density has the highest inhibitory potency. In comparison to sialyl Lewis X (SLeX) as the strongest inhibitor in a previous study, SLac polymer with the low sugar density showed ten-times stronger inhibitory potency than that of SLex. This finding suggested that multivalent conversion of the monomeric SLac with appropriate spatial arrangement are able to effectively inhibit the interaction between the attachment glycoprotein of MuV and glycan receptors on Vero cells.
Collapse
|
20
|
Muru K, Cloutier M, Provost-Savard A, Di Cintio S, Burton O, Cordeil J, Groleau MC, Legault J, Déziel E, Gauthier C. Total Synthesis of a Chimeric Glycolipid Bearing the Partially Acetylated Backbone of Sponge-Derived Agminoside E. J Org Chem 2021; 86:15357-15375. [PMID: 34672576 DOI: 10.1021/acs.joc.1c01907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the total synthesis of a chimeric glycolipid bearing both the partially acetylated backbone of sponge-derived agminoside E and the (R)-3-hydroxydecanoic acid chain of bacterial rhamnolipids. The branched pentaglucolipid skeleton was achieved using a [3 + 2] disconnection approach. The β-(1 → 2) and β-(1 → 4)-glycosidic bonds were synthesized through a combination of NIS/Yb(OTf)3- and TMSOTf-mediated stereoselective glycosylations of thiotolyl, N-phenyltrifluoroacetimidate, and trichloroacetimidate donors. Late-stage pentaacetylation, Staudinger reduction of a (2-azidomethyl)benzoyl group, followed by continuous-flow microfluidic hydrogenolysis completed the total synthesis of the structurally simplified glycolipid, whose partial acetylation pattern on the glycan part was identical to agminoside E. Our study lays the foundation for the total synthesis of sponge-derived agminosides and the understanding of their biological functions in sponges.
Collapse
Affiliation(s)
- Kevin Muru
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Arianne Provost-Savard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Sabrina Di Cintio
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Océane Burton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Justin Cordeil
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
21
|
Njeri DK, Valenzuela EA, Ragains JR. Leveraging Trifluoromethylated Benzyl Groups toward the Highly 1,2- Cis-Selective Glucosylation of Reactive Alcohols. Org Lett 2021; 23:8214-8218. [PMID: 34677075 PMCID: PMC8576833 DOI: 10.1021/acs.orglett.1c02947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate that substitution of the benzyl groups of glucosyl imidate donors with trifluoromethyl results in a substantial increase in 1,2-cis-selectivity when activated with TMS-I in the presence of triphenylphosphine oxide. Stereoselectivity is dependent on the number of trifluoromethyl groups (4-trifluoromethylbenzyl vs 3,5-bis-trifluoromethylbenzyl). Particularly encouraging is that we observe high 1,2-cis-selectivity with reactive alcohol acceptors.
Collapse
Affiliation(s)
- Dancan K Njeri
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| | - Erik Alvarez Valenzuela
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| | - Justin R Ragains
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
22
|
Yang R, He H, Chen Z, Huang Y, Xiao G. A One-Pot Synthesis of Glycans and Nucleosides Based on ortho-(1-Phenylvinyl)benzyl Glycosides. Org Lett 2021; 23:8257-8261. [PMID: 34676757 DOI: 10.1021/acs.orglett.1c02998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One-pot synthesis of both glycans and nucleosides remains rare and challenging. Herein, we report a one-pot glycosylation strategy for glycans and nucleosides synthesis based on ortho-(1-phenylvinyl)benzyl glycosides, which has several advantages, including no aglycon transfers, no undesired interference of departing species, no unpleasant odor, and up to the construction of four different glycosidic linkages.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
23
|
Hussain N, Delar E, Piochon M, Groleau MC, Tebbji F, Sellam A, Déziel E, Gauthier C. Total synthesis of the proposed structures of gladiosides I and II. Carbohydr Res 2021; 507:108373. [PMID: 34157641 DOI: 10.1016/j.carres.2021.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Burkholderia gladioli is a Gram-negative bacterium that biosynthesizes a cocktail of potent antimicrobial compounds, including the antifungal phenolic glycoside sinapigladioside. Herein, we report the total synthesis of the proposed structures of gladiosides I and II, two structurally related phenolic glycosides previously isolated from B. gladioli OR1 cultures. Importantly, the physical and analytical data of the synthetic compounds were in significant discrepancies with the natural products suggesting a misassignment of the originally proposed structures. Furthermore, we have uncovered an acid-catalyzed fragmentation mechanism converting the α,β-unsaturated methyl carbamate-containing gladioside II into the aldehyde-containing gladioside I. Our results lay the foundation for the expeditious synthesis of derivatives of these Burkholderia-derived phenolic glycosides, which would enable to decipher their biological roles and potential pharmacological properties.
Collapse
Affiliation(s)
- Nazar Hussain
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Emmanilo Delar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Marianne Piochon
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Faiza Tebbji
- Department of Microbiology, Infectious Disease and Immunology, Montreal Heart Institute, Université de Montréal, 5000 Rue Bélanger, Montréal (Québec), H1T 1C8, Canada
| | - Adnane Sellam
- Department of Microbiology, Infectious Disease and Immunology, Montreal Heart Institute, Université de Montréal, 5000 Rue Bélanger, Montréal (Québec), H1T 1C8, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval (Québec), H7V 1B7, Canada.
| |
Collapse
|
24
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
25
|
Zhong Y, Li HN, Zhou L, Su HS, Cheng MS, Liu Y. Synthesis and antitumor activity evaluation of oleanolic acid saponins bearing an acetylated l-arabinose moiety. Carbohydr Res 2021; 503:108311. [PMID: 33866267 DOI: 10.1016/j.carres.2021.108311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023]
Abstract
A series of oleanolic acid derivatives bearing acetyl-substituted l-arabinose moiety has been synthesized and screened in vitro for cytotoxicity against ten cancer cell lines and four normal cell lines. The antiproliferative evaluation indicated that synthetic derivatives showed excellent selectivity, as they were toxic against only A431 cell line. Among them, the compound 6 possesses the best inhibitory activity. A series of pharmacology experiments showed that compound 6 significantly induced A431 cells apoptosis and cell cycle arrest, which could serve as a promising lead candidate for further study.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Ning Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lin Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua-Sheng Su
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
26
|
Tremblay T, St-Gelais J, Houde M, Giguère D. Polyfluoroglycoside Synthesis via Simple Alkylation of an Anomeric Hydroxyl Group: Access to Fluoroetoposide Analogues. J Org Chem 2021; 86:4812-4824. [DOI: 10.1021/acs.joc.0c02841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Tremblay
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Jacob St-Gelais
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Maxime Houde
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| | - Denis Giguère
- Département de Chimie, Université Laval, PROTEO, 1045 av. De la Médecine, Québec City, QC, Canada G1 V 0A6
| |
Collapse
|
27
|
He H, Xu L, Sun R, Zhang Y, Huang Y, Chen Z, Li P, Yang R, Xiao G. An orthogonal and reactivity-based one-pot glycosylation strategy for both glycan and nucleoside synthesis: access to TMG-chitotriomycin, lipochitooligosaccharides and capuramycin. Chem Sci 2021; 12:5143-5151. [PMID: 34163751 PMCID: PMC8179548 DOI: 10.1039/d0sc06815b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward β-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.
Collapse
Affiliation(s)
- Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
28
|
Muru K, Gauthier C. Glycosylation and Protecting Group Strategies Towards the Synthesis of Saponins and Bacterial Oligosaccharides: A Personal Account. CHEM REC 2021; 21:2990-3004. [DOI: 10.1002/tcr.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Muru
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| |
Collapse
|
29
|
Kumar S, Shah TA, Punniyamurthy T. Recent advances in the application of tetrabromomethane in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d0qo01369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article covers the use of tetrabromomethane as mediator, catalyst and reagents for organic synthesis for the period from 2007 to 2020.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry
- DAV University
- Jalandhar-144012
- India
| | - Tariq A. Shah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Department of Chemistry
| | | |
Collapse
|
30
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Mukherjee MM, Maity SK, Ghosh R. One-pot construction of carbohydrate scaffolds mediated by metal catalysts. RSC Adv 2020; 10:32450-32475. [PMID: 35516477 PMCID: PMC9056687 DOI: 10.1039/d0ra05355d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the environmental concern worldwide and also due to cost, time and labour issues, use of one-pot reactions [domino/cascade/tandem/multi-component (MC) or sequential] has gained much attention among the scientific and industrial communities for the generation of compound libraries having different scaffolds. Inclusion of sugars in such compounds is expected to increase the pharmacological efficacy because of the possibility of better interactions with the receptors of such unnatural glycoconjugates. In many of the one-pot transformations, the presence of a metal salt/complex can improve the reaction/change the course of reaction with remarkable increase in chemo-/regio-/stereo-selectivity. On the other hand because of the importance of natural polymeric glycoconjugates in life processes, the development and efficient synthesis of related oligosaccharides, particularly utilising one-pot MC-glycosylation techniques are necessary. The present review is an endeavour to discuss one-pot transformations involving carbohydrates catalysed by a metal salt/complex.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health Bethesda MD 20892 USA
| | | | - Rina Ghosh
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| |
Collapse
|
32
|
Total Synthesis of Natural Disaccharide Sambubiose. Pharmaceuticals (Basel) 2020; 13:ph13080198. [PMID: 32824527 PMCID: PMC7465796 DOI: 10.3390/ph13080198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/01/2023] Open
Abstract
A practical and robust synthetic method to obtain the natural disaccharide sambubiose (2-O-β-D-xylopyranosyl-D-glucopyranose) is reported, exploring the key step in the synthesis, i.e., stereoselective O-glycosylation. Specifically, the best combinations of glycoside donors and acceptors were identified, stereospecific control of the reaction was achieved by screening several catalysts and protection/deprotection steps were evaluated and improved. The best result was obtained by coupling allyl 3,5,6-tri-O-benzyl-β-D-glucofuranoside with 2,3,4-tri-O-acetyl-D-xylopiranosyl-α-trichloro acetimidate in the presence of trimethylsilyl triflate as a catalyst giving the corresponding protected target compound as a correct single isomer. The latter was transformed accordingly into the desired final product by deprotection steps (deallylation, deacetylation, and debenzylation). Sambubiose was synthesized into a satisfactory and higher overall yield than previously reported and was also characterized.
Collapse
|
33
|
Ouyang W, Huang H, Yang R, Ding H, Xiao Q. First Total Synthesis of 5'- O-α-d-Glucopyranosyl Tubercidin. Mar Drugs 2020; 18:E398. [PMID: 32751067 PMCID: PMC7459636 DOI: 10.3390/md18080398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The first total synthesis of 5'-O-α-d-glucopyranosyl tubercidin was successfully developed. It is a structurally unique disaccharide 7-deazapurine nucleoside exhibiting fungicidal activity, and was isolated from blue-green algae. The total synthesis was accomplished in eight steps with 27% overall yield from commercially available 1-O-acetyl-2,3,5-tri-O-benzoyl-β-d-ribose. The key step involves stereoselective α-O-glycosylation of the corresponding 7-bromo-6-chloro-2',3'-O-isopropylidene-β-d-tubercidin with 2,3,4,6-tetra-O-benzyl-glucopyranosyl trichloroacetimidate. All spectra are in accordance with the reported data for natural 5'-O-α-d-glucopyranosyl tubercidin. Meanwhile, 5'-O-β-d-glucopyranosyl tubercidin was also prepared using the same strategy.
Collapse
Affiliation(s)
| | - Haiyang Huang
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (W.O.); (R.Y.); (H.D.)
| | | | | | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (W.O.); (R.Y.); (H.D.)
| |
Collapse
|
34
|
Gannedi V, Ali A, Singh PP, Vishwakarma RA. Total Synthesis of Phospholipomannan of Candida albicans. J Org Chem 2020; 85:7757-7771. [PMID: 32425042 DOI: 10.1021/acs.joc.0c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
First, total synthesis of the cell surface phospholipomannan anchor [β-Manp-(1 → 2)-β-Manp]n-(1 → 2)-β-Manp-(1 → 2)-α-Manp-1 → P-(O → 6)-α-Manp-(1 → 2)-Inositol-1-P-(O → 1)-phytoceramide of Candida albicans is reported. The target phospholipomannan (PLM) anchor poses synthetic challenges such as the unusual kinetically controlled (1 → 2)-β-oligomannan domain, anomeric phosphodiester, and unique phytoceramide lipid tail linked to the glycan through a phosphate group. The synthesis of PLM anchor was accomplished using a convergent block synthetic approach using three main appropriately protected building blocks: (1 → 2)-β-tetramannan repeats, pseudodisaccharide, and phytoceramide-1-H-phosphonate. The most challenging (1 → 2)-β-tetramannan domain was synthesized in one pot using the preactivation method. The phytoceramide-1-H-phosphonate was synthesized through an enantioselective A3 three-component coupling reaction. Finally, the phytoceramide-1-H-phosphonate moiety was coupled with pseudodisaccharide followed by deacetylation to produce the acceptor, which on subsequent coupling with tetramannosyl-H-phosphonate provided the fully protected PLM anchor. Final deprotection was successfully achieved by Pearlman's hydrogenation.
Collapse
Affiliation(s)
- Veeranjaneyulu Gannedi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Asif Ali
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| |
Collapse
|
35
|
Affiliation(s)
- Gustavo A. Kashiwagi
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR)CONICET- Universidad de Buenos Aires Intendente Güiraldes 2160, Pabellón II 3°Piso, Ciudad Universitaria C1428EHA Ciudad Autónoma de Buenos Aires Argentina
- Departamento de QuímicaUniversidad Nacional del Oeste Belgrano 369 San Antonio de Padua Provincia de Buenos Aires Argentina
| |
Collapse
|
36
|
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez AM, Lopez JC. BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry 2020; 26:5388-5399. [PMID: 31999023 DOI: 10.1002/chem.201905780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/11/2022]
Abstract
A series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness. Accordingly, some BODIPY derivatives described in this work can withstand the reaction conditions commonly employed in the chemical synthesis of saccharides; namely, glycosylation and protecting-group manipulations. Regarding their photophysical properties, the BODIPY-labeled saccharides obtained in this work display remarkable fluorescence efficiency in water, reaching quantum yield values up to 82 %, as well as notable lasing efficiencies and photostabilities.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Caterina Permingeat
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Ventura
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | | | - Ana M Gómez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
37
|
Bachmann T, Rychlik M. Chemical glucosylation of pyridoxine. Carbohydr Res 2020; 489:107929. [DOI: 10.1016/j.carres.2020.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
|
38
|
Li P, He H, Zhang Y, Yang R, Xu L, Chen Z, Huang Y, Bao L, Xiao G. Glycosyl ortho-(1-phenylvinyl)benzoates versatile glycosyl donors for highly efficient synthesis of both O-glycosides and nucleosides. Nat Commun 2020; 11:405. [PMID: 31964883 PMCID: PMC6972911 DOI: 10.1038/s41467-020-14295-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Both of O-glycosides and nucleosides are important biomolecules with crucial rules in numerous biological processes. Chemical synthesis is an efficient and scalable method to produce well-defined and pure carbohydrate-containing molecules for deciphering their functions and developing therapeutic agents. However, the development of glycosylation methods for efficient synthesis of both O-glycosides and nucleosides is one of the long-standing challenges in chemistry. Here, we report a highly efficient and versatile glycosylation method for efficient synthesis of both O-glycosides and nucleosides, which uses glycosyl ortho-(1-phenylvinyl)benzoates as donors. This glycosylation protocol enjoys the various features, including readily prepared and stable donors, cheap and readily available promoters, mild reaction conditions, good to excellent yields, and broad substrate scopes. In particular, the applications of the current glycosylation protocol are demonstrated by one-pot synthesis of several bioactive oligosaccharides and highly efficient synthesis of nucleosides drugs capecitabine, galocitabine and doxifluridine.
Collapse
Affiliation(s)
- Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Limei Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
39
|
Hattie M, Stubbs KA. Generalising a Simple Methodology for the Regioselective Anomeric Deacetylation of Carbohydrates. ChemistrySelect 2020. [DOI: 10.1002/slct.201904343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mitchell Hattie
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Keith A. Stubbs
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| |
Collapse
|
40
|
An eco-friendly N-benzoylglycine/thiourea cooperative catalyzed stereoselective synthesis of β-L-rhamnopyranosides. Carbohydr Res 2019; 487:107887. [PMID: 31830633 DOI: 10.1016/j.carres.2019.107887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 11/22/2022]
Abstract
A new practical utility for β-stereoselective L-rhamnopyranosylations are conducted using rhamnosyl trichloroacetimidate donors in the presence of N-benzoylglycine/thiourea cooperative catalysis. This method represents the first instance where amino acid derivative N-benzoylglycine is used as a catalyst for β-L-rhamnopyranosylations. This method represents the first instance where environmentally benign amino acid derivative, such as N-benzoylglycine which is reported as less toxic and can be used as efficient catalyst for smooth transformation under eco friendly conditions. On the other hand β-stereoselectivity of rhamnosyl trichloroacetimidate donors protected with O-picoloyl groups at remote positions (C-2 and C-3) has been investigated while the glycosylation reactions of 2-O-picoloyl group substituted l-rhamnosyl donor displays predominant β-stereoselectivity. Reaction proceeded smoothly with moderate to high yield under mild reaction conditions at room temperature with 10 mol% catalyst loadings and tolerant of a wide range of glycoside acceptors.
Collapse
|
41
|
Hemiketal‐Keto Tautomerism in 2‐Deoxy‐δ‐lactones Mediated by 2‐Lithiothiazole in Solution State: A Formal Synthesis of DAH, Kamusol and Their
C
5
Epimers. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Zhu D, Geng M, Yang F, Yu B. Strategies on the construction of 1,2-branched trans-β-glycosidic linkages and their applications in the synthesis of saponins. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1642345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Mingyu Geng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Fuzhu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
43
|
Prasad V, Mishra N, Agrahari AK, Singh SK, Mohapatra PP, Tiwari VK. Cycloelimination-assisted Combinatorial Synthesis of Diverse Heterocyclic Scaffolds of Chemotherapeutic Values. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190405145805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in high-throughput, automated techniques combined with the identification of new therapeutic targets in genome sequencing and molecular biology have generated a need for a large collection of diverse heterocyclic scaffolds. This inspires toward the development of novel reaction sequences and linking strategies to generate libraries of diverse simple to complex heterocyclic systems. In this regard, combinatorial chemistry has emerged as an excellent technology platform for the rapid assembly of building blocks to synthesize complex molecular structures with great ease in a few synthetic steps. By means of the implementation of high-throughput screening for the biological evaluation of hits and leads, combinatorial libraries have become important assets in drug discovery and development. In the last two decades, the cyclorelease strategy that minimizes the chemical and tethering implications by releasing the intact desired target molecule in the final step of reaction has attracted much attention. Recently, a particular interest is developing in linking strategies, where loading and cleavage steps contribute to the complexity of the target structure rather than only extraneous manipulations. This review summarises the practical and high-yielding approaches of solid phase combinatorial synthesis for diverse high-purity heterocyclic skeletons of pharmacological importance involving the cycloelimination strategy.
Collapse
Affiliation(s)
- Virendra Prasad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anand K. Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sumit K. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | | | - Vinod K. Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
44
|
Denavit V, St‐Gelais J, Tremblay T, Giguère D. Exploring the Chemistry of Non‐sticky Sugars: Synthesis of Polyfluorinated Carbohydrate Analogues of
d
‐Allopyranose. Chemistry 2019; 25:9272-9279. [DOI: 10.1002/chem.201901346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/16/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Vincent Denavit
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| | - Jacob St‐Gelais
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| | - Thomas Tremblay
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| | - Denis Giguère
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| |
Collapse
|
45
|
Synthesis of 3-deoxy-2-uloses via the indium-mediated allylation reaction. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02438-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Dubey A, Sangwan R, Mandal PK. N-benzoylglycine/thiourea cooperative catalyzed stereoselective O-glycosidation: Activation of O-glycosyl trichloroacetimidate donors. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Jeyakumar M, Sathya S, Gandhi S, Tharra P, Suryanarayanan V, Singh SK, Baire B, Pandima Devi K. α-bisabolol β-D-fucopyranoside as a potential modulator of β-amyloid peptide induced neurotoxicity: An in vitro &in silico study. Bioorg Chem 2019; 88:102935. [PMID: 31030060 DOI: 10.1016/j.bioorg.2019.102935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Soniya Gandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Prabhakarrao Tharra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Venkatesan Suryanarayanan
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
48
|
Zhang Y, Xiang G, He S, Hu Y, Liu Y, Xu L, Xiao G. Orthogonal One-Pot Synthesis of Oligosaccharides Based on Glycosyl ortho-Alkynylbenzoates. Org Lett 2019; 21:2335-2339. [PMID: 30869522 DOI: 10.1021/acs.orglett.9b00617] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One of the most popular one-pot glycosylation strategies is orthogonal one-pot synthesis, which was mainly based on thioglycosides. Despite its successful application, shortcomings of thioglycosides including aglycon transfers, interference of departing species and unpleasant odor restrict its application scope. Herein, we report a new and efficient orthogonal one-pot synthesis of oligosaccahrides based on glycosyl ortho-alkynylbenzoate, which solves the issues of thioglycoside-based orthogonal one-pot synthesis. Over a dozen of oligosaccharides have been efficiently synthesized by this method.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Yikao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Yanjun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| |
Collapse
|
49
|
Abstract
Glycosyl chlorides have historically been activated using harsh conditions and/or toxic stoichiometric promoters. More recently, the Ye and the Jacobsen groups showed that glycosyl chlorides can be activated under organocatalytic conditions. However, those reactions are slow, require specialized catalysts and high temperatures, but still provide only moderate yields. Presented herein is a simple method for the activation of glycosyl chlorides using abundant and inexpensive ferric chloride in catalytic amounts. Our preliminary results indicate that both benzylated and benzoylated glycosyl chlorides can be activated with 20 mol% of FeCl3.
Collapse
Affiliation(s)
- Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | |
Collapse
|
50
|
Dey S, Bajaj SO, Tsai TI, Lo HJ, Wu K, Wong CH. Synthesis of Modular Building Blocks using Glycosyl Phosphate Donors for the Construction of Asymmetric N-Glycans. Tetrahedron 2018; 74:6003-6011. [PMID: 30983640 PMCID: PMC6456066 DOI: 10.1016/j.tet.2018.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosyl phosphates are known as versatile donors for the synthesis of complex oligosaccharides both chemically and enzymatically. Herein, we report the stereoselective construction of modular building blocks for the synthesis of N-glycan using glycosyl phosphates as donors. We have synthesized four trisaccharide building blocks with orthogonal protecting groups, namely, Manβ2GlcNAc(OAc)3β6GlcNAc (9), Manβ2GlcNAc-β6GlcNAc(OAc)3 (15), Manβ2GlcNAc(OAc)3β4GlcNAc (18) and Manβ2GlcNAcβ4GlcNAc(OAc) (22) for further selective elongation using glycosyltransferases. The glycosylation reaction using glycosyl phosphate was found to be high yielding with shorter reaction time. Initially, The phthalimide protected glucosamine donor was exploited to ensure the formation of β-glycosidic linkage and later converted to the N-acetyl group before the enzymatic synthesis. The selective deprotection of O-benzyl group was performed prior to enzymatic synthesis to avoid its negative interference.
Collapse
Affiliation(s)
- Supriya Dey
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Sumit O Bajaj
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
- Corden Pharma Colorado Inc., 2075 55 Street, Boulder, CO, USA, 80301
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Hong-Jay Lo
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Kevin Wu
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
- The Genomics Research Center, Academia Sinica, No. 128, Academia Rd., Section 2, Nankang District, Taipei, 115, Taiwan
| |
Collapse
|