1
|
Cao FY, Zeng Y, Lee AR, Kim B, Lee D, Kim ST, Kwon SW. OsFBN6 Enhances Brown Spot Disease Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3302. [PMID: 39683095 DOI: 10.3390/plants13233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Brown spot (BS) is caused by necrotrophs fungi Cochliobolus miyabeanus (C. miyabeanus) which affects rainfed and upland production in rice, resulting in significant losses in yield and grain quality. Here, we explored the meJA treatment that leads to rice resistance to BS. Fibrillins (FBNs) family are constituents of plastoglobules in chloroplast response to biotic and abiotic stress, many research revealed that OsFBN1 and OsFBN5 are not only associated with the rice against disease but also with the JA pathway. The function of FBN6 was only researched in the Arabidopsis. We revealed gene expression levels of OsFBN1, OsFBN5, OsFBN6 and the JA pathway synthesis first specific enzyme OsAOS2 following infection with C. miyabeanus, OsAOS2 gene expression showed great regulation after C. miyabeanus and meJA treatment, indicating JA pathway response to BS resistance in rice. Three FBN gene expressions showed different significantly regulated modes in C. miyabeanus and meJA treatment. The haplotype analysis results showed OsFBN1 and OsFBN5 the diverse Haps significant with BS infection score, and the OsFBN6 showed stronger significance (**** p < 0.0001). Hence, we constructed OsFBN6 overexpression lines, which showed more resistance to BS compared to the wild type, revealing OsFBN6 positively regulated rice resistance to BS. We developed OsFBN6 genetic markers by haplotype analysis from 130 rice varieties according to whole-genome sequencing results, haplotype analysis, and marker development to facilitate the screening of BS-resistant varieties in rice breeding. The Caps marker developed by Chr4_30690229 can be directly applied to the breeding application of screening rice BS-resistant varieties.
Collapse
Affiliation(s)
- Fang-Yuan Cao
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yuting Zeng
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ah-Rim Lee
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Backki Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dongryung Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Giacoletto CJ, Benjamin R, Rotter JI, Schiller MR. A fundamental and theoretical framework for mutation interactions and epistasis. Genomics 2024; 116:110963. [PMID: 39561884 PMCID: PMC11752442 DOI: 10.1016/j.ygeno.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Many pathological conditions are a result of intragenic epistasis; however, there are ambiguities in current epistasis models. Herein, the new Mutation Interaction Spectrum model defines a discrete outcome, named a Mutation Interaction, for each double point mutation in a gene and its component single mutations. The model is a universal genetic model of all types of mutation interactions and their functional outcomes and is derived from digital logic, commonly used in electrical engineering. Mutation interactions are normally classified as positive and negative epistasis. The model logics unifies common genetic relationships into one model, normalizing biological nomenclature, and disambiguates them with the 16 possible logic-based interactions. The model was tested by assaying transcriptional activity induced by HIV-1 Tat protein, for a random sampling of 3429 double mutations and all 1615 single mutations. All possible types of logic were observed for the Tat mutation interactions.
Collapse
Affiliation(s)
- Christopher J Giacoletto
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA; School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA; Heligenics Inc., 10530 Discovery Drive, Las Vegas, NV 89135, USA
| | - Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA; School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Jerome I Rotter
- Heligenics Inc., 10530 Discovery Drive, Las Vegas, NV 89135, USA; The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA; School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA; Heligenics Inc., 10530 Discovery Drive, Las Vegas, NV 89135, USA.
| |
Collapse
|
3
|
Ao X, Rong Y, Han M, Wang X, Xia Q, Shang F, Liu Y, Lv Q, Wang Z, Su R, Zhang Y, Wang R. Combined Genome-Wide Association Study and Haplotype Analysis Identifies Candidate Genes Affecting Growth Traits of Inner Mongolian Cashmere Goats. Vet Sci 2024; 11:428. [PMID: 39330807 PMCID: PMC11435611 DOI: 10.3390/vetsci11090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, genome-wide association analysis was performed on the growth traits (body height, body length, chest circumference, chest depth, chest width, tube circumference, and body weight) of Inner Mongolian cashmere goats (Erlangshan type) based on resequencing data. The population genetic parameters were estimated, haplotypes were constructed for the significant sites, and association analysis was conducted between the haplotypes and phenotypes. A total of two hundred and eighty-four SNPs and eight candidate genes were identified by genome-wide association analysis, gene annotation, and enrichment analysis. The phenotypes of 16 haplotype combinations were significantly different by haplotype analysis. Combined with the above results, the TGFB2, BAG3, ZEB2, KCNJ12, MIF, MAP2K3, HACD3, and MEGF11 functional candidate genes and the haplotype combinations A2A2, C2C2, E2E2, F2F2, I2I2, J2J2, K2K2, N2N2, O2O2, P2P2, R1R1, T1T1, W1W1, X1X1, Y1Y1, and Z1Z1 affected the growth traits of the cashmere goats and could be used as molecular markers to improve the accuracy of early selection and the economic benefits of breeding.
Collapse
Affiliation(s)
- Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Mingxuan Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Qincheng Xia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| |
Collapse
|
4
|
Silva Barcelos EC, Naslavsky MS, Fernandes IS, Scliar MO, Yamamoto GL, Wang JYT, Bride L, de Sousa VP, Pimassoni LHS, Sportoletti P, de Paula F, von Zeidler SV, Duarte YAO, Passos-Bueno MR, Zatz M, Errera FIV. Genetic variation in NOTCH1 is associated with overweight and obesity in Brazilian elderly. Sci Rep 2024; 14:17096. [PMID: 39048597 PMCID: PMC11269636 DOI: 10.1038/s41598-024-65771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Excessive weight (overweight and obesity) is a common disorder involving genetic and environmental factors, associated with cardiovascular diseases, type-2 diabetes, and others. NOTCH1 is critical for the maintenance of stem cells and adult tissues, being reported as a key player in metabolism and adipogenesis in animals. Thus, we test the hypothesis that NOTCH1 Single Nucleotide Polymorphisms (SNPs) are associated with excessive weight. Participants from the census-based cohort SABE (Saúde, Bem Estar e Envelhecimento-Health, Well-Being, and Aging), carried out in the city of São Paulo-Brazil, were stratified into cases and controls according to BMI. We filter the SNPs located at the start and end positions of NOTCH1 and 50 Kb on both sides. We selected SNPs with minor allelic frequency (MAF) greater than or equal to 0.01 and Hardy-Weinberg equilibrium (p > 0.05) and r2 ≥ 0.8. We performed an association study with genotypes and haplotypes, as well as in silico functional analysis of the identified SNPs. We observed an association of the SNP rs9411207 with the risk of excessive weight, under log-additive model, and the genotype distribution showed an increased frequency of homozygous TT (OR 1.50, CI 1.20-1.88; p = 0.0002). The haplotype GAT constructed from this and other SNPs in high Linkage Disequilibrium was more frequent in excessive-weight individuals (p = 0.003). In silico analyses suggested that these SNPs are likely to affect the transcription of NOTCH1 and other genes involved in adipogenesis and metabolism. This is the first study reporting association between NOTCH1 SNPs and the risk of excessive weight. Considering the possibility of NOTCH1 modulation, additional population studies are important to replicate these data and confirm the usefulness of risk genotypes for management strategies of excessive weight.
Collapse
Affiliation(s)
- Estevão Carlos Silva Barcelos
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Marilia Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Laís Bride
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Flavia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Edifício Lídia Behar, Sala 105, Vitória, Espírito Santo, 29075-910, Brazil
| | - Sandra Ventorin von Zeidler
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Pathology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Yeda Aparecida Oliveira Duarte
- School of Nursing, University of São Paulo, São Paulo, Brazil
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
- Department of Biological Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Edifício Lídia Behar, Sala 105, Vitória, Espírito Santo, 29075-910, Brazil.
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
5
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
6
|
Shao LN, Zheng ZW, Zhou SH, Zhang ST, Song WQ, Xia YX, Liang XH. Polymorphisms in the promoter regions of RHD and RHCE genes in the Chinese Han population. Vox Sang 2023; 118:972-979. [PMID: 37823181 DOI: 10.1111/vox.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND OBJECTIVES The Rh blood group system is the most polymorphic human blood group system. Previous studies have investigated variants in the RHD and RHCE promoter. The relevance of these variants to the Chinese Han population is further clarified in this study. MATERIALS AND METHODS In total, 317 donors (223 Rh D-positive [D+], including 20 Del and 94 Rh D-negative [D-]) were randomly selected. The promoter regions and exon 1 of RHD and RHCE were amplified through polymerase chain reaction (PCR) whose products were directly sequenced using forward and reverse primers. RESULTS Expected PCR products of the RHD promoter and exon 1 were amplified in 223 D+ individuals, including 20 Del individuals, and were absent in 81 of 94 D- individuals. Expected PCR products of RHCE were observed in all donors. Two single nucleotide variants (SNVs) were observed in the RHD promoter region. Moreover, 11 SNVs were observed in the promoter and exon 1 of RHCE. rs4649082, rs2375313, rs2281179, rs2072933, rs2072932, rs2072931 and rs586178 with strong linkage disequilibria were significantly different between the D+ and D- groups. [A;C] was the most common haplotype in the RHD promoter (NC_000001.11:g.[-1033A>G;-831C>T]). [G;T;T;A;T;A;C;G;A;C;G] was the most predominant haplotype in both total and D- groups. In D+ individuals, [A;C;T;G;C;G;C;G;C;C;C] was the most frequent haplotype in the RHCE promoter (NC_000001.11:g.[-1080A>G;-958C>T;-390T>C;-378G>A;-369C>T;-296G>A;-144C>G;-132G>A;-122C>A;28C>T;48C>G]). CONCLUSION We speculate that the SNVs/haplotypes found in this article cannot significantly affect gene expression. The present study findings should help elucidate the molecular basis of the polymorphic expression of RHD and RHCE promoter regions.
Collapse
Affiliation(s)
| | - Zi-Wei Zheng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, China
| | | | | | | | - Yue-Xin Xia
- Dalian Blood Center, Dalian, Liaoning, China
| | | |
Collapse
|
7
|
Gamache J, Gingerich D, Shwab EK, Barrera J, Garrett ME, Hume C, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell Biosci 2023; 13:185. [PMID: 37789374 PMCID: PMC10546724 DOI: 10.1186/s13578-023-01120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA
| | - Cordelia Hume
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC Box 3382, Durham, NC, 27708, USA.
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Shi Y, Miao BY, Ai XX, Cao P, Gao J, Xu Y, Yang Q, Fei J, Zhang Q, Mai QY, Wen YX, Qu YL, Zhou CQ, Xu YW. Identification of common genetic polymorphisms associated with down-regulated gonadotropin levels in an exome-wide association study. Fertil Steril 2023; 120:671-681. [PMID: 37001689 DOI: 10.1016/j.fertnstert.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To investigate whether common genetic polymorphisms are associated with gonadotropin levels after down-regulation with daily gonadotropin-releasing hormone agonist and whether the polymorphisms of candidate variants influence the ovarian response to exogenous gonadotropins. DESIGN Genetic association study. SETTING University-affiliated in vitro fertilization center. PATIENTS Subjects enrolled in an exploratory exome-wide association study (n = 862), a replication exome-wide association study (n = 86), and a classifier validation study (n = 148) were recruited from September 2016 to October 2018, September 2019 to September 2020, and January 2021 to December 2021, respectively. The included patients were aged ≤40 years and had a basal follicle-stimulating hormone (FSH) ≤12 IU/L. INTERVENTIONS All participants received a luteal phase down-regulation long protocol. Genome DNA was extracted from the peripheral blood leukocytes. For the exploratory and replication cohorts, exome sequencing was conducted on a HiSeq 2500 sequencing platform. The multiplex polymerase chain reaction amplification technique and next-generation sequencing also were performed in the exploratory and replication cohorts. For the samples of the validation cohort, Sanger sequencing was performed. MAIN OUTCOME MEASURES The primary endpoint was the gonadotropin levels after down-regulation, and the secondary endpoints were hormone levels and follicle diameters during stimulation, the total dose of FSH, duration of FSH stimulation, number of oocytes retrieved, and clinical pregnancy rate. RESULTS In the exploratory cohort, we identified that FSHB rs6169 (P=2.71 × 10-24) and its single-nucleotide polymorphisms in high linkage disequilibrium were associated with the down-regulated FSH level. The same locus was confirmed in the replication cohort. Women carrying the C allele of FSHB rs6169 exhibited higher average estradiol level during stimulation (P=6.82 × 10-5), shorter duration of stimulation, and less amount of exogenous FSH (Pduration=0.0002; Pdose=0.0024). In the independent validation set, adding rs6169 genotypes into the prediction model for FSH level after down-regulation enhanced the area under the curve from 0.560 to 0.712 in a logistic regression model, and increased prediction accuracy by 41.05% when a support vector machine classifier was applied. CONCLUSION The C allele of FSHB rs6169 is a susceptibility site for the relatively high level of FSH after down-regulation, which may be associated with increased ovarian FSH sensitivity.
Collapse
Affiliation(s)
- Yue Shi
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Ben-Yu Miao
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Xi-Xiong Ai
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China; Reproductive Medicine Center, The Affiliated Shenzhen Maternity and Child Healthcare Hospital of the South Medical University, Shenzhen, Guangdong, China
| | - Ping Cao
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China; Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jun Gao
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Qun Yang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Jia Fei
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Qian Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Qing-Yun Mai
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yang-Xing Wen
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yan-Lin Qu
- Department of Management Science and Engineering, Stanford University, Stanford, California
| | - Can-Quan Zhou
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yan-Wen Xu
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Macedo JMB, Silva AL, Pinto AC, Landeira LFL, Portari EA, Santos-Rebouças CB, Klumb EM. TP53 and p21 (CDKN1A) polymorphisms and the risk of systemic lupus erythematosus. Adv Rheumatol 2023; 63:43. [PMID: 37605254 DOI: 10.1186/s42358-023-00320-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The p53 and p21 proteins are important regulators of cell cycle and apoptosis and may contribute to autoimmune diseases, such as systemic lupus erythematosus (SLE). As genetic polymorphisms may cause changes in protein levels and functions, we investigated associations of TP53 and p21 (CDKN1A) polymorphisms (p53 72 G > C-rs1042522; p53 PIN3-rs17878362; p21 31 C > A-rs1801270; p21 70 C > T-rs1059234) with the development of systemic lupus erythematosus (SLE) in a Southeastern Brazilian population. METHODS Genotyping of 353 female volunteers (cases, n = 145; controls, n = 208) was performed by polymerase chain reaction, restriction fragment length polymorphism and/or DNA sequencing. Associations between TP53 and p21 polymorphisms and SLE susceptibility and clinical manifestations of SLE patients were assessed by logistic regression analysis. RESULTS Protective effect was observed for the genotype combinations p53 PIN3 A1/A1-p21 31 C/A, in the total study population (OR 0.45), and p53 PIN3 A1/A2-p21 31 C/C, in non-white women (OR 0.28). In Whites, p53 72 C-containing (OR 3.06) and p53 PIN3 A2-containing (OR 6.93) genotypes were associated with SLE risk, and higher OR value was observed for the combined genotype p53 72 G/C-p53 PIN3 A1/A2 (OR 9.00). Further, p53 PIN3 A1/A2 genotype was associated with serositis (OR 2.82), while p53 PIN3 A2/A2 and p53 72 C/C genotypes were associated with neurological disorders (OR 4.69 and OR 3.34, respectively). CONCLUSIONS Our findings showed that the TP53 and p21 polymorphisms included in this study may have potential to emerge as SLE susceptibility markers for specific groups of patients. Significant interactions of the TP53 polymorphisms with serositis and neurological disorders were also observed in SLE patients.
Collapse
Affiliation(s)
| | - Amanda Lima Silva
- Department of Biochemistry, State University of Rio de Janeiro - UERJ, Rio de Janeiro, Brazil
| | - Amanda Chaves Pinto
- Department of Biochemistry, State University of Rio de Janeiro - UERJ, Rio de Janeiro, Brazil
| | | | - Elyzabeth Avvad Portari
- Department of Pathological Anatomy, State University of Rio de Janeiro - UERJ, Rio de Janeiro, Brazil
- Department of Pathology, Fernandes Figueira Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Evandro Mendes Klumb
- Department of Rheumatology, Pedro Ernesto University Hospital, State University of Rio de Janeiro - UERJ, Boulevard 28 de Setembro, 87, Vila Isabel, Rio de Janeiro, RJ, CEP 20551-030, Brazil.
| |
Collapse
|
10
|
Zondo NM, Sobia P, Sivro A, Ngcapu S, Mansoor LE, Mahomed S, Lewis L, Ramsuran V, Archary D. Single-nucleotide polymorphisms in ABC drug transporters alter expression and circulating tenofovir in healthy South African women exposed to pre-exposure prophylaxis. Pharmacogenomics 2023; 24:599-613. [PMID: 37503696 DOI: 10.2217/pgs-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: We investigated if single-nucleotide polymorphisms (SNPs) in ATP-binding cassette (ABC) drug transporters alter gene expression and tenofovir disposition in South African women taking Truvada® for HIV prevention. Materials & methods: In 393 women, real-time PCR was used to determine the associations between six SNPs in ABC transporter genes, mRNA expression and circulating-tenofovir. Results: Univariable and multivariable analyses showed that CT and TT relative to CC genotypes for the ABCC4(3463C/T) SNP had significantly higher tenofovir levels. In contrast, the AA genotype for the ABCC4(4976A/G) SNP showed significantly less tenofovir, while mRNA expression was increased. Conclusion: SNPs in the ABCC4 gene may differentially affect gene expression and circulating tenofovir. Their impact may inform on low pre-exposure prophylaxis efficacy and discern effective drugs in clinical trials of African women enriched for certain genotypes.
Collapse
Affiliation(s)
- Nomusa M Zondo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, R3E 3L5, Canada
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| |
Collapse
|
11
|
Ye M, Fan Z, Xu Y, Luan K, Guo L, Zhang S, Luo Q. Exploring the association between fat-related traits in chickens and the RGS16 gene: insights from polymorphism and functional validation analysis. Front Vet Sci 2023; 10:1180797. [PMID: 37234072 PMCID: PMC10205986 DOI: 10.3389/fvets.2023.1180797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Excessive fat deposition in chickens can lead to reduced feed utilization and meat quality, resulting in significant economic losses for the broiler industry. Therefore, reducing fat deposition has become an important breeding objective in addition to achieving high broiler weight, growth rate, and feed conversion efficiency. In our previous studies, we observed high expression of Regulators of G Protein Signaling 16 Gene (RGS16) in high-fat individuals. This led us to speculate that RGS16 might be involved in the process of fat deposition in chickens. Methods Thus, we conducted a polymorphism and functional analysis of the RGS16 gene to investigate its association with fat-related phenotypic traits in chickens. Using a mixed linear model (MLM), this study explored the relationship between RGS16 gene polymorphisms and fat-related traits for the first time. We identified 30 SNPs of RGS16 in a population of Wens Sanhuang chickens, among which 8 SNPs were significantly associated with fat-related traits, including sebum thickness (ST), abdominal fat weight (AFW), and abdominal fat weight (AFR). Furthermore, our findings demonstrated that AFW, AFR, and ST showed significant associations with at least two or more out of the eight identified SNPs of RGS16. We also validated the role of RGS16 in ICP-1 cells through various experimental methods, including RT-qPCR, CCK- 8, EdU assays, and oil red O staining. Results Our functional validation experiments showed that RGS16 was highly expressed in the abdominal adipose tissue of high-fat chickens and played a critical role in the regulation of fat deposition by promoting preadipocyte differentiation and inhibiting their proliferation. Taken together, our findings suggest that RGS16 polymorphisms are associated with fat-related traits in chickens. Moreover, the ectopic expression of RGS16 could inhibit preadipocyte proliferation but promote preadipocyte differentiation. Discussion Based on our current findings, we propose that the RGS16 gene could serve as a powerful genetic marker for marker-assisted breeding of chicken fat-related traits.
Collapse
Affiliation(s)
- Mao Ye
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhexia Fan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yuhang Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Kang Luan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
12
|
Ma N, Sun Y, Kong Y, Jin Y, Yu F, Liu L, Yang L, Liu W, Gao X, Liu D, Zhang X, Li L. Comprehensive investigating of mismatch repair genes (MMR) polymorphisms in participants with chronic hepatitis B virus infection. Front Genet 2023; 14:1077297. [PMID: 36816025 PMCID: PMC9928949 DOI: 10.3389/fgene.2023.1077297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Background and aim: In this study, we focused on the relationship between single nucleotide polymorphisms in MMR genes and the occurrence and development of HBV infection. Materials and methods: A total of 3,128 participants were divided into five groups: negative control group (NeC), spontaneous clearance group (SC), chronic hepatitis B group (CHB), liver cirrhosis group (LC) and hepatocellular carcinoma group (HCC), CHB, liver cirrhosis and hepatocellular carcinoma constitute HLD. We conducted three case-control studies: NeC (840 cases) vs. HLD (1792 cases), SC (486 cases) vs. HLD (1792 cases) and CHB + LC (1,371 cases) vs. HCC (421 cases). 11 polymorphic loci in MLH1, MLH3, MSH5, PMS1 and PMS2 were involved in genotyping by Sequenom MassArray. The SNPStats performed Hardy-Weinberg equilibrium test. Linkage disequilibrium patterns were visualized using Haploview4.2. The GMDR (v0.9) was conducted to generalized multifactor dimension reduction analysis. The correlation, multiplicative interaction and additive interaction analyses were calculated by Logistic Regression through SPSS21.0. Matrix and programmed excel were also involved in the calculation of additive interaction. Results: In NeC vs. HLD group, MSH5-rs1150793(G) was a risk base to HBV susceptibility (nominal p = 0.002, OR = 1.346). We found multiplicative interaction between MLH1-rs1540354 (AA + AT) and PMS1-rs1233255 (AA) (nominal p = 0.024, OR = 1.240). There was additive interaction between PMS1-rs1233255 (AA) and PMS1-rs256554(CA + CC). In SC vs. HLD group, MLH1-rs1540354 (TT) was a risk genotype (nominal p < 0.05, OR>1). Through haplotype analysis, we found the linkage disequilibrium of three loci in MLH1. The results of GMDR showed the optimal five-locus model about the spontaneous clearance of HBV. In CHB + LC vs. HCC group, PMS2-rs12112229(A) was related to the cancerization of liver. Conclusion: We found rs1150793(G), rs1540354(T) and rs12112229(A) were significantly related to HBV susceptibility, spontaneous clearance of HBV and cancerization after infection, respectively.
Collapse
Affiliation(s)
- Ning Ma
- Department of Social Medicine and HealthCare Management, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yucheng Sun
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yanan Kong
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yiyao Jin
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Fengxue Yu
- Division of gastroenterology, The Second Hospital of Hebei Medical University, The Hebei Key Laboratory of Gastroenterology, Shijiazhuang, China
| | - Lianfeng Liu
- Department of Pediatrics, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenxuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xia Gao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Dianwu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China,*Correspondence: Xiaolin Zhang, ; Lu Li,
| | - Lu Li
- Department of Social Medicine and HealthCare Management, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China,*Correspondence: Xiaolin Zhang, ; Lu Li,
| |
Collapse
|
13
|
Bai H, Zhang X, Bush WS. Pharmacogenomic and Statistical Analysis. Methods Mol Biol 2023; 2629:305-330. [PMID: 36929083 DOI: 10.1007/978-1-0716-2986-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Genetic variants can alter response to drugs and other therapeutic interventions. The study of this phenomenon, called pharmacogenomics, is similar in many ways to other types of genetic studies but has distinct methodological and statistical considerations. Genetic variants involved in the processing of exogenous compounds exhibit great diversity and complexity, and the phenotypes studied in pharmacogenomics are also more complex than typical genetic studies. In this chapter, we review basic concepts in pharmacogenomic study designs, data generation techniques, statistical analysis approaches, and commonly used methods and briefly discuss the ultimate translation of findings to clinical care.
Collapse
Affiliation(s)
- Haimeng Bai
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xueyi Zhang
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Taniguti CH, Taniguti LM, Amadeu RR, Lau J, Gesteira GDS, Oliveira TDP, Ferreira GC, Pereira GDS, Byrne D, Mollinari M, Riera-Lizarazu O, Garcia AAF. Developing best practices for genotyping-by-sequencing analysis in the construction of linkage maps. Gigascience 2022; 12:giad092. [PMID: 37889010 PMCID: PMC10603770 DOI: 10.1093/gigascience/giad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/27/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genotyping-by-sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using millions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias generated by polymerase chain reaction duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regular meiosis. This, in turn, leads to difficulties in grouping and ordering markers, resulting in inflated and incorrect linkage maps. Therefore, genotyping errors can be easily detected by linkage map quality evaluations. RESULTS We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid outcrossing populations. The workflows run GATK, Stacks, TASSEL, and Freebayes for single-nucleotide polymorphism calling and updog, polyRAD, and SuperMASSA for genotype calling, as well as OneMap and GUSMap to build linkage maps. Using simulated data, we observed which genotype call software fails in identifying common errors in GBS sequencing data and proposed specific filters to better handle them. We tested whether it is possible to overcome errors in a linkage map using genotype probabilities from each software or global error rates to estimate genetic distances with an updated version of OneMap. We also evaluated the impact of segregation distortion, contaminant samples, and haplotype-based multiallelic markers in the final linkage maps. Through our evaluations, we observed that some of the approaches produce different results depending on the dataset (dataset dependent) and others produce consistent advantageous results among them (dataset independent). CONCLUSIONS We set as default in the Reads2Map workflows the approaches that showed to be dataset independent for GBS datasets according to our results. This reduces the number of required tests to identify optimal pipelines and parameters for other empirical datasets. Using Reads2Map, users can select the pipeline and parameters that best fit their data context. The Reads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.
Collapse
Affiliation(s)
- Cristiane Hayumi Taniguti
- Department of Genetics, University of São Paulo, São Paulo 13418-900, Brazil
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | - Lucas Mitsuo Taniguti
- Department of Genetics, University of São Paulo, São Paulo 13418-900, Brazil
- Mendelics Genomic Analysis, São Paulo 02511-000, Brazil
| | | | - Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | - Gabriel de Siqueira Gesteira
- Department of Genetics, University of São Paulo, São Paulo 13418-900, Brazil
- Bioinformatics Research Center, Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695-7566, USA
| | | | | | | | - David Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | - Marcelo Mollinari
- Bioinformatics Research Center, Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695-7566, USA
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-0001, USA
| | | |
Collapse
|
15
|
Al-Karaawi IA, Al-bassam WW, Ismaeel HM, Ad'hiah AH. Interleukin-38 promoter variants and risk of COVID-19 among Iraqis. Immunobiology 2022; 227:152301. [PMID: 36375233 PMCID: PMC9651960 DOI: 10.1016/j.imbio.2022.152301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.
Collapse
|
16
|
Neves AR, Vuong NL, Blockeel C, Garcia S, Alviggi C, Spits C, Ma PQM, Ho MT, Tournaye H, Polyzos NP. The effect of polymorphisms in FSHR gene on late follicular phase progesterone and estradiol serum levels in predicted normoresponders. Hum Reprod 2022; 37:2646-2654. [PMID: 36069495 DOI: 10.1093/humrep/deac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does the presence of FSHR single-nucleotide polymorphisms (SNPs) affect late follicular phase progesterone and estradiol serum levels in predicted normoresponders treated with rFSH? SUMMARY ANSWER The presence of FSHR SNPs (rs6165, rs6166, rs1394205) had no clinically significant impact on late follicular phase serum progesterone and estradiol levels in predicted normoresponders undergoing a GnRH antagonist protocol with a fixed daily dose of 150 IU rFSH. WHAT IS KNOWN ALREADY Previous studies have shown that late follicular phase serum progesterone and estradiol levels are significantly correlated with the magnitude of ovarian response. Several authors have proposed that individual variability in the response to ovarian stimulation (OS) could be explained by variants in FSHR. However, so far, the literature is scarce on the influence of this genetic variability on late follicular phase steroidogenic response. Our aim is to determine whether genetic variants in the FSHR gene could modulate late follicular phase serum progesterone and estradiol levels. STUDY DESIGN, SIZE, DURATION In this multicenter multinational prospective study conducted from November 2016 to June 2019, 366 patients from Vietnam, Belgium and Spain (166 from Europe and 200 from Asia) underwent OS followed by oocyte retrieval in a GnRH antagonist protocol with a fixed daily dose of 150 IU rFSH. All patients were genotyped for 3 FSHR SNPs (rs6165, rs6166, rs1394205) and had a serum progesterone and estradiol measurement on the day of trigger. PARTICIPANTS/MATERIALS, SETTING, METHODS Included patients were predicted normal responder women <38 years old undergoing their first or second OS cycle. The prevalence of late follicular phase progesterone elevation (PE), as well as mean serum progesterone and estradiol levels on the day of trigger were compared between the different FSHR SNPs genotypes. PE was defined as >1.50 ng/ml. MAIN RESULTS AND THE ROLE OF CHANCE The overall prevalence of PE was 15.8% (n = 58). No significant difference was found in the prevalence of PE in Caucasian and Asian patients (17.5% versus 14.5%). Estradiol levels on the day of trigger and the number of retrieved oocytes were significantly higher in patients with PE (4779 ± 6236.2 versus 3261 ± 3974.5 pg/ml, P = 0.003, and 16.1 ± 8.02 versus 13.5 ± 6.66, P = 0.011, respectively). Genetic model analysis, adjusted for patient age, body mass index, number of retrieved oocytes and continent (Asia versus Europe), revealed a similar prevalence of PE in co-dominant, dominant and recessive models for variants FSHR rs6166, rs6165 and rs1394205. No statistically significant difference was observed in the mean late follicular phase progesterone serum levels according to the genotypes of FSHR rs6166 (P = 0.941), rs6165 (P = 0.637) and rs1394205 (P = 0.114) in the bivariate analysis. Also, no difference was found in the genetic model analysis regarding mean late follicular phase progesterone levels across the different genotypes. Genetic model analysis has also revealed no statistically significant difference regarding mean estradiol levels on the day of trigger in co-dominant, dominant and recessive models for variants FSHR rs6166, rs6165 and rs1394205. Haplotype analysis revealed a statistically significant lower estradiol level on the day of trigger for rs6166/rs6165 haplotypes GA, AA and GG when compared to AG (respectively, estimated mean difference (EMD) -441.46 pg/ml (95% CI -442.47; -440.45), EMD -673.46 pg/ml (95% CI -674.26; -672.67) and EMD -582.10 pg/ml (95% CI -584.92; -579.28)). No statistically significant differences were found regarding the prevalence of PE nor late follicular phase progesterone levels according to rs6166/rs6165 haplotypes. LIMITATIONS, REASONS FOR CAUTION Results refer to a population of predicted normal responders treated with a normal/low fixed dose of 150 IU rFSH throughout the whole OS. Consequently, caution is needed before generalizing our results to all patient categories. WIDER IMPLICATIONS OF THE FINDINGS Based on our results, FSHR SNPs rs6165, rs6166 and rs1394205 do not have any clinically significant impact neither on late follicular phase serum progesterone nor on estradiol levels in predicted normal responders. These findings add to the controversy in the literature regarding the impact of individual genetic susceptibility in response to OS in this population. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by an unrestricted grant by Merck Sharp & Dohme (MSD, IISP56222). N.P.P. reports grants and/or personal fees from MSD, Merck Serono, Roche Diagnostics, Ferring International, Besins Healthcare, Gedeon Richter, Organon, Theramex and Institut Biochimique SA (IBSA). C.A. reports conference fees from Merck Serono, Medea and Event Planet. A.R.N., C.B., C.S., P.Q.M.M., H.T., C.B., N.L.V., M.T.H. and S.G. report no conflict of interests related to the content of this article. TRIAL REGISTRATION NUMBER NCT03007043.
Collapse
Affiliation(s)
- A R Neves
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain.,IVI-RMA Lisboa, Lisbon, Portugal.,Autonomous University of Barcelona, Cerdanyola del Vallès, Department of Paediatrics, Obstetrics, Gynaecology and Preventive Medicine, Faculty of Medicine, Barcelona, Spain
| | - N L Vuong
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.,IVFMD and HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - C Blockeel
- Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - S Garcia
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | - C Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - C Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussels, Brussels, Belgium
| | - P Q M Ma
- IVFMD and HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - M T Ho
- IVFMD and HOPE Research Center, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - H Tournaye
- Brussels IVF, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Department of Obstetrics, Gynecology, Perinatology and Reproduction, Institute of Professional Education, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - N P Polyzos
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain.,Faculty of Medicine and Health Sciences, Ghent University (UZ Gent), Gent, Belgium
| |
Collapse
|
17
|
Maculewicz E, Leońska-Duniec A, Mastalerz A, Szarska E, Garbacz A, Lepionka T, Łakomy R, Anyżewska A, Bertrandt J. The Influence of FTO, FABP2, LEP, LEPR, and MC4R Genes on Obesity Parameters in Physically Active Caucasian Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106030. [PMID: 35627568 PMCID: PMC9141290 DOI: 10.3390/ijerph19106030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023]
Abstract
Obesity is a complex multifactorial abnormality that has a well-confirmed genetic basis. However, the problem still lies in identifying the polymorphisms linked to body mass and composition. Therefore, this study aimed to analyze associations between FTO (rs9939609), FABP2 (rs1799883), and LEP (rs2167270), LEPR (rs1137101), and MC4R (rs17782313) polymorphisms and obesity-related parameters. Unrelated Caucasian males (n = 165) were recruited. All participants had similar physical activity levels. The participants were divided into two groups depending on their body mass index (BMI) and fat mass index (FMI). All samples were genotyped using real-time polymerase chain reaction (real-time PCR). When tested individually, only one statistically significant result was found. The FTO A/T polymorphism was significantly associated with FMI (p = 0.01). The chance of having increased FMI was >2-fold higher for the FTO A allele carriers (p < 0.01). Gene−gene interaction analyses showed the additional influence of all investigated genes on BMI and FMI. In summary, it was demonstrated that harboring the FTO A allele might be a risk factor for elevated fat mass. Additionally, this study confirmed that all five polymorphisms are involved in the development of common obesity in the studied population and the genetic risk of obesity is linked to the accumulation of numerous variants.
Collapse
Affiliation(s)
- Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-809 Warsaw, Poland;
- Correspondence:
| | - Agata Leońska-Duniec
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Andrzej Mastalerz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-809 Warsaw, Poland;
| | - Ewa Szarska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (E.S.); (T.L.); (R.Ł.)
| | - Aleksandra Garbacz
- Institute of Animal Sciences, Faculty of Animal Breeding, Bioengineering and Conservation, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Tomasz Lepionka
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (E.S.); (T.L.); (R.Ł.)
| | - Roman Łakomy
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (E.S.); (T.L.); (R.Ł.)
| | - Anna Anyżewska
- University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland;
| | - Jerzy Bertrandt
- Faculty of Health Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, 21-500 Biala Podlaska, Poland;
| |
Collapse
|
18
|
Impact of the DRD2 Polymorphisms on the Effectiveness of the Training Program. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094942. [PMID: 35564336 PMCID: PMC9101192 DOI: 10.3390/ijerph19094942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Dopamine receptor D2 gene (DRD2) polymorphisms have been associated with cognitive abilities, obesity, addictions, and physical-activity-related behaviors, which may underlie differences in the effectiveness of training programs. What is not yet clear is the impact of DRD2 polymorphisms on the effectiveness of exercise programs. Thus, the aim of this study was to investigate the association between the DRD2 polymorphic sites (rs1076560, rs12364283, rs1799732, rs1800497, and rs1800498) and the body's response to regular physical activity. We studied genotypes and haplotypes distribution in a group of 165 females measured for body mass and body composition measurements, lipid profile, and glucose levels before and after realization of a 12-week training program. When tested individually, statistical analyses revealed one significant genotype by training interaction under the general model (for the basal metabolic rate, BMR, p = 0.033). Carriers of the rs1076560 CC genotype exhibited a decrease in BMR in response to training (p = 0.006). Haplotype analyses also showed that (i) the CACCC and CACTT haplotypes were associated with a post-training decrease in glucose level (β = -4.11, p = 0.032; β = -6.86, p = 0.020, respectively); (ii) the CGCCT with an increase in BMR (β = 0.65, p = 0.003) and fat free mass (FFM, β = 1.20, p = 0.009); (iii) the CA-CT with a decrease in low-density lipoprotein cholesterol (LDL, β = -17.26, p = 0.046). These results provide some evidence that the DRD2 polymorphisms may play a role in post-training changes in lipid and carbohydrate metabolism, and, as a consequence, in the effectiveness of training programs.
Collapse
|
19
|
Li K, Huang W, Wang Z, Chen Y, Cai D, Nie Q. circTAF8 Regulates Myoblast Development and Associated Carcass Traits in Chicken. Front Genet 2022; 12:743757. [PMID: 35058965 PMCID: PMC8764441 DOI: 10.3389/fgene.2021.743757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that circular RNAs (circRNAs) play important roles in skeletal muscle development. CircRNA biogenesis is dependent on the genetic context. Single-nucleotide polymorphisms in the introns flanking circRNAs may be intermediate-inducible factors between circRNA expression and phenotypic traits. Our previous study showed that circTAF8 is an abundantly and differentially expressed circRNA in leg muscle during chicken embryonic development. Here, we aimed to investigate circTAF8 function in muscle development and the association of the SNPs in the circTAF8 flanking introns with carcass traits. In this study, we observed that overexpression of circTAF8 could promote the proliferation of chicken primary myoblasts and inhibit their differentiation. In addition, the SNPs in the introns flanking the circTAF8 locus and those associated with chicken carcass traits were analyzed in 335 partridge chickens. A total of eight SNPs were found associated with carcass traits such as leg muscle weight, live weight, and half and full-bore weight. The association analysis results of haplotype combinations were consistent with the association analysis of a single SNP. These results suggest that circTAF8 plays a regulatory role in muscle development. These identified SNPs were found correlated with traits to muscle development and carcass muscle weight in chickens.
Collapse
Affiliation(s)
- Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Weichen Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yangfeng Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danfeng Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
20
|
Alidoust M, Hamzehzadeh L, Khorshid Shamshiri A, Afzaljavan F, Kerachian MA, Fanipakdel A, Aledavood SA, Allahyari A, Bari A, Moosanen Mozaffari H, Goshayeshi L, Pasdar A. Association of SMAD7 genetic markers and haplotypes with colorectal cancer risk. BMC Med Genomics 2022; 15:8. [PMID: 35016683 PMCID: PMC8753827 DOI: 10.1186/s12920-021-01150-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the common cancers with a high mortality rate worldwide. In Iran, there has been a trend of increased incidence of colorectal cancer in the last three decades that necessitates the early diagnosis. Genetic factors have an influential role in its etiology along with the conventional risk factors such as age, diet, and lifestyle. Results from GWAS have shown significant associations between SMAD7 gene variants and risk of CRC. This study aimed to assess the association of certain polymorphisms as well as haplotypes of this gene and risk of colorectal cancer.
Methods and materials This study was designed as a case–control association study. After obtaining ethical approval and informed consent, blood samples from 209 patients with colorectal cancer were collected and DNA was extracted. Four variants: rs4939827, rs34007497, rs8085824 and rs8088297 were genotyped using ARMS-PCR method.
Results SMAD7 rs4939827 in the recessive and co-dominant models was associated with colorectal cancer risk [TT/CT + CC: OR = 2.90, 95%CI (1.38–6.09), p = 0.005; CC + TT/CT: OR = 1.66, 95%CI (1.00–2.75), p = 0.01]. Haplotype analysis indicated that some SNP combinations including two for-SNPs haplotypes of T-T-C-C and T-C-C-A were significantly associated with CRC risk. Conclusion Based on the identified association of SMAD7 gene variations and haplotypes with colorectal cancer risk in our population, genetic variations in this gene region may have a role in CRC development. This data may shed light on the genetic predisposition of CRC which involves different pathways including TGF-β. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01150-3.
Collapse
Affiliation(s)
- Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Hamzehzadeh
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abolghasem Allahyari
- Hematology and Oncology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bari
- Hematology and Oncology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Moosanen Mozaffari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
21
|
He T, Liu M, Tao D, Leng X, Wang Z, Xie S, Zhang Y, Zhang X, Tan X, Liu Y, Yang Y. Is BRD7 associated with spermatogenesis impairment and male infertility in humans? A case-control study in a Han Chinese population. Basic Clin Androl 2021; 31:19. [PMID: 34470615 PMCID: PMC8411525 DOI: 10.1186/s12610-021-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Bromodomain-containing protein 7 (BRD7), a member of the bromodomain-containing protein family, plays important roles in chromatin modification and transcriptional regulation. A recent model of Brd7-knockout mice presented azoospermia and male infertility, implying the potential role of BRD7 in spermatogenic failure in humans. This case-control study aimed to explore the association of the BRD7 gene with spermatogenic efficiency and the risk of spermatogenic defects in humans. Results A total of six heterozygous variants were detected in the coding and splicing regions of the BRD7 gene in patients with azoospermia. For each of four rare variants predicted to potentially damage BRD7 function, we further identified these four variants in oligozoospermia and normozoospermia as well. However, no difference in the allele and genotype frequencies of rare variants were observed between cases with spermatogenic failure and controls with normozoospermia; the sperm products of variant carriers were similar to those of noncarriers. Moreover, similar distribution of the alleles, genotypes and haplotypes of seven tag single nucleotide polymorphisms (tagSNPs) was observed between the cases with azoospermia and oligozoospermia and controls with normozoospermia; associations of tagSNP-distinguished BRD7 alleles with sperm products were not identified. Conclusions The lack of an association of BRD7-linked rare and common variants with spermatogenic failure implied a limited contribution of the BRD7 gene to spermatogenic efficiency and susceptibility to male infertility in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12610-021-00139-3.
Collapse
Affiliation(s)
- Tianrong He
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyue Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaolan Tan
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Raina P, Sikka R, Gupta H, Matharoo K, Bali SK, Singh V, Bhanwer A. Association of eNOS and MCP-1 Genetic Variants with Type 2 Diabetes and Diabetic Nephropathy Susceptibility: A Case-Control and Meta-Analysis Study. Biochem Genet 2021; 59:966-996. [PMID: 33609191 PMCID: PMC7896546 DOI: 10.1007/s10528-021-10041-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/24/2020] [Indexed: 10/26/2022]
Abstract
Type 2 diabetes (T2D) and its secondary complications result from the complex interplay of genetic and environmental factors. To understand the role of these factors on disease susceptibility, the present study was conducted to assess the association of eNOS and MCP-1 variants with T2D and diabetic nephropathy (DN) in two ethnically and geographically different cohorts from North India. A total of 1313 subjects from two cohorts were genotyped for eNOS (rs2070744, rs869109213 and rs1799983) and MCP-1 (rs1024611 and rs3917887) variants. Cohort-I (Punjab) comprised 461 T2D cases (204 T2D with DN and 257 T2D without DN) and 315 healthy controls. Cohort-II (Jammu and Kashmir) included 337 T2D (150 T2D with DN and 187 T2D without DN) and 200 controls. Allele, genotype and haplotype frequencies were compared among the studied participants, and phenotype-genotype interactions were determined. Meta-analysis was performed to investigate the association between the selected variants and disease susceptibility. All three eNOS variants were associated with 1.5-4.0-fold risk of DN in both cohorts. MCP-1 rs1024611 conferred twofold risk towards DN progression in cohort-II, while rs3917887 provided twofold risk for both T2D and DN in both cohorts. eNOS and MCP-1 haplotypes conferred risk for T2D and DN susceptibility. Phenotype-genotype interactions showed significant associations between the studied variants and anthropometric and biochemical parameters. In meta-analysis, all eNOS variants conferred risk towards DN progression, whereas no significant association was observed for MCP-1 rs1024611. We show evidences for an association of eNOS and MCP-1 variants with T2D and DN susceptibility.
Collapse
Affiliation(s)
- Priyanka Raina
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ruhi Sikka
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Himanshu Gupta
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Virinder Singh
- Dr Virinder Singh Kidney Clinic and Dialysis Centre, Amritsar, Punjab, India
| | - Ajs Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
23
|
Genetic variants in S-adenosyl-methionine synthesis pathway and nonsyndromic cleft lip with or without cleft palate in Chile. Pediatr Res 2021; 89:1020-1025. [PMID: 32492698 DOI: 10.1038/s41390-020-0994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The S-adenosyl-methionine (SAM) availability is crucial for DNA methylation, an epigenetic mechanism involved in nonsyndromic cleft lip with or without cleft palate (NSCL/P) expression. The aim of this study was to assess the association between single-nucleotide polymorphisms (SNPs) of genes involved in SAM synthesis and NSCL/P in a Chilean population. METHODS In 234 cases and 309 controls, 18 SNPs in AHCY, MTR, MTRR, and MAT2A were genotyped, and the association between them and the phenotype was evaluated based on additive (allele), dominant, recessive and haplotype models, by odds ratio (OR) computing. RESULTS Three deep intronic SNPs of MTR showed a protective effect on NSCL/P expression: rs10925239 (OR 0.68; p = 0.0032; q = 0.0192), rs10925254 (OR 0.66; p = 0.0018; q = 0.0162), and rs3768142 (OR 0.66; p = 0.0015; q = 0.0162). Annotations in expression database demonstrate that the protective allele of the three SNPs is associated with a reduction of MTR expression summed to the prediction by bioinformatic tools of its potentiality to modify splicing sites. CONCLUSIONS The protective effect against NSCL/P of these intronic MTR SNPs seems to be related to a decrease in MTR enzyme expression, modulating the SAM availability for proper substrate methylation. However, functional analyses are necessary to confirm our findings. IMPACT SAM synthesis pathway genetic variants are factors associated to NSCL/P. This article adds new evidence for folate related genes in NSCL/P in Chile. Its impact is to contribute with potential new markers for genetic counseling.
Collapse
|
24
|
Rimachi Hidalgo MA, Cirelli T, da Silva BR, Nicchio IG, Nepomuceno R, Orrico SRP, Cirelli JA, Theodoro LH, Barros SP, Scarel-Caminaga RM. Polymorphisms and haplotypes in the Interleukin 17 Alfa gene: potential effect of smoking habits in the association with periodontitis and type 2 diabetes mellitus. Mol Biol Rep 2021; 48:1103-1114. [PMID: 33559820 DOI: 10.1007/s11033-021-06172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Few studies evaluate interrelationships between periodontitis (P) and Type 2 Diabetes Mellitus (T2DM). The aim of this study is to investigate the genetic susceptibility to periodontitis alone, or concomitant with T2DM (as comorbidities), analyzing single nucleotide polymorphisms (SNPs) in the Interleukin 17 alpha (IL17A) gene, considering the biochemical profile and smoking habits on the subjects' periodontal status. We investigated 879 individuals divided into: T2DM subjects also affected by severe or moderate periodontitis (T2DM-P, n = 199); non-diabetics with severe or moderate periodontitis (PERIODONTITIS, n = 342); and healthy subjects (HEALTHY, n = 338). Subjects underwent complete periodontal examination, history of smoking habits, glycemic and lipid biochemical evaluation. DNA from buccal cells was utilized to genotype the SNPs rs2275913, rs3819024 and rs10484879. The impact of the subjects' biochemical profile was analyzed in their periodontal status. Each SNP was analyzed independently, and as haplotypes, by multiple logistic regressions, adjusted for covariates, and also stratifying the groups by age, sex and smoking habits. Independently of the periodontitis degree, poorly-controlled T2DM subjects showed worse glycemic and lipid profile. Multiple logistic regressions demonstrated that smokers and former-smokers carrying the GG genotype of rs3819024 seemed to have higher risk for T2DM-Periodontitis (OR = 6.33; 95% CI = 1.26-31.77, p = 0.02), and mainly for T2DM alone (OR = 5.11; 95% CI = 1.37-19.06, p = 0.01), than never smokers. We found the potential effect of smoking habits in the association of IL17A-rs3819024-GG with diseased phenotypes. Because the observed wide confidence intervals, further studies enrolling larger populations, and SNPs' functional evaluations are needed to better understand our findings.
Collapse
Affiliation(s)
- Marco A Rimachi Hidalgo
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology and Pediatric Clinics, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Thamiris Cirelli
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology and Pediatric Clinics, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Bárbara Roque da Silva
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology and Pediatric Clinics, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology and Pediatric Clinics, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology and Pediatric Clinics, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Silvana R P Orrico
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP, 15030-070, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Letícia Helena Theodoro
- Department of Diagnosis and Surgery, São Paulo State University - UNESP, School of Dentistry at Araçatuba, Araçatuba, SP, Brazil
| | - Silvana P Barros
- Department of Periodontology, University of North Carolina at Chapel Hill - UNC, School of Dentistry, Chapel Hill, NC, USA
| | - Raquel M Scarel-Caminaga
- Department of Morphology and Pediatric Clinics, São Paulo State University - UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil.
| |
Collapse
|
25
|
Yang A, Kantor B, Chiba-Falek O. APOE: The New Frontier in the Development of a Therapeutic Target towards Precision Medicine in Late-Onset Alzheimer's. Int J Mol Sci 2021; 22:1244. [PMID: 33513969 PMCID: PMC7865856 DOI: 10.3390/ijms22031244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) has a critical unmet medical need. The consensus around the amyloid cascade hypothesis has been guiding pre-clinical and clinical research to focus mainly on targeting beta-amyloid for treating AD. Nevertheless, the vast majority of the clinical trials have repeatedly failed, prompting the urgent need to refocus on other targets and shifting the paradigm of AD drug development towards precision medicine. One such emerging target is apolipoprotein E (APOE), identified nearly 30 years ago as one of the strongest and most reproduceable genetic risk factor for late-onset Alzheimer's disease (LOAD). An exploration of APOE as a new therapeutic culprit has produced some very encouraging results, proving that the protein holds promise in the context of LOAD therapies. Here, we review the strategies to target APOE based on state-of-the-art technologies such as antisense oligonucleotides, monoclonal antibodies, and gene/base editing. We discuss the potential of these initiatives in advancing the development of novel precision medicine therapies to LOAD.
Collapse
Affiliation(s)
- Anna Yang
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA;
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
- Duke Center for Advanced Genomic Technologies, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA;
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
26
|
Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci 2020; 21:ijms21249626. [PMID: 33348854 PMCID: PMC7766382 DOI: 10.3390/ijms21249626] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
A high prevalence of vitamin D (calcidiol) serum deficiency has been described in several autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (AR), and systemic lupus erythematosus (SLE). Vitamin D is a potent immunonutrient that through its main metabolite calcitriol, regulates the immunomodulation of macrophages, dendritic cells, T and B lymphocytes, which express the vitamin D receptor (VDR), and they produce and respond to calcitriol. Genetic association studies have shown that up to 65% of vitamin D serum variance may be explained due to genetic background. The 90% of genetic variability takes place in the form of single nucleotide polymorphisms (SNPs), and SNPs in genes related to vitamin D metabolism have been linked to influence the calcidiol serum levels, such as in the vitamin D binding protein (VDBP; rs2282679 GC), 25-hydroxylase (rs10751657 CYP2R1), 1α-hydroxylase (rs10877012, CYP27B1) and the vitamin D receptor (FokI (rs2228570), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) VDR). Therefore, the aim of this comprehensive literature review was to discuss the current findings of functional SNPs in GC, CYP2R1, CYP27B1, and VDR associated to genetic risk, and the most common clinical features of MS, RA, and SLE.
Collapse
Affiliation(s)
- Adolfo I. Ruiz-Ballesteros
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
| | - Mónica R. Meza-Meza
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Barbara Vizmanos-Lamotte
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo Guerrero 39087, Mexico;
| | - Ulises de la Cruz-Mosso
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Correspondence: ; Tel.: +52-1-331-744-15-75
| |
Collapse
|
27
|
A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model. PLoS One 2020; 15:e0241291. [PMID: 33120403 PMCID: PMC7595403 DOI: 10.1371/journal.pone.0241291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Decreasing the cost of high-throughput DNA sequencing technologies, provides a huge amount of data that enables researchers to determine haplotypes for diploid and polyploid organisms. Although various methods have been developed to reconstruct haplotypes in diploid form, their accuracy is still a challenging task. Also, most of the current methods cannot be applied to polyploid form. In this paper, an iterative method is proposed, which employs hypergraph to reconstruct haplotype. The proposed method by utilizing chaotic viewpoint can enhance the obtained haplotypes. For this purpose, a haplotype set was randomly generated as an initial estimate, and its consistency with the input fragments was described by constructing a weighted hypergraph. Partitioning the hypergraph specifies those positions in the haplotype set that need to be corrected. This procedure is repeated until no further improvement could be achieved. Each element of the finalized haplotype set is mapped to a line by chaos game representation, and a coordinate series is defined based on the position of mapped points. Then, some positions with low qualities can be assessed by applying a local projection. Experimental results on both simulated and real datasets demonstrate that this method outperforms most other approaches, and is promising to perform the haplotype assembly.
Collapse
|
28
|
Mukhi B, Gupta H, Wassmer SC, Anvikar AR, Ghosh SK. Haplotype of RNASE 3 polymorphisms is associated with severe malaria in an Indian population. Mol Biol Rep 2020; 47:8841-8848. [PMID: 33113080 PMCID: PMC7591695 DOI: 10.1007/s11033-020-05934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Severe malaria (SM) caused by Plasmodium falciparum (Pf) infection has been associated with life-threatening anemia, metabolic acidosis, cerebral malaria and multiorgan dysfunction. It may lead to death if not treated promptly. RNASE 3 has been linked to Pf growth inhibition and its polymorphisms found associated with SM and cerebral malaria in African populations. This study aimed to assess the association of RNASE 3 polymorphisms with SM in an Indian population. RNASE 3 gene and flanking regions were amplified followed by direct DNA sequencing in 151 Indian patients who visited Wenlock District Government Hospital, Mangalore, Karnataka, India. Allele, genotype and haplotype frequencies were compared between patients with SM (n = 47) and uncomplicated malaria (UM; n = 104). Homozygous mutant genotype was only found for rs2233860 (+ 499G > C) polymorphism (< 1% frequency). No significant genetic associations were found for RNASE 3 polymorphism genotypes and alleles in Indian SM patients using the Fisher's exact test. C-G-G haplotype of rs2233859 (− 38C > A), rs2073342 (+ 371C > G) and rs2233860 (+ 499G > C) polymorphisms was correlated significantly with SM patients (OR = 3.03; p = 0.008) after Bonferroni correction. A haplotype of RNASE 3 gene was found associated with an increased risk of SM and confirming that RNASE 3 gene plays a role in susceptibility to SM.
Collapse
Affiliation(s)
- Benudhar Mukhi
- ICMR-National Institute of Malaria Research, New Delhi, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Himanshu Gupta
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St. Bloomsbury, London, WC1E 7HT, UK.
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St. Bloomsbury, London, WC1E 7HT, UK
| | | | - Susanta Kumar Ghosh
- ICMR-National Institute of Malaria Research, New Delhi, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
29
|
Zamani F, Olyaee MH, Khanteymoori A. NCMHap: a novel method for haplotype reconstruction based on Neutrosophic c-means clustering. BMC Bioinformatics 2020; 21:475. [PMID: 33092523 PMCID: PMC7579908 DOI: 10.1186/s12859-020-03775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Single individual haplotype problem refers to reconstructing haplotypes of an individual based on several input fragments sequenced from a specified chromosome. Solving this problem is an important task in computational biology and has many applications in the pharmaceutical industry, clinical decision-making, and genetic diseases. It is known that solving the problem is NP-hard. Although several methods have been proposed to solve the problem, it is found that most of them have low performances in dealing with noisy input fragments. Therefore, proposing a method which is accurate and scalable, is a challenging task. RESULTS In this paper, we introduced a method, named NCMHap, which utilizes the Neutrosophic c-means (NCM) clustering algorithm. The NCM algorithm can effectively detect the noise and outliers in the input data. In addition, it can reduce their effects in the clustering process. The proposed method has been evaluated by several benchmark datasets. Comparing with existing methods indicates when NCM is tuned by suitable parameters, the results are encouraging. In particular, when the amount of noise increases, it outperforms the comparing methods. CONCLUSION The proposed method is validated using simulated and real datasets. The achieved results recommend the application of NCMHap on the datasets which involve the fragments with a huge amount of gaps and noise.
Collapse
Affiliation(s)
- Fatemeh Zamani
- Department of Computer Engineering, University of Zanjan, Zanjan, Iran
| | - Mohammad Hossein Olyaee
- Department of Computer Engineering, Faculty of Engineering, University of Gonabad, Gonabad, Iran
| | | |
Collapse
|
30
|
Brazeau DA, Attwood K, Meaney CJ, Wilding GE, Consiglio JD, Chang SS, Gundroo A, Venuto RC, Cooper L, Tornatore KM. Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front Genet 2020; 11:889. [PMID: 32849848 PMCID: PMC7433713 DOI: 10.3389/fgene.2020.00889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Interpatient variability in tacrolimus pharmacokinetics is attributed to metabolism by cytochrome P-450 3A5 (CYP3A5) isoenzymes and membrane transport by P-glycoprotein. Interpatient pharmacokinetic variability has been associated with genotypic variants for both CYP3A5 or ABCB1. Tacrolimus pharmacokinetics was investigated in 65 stable Black and Caucasian post-renal transplant patients by assessing the effects of multiple alleles in both CYP3A5 and ABCB1. A metabolic composite based upon the CYP3A5 polymorphisms: ∗3(rs776746), ∗6(10264272), and ∗7(41303343), each independently responsible for loss of protein expression was used to classify patients as extensive, intermediate and poor metabolizers. In addition, the role of ABCB1 on tacrolimus pharmacokinetics was assessed using haplotype analysis encompassing the single nucleotide polymorphisms: 1236C > T (rs1128503), 2677G > T/A(rs2032582), and 3435C > T(rs1045642). Finally, a combined analysis using both CYP3A5 and ABCB1 polymorphisms was developed to assess their inter-related influence on tacrolimus pharmacokinetics. Extensive metabolizers identified as homozygous wild type at all three CYP3A5 loci were found in 7 Blacks and required twice the tacrolimus dose (5.6 ± 1.6 mg) compared to Poor metabolizers [2.5 ± 1.1 mg (P < 0.001)]; who were primarily Whites. These extensive metabolizers had 2-fold faster clearance (P < 0.001) with 50% lower AUC∗ (P < 0.001) than Poor metabolizers. No differences in C12 h were found due to therapeutic drug monitoring. The majority of blacks (81%) were classified as either Extensive or Intermediate Metabolizers requiring higher tacrolimus doses to accommodate the more rapid clearance. Blacks who were homozygous for one or more loss of function SNPS were associated with lower tacrolimus doses and slower clearance. These values are comparable to Whites, 82% of who were in the Poor metabolic composite group. The ABCB1 haplotype analysis detected significant associations of the wildtype 1236T-2677T-3435T haplotype to tacrolimus dose (P = 0.03), CL (P = 0.023), CL/LBW (P = 0.022), and AUC∗ (P = 0.078). Finally, analysis combining CYP3A5 and ABCB1 genotypes indicated that the presence of the ABCB1 3435 T allele significantly reduced tacrolimus clearance for all three CPY3A5 metabolic composite groups. Genotypic associations of tacrolimus pharmacokinetics can be improved by using the novel composite CYP3A5∗3∗4∗5 and ABCB1 haplotypes. Consideration of multiple alleles using CYP3A5 metabolic composites and drug transporter ABCB1 haplotypes provides a more comprehensive appraisal of genetic factors contributing to interpatient variability in tacrolimus pharmacokinetics among Whites and Blacks.
Collapse
Affiliation(s)
- Daniel A. Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, United States
| | - Kristopher Attwood
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Calvin J. Meaney
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Gregory E. Wilding
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Joseph D. Consiglio
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Shirley S. Chang
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Aijaz Gundroo
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Rocco C. Venuto
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Louise Cooper
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Kathleen M. Tornatore
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
31
|
Castro-Santos P, Verdugo RA, Alonso-Arias R, Gutiérrez MA, Suazo J, Aguillón JC, Olloquequi J, Pinochet C, Lucia A, Quiñones LA, Díaz-Peña R. Association analysis in a Latin American population revealed ethnic differences in rheumatoid arthritis-associated SNPs in Caucasian and Asian populations. Sci Rep 2020; 10:7879. [PMID: 32398702 PMCID: PMC7217883 DOI: 10.1038/s41598-020-64659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Large genome-wide association studies (GWAS) have increased our knowledge of the genetic risk factors of rheumatoid arthritis (RA). However, little is known about genetic susceptibility in populations with a large admixture of Amerindian ancestry. The aim of the present study was to test the generalizability of previously reported RA loci in a Latin American (LA) population with admixed ancestry. We selected 128 single nucleotide polymorphisms (SNPs) in linkage equilibrium, with high association to RA in multiple populations of non-Amerindian origin. Genotyping of 118 SNPs was performed in 313 RA patients/487 healthy control subjects by mid-density arrays of polymerase chain reaction (PCR). Some of the identified associations were validated in an additional cohort (250 cases/290 controls). One marker, the SNP rs2451258, located upstream of T Cell Activation RhoGTPase Activating Protein (TAGAP) gene, showed significant association with RA (p = 5 × 10-3), whereas 18 markers exhibited suggestive associations (p < 0.05). Haplotype testing showed association of some groups of adjacent SNPs around the signal transducer and activator of transcription 4 (STAT4) gene (p = 9.82 × 10-3 to 2.04 × 10-3) with RA. Our major finding was little replication of previously reported genetic associations with RA. These results suggest that performing GWAS and admixture mapping in LA populations has the potential to reveal novel loci associated with RA. This in turn might help to gain insight into the 'pathogenomics' of this disease and to explore trans-population differences for RA in general.
Collapse
Affiliation(s)
- P Castro-Santos
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - R A Verdugo
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - R Alonso-Arias
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M A Gutiérrez
- Rheumatology, Almirante Nef Naval Hospital, Viña del Mar, Valparaíso, Chile
- Valparaíso University, Viña del Mar, Valparaíso, Chile
| | - J Suazo
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - J C Aguillón
- Immune Regulation and Tolerance Research Group, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - C Pinochet
- Hospital Regional de Talca, Talca, Chile
| | - A Lucia
- Universidad Europea de Madrid (Faculty of Sports Sciences) and Research Institute Hospital 12 de Octubre ('i + 12'), Madrid, Spain
| | - L A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department de Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| | - R Díaz-Peña
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
32
|
Maili L, Letra A, Silva R, Buchanan EP, Mulliken JB, Greives MR, Teichgraeber JF, Blackwell SJ, Ummer R, Weber R, Chiquet B, Blanton SH, Hecht JT. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defects Res 2019; 112:234-244. [PMID: 31825181 DOI: 10.1002/bdr2.1630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Nonsyndromic cleft lip and palate (NSCLP) is one of the most common craniofacial anomalies in humans, affecting more than 135,000 newborns worldwide. NSCLP has a multifactorial etiology with more than 50 genes postulated to play an etiologic role. The genetic pathway comprised of Pbx-Wnt-p63-Irf6 genes was shown to control facial morphogenesis in mice and proposed as a regulatory pathway for NSCLP. Based on these findings, we investigated whether variation in PBX1, PBX2, and TP63, and their proposed interactions were associated with NSCLP. Fourteen single nucleotide variants (SNVs) in/nearby PBX1, PBX2, and TP63 were genotyped in 780 NSCLP families of nonHispanic white (NHW) and Hispanic ethnicities. Family-based association tests were performed for individual SNVs stratified by ethnicity and family history of NSCLP. Gene-gene interactions were also tested. A significant association was found for PBX2 rs3131300 and NSCLP in combined Hispanic families (p = .003) while nominal association was found for TP63 rs9332461 in multiplex Hispanic families (p = .005). Significant haplotype associations were observed for PBX2 in NHW (p = .0002) and Hispanic families (p = .003), and for TP63 in multiplex Hispanic families (.003). An independent case-control group was used to validate findings, and significant associations were found with PBX1 rs6426870 (p = .007) and TP63 rs9332461 (p = .03). Gene-gene interactions were detected between PBX1/PBX2/TP63 with IRF6 in NHW families, and between PBX1 with WNT9B in both NHW and Hispanic families (p < .0018). This study provides the first evidence for a role of PBX1 and PBX2, additional evidence for the role of TP63, and support for the proposed PBX-WNT-TP63-IRF6 regulatory pathway in the etiology of NSCLP.
Collapse
Affiliation(s)
- Lorena Maili
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Renato Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Department of Endodontics, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Edward P Buchanan
- Department of Plastic Surgery, Texas Children's Hospital, Houston, Texas
| | | | - Matthew R Greives
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | - John F Teichgraeber
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | | | - Rohit Ummer
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Ryan Weber
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Brett Chiquet
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Department of Pediatric Dentistry, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Susan H Blanton
- Dr. John T. MacDonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| |
Collapse
|
33
|
Abed A, Belzile F. Comparing Single-SNP, Multi-SNP, and Haplotype-Based Approaches in Association Studies for Major Traits in Barley. THE PLANT GENOME 2019; 12:1-14. [PMID: 33016584 DOI: 10.3835/plantgenome2019.05.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
The multiple single nucleotide polymorphism (multi-SNP) and haplotype-based approaches that jointly consider multiple markers unveiled a larger number of associations, some of which were shared with the single-SNP approach. A larger overlap of quantitative trait loci (QTLs) between the single-SNP and haplotype-based approaches was obtained than with the multi-SNP approach. Despite a limited overlap between the QTLs detected by these approaches, each uncovered QTLs reported previously, suggesting that each approach is capable of uncovering a different subset of QTLs. We demonstrated the efficiency of an integrated genome-wide association study (GWAS) procedure, combining single-locus and multilocus approaches to improve the capacity and reliability of association analysis to detect key QTLs. The efficiency of barley breeding programs may be improved by the practical use of QTLs identified in this study. Genome-wide association studies (GWAS) have been widely used to identify quantitative trait loci (QTLs) underlying complex agronomic traits. The conventional GWAS model is based on a single-locus model, which may prove inaccurate if a trait is controlled by multiple loci, which is the case for most agronomic traits in barley (Hordeum vulgare L.). Additionally, an individual single nucleotide polymorphism (SNP) will prove incapable of capturing underlying allelic diversity. A multilocus model could potentially represent a better alternative for QTL identification. This study aimed to explore different GWAS approaches (single-SNP, multi-SNP, and haplotype-based) to establish SNP-trait associations and to potentially describe the complex genetic architecture of seven key traits in spring barley. The multi-SNP and haplotype-based approaches unveiled a larger number of significant associations, some of which were shared with the single-SNP approach. Globally, the multi-SNP approach explained more of the phenotypic variance (cumulative R2 ) and provided the best fit with the genetic model [Bayesian information criterion (BIC)]. Compared with the multi-SNP approach, the single-SNP and haplotype-based approaches were relatively similar in terms of cumulative R2 and BIC, with an improvement with the haplotype-based approach. Despite limited overlap between detected QTLs, each approach discovered QTLs that had been validated previously, suggesting that each approach can uncover a different subset of QTLs. An integrated GWAS procedure, considering single-locus and multilocus GWAS approaches jointly, may improve the capacity of association studies to detect key QTLs and to provide a more complete picture of the genetic architecture of complex traits in barley.
Collapse
Affiliation(s)
- Amina Abed
- Dép. de phytologie, Pavillon Charles-Eugène, Marchand 1030, Ave., de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - François Belzile
- Dép. de phytologie, Pavillon Charles-Eugène, Marchand 1030, Ave., de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
34
|
An B, Gao X, Chang T, Xia J, Wang X, Miao J, Xu L, Zhang L, Chen Y, Li J, Xu S, Gao H. Genome-wide association studies using binned genotypes. Heredity (Edinb) 2019; 124:288-298. [PMID: 31641238 DOI: 10.1038/s41437-019-0279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/23/2023] Open
Abstract
Linear mixed models (LMM) that tests trait association one marker at a time have been the most popular methods for genome-wide association studies. However, this approach has potential pitfalls: over conservativeness after Bonferroni correction, ignorance of linkage disequilibrium (LD) between neighboring markers, and power reduction due to overfitting SNP effects. So, multiple locus models that can simultaneously estimate and test all markers in the genome are more appropriate. Based on the multiple locus models, we proposed a bin model that combines markers into bins based on their LD relationships. A bin is treated as a new synthetic marker and we detect the associations between bins and traits. Since the number of bins can be substantially smaller than the number of markers, a penalized multiple regression method can be adopted by fitting all bins to a single model. We developed an innovative method to bin the neighboring markers and used the least absolute shrinkage and selection operator (LASSO) method. We compared BIN-Lasso with SNP-Lasso and Q + K-LMM in a simulation experiment, and showed that the new method is more powerful with less Type I error than the other two methods. We also applied the bin model to a Chinese Simmental beef cattle population for bone weight association study. The new method identified more significant associations than the classical LMM. The bin model is a new dimension reduction technique that takes advantage of biological information (i.e., LD). The new method will be a significant breakthrough in associative genomics in the big data era.
Collapse
Affiliation(s)
- Bingxing An
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianpeng Chang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangwei Xia
- Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoqiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Miao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
35
|
Zhou Y, Zhang H, Yang Y. CSHAP: efficient haplotype frequency estimation based on sparse representation. Bioinformatics 2019; 35:2827-2833. [PMID: 30590428 DOI: 10.1093/bioinformatics/bty1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Estimating haplotype frequencies from genotype data plays an important role in genetic analysis. In silico methods are usually computationally involved since phase information is not available. Due to tight linkage disequilibrium and low recombination rates, the number of haplotypes observed in human populations is far less than all the possibilities. This motivates us to solve the estimation problem by maximizing the sparsity of existing haplotypes. Here, we propose a new algorithm by applying the compressive sensing (CS) theory in the field of signal processing, compressive sensing haplotype inference (CSHAP), to solve the sparse representation of haplotype frequencies based on allele frequencies and between-allele co-variances. RESULTS Our proposed approach can handle both individual genotype data and pooled DNA data with hundreds of loci. The CSHAP exhibits the same accuracy compared with the state-of-the-art methods, but runs several orders of magnitude faster. CSHAP can also handle with missing genotype data imputations efficiently. AVAILABILITY AND IMPLEMENTATION The CSHAP is implemented in R, the source code and the testing datasets are available at http://home.ustc.edu.cn/∼zhouys/CSHAP/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yinsheng Zhou
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui, China
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yaning Yang
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
36
|
Balliu B, Houwing‐Duistermaat JJ, Böhringer S. Powerful testing via hierarchical linkage disequilibrium in haplotype association studies. Biom J 2019; 61:747-768. [PMID: 30693553 PMCID: PMC6637384 DOI: 10.1002/bimj.201800053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/09/2018] [Accepted: 09/08/2018] [Indexed: 12/03/2022]
Abstract
Marginal tests based on individual SNPs are routinely used in genetic association studies. Studies have shown that haplotype-based methods may provide more power in disease mapping than methods based on single markers when, for example, multiple disease-susceptibility variants occur within the same gene. A limitation of haplotype-based methods is that the number of parameters increases exponentially with the number of SNPs, inducing a commensurate increase in the degrees of freedom and weakening the power to detect associations. To address this limitation, we introduce a hierarchical linkage disequilibrium model for disease mapping, based on a reparametrization of the multinomial haplotype distribution, where every parameter corresponds to the cumulant of each possible subset of a set of loci. This hierarchy present in the parameters enables us to employ flexible testing strategies over a range of parameter sets: from standard single SNP analyses through the full haplotype distribution tests, reducing degrees of freedom and increasing the power to detect associations. We show via extensive simulations that our approach maintains the type I error at nominal level and has increased power under many realistic scenarios, as compared to single SNP and standard haplotype-based studies. To evaluate the performance of our proposed methodology in real data, we analyze genome-wide data from the Wellcome Trust Case-Control Consortium.
Collapse
Affiliation(s)
- Brunilda Balliu
- Department of BiomathematicsDavid Geffen School of MedicineUCLALos AngelesCAUSA
| | | | - Stefan Böhringer
- Department of Biomedical Data SciencesSection Medical Statistics and BioinformaticsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
37
|
Koukoulioti E, Fischer J, Schott E, Fülöp B, Heyne R, Berg T, van Bömmel F. Association of HLA-DPA1 and HLA-DPB1 polymorphisms with spontaneous HBsAg seroclearance in Caucasians. Liver Int 2019; 39:646-654. [PMID: 30471179 DOI: 10.1111/liv.14008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Acute hepatitis B virus (HBV) infections may clear spontaneously or become chronic and run through different phases. The single nucleotide polymorphisms (SNPs) rs3077, rs9277535 and rs9277534 within the human leucocyte antigen (HLA)-DP gene have been found to be associated with HBV susceptibility and persistence in Asians. However, evidence for the influence of these variants in Caucasians has been limited so far. The aim of our study was to investigate the impact of these polymorphisms on the outcome of HBV infections in a large Caucasian population. METHODS In this case-control study, we retrospectively analysed 1111 Caucasian individuals, including 618 with chronic HBV infections (CHB), 239 with spontaneous HBsAg seroclearance (SC) and 254 healthy controls (HC). The rs3077, rs9277535 and rs9277534 SNPs were genotyped by a polymerase chain reaction from blood samples and melting curve analysis. RESULTS A significant difference in the allele distributions was observed only for the rs3077 SNP between the HC and the CHB group as well as between the SC and CHB groups. The rs3077-C allele was associated with a lower probability for spontaneous HBsAg seroclearance in comparison with the rs3077-T allele (OR 0.704, 95% CI 0.509-0.974; P = 0.033). No association of the three SNPs with the stages of chronic HBV infection was found. CONCLUSION This is the first study demonstrating an association of the rs3077-T allele with spontaneous HBsAg seroclearance in Caucasians. Further studies are needed to elucidate the role of HLA-DP variants in disease pathogenesis and their potential role for individualized disease management.
Collapse
Affiliation(s)
- Eleni Koukoulioti
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Janett Fischer
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Eckart Schott
- Department of Internal Medicine II, HELIOS Hospital Emil von Behring, Berlin, Germany
| | - Balazs Fülöp
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany.,Department of Internal Medicine and Gastroenterology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Renate Heyne
- Department of Internal Medicine and Gastroenterology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Florian van Bömmel
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Mancera-Páez O, Estrada-Orozco K, Mahecha MF, Cruz F, Bonilla-Vargas K, Sandoval N, Guerrero E, Salcedo-Tacuma D, Melgarejo JD, Vega E, Ortega-Rojas J, Román GC, Pardo-Turriago R, Arboleda H. Differential Methylation in APOE (Chr19; Exon Four; from 44,909,188 to 44,909,373/hg38) and Increased Apolipoprotein E Plasma Levels in Subjects with Mild Cognitive Impairment. Int J Mol Sci 2019; 20:ijms20061394. [PMID: 30897703 PMCID: PMC6470812 DOI: 10.3390/ijms20061394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biomarkers are essential for identification of individuals at high risk of mild cognitive impairment (MCI) for potential prevention of dementia. We investigated DNA methylation in the APOE gene and apolipoprotein E (ApoE) plasma levels as MCI biomarkers in Colombian subjects with MCI and controls. METHODS In total, 100 participants were included (71% women; average age, 70 years; range, 43⁻91 years). MCI was diagnosed by neuropsychological testing, medical and social history, activities of daily living, cognitive symptoms and neuroimaging. Using multivariate logistic regression models adjusted by age and gender, we examined the risk association of MCI with plasma ApoE and APOE methylation. RESULTS MCI was diagnosed in 41 subjects (average age, 66.5 ± 9.6 years) and compared with 59 controls. Elevated plasma ApoE and APOE methylation of CpGs 165, 190, and 198 were risk factors for MCI (p < 0.05). Higher CpG-227 methylation correlated with lower risk for MCI (p = 0.002). Only CpG-227 was significantly correlated with plasma ApoE levels (correlation coefficient = -0.665; p = 0.008). CONCLUSION Differential APOE methylation and increased plasma ApoE levels were correlated with MCI. These epigenetic patterns require confirmation in larger samples but could potentially be used as biomarkers to identify early stages of MCI.
Collapse
Affiliation(s)
- Oscar Mancera-Páez
- Department of Neurology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- David Cabello International Alzheimer Disease Scholarship Fund, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Kelly Estrada-Orozco
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Center for Evidence to Implementation, Bogotá ZC 57, Colombia.
- Health Technologies and Politics Assessment Group, Clinical Research Institute, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| | | | - Francy Cruz
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- PhD Program in Clinical and Translational Science, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56128 Pisa, Italy.
| | - Kely Bonilla-Vargas
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| | - Nicolás Sandoval
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| | - Esneyder Guerrero
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| | | | - Jesús D Melgarejo
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Laboratory of Neuroscience, University of Zulia, Maracaibo 4001, Venezuela.
| | - Edwin Vega
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| | - Jenny Ortega-Rojas
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| | - Gustavo C Román
- Department of Neurology, Methodist Neurological Institute and the Institute for Academic Medicine Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA.
- Weill Cornell Medical College, Department of Neurology, Cornell University, New York, NY 10065, USA.
| | - Rodrigo Pardo-Turriago
- Department of Neurology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Hospital Universitario Nacional de Colombia, Bogotá ZC 57, Colombia.
| | - Humberto Arboleda
- Neurosciences Research Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
- Genetic Institute, Universidad Nacional de Colombia, Bogotá ZC 57, Colombia.
| |
Collapse
|
39
|
Haplotype and Haplotype-Environment Interaction Analysis Revealed Roles of SPRY2 for NSCL/P among Chinese Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040557. [PMID: 30769929 PMCID: PMC6406689 DOI: 10.3390/ijerph16040557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is one of common birth defects in China, with genetic and environmental components contributing to the etiology. Genome wide association studies (GWASs) have identified SPRY1 and SPRY2 to be associated with NSCL/P among Chinese populations. This study aimed to further explore potential genetic effect and gene—environment interaction among SPRY genes based on haplotype analysis, using 806 Chinese case—parent NSCL/P trios drawn from an international consortium which conducted a genome-wide association study. After the process of quality control, 190 single nucleotide polymorphisms (SNPs) of SPRY genes were included for analyses. Haplotype and haplotype—environment interaction analyses were conducted in Population-Based Association Test (PBAT) software. A 2-SNP haplotype and three 3-SNP haplotypes showed a significant association with the risk of NSCL/P after Bonferroni correction (corrected significance level = 2.6 × 10−4). Moreover, haplotype—environment interaction analysis identified these haplotypes respectively showing statistically significant interactions with maternal multivitamin supplementation or maternal environmental tobacco smoke. This study showed SPRY2 to be associated with NSCL/P among the Chinese population through not only gene effects, but also a gene—environment interaction, highlighting the importance of considering environmental exposures in the genetic etiological study of NSCL/P.
Collapse
|
40
|
N’Diaye A, Haile JK, Nilsen KT, Walkowiak S, Ruan Y, Singh AK, Clarke FR, Clarke JM, Pozniak CJ. Haplotype Loci Under Selection in Canadian Durum Wheat Germplasm Over 60 Years of Breeding: Association With Grain Yield, Quality Traits, Protein Loss, and Plant Height. FRONTIERS IN PLANT SCIENCE 2018; 9:1589. [PMID: 30455711 PMCID: PMC6230583 DOI: 10.3389/fpls.2018.01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 05/21/2023]
Abstract
Durum wheat was introduced in the southern prairies of western Canada in the late nineteenth century. Breeding efforts have mainly focused on improving quality traits to meet the pasta industry demands. For this study, 192 durum wheat lines were genotyped using the Illumina 90K Infinium iSelect assay, and resulted in a total of 14,324 polymorphic SNPs. Genetic diversity changed over time, declining during the first 20 years of breeding in Canada, then increased in the late 1980s and early 1990s. We scanned the genome for signatures of selection, using the total variance Fst-based outlier detection method (Lositan), the hierarchical island model (Arlequin) and the Bayesian genome scan method (BayeScan). A total of 407 outliers were identified and clustered into 84 LD-based haplotype loci, spanning all 14 chromosomes of the durum wheat genome. The association analysis detected 54 haplotype loci, of which 39% contained markers with a complete reversal of allelic state. This tendency to fixation of favorable alleles corroborates the success of the Canadian durum wheat breeding programs over time. Twenty-one haplotype loci were associated with multiple traits. In particular, hap_4B_1 explained 20.6, 17.9 and 16.6% of the phenotypic variance of pigment loss, pasta b∗ and dough extensibility, respectively. The locus hap_2B_9 explained 15.9 and 17.8% of the variation of protein content and protein loss, respectively. All these pleiotropic haplotype loci offer breeders the unique opportunity for further improving multiple traits, facilitating marker-assisted selection in durum wheat, and could help in identifying genes as functional annotations of the wheat genome become available.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirby T. Nilsen
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sean Walkowiak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuefeng Ruan
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, Canada
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Fran R. Clarke
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, Canada
| | - John M. Clarke
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
41
|
Fischer J, Koukoulioti E, Schott E, Fülöp B, Heyne R, Berg T, van Bömmel F. Polymorphisms in the Toll-like receptor 3 (TLR3) gene are associated with the natural course of hepatitis B virus infection in Caucasian population. Sci Rep 2018; 8:12737. [PMID: 30143709 PMCID: PMC6109130 DOI: 10.1038/s41598-018-31065-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Innate immunity can induce spontaneous hepatitis B surface antigen (HBsAg) seroclearance (SC) of hepatitis B virus (HBV) infection or transition towards an inactive carrier state. Toll-like receptor (TLR) 3 signalling has been linked to these processes. Alterations in the TLR3 gene might impair immune responses against HBV. In our study, we analysed the impact of the TLR3 polymorphisms rs3775291 and rs5743305 on the natural course of HBV infection. In this retrospective study, a Caucasian cohort of 621 patients with chronic HBV infection (CHB), 239 individuals with spontaneous HBsAg SC, and 254 healthy controls were enrolled. In the CHB group, 49% of patients were inactive carriers, and 17% were HBeAg-positive. The TLR3 rs3775291 A allele was associated with a reduced likelihood of spontaneous HBsAg SC and HBeAg SC, and an increased risk of developing chronic hepatitis B. In haplotype analysis, the haplotype including both risk variants rs3775291A and rs5743305A had the lowest likelihood of HBsAg SC. Further research in larger cohorts and functional analyses are needed to shed light on the impact of TLR3 signalling.
Collapse
Affiliation(s)
- Janett Fischer
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany.
| | - Eleni Koukoulioti
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Eckart Schott
- Department of Gastroenterology, Hepatology and Diabetology, Internal Medicine II, HELIOS Hospital Emil von Behring, Berlin, Germany
| | - Balazs Fülöp
- Department of Internal Medicine and Gastroenterology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Renate Heyne
- Liver and Study Center Checkpoint, Berlin, Germany
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Florian van Bömmel
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Zaki H, Gasmelseed N, Abdalla B, Yip S. Association of toll-like receptor 2 polymorphisms with susceptibility to pulmonary tuberculosis in Sudanese. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
43
|
Im C, Sapkota Y, Moon W, Kawashima M, Nakamura M, Tokunaga K, Yasui Y. Genome-wide haplotype association analysis of primary biliary cholangitis risk in Japanese. Sci Rep 2018; 8:7806. [PMID: 29773854 PMCID: PMC5958065 DOI: 10.1038/s41598-018-26112-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Primary biliary cholangitis (PBC) susceptibility loci have largely been discovered through single SNP association testing. In this study, we report genic haplotype patterns associated with PBC risk genome-wide in two Japanese cohorts. Among the 74 genic PBC risk haplotype candidates we detected with a novel methodological approach in a discovery cohort of 1,937 Japanese, nearly two-thirds were replicated (49 haplotypes, Bonferroni-corrected P < 6.8 × 10-4) in an independent Japanese cohort (N = 949). Along with corroborating known PBC-associated loci (TNFSF15, HLA-DRA), risk haplotypes may potentially model cis-interactions that regulate gene expression. For example, one replicated haplotype association (9q32-9q33.1, OR = 1.7, P = 3.0 × 10-21) consists of intergenic SNPs outside of the human leukocyte antigen (HLA) region that overlap regulatory histone mark peaks in liver and blood cells, and are significantly associated with TNFSF8 expression in whole blood. We also replicated a novel haplotype association involving non-HLA SNPs mapped to UMAD1 (7p21.3; OR = 15.2, P = 3.9 × 10-9) that overlap enhancer peaks in liver and memory Th cells. Our analysis demonstrates the utility of haplotype association analyses in discovering and characterizing PBC susceptibility loci.
Collapse
Affiliation(s)
- Cindy Im
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G 1C9, Canada.
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wonjong Moon
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Minae Kawashima
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Nakamura
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences and Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, 856-8562, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yutaka Yasui
- School of Public Health, University of Alberta, Edmonton, Alberta, T6G 1C9, Canada. .,Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
44
|
Ying D, Li MJ, Sham PC, Li M. A powerful approach reveals numerous expression quantitative trait haplotypes in multiple tissues. Bioinformatics 2018; 34:3145-3150. [DOI: 10.1093/bioinformatics/bty318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dingge Ying
- Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mulin Jun Li
- Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pak Chung Sham
- Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Miaoxin Li
- Department of Psychiatry, The Centre for Genomic Sciences, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Zhongshan School of Medicine, Center for Disease Genomics, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
| |
Collapse
|
45
|
Suazo J, Santos JL, Colombo A, Pardo R. Gene-gene interaction for nonsyndromic cleft lip with or without cleft palate in Chilean case-parent trios. Arch Oral Biol 2018; 91:91-95. [PMID: 29694940 DOI: 10.1016/j.archoralbio.2018.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a birth defect for which several genes susceptibility genes been proposed. Consequently, it has been suggested that many of these genes belong to common inter-related pathways during craniofacial development gene-gene interaction. We evaluated the presence of gene-gene interaction for single nucleotide polymorphisms within interferon regulatory factor 6 (IRF6), muscle segment homeobox 1 (MSX1), bone morphogenetic protein 4 (BMP4) and transforming growth factor 3 (TGFB3) genes in NSCL/P risk in Chilean case-parent trios. DESIGN From previous studies, we retrieved genotypes for 13 polymorphic variants within these four genes in 152 case-parent trios. Using the trio package (R) we evaluate the gene-gen interaction in genetic markers pairs applying a 1°-of-freedom test (1df) and a confirmatory 4°-of-freedom (4df) test for epistasis followed by both a permutation test and a Benjamini-Hochberg test for multiple comparisons adjustment. RESULTS We found evidence of gene-gene interaction for rs6446693 (MSX1) and rs2268625 (TGFB3) (4df p = 0.024; permutation p = 0.015, Benjamini-Hochberg p = 0.001). CONCLUSIONS A significant gene-gene interaction was detected for rs6446693 (MSX1) and rs2268625 (TGFB3). This finding is concordant with research in animal models showing that MSX1 and TGFB3 are expressed in common molecular pathways acting in an epistatic manner during maxillofacial development.
Collapse
Affiliation(s)
- José Suazo
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile.
| | - José Luis Santos
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Lira #44, Santiago, Chile
| | - Alicia Colombo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia #1027, Santiago, Chile; Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santos Dumont #999, Santiago, Chile
| | - Rosa Pardo
- Sección de Genética, Hospital Clínico Universidad de Chile, Santos Dumont #999, Santiago, Chile; Unidad de Neonatología, Hospital Clínico Universidad de Chile, Santos Dumont #999, Santiago, Chile; Unidad de Genética, Hospital Dr. Sótero del Río, Concha y Toro #3459, Santiago, Chile
| |
Collapse
|
46
|
Sinoquet C. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies. BMC Bioinformatics 2018; 19:106. [PMID: 29587628 PMCID: PMC5870262 DOI: 10.1186/s12859-018-2054-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/09/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have been widely used to discover the genetic basis of complex phenotypes. However, standard single-SNP GWASs suffer from lack of power. In particular, they do not directly account for linkage disequilibrium, that is the dependences between SNPs (Single Nucleotide Polymorphisms). RESULTS We present the comparative study of two multilocus GWAS strategies, in the random forest-based framework. The first method, T-Trees, was designed by Botta and collaborators (Botta et al., PLoS ONE 9(4):e93379, 2014). We designed the other method, which is an innovative hybrid method combining T-Trees with the modeling of linkage disequilibrium. Linkage disequilibrium is modeled through a collection of tree-shaped Bayesian networks with latent variables, following our former works (Mourad et al., BMC Bioinformatics 12(1):16, 2011). We compared the two methods, both on simulated and real data. For dominant and additive genetic models, in either of the conditions simulated, the hybrid approach always slightly performs better than T-Trees. We assessed predictive powers through the standard ROC technique on 14 real datasets. For 10 of the 14 datasets analyzed, the already high predicted power observed for T-Trees (0.910-0.946) can still be increased by up to 0.030. We also assessed whether the distributions of SNPs' scores obtained from T-Trees and the hybrid approach differed. Finally, we thoroughly analyzed the intersections of top 100 SNPs output by any two or the three methods amongst T-Trees, the hybrid approach, and the single-SNP method. CONCLUSIONS The sophistication of T-Trees through finer linkage disequilibrium modeling is shown beneficial. The distributions of SNPs' scores generated by T-Trees and the hybrid approach are shown statistically different, which suggests complementary of the methods. In particular, for 12 of the 14 real datasets, the distribution tail of highest SNPs' scores shows larger values for the hybrid approach. Thus are pinpointed more interesting SNPs than by T-Trees, to be provided as a short list of prioritized SNPs, for a further analysis by biologists. Finally, among the 211 top 100 SNPs jointly detected by the single-SNP method, T-Trees and the hybrid approach over the 14 datasets, we identified 72 and 38 SNPs respectively present in the top25s and top10s for each method.
Collapse
Affiliation(s)
- Christine Sinoquet
- LS2N, UMR CNRS 6004, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes Cedex, 44322, France.
| |
Collapse
|
47
|
Chiba-Falek O, Gottschalk WK, Lutz MW. The effects of the TOMM40 poly-T alleles on Alzheimer's disease phenotypes. Alzheimers Dement 2018. [PMID: 29524426 DOI: 10.1016/j.jalz.2018.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TOMM40 poly-T is a polymorphism in intron 6 of the TOMM40 gene, which is adjacent to and in linkage disequilibrium with APOE. Roses et al. identified the association between the length of TOMM40 poly-T with the risk and age of onset of late-onset Alzheimer's disease (LOAD). Following the original discovery, additional studies found associations between the TOMM40 poly-T and LOAD-related phenotypes independent of APOE genotypes, while others did not replicate these associations. Furthermore, the identity of the TOMM40 poly-T risk allele has been controversial between different LOAD-related phenotypes. Here, we propose a framework to address the conflicting findings with respect to the TOMM40 poly-T allele associations with LOAD phenotypes and their functional effects. The framework is used to interpret previous studies as means to gain insights regarding the nature of the risk allele, very long versus short. We suggest that the identity of the TOMM40 poly-T risk allele depends on the phenotype being evaluated, the ages of the study subjects at the time of assessment, and the context of the APOE genotypes. In concluding remarks, we outline future studies that will inform the mechanistic interpretation of the genetic data.
Collapse
Affiliation(s)
- Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA.
| | | | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
48
|
Mekonnen E, Bekele E. An ancestral human genetic variant linked to an ancient disease: A novel association of FMO2 polymorphisms with tuberculosis (TB) in Ethiopian populations provides new insight into the differential ethno-geographic distribution of FMO2*1. PLoS One 2017; 12:e0184931. [PMID: 28981537 PMCID: PMC5628799 DOI: 10.1371/journal.pone.0184931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
The human FMO2 (flavin-containing monooxygenase 2) gene has been shown to be involved in innate immunity against microbial infections, including tuberculosis (TB), via the modulation of oxidative stress levels. It has also been found to possess a curious loss-of-function mutation (FMO2*1/FMO2*2) that demonstrates a distinctive differentiation in expression, function and ethno-geographic distribution. However, despite evidences of ethnic-specific genetic associations in the inflammatory profile of TB, no studies were done to investigate whether these patterns of variations correlate with evidences for the involvement of FMO2 in antimicrobial immune responses and ethnic differences in the distribution of FMO2 polymorphisms except for some pharmacogenetic data that suggest a potentially deleterious role for the functional variant (FMO2*1). This genetic epidemiological study was designed to investigate whether there is an association between FMO2 polymorphisms and TB, an ancient malady that remains a modern global health concern, in a sub-Saharan Africa setting where there is not only a relatively high co-prevalence of the disease and the ancestral FMO2*1 variant but also where both Mycobcaterium and Homo sapiens are considered to have originated and co-evolved. Blood samples and TB related clinical data were collected from ascertained TB cases and unrelated household controls (n = 292) from 3 different ethnic groups in Ethiopia. Latent Mtb infection was determined using Quantiferon to develop reliable TB progression phenotypes. We sequenced exonic regions of FMO2.We identified for the first time an association between FMO2 and TB both at the SNP and haplotype level. Two novel SNPs achieved a study-wide significance [chr1:171181877(A), p = 3.15E-07, OR = 4.644 and chr1:171165749(T), p = 3.32E-06, OR = 6.825] while multiple SNPs (22) showed nominal signals. The pattern of association suggested a protective effect of FMO2 against both active and latent TB with distinct genetic variants underlying the TB-progression pathway. The results were robust for population stratification. Haplotype-based tests confirmed the SNP-based results with a single haplotype bearing the ancestral-and-functional FMO2*1 "C" allele ("AGCTCTACAATCCCCTCGTTGCGC") explaining the overall association (haplotype-specific-p = 0.000103). Strikingly, not only was FMO2*1 nominally associated with reduced risk to "Active TB" (p = 0.0118, OR = 0.496) but it also does not co-segregate with the 5'-3' flanking top high-TB-risk alleles. The study provides an evidence for the existence of an evolutionary adaptation to an ancient disease based on an ancestral genetic variant acting in a haplotypic framework in Ethiopian populations.
Collapse
Affiliation(s)
- Ephrem Mekonnen
- Department of Microbial, Cellular, Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Health Biotechnology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Endashaw Bekele
- Department of Microbial, Cellular, Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
49
|
Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, Schatzberg AF. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22:527-536. [PMID: 27528460 PMCID: PMC5313380 DOI: 10.1038/mp.2016.120] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of a variety of mood and cognitive disorders. Neuroendocrine studies have demonstrated HPA axis overactivity in major depression, a relationship of HPA axis activity to cognitive performance and a potential role of HPA axis genetic variation in cognition. The present study investigated the simultaneous roles HPA axis activity, clinical symptomatology and HPA genetic variation play in cognitive performance. Patients with major depression with psychotic major depression (PMD) and with nonpsychotic major depression (NPMD) and healthy controls (HC) were studied. All participants underwent a diagnostic interview and psychiatric ratings, a comprehensive neuropsychological battery, overnight hourly blood sampling for cortisol and genetic assessment. Cognitive performance differed as a function of depression subtype. Across all subjects, cognitive performance was negatively correlated with higher cortisol, and PMD patients had higher cortisol than did NPMDs and HCs. Cortisol, clinical symptoms and variation in genes, NR3C1 (glucocorticoid receptor; GR) and NR3C2 (mineralocorticoid receptor; MR) that encode for GRs and MRs, predicted cognitive performance. Beyond the effects of cortisol, demographics and clinical symptoms, NR3C1 variation predicted attention and working memory, whereas NR3C2 polymorphisms predicted memory performance. These findings parallel the distribution of GR and MR in primate brain and their putative roles in specific cognitive tasks. HPA axis genetic variation and activity were important predictors of cognition across the entire sample of depressed subjects and HR. GR and MR genetic variation predicted unique cognitive functions, beyond the influence of cortisol and clinical symptoms. GR genetic variation was implicated in attention and working memory, whereas MR was implicated in verbal memory.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Rowena Gomez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine,Palo Alto University
| | | | - Anna Lembke
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | | | - Greer M. Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| |
Collapse
|
50
|
Bedere N, Bovenhuis H. Characterizing a region on BTA11 affecting β-lactoglobulin content of milk using high-density genotyping and haplotype grouping. BMC Genet 2017; 18:17. [PMID: 28222684 PMCID: PMC5320657 DOI: 10.1186/s12863-017-0483-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/11/2017] [Indexed: 11/13/2022] Open
Abstract
Background Milk β-lactoglobulin (β-LG) content is of interest as it is associated with nutritional and manufacturing properties. It is known that milk β-LG content is strongly affected by genetic factors. In cattle, most of the genetic differences are associated with a chromosomal region on BTA11, which contains the β-LG gene. The aim of this study was to characterize this region using 777 k SNP data (BovineHDbeadChip) and perform a haplotype-based association study. A statistical approach was developed to build haplotypes that capture the genetic variation associated with this genomic region. Results The SNP with the most significant effect on β-lactoglobulin content was one of the 2 causal mutations responsible for the β-lactoglobulin protein variants A/B. Haplotypes based on 2 to 5 selected lead SNP were clustered in groups with different effects on β-lactoglobulin content. Four different groups were identified suggesting that β-lactoglobulin variant A and B can be further refined in A1, A2, B1 and B2. Conclusions This study showed that β-lactoglobulin protein variants A/B do not explain all genetic variation associated with the tail part of BTA11 but this region contains more than one mutation with an effect on β-lactoglobulin content. These findings can be used for selection of cows with higher cheese yield, which is desirable for the dairy industry.
Collapse
Affiliation(s)
- Nicolas Bedere
- Present address: PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
| | - Henk Bovenhuis
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700, AH, Wageningen, The Netherlands.
| |
Collapse
|