1
|
Montaño J, Garnica J, Yamanouchi J, Moro J, Solé P, Mondal D, Serra P, Yang Y, Santamaria P. Transcriptional re-programming of liver-resident iNKT cells into T-regulatory type-1-like liver iNKT cells involves extensive gene de-methylation. Front Immunol 2024; 15:1454314. [PMID: 39315110 PMCID: PMC11416961 DOI: 10.3389/fimmu.2024.1454314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Unlike conventional CD4+ T cells, which are phenotypically and functionally plastic, invariant NKT (iNKT) cells generally exist in a terminally differentiated state. Naïve CD4+ T cells can acquire alternative epigenetic states in response to different cues, but it remains unclear whether peripheral iNKT cells are epigenetically stable or malleable. Repetitive encounters of liver-resident iNKT cells (LiNKTs) with alpha-galactosylceramide (αGalCer)/CD1d-coated nanoparticles (NPs) can trigger their differentiation into a LiNKT cell subset expressing a T regulatory type 1 (TR1)-like (LiNKTR1) transcriptional signature. Here we dissect the epigenetic underpinnings of the LiNKT-LiNKTR1 conversion as compared to those underlying the peptide-major histocompatibility complex (pMHC)-NP-induced T-follicular helper (TFH)-to-TR1 transdifferentiation process. We show that gene upregulation during the LINKT-to-LiNKTR1 cell conversion is associated with demethylation of gene bodies, inter-genic regions, promoters and distal gene regulatory elements, in the absence of major changes in chromatin exposure or deposition of expression-promoting histone marks. In contrast, the naïve CD4+ T cell-to-TFH differentiation process involves extensive remodeling of the chromatin and the acquisition of a broad repertoire of epigenetic modifications that are then largely inherited by TFH cell-derived TR1 cell progeny. These observations indicate that LiNKT cells are epigenetically malleable and particularly susceptible to gene de-methylation.
Collapse
Affiliation(s)
- Javier Montaño
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Patricia Solé
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
|
3
|
Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021; 51:1592-1601. [PMID: 34010475 DOI: 10.1002/eji.202049012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/25/2022]
Abstract
The adaptive immune system has the important ability to generate and maintain a memory for antigens once encountered. Recent progress in understanding the organization of immunological memory has challenged the established paradigm of maintenance of memory by restless, circulating, and "homeostatically" proliferating lymphocytes. Among other tissues, the bone marrow has emerged as a preferred resting place for memory lymphocytes providing both local and systemic long-term protection. Why the bone marrow? There, mesenchymal stromal cells provide a privileged environment for quiescent memory B and T lymphocytes, the protagonists of secondary immune reactions, and for memory plasma cells providing persistent humoral immunity. In this review, we discuss the dedicated role of the bone marrow for the maintenance of memory lymphocytes and its implications for immunological memory.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
4
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
5
|
Muñoz M, Hegazy AN, Brunner TM, Holecska V, Marek RM, Fröhlich A, Löhning M. Th2 cells lacking T-bet suppress naive and memory T cell responses via IL-10. Proc Natl Acad Sci U S A 2021; 118:e2002787118. [PMID: 33526653 PMCID: PMC8017670 DOI: 10.1073/pnas.2002787118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exacerbated immune responses and loss of self-tolerance lead to the development of autoimmunity and immunopathology. Novel therapies to target autoreactive T cells are still needed. Here, we report that Th2-polarized T cells lacking the transcription factor T-bet harbor strong immunomodulatory potential and suppress antigen-specific CD8+ T cells via IL-10. Tbx21-/- Th2 cells protected mice against virus-induced type 1 diabetes development and suppressed not only naive but also memory CD8+ T cell responses. IL-10-producing, but not IL-10-deficient Tbx21-/- Th2 cells down-regulated costimulatory molecules on dendritic cells and reduced their IL-12 production after lymphocytic choriomeningitis virus infection. Impaired dendritic cell activation hindered effector and cytotoxic CD8+ T cell development after infection. These findings indicate that Tbx21-/- Th2 cells strongly suppress proinflammatory responses of naive and memory T cells via IL-10. Thus, in vivo IL-10-secreting Th2 cells could harbor a therapeutic potential for the treatment of T cell-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Melba Muñoz
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
| | - Ahmed N Hegazy
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Vivien Holecska
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Roman M Marek
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Anja Fröhlich
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| |
Collapse
|
6
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
7
|
Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 2018; 278:8-19. [PMID: 28658556 DOI: 10.1111/imr.12560] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An estimated 300 million people currently suffer from asthma, which causes approximately 250 000 deaths a year. Allergen-specific T-helper (Th) cells produce cytokines that induce many of the hallmark features of asthma including airways hyperreactivity, eosinophilic and neutrophilic inflammation, mucus hypersecretion, and airway remodeling. Cytokine-producing Th subsets including Th1 (IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17), Th22 (IL-22), and T regulatory (IL-10) cells have all been suggested to play a role in the development of asthma. Th differentiation involves genetic regulation of gene expression through the concerted action of cytokines, transcription factors, and epigenetic regulators. We describe how Th differentiation and plasticity is regulated by epigenetic histone and DNA modifications, with a focus on the regulation of histone methylation by members of the polycomb and trithorax complexes. In addition, we outline environmental influences that could influence epigenetic regulation of Th cells and discuss the potential to regulate Th plasticity and function through drugs targeting the epigenetic machinery. It is also becoming apparent that epigenetic regulation of allergen-specific memory Th cells may be important in the development and persistence of chronic allergies. Finally, we describe how epigenetic modifiers regulate cytokine memory in Th cells and describe recently identified hybrid, plastic, and pathogenic memory Th subsets the context of allergic asthma.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
8
|
Bock CN, Babu S, Breloer M, Rajamanickam A, Boothra Y, Brunn ML, Kühl AA, Merle R, Löhning M, Hartmann S, Rausch S. Th2/1 Hybrid Cells Occurring in Murine and Human Strongyloidiasis Share Effector Functions of Th1 Cells. Front Cell Infect Microbiol 2017; 7:261. [PMID: 28676845 PMCID: PMC5476698 DOI: 10.3389/fcimb.2017.00261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Infections by the soil-transmitted threadworm Strongyloides stercoralis affect 30–100 million people worldwide, predominantly in tropic and sub-tropic regions. Here we assessed the T helper cell phenotypes in threadworm-infected patients and experimental murine infections with focus on CD4+ T cells co-expressing markers of Th2 and Th1 differentiation. We show that mice infected with the close relative S. ratti generate strong Th2 responses characterized by the expansion of CD4+ GATA-3+ cells expressing IL-4/-5/-13 in blood, spleen, gut-draining lymph nodes, lung and gut tissue. In addition to conventional Th2 cells, significantly increased frequencies of GATA-3+T-bet+ Th2/1-hybrid cells were detected in all organs and co-expressed Th2- and Th1-cytokines at intermediate levels. Assessing the phenotype of blood-derived CD4+ T cells from South Indian patients infected with S. stercoralis and local uninfected control donors we found that GATA-3 expressing Th2 cells were significantly increased in the patient cohort, coinciding with elevated eosinophil and IgE/IgG4 levels. A fraction of IL-4+CD4+ T cells simultaneously expressed IFN-γ hence displaying a Th2/1 hybrid phenotype. In accordance with murine Th2/1 cells, human Th2/1 cells expressed intermediate levels of Th2 cytokines. Contrasting their murine counterparts, human Th2/1 hybrids were marked by high levels of IFN-γ and rather low GATA-3 expression. Assessing the effector function of murine Th2/1 cells in vitro we found that Th2/1 cells were qualified for driving the classical activation of macrophages. Furthermore, Th2/1 cells shared innate, cytokine-driven effector functions with Th1 cells. Hence, the key findings of our study are that T helper cells with combined characteristics of Th2 and Th1 cells are integral to immune responses of helminth-infected mice, but also occur in helminth-infected humans and we suggest that Th2/1 cells are poised for the instruction of balanced immune responses during nematode infections.
Collapse
Affiliation(s)
- Cristin N Bock
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in ResearchChennai, India.,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, United States
| | - Minka Breloer
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Anuradha Rajamanickam
- National Institutes of Health-NIRT-International Center for Excellence in ResearchChennai, India
| | - Yukhti Boothra
- National Institutes of Health-NIRT-International Center for Excellence in ResearchChennai, India
| | - Marie-Luise Brunn
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Anja A Kühl
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology/Research Center ImmunoSciences, Charité-University Medicine BerlinBerlin, Germany
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität BerlinBerlin, Germany
| | - Max Löhning
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine BerlinBerlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), Leibniz InstituteBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
9
|
Abstract
Viral infections continuously challenge and shape our immune system. Due to their fine antigen recognition ability, adaptive lymphocytes protect against pathogen reencounter by generating specific immunological memory. Innate cells such as macrophages also adapt to pathogen challenge and mount resistance to reinfection, a phenomenon termed trained immunity. As part of the innate immunity, natural killer (NK) cells can display rapid effector functions and play a crucial role in the control of viral infections, especially by the β-herpesvirus cytomegalovirus (CMV). CMV activates the NK-cell pool by inducing proinflammatory signals, which prime NK cells, paralleling macrophage training. In addition, CMV dramatically shapes the NK-cell repertoire due to its ability to trigger specific NK cell-activating receptors, and enables the expansion and persistence of a specific NK-cell subset displaying adaptive and memory features. In this chapter, we will discuss how different signals during CMV infection contribute to NK-cell training and acquisition of classical memory properties and how these events can impact on reinfection and cross-resistance.
Collapse
|
10
|
Vallerini D, Riva G, Barozzi P, Forghieri F, Lagreca I, Quadrelli C, Morselli M, Bresciani P, Cuoghi A, Coluccio V, Maccaferri M, Paolini A, Colaci E, Marasca R, Narni F, Latgè JP, Romani L, Comoli P, Campioli D, Trenti T, Luppi M, Potenza L. The bone marrow represents an enrichment site of specific T lymphocytes against filamentous fungi. Med Mycol 2015; 54:327-32. [DOI: 10.1093/mmy/myv107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
|
11
|
Liang L, Willis-Owen SAG, Laprise C, Wong KCC, Davies GA, Hudson TJ, Binia A, Hopkin JM, Yang IV, Grundberg E, Busche S, Hudson M, Rönnblom L, Pastinen TM, Schwartz DA, Lathrop GM, Moffatt MF, Cookson WOCM. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 2015; 520:670-674. [PMID: 25707804 PMCID: PMC4416961 DOI: 10.1038/nature14125] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022]
Abstract
Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations--with a meta-analysis false discovery rate less than 10(-4)--between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.
Collapse
Affiliation(s)
- Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA 02115
| | | | | | - Kenny C C Wong
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | - Gwyneth A Davies
- Institute of Life Science, College of Medicine, Swansea University, SA2 8PP, UK
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario Canada, M5G 0A3
- Departments of Medical Biophysics and Molecular Genetics, University of Toronto, Canada ON M5S 1A1
| | - Aristea Binia
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | - Julian M Hopkin
- Institute of Life Science, College of Medicine, Swansea University, SA2 8PP, UK
| | - Ivana V Yang
- University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206
| | - Elin Grundberg
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Stephan Busche
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Marie Hudson
- Jewish General Hospital and Lady Davis Research Institute, Montréal, Canada H3T 1E2
| | - Lars Rönnblom
- Department of Medical Sciences, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Tomi M Pastinen
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
- Department of Medical Genetics, McGill University Health Centre, Montréal, Canada
| | - David A Schwartz
- University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206
| | - G Mark Lathrop
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | | |
Collapse
|
12
|
Zimmermann J, Radbruch A, Chang HD. A Ca(2+) concentration of 1.5 mM, as present in IMDM but not in RPMI, is critical for maximal response of Th cells to PMA/ionomycin. Eur J Immunol 2015; 45:1270-3. [PMID: 25545753 PMCID: PMC4407954 DOI: 10.1002/eji.201445247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 12/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Jakob Zimmermann
- Cell Biology Group, Deutsches Rheumaforschungszentrum, Berlin, Germany, a Leibniz Institute
| | | | | |
Collapse
|
13
|
Helmstetter C, Flossdorf M, Peine M, Kupz A, Zhu J, Hegazy AN, Duque-Correa MA, Zhang Q, Vainshtein Y, Radbruch A, Kaufmann SH, Paul WE, Höfer T, Löhning M. Individual T helper cells have a quantitative cytokine memory. Immunity 2015; 42:108-22. [PMID: 25607461 PMCID: PMC4562415 DOI: 10.1016/j.immuni.2014.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/14/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
The probabilistic expression of cytokine genes in differentiated T helper (Th) cell populations remains ill defined. By single-cell analyses and mathematical modeling, we show that one stimulation featured stable cytokine nonproducers as well as stable producers with wide cell-to-cell variability in the magnitude of expression. Focusing on interferon-γ (IFN-γ) expression by Th1 cells, mathematical modeling predicted that this behavior reflected different cell-intrinsic capacities and not mere gene-expression noise. In vivo, Th1 cells sort purified by secreted IFN-γ amounts preserved a quantitative memory for both probability and magnitude of IFN-γ re-expression for at least 1 month. Mechanistically, this memory resulted from quantitatively distinct transcription of individual alleles and was controlled by stable expression differences of the Th1 cell lineage-specifying transcription factor T-bet. Functionally, Th1 cells with graded IFN-γ production competence differentially activated Salmonella-infected macrophages for bacterial killing. Thus, individual Th cells commit to produce distinct amounts of a given cytokine, thereby generating functional intrapopulation heterogeneity.
Collapse
Affiliation(s)
- Caroline Helmstetter
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Peine
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Andreas Kupz
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Queensland Tropical Health Alliance Research Laboratory, James Cook University, Cairns Campus, Smithfield, QLD 4878, Australia
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ahmed N Hegazy
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Charité, 10117 Berlin, Germany
| | - Maria A Duque-Correa
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Qin Zhang
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yevhen Vainshtein
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Stefan H Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Max Löhning
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany.
| |
Collapse
|
14
|
Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 2015; 43:1537-48. [PMID: 25593324 PMCID: PMC4330377 DOI: 10.1093/nar/gkv014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
Collapse
Affiliation(s)
- Bi-Huei Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Hagemann
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Igor V Deyneko
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Groebe
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Matthias Lochner
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
15
|
Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, De Simone M, Pagani M, Abrignani S. Plasticity of human CD4 T cell subsets. Front Immunol 2014; 5:630. [PMID: 25566245 PMCID: PMC4267263 DOI: 10.3389/fimmu.2014.00630] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
Human beings are exposed to a variety of different pathogens, which induce tailored immune responses and consequently generate highly diverse populations of pathogen-specific T cells. CD4(+) T cells have a central role in adaptive immunity, since they provide essential help for both cytotoxic T cell- and antibody-mediated responses. In addition, CD4(+) regulatory T cells are required to maintain self-tolerance and to inhibit immune responses that could damage the host. Initially, two subsets of CD4(+) helper T cells were identified that secrete characteristic effector cytokines and mediate responses against different types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and IL-4 producing Th2 cells that target extracellular parasites. It is now well established that this dichotomy is insufficient to describe the complexity of CD4(+) T cell differentiation, and in particular the human CD4 compartment contains a myriad of T cell subsets with characteristic capacities to produce cytokines and to home to involved tissues. Moreover, it has become increasingly clear that these T cell subsets are not all terminally differentiated cells, but that the majority is plastic and that in particular central memory T cells can acquire different properties and functions in secondary immune responses. In addition, there is compelling evidence that helper T cells can acquire regulatory functions upon chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell subsets is highly relevant for translational medicine, since it opens new perspectives for immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Moira Paroni
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Stefano Maglie
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Johanna Sophie Alfen
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Ilko Kastirr
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Paola Gruarin
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Marco De Simone
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Massimiliano Pagani
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| | - Sergio Abrignani
- Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" INGM , Milan , Italy
| |
Collapse
|
16
|
Trithorax complex component Menin controls differentiation and maintenance of T helper 17 cells. Proc Natl Acad Sci U S A 2014; 111:12829-34. [PMID: 25136117 DOI: 10.1073/pnas.1321245111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin(-/-) T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression.
Collapse
|
17
|
Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc Natl Acad Sci U S A 2014; 111:9229-34. [PMID: 24927527 DOI: 10.1073/pnas.1318731111] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the bone marrow, a population of memory T cells has been described that promotes efficient secondary immune responses and has been considered to be preactivated, owing to its expression of CD69 and CD25. Here we show that human bone marrow professional memory T cells are not activated but are resting in terms of proliferation, transcription, and mobility. They are in the G0 phase of the cell cycle, and their transcriptome is that of resting T cells. The repertoire of CD4(+) bone marrow memory T cells compared with CD4(+) memory T cells from the blood is significantly enriched for T cells specific for cytomegalovirus-pp65 (immunodominant protein), tetanus toxoid, measles, mumps, and rubella. It is not enriched for vaccinia virus and Candida albicans-MP65 (immunodominant protein), typical pathogens of skin and/or mucosa. CD4(+) memory T cells specific for measles are maintained nearly exclusively in the bone marrow. Thus, CD4(+) memory T cells from the bone marrow provide long-term memory for systemic pathogens.
Collapse
|
18
|
Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, Motohashi S, Nakayama T. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 2014; 39:819-32. [PMID: 24238339 DOI: 10.1016/j.immuni.2013.09.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
After antigen encounter by CD4(+) T cells, polarizing cytokines induce the expression of master regulators that control differentiation. Inactivation of the histone methyltransferase Ezh2 was found to specifically enhance T helper 1 (Th1) and Th2 cell differentiation and plasticity. Ezh2 directly bound and facilitated correct expression of Tbx21 and Gata3 in differentiating Th1 and Th2 cells, accompanied by substantial trimethylation at lysine 27 of histone 3 (H3K27me3). In addition, Ezh2 deficiency resulted in spontaneous generation of discrete IFN-γ and Th2 cytokine-producing populations in nonpolarizing cultures, and under these conditions IFN-γ expression was largely dependent on enhanced expression of the transcription factor Eomesodermin. In vivo, loss of Ezh2 caused increased pathology in a model of allergic asthma and resulted in progressive accumulation of memory phenotype Th2 cells. This study establishes a functional link between Ezh2 and transcriptional regulation of lineage-specifying genes in terminally differentiated CD4(+) T cells.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Geginat J, Paroni M, Facciotti F, Gruarin P, Kastirr I, Caprioli F, Pagani M, Abrignani. S. The CD4-centered universe of human T cell subsets. Semin Immunol 2013; 25:252-62. [DOI: 10.1016/j.smim.2013.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol 2013; 11:e1001633. [PMID: 23976880 PMCID: PMC3747991 DOI: 10.1371/journal.pbio.1001633] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022] Open
Abstract
The stable lineage commitment of naïve T helper cells to a hybrid Th1/2 phenotype reveals the cell-intrinsic reconciliation of two opposing T cell differentiation programs and provides a self-limiting mechanism to dampen immunopathology. Differentiated T helper (Th) cell lineages are thought to emerge from alternative cell fate decisions. However, recent studies indicated that differentiated Th cells can adopt mixed phenotypes during secondary immunological challenges. Here we show that natural primary immune responses against parasites generate bifunctional Th1 and Th2 hybrid cells that co-express the lineage-specifying transcription factors T-bet and GATA-3 and co-produce Th1 and Th2 cytokines. The integration of Th1-promoting interferon (IFN)-γ and interleukin (IL)-12 signals together with Th2-favoring IL-4 signals commits naive Th cells directly and homogeneously to the hybrid Th1/2 phenotype. Specifically, IFN-γ signals are essential for T-bet+GATA-3+ cells to develop in vitro and in vivo by breaking the dominance of IL-4 over IL-12 signals. The hybrid Th1/2 phenotype is stably maintained in memory cells in vivo for months. It resists reprogramming into classic Th1 or Th2 cells by Th1- or Th2-promoting stimuli, which rather induce quantitative modulations of the combined Th1 and Th2 programs without abolishing either. The hybrid phenotype is associated with intermediate manifestations of both Th1 and Th2 cell properties. Consistently, hybrid Th1/2 cells support inflammatory type-1 and type-2 immune responses but cause less immunopathology than Th1 and Th2 cells, respectively. Thus, we propose the self-limitation of effector T cells based on the stable cell-intrinsic balance of two opposing differentiation programs as a novel concept of how the immune system can prevent excessive inflammation. T helper (Th) cells, a subgroup of white blood cells important in the immune system, can differentiate into diverse lineages, for example Th1 and Th2, whose effector mechanisms target different types of pathogens but cause problems if not properly regulated. Lineage commitment is driven by cytokine signals that control the expression of distinct lineage-specifying “master regulator” transcription factor molecules. Lineage commitment is thought to reflect alternative cell-fate decisions because the initiated differentiation programs have self-amplifying and mutually repressive features. Here we show that the Th1 and Th2 differentiation programs are more compatible with each other than previously thought. Individual naive T cells can simultaneously integrate Th1- and Th2-polarizing signals and develop into hybrid Th1/2 cells that stably co-express both the Th1 master regulator T-bet and the Th2 master regulator GATA-3. We find that hybrid Th1/2 cells arise naturally during parasite infections and that the two opposing differentiation programs can stably co-exist in resting memory Th1/2 cells for periods of months. Th1- or Th2-polarizing stimuli induced quantitative modulations in the hybrid state but did not extinguish either program. The cell-intrinsic antagonism gives the hybrid Th1/2 cells properties that are quantitatively intermediate between those of Th1 and Th2 cells. Thus, in typical Th1 and Th2 immune responses, hybrid Th1/2 cells cause less immunopathology than their classic Th1 or Th2 counterparts, demonstrating a cell-intrinsic self-limiting mechanism that can prevent excessive inflammation.
Collapse
|
21
|
Sasaki T, Onodera A, Hosokawa H, Watanabe Y, Horiuchi S, Yamashita J, Tanaka H, Ogawa Y, Suzuki Y, Nakayama T. Genome-Wide Gene Expression Profiling Revealed a Critical Role for GATA3 in the Maintenance of the Th2 Cell Identity. PLoS One 2013; 8:e66468. [PMID: 23824597 PMCID: PMC3688927 DOI: 10.1371/journal.pone.0066468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022] Open
Abstract
Functionally polarized CD4+ T helper (Th) cells such as Th1, Th2 and Th17 cells are central to the regulation of acquired immunity. However, the molecular mechanisms governing the maintenance of the polarized functions of Th cells remain unclear. GATA3, a master regulator of Th2 cell differentiation, initiates the expressions of Th2 cytokine genes and other Th2-specific genes. GATA3 also plays important roles in maintaining Th2 cell function and in continuous chromatin remodeling of Th2 cytokine gene loci. However, it is unclear whether continuous expression of GATA3 is required to maintain the expression of various other Th2-specific genes. In this report, genome-wide DNA gene expression profiling revealed that GATA3 expression is critical for the expression of a certain set of Th2-specific genes. We demonstrated that GATA3 dependency is reduced for some Th2-specific genes in fully developed Th2 cells compared to that observed in effector Th2 cells, whereas it is unchanged for other genes. Moreover, effects of a loss of GATA3 expression in Th2 cells on the expression of cytokine and cytokine receptor genes were examined in detail. A critical role of GATA3 in the regulation of Th2-specific gene expression is confirmed in in vivo generated antigen-specific memory Th2 cells. Therefore, GATA3 is required for the continuous expression of the majority of Th2-specific genes involved in maintaining the Th2 cell identity.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
- Pharmaceutical Research Laboratory, Research Division, Nihon Pharmaceutical Co Ltd, Narita City, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Yukiko Watanabe
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Shu Horiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Junji Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
- Pharmaceutical Research Laboratory, Research Division, Nihon Pharmaceutical Co Ltd, Narita City, Japan
| | - Hitoshi Tanaka
- Pharmaceutical Research Laboratory, Research Division, Nihon Pharmaceutical Co Ltd, Narita City, Japan
| | - Yasumasa Ogawa
- Pharmaceutical Research Laboratory, Research Division, Nihon Pharmaceutical Co Ltd, Narita City, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa City, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba City, Japan
- JST, CREST, Chiba City, Japan
- * E-mail:
| |
Collapse
|
22
|
Dong J, Chang HD, Ivascu C, Qian Y, Rezai S, Okhrimenko A, Cosmi L, Maggi L, Eckhardt F, Wu P, Sieper J, Alexander T, Annunziato F, Gossen M, Li J, Radbruch A, Thiel A. Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-γ memory in human CD4(+) T lymphocytes. Eur J Immunol 2013; 43:793-804. [PMID: 23255246 DOI: 10.1002/eji.201242858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis. Using an IFN-γ capture assay, we found early IFN-γ-producing cells from 2-day differentiating cultures acquired "permissive" levels of demethylation and developed into effector/memory Th1 cells undergoing progressive demethylation at the IFNG promoter and CNS-1 when induced by IL-12. Methylation levels of these regions in effector/memory Th1 cells of peripheral blood from rheumatoid arthritis patients correlated inversely with reduced frequencies of IFN-γ-producers, coincident with recruitment of effector/memory Th1 cells to the site of inflammation. Thus, after termination of TCR stimulation, IL-12 signaling potentiates the stable functional IFN-γ memory in effector/memory Th1 cells characterized by hypomethylation at the IFNG promoter and CNS-1.
Collapse
Affiliation(s)
- Jun Dong
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Q, Li M, Xia LC, Wen G, Zu H, Gao M. Genetic analysis of differentiation of T-helper lymphocytes. GENETICS AND MOLECULAR RESEARCH 2013; 12:972-87. [PMID: 23613243 DOI: 10.4238/2013.april.2.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the human immune system, T-helper cells are able to differentiate into two lymphocyte subsets: Th1 and Th2. The intracellular signaling pathways of differentiation form a dynamic regulation network by secreting distinctive types of cytokines, while differentiation is regulated by two major gene loci: T-bet and GATA-3. We developed a system dynamics model to simulate the differentiation and re-differentiation process of T-helper cells, based on gene expression levels of T-bet and GATA-3 during differentiation of these cells. We arrived at three ultimate states of the model and came to the conclusion that cell differentiation potential exists as long as the system dynamics is at an unstable equilibrium point; the T-helper cells will no longer have the potential of differentiation when the model reaches a stable equilibrium point. In addition, the time lag caused by expression of transcription factors can lead to oscillations in the secretion of cytokines during differentiation.
Collapse
Affiliation(s)
- Q Wang
- Department of Mathematics, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Baynam G, Walters M, Claes P, Kung S, LeSouef P, Dawkins H, Gillett D, Goldblatt J. The facial evolution: looking backward and moving forward. Hum Mutat 2012; 34:14-22. [PMID: 23033261 DOI: 10.1002/humu.22219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/30/2012] [Indexed: 01/16/2023]
Abstract
Three-dimensional (3D) facial analysis is ideal for high-resolution, nonionizing, noninvasive objective, high-throughput phenotypic, and phenomic studies. It is a natural complement to (epi)genetic technologies to facilitate advances in the understanding of rare and common diseases. The face is uniquely reflective of the primordial tissues, and there is evidence supporting the application of 3D facial analysis to the investigation of variation and disease including studies showing that the face can reflect systemic health, provides diagnostic clues to disorders, and that facial variation reflects biological pathways. In addition, facial variation has been related to evolutionary factors. The purpose of this review is to look backward to suggest that knowledge of human evolution supports, and may instruct, the application and interpretation of studies of facial morphology for documentation of human variation and investigation of its relationships with health and disease. Furthermore, in the context of advances of deep phenotyping and data integration, to look forward to suggest approaches to scalable implementation of facial analysis, and to suggest avenues for future research and clinical application of this technology.
Collapse
Affiliation(s)
- Gareth Baynam
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Linard C, Billiard F, Benderitter M. Intestinal Irradiation and Fibrosis in a Th1-Deficient Environment. Int J Radiat Oncol Biol Phys 2012; 84:266-73. [DOI: 10.1016/j.ijrobp.2011.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 10/14/2022]
|
26
|
Tokoyoda K, Radbruch A. Signals controlling rest and reactivation of T helper memory lymphocytes in bone marrow. Cell Mol Life Sci 2012; 69:1609-13. [PMID: 22460581 PMCID: PMC11114998 DOI: 10.1007/s00018-012-0969-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 12/18/2022]
Abstract
Established views on the maintenance of immunological memory have been challenged recently by the description of memory plasma cells and memory T helper (Th) lymphocytes residing in the bone marrow (BM) in dedicated survival niches, resting in terms of proliferation and migration. While memory plasma cells are no longer reactive to antigen, memory Th lymphocytes are in a state of attentive rest, and can be reactivated fast and efficiently. Here, we discuss the signals controlling these resting states, which the memory lymphocytes receive from their microenvironment.
Collapse
Affiliation(s)
- Koji Tokoyoda
- German Rheumatism Research Center Berlin, Chariteplatz 1, Berlin, Germany.
| | | |
Collapse
|
27
|
Guo J, Qian J, Zhang R. Histopathology and Immunohistochemical Profile in Idiopathic Dacryoadenitis. Curr Eye Res 2012; 37:365-71. [DOI: 10.3109/02713683.2012.656213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
3D facial analysis can investigate vaccine responses. Med Hypotheses 2012; 78:497-501. [DOI: 10.1016/j.mehy.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023]
|
29
|
Seto T, Yoshitake M, Ogasawara T, Ikari J, Sakamoto A, Hatano M, Hirata H, Fukuda T, Kuriyama T, Tatsumi K, Tokuhisa T, Arima M. Bcl6 in pulmonary epithelium coordinately controls the expression of the CC-type chemokine genes and attenuates allergic airway inflammation. Clin Exp Allergy 2011; 41:1568-78. [PMID: 21801248 DOI: 10.1111/j.1365-2222.2011.03836.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND There is synteny in the CC-type chemokine gene clusters between humans (CCL2/MCP-1, CCL7MCP-3, CCL11/eotaxin, CCL8/MCP-2, CCL13/MCP-4, and CCL1/I-309) and mice (CCL2, CCL7, CCL11, CCL12/MCP-5, CCL8, and CCL1). OBJECTIVE As many putative Bcl6/STAT-binding sequences are observed in the clusters, we examined the roles of a transcriptional repressor Bcl6 and the regional histone modification in the expression of these chemokine genes in pulmonary epithelium. METHODS We generated transgenic (Tg) mice carrying the Bcl6 or the dominant-negative (DN)-Bcl6 gene under the control of the surfactant protein C (SPC) promoter that induces the exogenous gene expression in the distal lung epithelium. For in vitro studies, A549, alveolar type II-like epithelial cell line transfected with the SPC-DN-Bcl6 gene were stimulated with IL-4+TNF-α, and Bcl6 or STAT6 binding to and histone modification of the cluster in the transfectants were analysed by chromatin immunoprecipitation assays. Tg mice sensitized with ovalbumin (OVA) were challenged with OVA inhalation. The amounts of mRNAs in each sample were analysed by quantitative RT-PCR. RESULTS The amount of Bcl6 bound to the cluster decreased in A549 cells stimulated with IL-4 and TNF-α, whereas STAT6 binding increased in association with regional histone H3-K9/14 acetylation and H3-K4 methylation. The expression of all chemokine genes in the gene cluster was augmented in activated A549 cells transfected with the DN-Bcl6 gene. We also induced allergic airway inflammation in Tg mice. Expression of the chemokine genes and infiltrated cell numbers in the lungs of these Tg mice with allergic airway inflammation were inversely correlated with the amount of Bcl6 in the lungs. CONCLUSION AND CLINICAL RELEVANCE Expression of the pulmonary epithelium-derived CC-type chemokine genes in the cluster is orchestrated by the conserved machinery related to Bcl6. Thus, Bcl6 in pulmonary epithelium may be a critical regulator for pathogenesis of various pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- T Seto
- Department of Developmental Genetics (H2), Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Horiuchi S, Onodera A, Hosokawa H, Watanabe Y, Tanaka T, Sugano S, Suzuki Y, Nakayama T. Genome-wide analysis reveals unique regulation of transcription of Th2-specific genes by GATA3. THE JOURNAL OF IMMUNOLOGY 2011; 186:6378-89. [PMID: 21536806 DOI: 10.4049/jimmunol.1100179] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of naive CD4 T cells into Th2 cells is accompanied by chromatin remodeling and increased expression of a set of Th2-specific genes, including those encoding Th2 cytokines. IL-4-mediated STAT6 activation induces high levels of transcription of GATA3, a master regulator of Th2 cell differentiation, and enforced expression of GATA3 induces Th2 cytokine expression. However, it remains unclear whether the expression of other Th2-specific genes is induced directly by GATA3. A genome-wide unbiased chromatin immunoprecipitation assay coupled with massive parallel sequencing analysis revealed that GATA3 bound to 1279 genes selectively in Th2 cells, and 101 genes in both Th1 and Th2 cells. Simultaneously, we identified 26 highly Th2-specific STAT6-dependent inducible genes by DNA microarray analysis-based three-step selection processes, and among them 17 genes showed GATA3 binding. We assessed dependency on GATA3 for the transcription of these 26 Th2-specific genes, and 10 genes showed increased transcription in a GATA3-dependent manner, whereas 16 genes showed no significant responses. The transcription of the 16 GATA3-nonresponding genes was clearly increased by the introduction of an active form of STAT6, STAT6VT. Therefore, although GATA3 has been recognized as a master regulator of Th2 cell differentiation, many Th2-specific genes are not regulated by GATA3 itself, but in collaboration with STAT6.
Collapse
Affiliation(s)
- Shu Horiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
32
|
Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells. Blood 2011; 117:2839-46. [PMID: 21228329 DOI: 10.1182/blood-2010-06-293027] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CCR6 is a chemokine receptor expressed on Th17 cells and regulatory T cells that is induced by T-cell priming with certain cytokines, but how its expression and stability are regulated at the molecular level is largely unknown. Here, we identified and characterized a noncoding region of the human CCR6 locus that displayed unmethylated CpG motifs (differentially methylated region [DMR]) selectively in CCR6(+) lymphocytes. CCR6 expression on circulating CD4(+) T cells was stable on cytokine-induced proliferation but partially down-regulated on T-cell receptor stimulation. However, CCR6 down-regulation was mostly transient, and the DMR within the CCR6 locus remained demethylated. Notably, in vitro induction of CCR6 expression with cytokines in T-cell receptor-activated naive CD4(+) T cells was not associated with a demethylated DMR and resulted in unstable CCR6 expression. Conversely, treatment with the DNA methylation inhibitor 5'-azacytidine induced demethylation of the DMR and led to increased and stable CCR6 expression. Finally, when cloned into a reporter gene plasmid, the DMR displayed transcriptional activity in memory T cells that was suppressed by DNA methylation. In summary, we have identified a noncoding region of the human CCR6 gene with methylation-sensitive transcriptional activity in CCR6(+) T cells that controls stable CCR6 expression via epigenetic mechanisms.
Collapse
|
33
|
Lexberg MH, Taubner A, Albrecht I, Lepenies I, Richter A, Kamradt T, Radbruch A, Chang HD. IFN-γ and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 2010; 40:3017-27. [PMID: 21061434 DOI: 10.1002/eji.201040539] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Th1 and Th17 cells are distinct lineages of effector/memory cells, imprinted for re-expression of IFN-γ and IL-17, by upregulated expression of T-bet and retinoic acid-related orphan receptor γt (RORγt), respectively. Apparently, Th1 and Th17 cells share tasks in the control of inflammatory immune responses. Th cells coexpressing IFN-γ and IL-17 have been observed in vivo, but it remained elusive, how these cells had been generated and whether they represent a distinct lineage of Th differentiation. It has been shown that ex vivo isolated Th1 and Th17 cells are not interconvertable by TGF-β/IL-6 and IL-12, respectively. Here, we show that ex vivo isolated Th17 cells can be converted into Th1/Th17 cells by combined IFN-γ and IL-12 signaling. IFN-γ is required to upregulate expression of the IL-12Rβ2 chain, and IL-12 for Th1 polarization. These Th1/Th17 cells stably coexpress RORγt and T-bet at the single-cell level. Our results suggest a molecular pathway for the generation of Th1/Th17 cells in vivo, which combine the pro-inflammatory potential of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Maria H Lexberg
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kapp K, Maul J, Hostmann A, Mundt P, Preiss JC, Wenzel A, Thiel A, Zeitz M, Ullrich R, Duchmann R. Modulation of systemic antigen-specific immune responses by oral antigen in humans. Eur J Immunol 2010; 40:3128-37. [PMID: 20957752 DOI: 10.1002/eji.201040701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/21/2010] [Accepted: 08/16/2010] [Indexed: 11/06/2022]
Abstract
Oral antigen uptake can induce systemic immune responses ranging from tolerance to immunity. However, the underlying mechanisms are poorly understood, especially in humans. Here, keyhole limpet hemocyanin (KLH), a neoantigen which has been used in earlier studies of oral tolerance, was fed in a repeated low-dose and a single high-dose protocol to healthy volunteers. KLH-specific CD4(+) T-cell proliferation and cytokine production, as well as KLH-specific serum Ab and the effects of oral KLH on a subsequent parenterally induced systemic immune response, were analyzed. Repeated low-dose oral KLH alone induced antigen-specific CD4(+) T cells positive predominantly for the gut-homing receptor integrin β7 and the cytokines IL-2 and TNF-α; some CD4(+) T cells also produced IL-4. Oral feeding of KLH accelerated a subsequent parenterally induced systemic CD4(+) T-cell response. The cytokine pattern of KLH-specific CD4(+) T cells shifted toward more IL-4- and IL-10- and less IFN-γ-, IL-2- and TNF-α-producing cells. The parenterally induced systemic KLH-specific B-cell response was accelerated and amplified by oral KLH. The impact of single high-dose oral KLH on antigen-specific immune responses was less pronounced compared with repeated low-dose oral KLH. These findings suggest that oral antigen can effectively modulate subsequently induced systemic antigen-specific immune responses. Immunomodulation by oral antigen may offer new therapeutic strategies for Th type1-mediated inflammatory diseases and for the development of vaccination strategies.
Collapse
Affiliation(s)
- Kerstin Kapp
- Charité-Campus Benjamin Franklin, Medizinische Klinik I (Gastroenterologie, Infektiologie, Rheumatologie), Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Onodera A, Yamashita M, Endo Y, Kuwahara M, Tofukuji S, Hosokawa H, Kanai A, Suzuki Y, Nakayama T. STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. ACTA ACUST UNITED AC 2010; 207:2493-506. [PMID: 20956546 PMCID: PMC2964576 DOI: 10.1084/jem.20100760] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycomb group (PcG) and trithorax group (TrxG) complexes exert opposing effects on the maintenance of the transcriptional status of the developmentally regulated Hox genes. In this study, we show that activation of STAT6 induces displacement of the PcG complex by the TrxG complex at the upstream region of the gene encoding GATA3, a transcription factor essential for T helper type 2 (Th2) cell differentiation. Once Th2 cells differentiate, TrxG complex associated with the TrxG component Menin binds to the whole GATA3 gene locus, and this binding is required for the long-term maintenance of expression of GATA3 and Th2 cytokine. Thus, STAT6-mediated displacement of PcG by the TrxG complex establishes subsequent STAT6-independent maintenance of GATA3 expression in Th2 cells via the recruitment of the Menin-TrxG complex.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang T, Srivastava K, Wen MC, Yang N, Cao J, Busse P, Birmingham N, Goldfarb J, Li XM. Pharmacology and immunological actions of a herbal medicine ASHMI on allergic asthma. Phytother Res 2010; 24:1047-55. [PMID: 19998324 DOI: 10.1002/ptr.3077] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Allergic asthma is a chronic and progressive inflammatory disease for which there is no satisfactory treatment. Studies reported tolerability and efficacy of an anti-asthma herbal medicine intervention (ASHMI) for asthma patients, developed from traditional Chinese medicine. To investigate the pharmacological actions of ASHMI on early- and late-phase airway responses (EAR and LAR), Ovalbumin (OVA)-sensitized mice received 6 weeks of ASHMI treatment beginning 24 h following the first intratracheal OVA challenge. EAR were determined 30 min following the fourth challenge and LAR 48 h following the last challenge. ASHMI effects on cytokine secretion, murine tracheal ring contraction and human bronchial smooth muscle cell prostaglandin (PG) production were also determined.ASHMI abolished EAR, which was associated with significantly reduced histamine, leukotriene C4, and OVA-specific IgE levels, as well as LAR, which was associated with significantly reduced bronchoalveolar lavage fluid (BALF) eosinophils, decreased airway remodeling, and lower Th2 cytokine levels in BALF and splenocyte cultures. Furthermore, ASHMI inhibited contraction of murine tracheal rings and increased production of the potent smooth muscle relaxer PGI(2). ASHMI abrogation of allergic airway responses is associated with broad effects on asthma pathological mechanisms.
Collapse
Affiliation(s)
- Tengfei Zhang
- Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Díaz YR, Rojas R, Valderrama L, Saravia NG. T-bet, GATA-3, and Foxp3 expression and Th1/Th2 cytokine production in the clinical outcome of human infection with Leishmania (Viannia) species. J Infect Dis 2010; 202:406-15. [PMID: 20583921 DOI: 10.1086/653829] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND T cell differentiation determines susceptibility and resistance to experimental cutaneous leishmaniasis, yet mixed T1/Th2 responses characterize the clinical spectrum of human infection with Leishmania (Viannia) species. MATERIALS AND METHODS To discern the interrelationship of T cell differentiation and outcome of human infection, we examined factors that regulate T cell differentiation and Th1/Th2 cytokine responses in asymptomatic infection, active and historical chronic and recurrent cutaneous leishmaniasis. T-bet, GATA-3, Foxp3, and cytokine gene expression were quantified by real-time polymerase chain reaction and correlated with interleukin 2, interferon gamma, tumor necrosis factor alpha, interleukin 4, interleukin 13, and interleukin 10 secretion during in vitro response to live Leishmania panamensis. RESULTS Higher GATA-3 expression than T-bet expression occurred throughout the 15 days of coculture with promastigotes; however, neither transcription nor secretion of interleukin 4 was detected. A sustained inverse correlation between GATA-3 expression and secretion of proinflammatory cytokines interferon gamma and tumor necrosis factor alpha was observed in asymptomatic infection. In contrast, higher T-bet expression and a higher ratio of T-bet to GATA-3 characterized active recurrent disease. Down-regulation of T-bet and GATA-3 expression and increased interleukin 2 secretion, compared with control subjects, was directly correlated with Foxp3 expression and interleukin 13 secretion in chronic disease. CONCLUSIONS Regulation of the inflammatory response rather than biased Th1/Th2 response distinguished asymptomatic and recalcitrant outcomes of infection with Leishmnania viannia species.
Collapse
Affiliation(s)
- Yira Rosalba Díaz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | | | | | | |
Collapse
|
38
|
Grützkau A, Radbruch A. Small but mighty: How the MACS®-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A 2010; 77:643-7. [DOI: 10.1002/cyto.a.20918] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Suzuki A, Iwamura C, Shinoda K, Tumes DJ, Kimura MY, Hosokawa H, Endo Y, Horiuchi S, Tokoyoda K, Koseki H, Yamashita M, Nakayama T. Polycomb group gene product Ring1B regulates Th2-driven airway inflammation through the inhibition of Bim-mediated apoptosis of effector Th2 cells in the lung. THE JOURNAL OF IMMUNOLOGY 2010; 184:4510-20. [PMID: 20237291 DOI: 10.4049/jimmunol.0903426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) gene products regulate the maintenance of homeobox gene expression in Drosophila and vertebrates. In the immune system, PcG molecules control cell cycle progression of thymocytes, Th2 cell differentiation, and the generation of memory CD4 T cells. In this paper, we extended the study of PcG molecules to the regulation of in vivo Th2 responses, especially allergic airway inflammation, by using conditional Ring1B-deficient mice with a CD4 T cell-specific deletion of the Ring1B gene (Ring1B(-/-) mice). In Ring1B(-/-) mice, CD4 T cell development appeared to be normal, whereas the differentiation of Th2 cells but not Th1 cells was moderately impaired. In an Ag-induced Th2-driven allergic airway inflammation model, eosinophilic inflammation was attenuated in Ring1B(-/-) mice. Interestingly, Ring1B(-/-) effector Th2 cells were highly susceptible to apoptosis in comparison with wild-type effector Th2 cells in vivo and in vitro. The in vitro experiments revealed that the expression of Bim was increased at both the transcriptional and protein levels in Ring1B(-/-) effector Th2 cells, and the enhanced apoptosis in Ring1B(-/-) Th2 cells was rescued by the knockdown of Bim but not the other proapoptotic genes, such as Perp, Noxa, or Bax. The enhanced apoptosis detected in the transferred Ring1B(-/-) Th2 cells in the lung of the recipient mice was also rescued by knockdown of Bim. Therefore, these results indicate that Ring1B plays an important role in Th2-driven allergic airway inflammation through the control of Bim-dependent apoptosis of effector Th2 cells in vivo.
Collapse
Affiliation(s)
- Akane Suzuki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hegazy AN, Peine M, Helmstetter C, Panse I, Fröhlich A, Bergthaler A, Flatz L, Pinschewer DD, Radbruch A, Löhning M. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 2010; 32:116-28. [PMID: 20079668 DOI: 10.1016/j.immuni.2009.12.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/30/2009] [Accepted: 11/18/2009] [Indexed: 01/01/2023]
Abstract
Current T cell differentiation models invoke separate T helper 2 (Th2) and Th1 cell lineages governed by the lineage-specifying transcription factors GATA-3 and T-bet. However, knowledge on the plasticity of Th2 cell lineage commitment is limited. Here we show that infection with Th1 cell-promoting lymphocytic choriomeningitis virus (LCMV) reprogrammed otherwise stably committed GATA-3(+) Th2 cells to adopt a GATA-3(+)T-bet(+) and interleukin-4(+)interferon-gamma(+) "Th2+1" phenotype that was maintained in vivo for months. Th2 cell reprogramming required T cell receptor stimulation, concerted type I and type II interferon and interleukin-12 signals, and T-bet. LCMV-triggered T-bet induction in adoptively transferred virus-specific Th2 cells was crucial to prevent viral persistence and fatal immunopathology. Thus, functional reprogramming of unfavorably differentiated Th2 cells may facilitate the establishment of protective immune responses. Stable coexpression of GATA-3 and T-bet provides a molecular concept for the long-term coexistence of Th2 and Th1 cell lineage characteristics in single memory T cells.
Collapse
Affiliation(s)
- Ahmed N Hegazy
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rensing L, Koch M, Becker A. A comparative approach to the principal mechanisms of different memory systems. Naturwissenschaften 2009; 96:1373-84. [PMID: 19680619 DOI: 10.1007/s00114-009-0591-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 07/07/2009] [Accepted: 07/12/2009] [Indexed: 02/07/2023]
Abstract
The term "memory" applies not only to the preservation of information in neuronal and immune systems but also to phenomena observed for example in plants, single cells, and RNA viruses. We here compare the different forms of information storage with respect to possible common features. The latter may be characterized by (1) selection of pre-existing information, (2) activation of memory systems often including transcriptional, and translational, as well as epigenetic and genetic mechanisms, (3) subsequent consolidation of the activated state in a latent form (standby mode), and (4) reactivation of the latent state of memory systems when the organism is exposed to the same (or conditioned) signal or to previous selective constraints. These features apparently also exist in the "evolutionary memory," i.e., in evolving populations which have highly variable mutant spectra.
Collapse
Affiliation(s)
- Ludger Rensing
- Department of Biology, University of Bremen, 28334, Bremen, Germany.
| | | | | |
Collapse
|
42
|
Sierra-Puente RE, Campos-Rodríguez R, Jarillo-Luna RA, Muñoz-Fernández L, Rodríguez MG, Muñoz-Ortega MH, Ventura-Juárez J. Expression of immune modulator cytokines in human fulminant amoebic colitis. Parasite Immunol 2009; 31:384-91. [PMID: 19527454 DOI: 10.1111/j.1365-3024.2009.01118.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human fulminant amoebic colitis (FAC) is characterized by ulceration and inflammation of the colon. The specific mixture of pro-inflammatory and anti-inflammatory cytokines may participate in either the host defense or in the pathogenesis of amoebic colitis. Therefore, we studied the expression of IL-8, IL-10, IL-4, TGF-beta and IFN-gamma in human FAC patients and controls through immunohistochemistry analysis. The number of cells expressing IL-8, IL-4 and IL-10 was significantly enhanced in all FAC samples compared to the control samples. However, the expression of TGF- beta in patients was low in the colonic mucosa and high in the lamina propria compared with the control. No expression of IFN-gamma was found in the controls or FAC samples. The production of IL-8 by intestinal epithelial cells may play a role in the pathogenesis of amoebic infection, because this cytokine attracts neutrophils, which lead to an inflammatory reaction that results in tissue damage. The predominant expression of the macrophage down-regulating cytokines, IL-4, IL-10 and TGF-beta, or the Th2-type immune response could inhibit a cell-mediated immune response, which in turn would facilitate parasite invasion in these tissues.
Collapse
Affiliation(s)
- R E Sierra-Puente
- Departamento de Histología, Facultad de Medicina, Universidad Juárez del Estado de Durango, Durango, México
| | | | | | | | | | | | | |
Collapse
|
43
|
Naundorf S, Schröder M, Höflich C, Suman N, Volk HD, Grütz G. IL-10 interferes directly with TCR-induced IFN-gamma but not IL-17 production in memory T cells. Eur J Immunol 2009; 39:1066-77. [PMID: 19266486 DOI: 10.1002/eji.200838773] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL-10 is a potent immunoregulatory and anti-inflammatory cytokine. However, therapeutic trials in chronic inflammation have been largely disappointing. It is well established that IL-10 can inhibit Th1 and Th2 cytokine production via indirect effects on APC. Less data are available about the influence of IL-10 on IL-17 production, a cytokine which has been recently linked to chronic inflammation. Furthermore, there are only few reports about a direct effect of IL-10 on T cells. We demonstrate here that IL-10 can directly interfere with TCR-induced IFN-gamma production in freshly isolated memory T cells in the absence of APC. This effect was independent of the previously described effects of IL-10 on T cells, namely inhibition of IL-2 production and inhibition of CD28 signaling. In contrast, IL-10 did not affect anti-CD3/anti-CD28-induced IL-17 production from memory T cells even in the presence of APC. This might have implications for the interpretation of therapeutic trials in patients with chronic inflammation where Th17 cells contribute to pathogenesis.
Collapse
Affiliation(s)
- Sandra Naundorf
- Institute of Medical Immunology, Charité, Humboldt-University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Ghani S, Feuerer M, Doebis C, Lauer U, Loddenkemper C, Huehn J, Hamann A, Syrbe U. T cells as pioneers: antigen-specific T cells condition inflamed sites for high-rate antigen-non-specific effector cell recruitment. Immunology 2009; 128:e870-80. [PMID: 19740348 DOI: 10.1111/j.1365-2567.2009.03096.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cellular infiltration is a classic hallmark of inflammation. Whereas the role of T cells in many types of inflammation is well established, the specific impact of antigen recognition on their migration into the site and on the accumulation of other effector cells are still matters of debate. Using a model of an inflammatory effector phase driven by T-cell receptor (TCR) transgenic T cells, we found (i) that antigen-specific T cells play a crucial role as 'pioneer cells' that condition the tissue for enhanced recruitment of further T effector cells and other leucocytes, and (ii) that the infiltration of T cells is not dependent on antigen specificity. We demonstrate that a small number of antigen-specific T cells suffice to initiate a cascade of cellular immigration into the antigen-loaded site. Although antigen drives this process, accumulation of T cells in the first few days of inflammation was not dependent on T-cell reactivity to the antigen. Both transgenic and wild-type T effector cells showed enhanced immigration into the site of antigen challenge after the initial arrival and activation of antigen-specific pioneer cells. This suggests that bystander accumulation of non-specific effector/memory T cells is a general feature in inflammation. Furthermore, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma were identified as mediators that contribute to conditioning of the inflammatory site for high-rate accumulation of T effector cells in this T-cell-driven model.
Collapse
Affiliation(s)
- Saeed Ghani
- Experimentelle Rheumatologie, Charité-Universitaetsmedizin c/o Deutsches Rheuma-forschungszentrum, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lexberg MH, Taubner A, Förster A, Albrecht I, Richter A, Kamradt T, Radbruch A, Chang HD. Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 2008; 38:2654-64. [PMID: 18825747 DOI: 10.1002/eji.200838541] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Based on the memory for the re-expression of certain cytokine genes, different subsets of Th cells have been defined. In Th type 1 (Th1) and Th2 memory lymphocytes, the genes for the cytokines interferon-gamma and interleukin (IL)-4 are imprinted for expression upon restimulation by the expression of the transcription factors T-bet and GATA-3, respectively, and epigenetic modification of the cytokine genes. In Th17 cells, IL-17 expression is dependent on the transcription factors RORgammat and RORalpha. Here, we analyze the stability and plasticity of IL-17 memory in Th17 cells. We have developed a cytometric IL-17 secretion assay for the isolation of viable Th cells secreting IL-17. For Th17 cells generated in vitro, IL-17 expression itself is dependent on continued TGF-beta/IL-6 or IL-23 signaling and is blocked by interferon-gamma and IL-4 signaling. In response to IL-12 and IL-4, in vitro generated Th17 cells are converted into Th1 or Th2 cells, respectively. Th17 cells isolated ex vivo, however, maintain their IL-17 memory upon subsequent in vitro culture, even in the absence of IL-23. Their cytokine memory is not regulated by IL-12 or IL-4. Th17 cells generated in vivo are a stable and distinct lineage of Th cell differentiation.
Collapse
|
46
|
Fecteau JF, Roy A, Néron S. Peripheral blood CD27+ IgG+ B cells rapidly proliferate and differentiate into immunoglobulin-secreting cells after exposure to low CD154 interaction. Immunology 2008; 128:e353-65. [PMID: 19016905 DOI: 10.1111/j.1365-2567.2008.02976.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vitro CD40 stimulation of human B cells isolated from lymphoid organs is dominated by memory B cells undergoing faster proliferation and higher differentiation than naive B cells. In contrast, we previously reported that blood memory B cells mainly differentiate into immunoglobulin-secreting cells in response to CD40 stimulation. However, variations in CD40-CD154 interaction are now recognized to influence B-cell fate. In this study, we have compared the in vitro response of blood CD27(-) and CD27(-) IgG(-) to CD27(+) and CD27(+) IgG(+) B cells following low-density exposure to CD154 in the presence of a mixture of interleukin-2 (IL-2), IL-4 and IL-10. The evolution of these cell populations was monitored during initiation and following long-term stimulation. Over a 5-day period, CD27(+) B cells underwent differentiation into immunoglobulin-secreting cells more readily than CD27(-) cells, and CD27(+) IgG(+) B cells gave rise to a near homogeneous population of CD19(+) CD27(++) CD38(+) IgG(lo) cells capable of high immunoglobulin G (IgG) secretion. During the same period, CD27(-) IgG(-) B cells partially became CD19(++) CD27(-) CD38(-) IgG(++) cells but showed no IgG secretion. Long-term stimulation revealed that CD27(+) IgG(+) B cells retained a high expansion capacity and could maintain their momentum towards differentiation over naive B cells. In addition, long-term stimulation was driving CD27(-) IgG(-) and total CD19(+) B cells to evolve into similar CD27(+) and CD27(-) subsets, suggesting naive homeostatic proliferation. Overall, these results tend to reconcile memory B cells from blood and lymphoid organs regarding their preferential differentiation capacity compared to naive cells, and further suggest that circulating memory IgG(+) cells may be intrinsically prone to rapid activation upon appropriate stimulation.
Collapse
Affiliation(s)
- Jessie F Fecteau
- Héma-Québec, Ingénierie cellulaire, Recherche et développement, Québec, Canada
| | | | | |
Collapse
|
47
|
Gender-specific effects of cytokine gene polymorphisms on childhood vaccine responses. Vaccine 2008; 26:3574-9. [PMID: 18547691 DOI: 10.1016/j.vaccine.2008.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 05/04/2008] [Accepted: 05/07/2008] [Indexed: 01/21/2023]
Abstract
Cytokine gene polymorphisms affect vaccine responses and gender-specific effects are known for many phenotypes. Therefore, this study investigated gender-specific effects of cytokine gene polymorphisms on vaccine responses. In 263 2-year-old subjects selected for parental history of atopy, boys with IL-4 C-589T and IL-4Ralpha I50V genotypes associated with atopy had increased Diptheria Toxoid (DiphTox) and Tetanus Toxoid (TetTox) responses compared with the remaining alleles (IL-4 C-589T: DipTox p=0.01, TetTox p=0.04; IL-4Ralpha.I50V: DipTox p=0.04, TetTox p=0.08). Contrastingly, girls with IL-10 -592C genotypes associated with atopy had lower levels of DiphTox (p=0.03) and TetTox (p=0.02) responses compared with the remaining allele. Additionally, interaction effects were found for IL-4 C-589T (p=0.01) and IL-4Ralpha I50V (p=0.04) polymorphisms. In conclusion, these findings support the interaction of primary genetic and modifying factors on vaccine responses and the importance of atopic genetics to these responses.
Collapse
|
48
|
Dong J, Ivascu C, Chang HD, Wu P, Angeli R, Maggi L, Eckhardt F, Tykocinski L, Haefliger C, Möwes B, Sieper J, Radbruch A, Annunziato F, Thiel A. IL-10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:2389-96. [PMID: 17675500 DOI: 10.4049/jimmunol.179.4.2389] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Epigenetic modifications, including DNA methylation, profoundly influence gene expression of CD4(+) Th-specific cells thereby shaping memory Th cell function. We demonstrate here a correlation between a lacking fixed potential of human memory Th cells to re-express the immunoregulatory cytokine gene IL10 and its DNA methylation status. Memory Th cells secreting IL-10 or IFN-gamma were directly isolated ex vivo from peripheral blood of healthy volunteers, and the DNA methylation status of IL10 and IFNG was assessed. Limited difference in methylation was found for the IL10 gene locus in IL-10-secreting Th cells, as compared with Th cells not secreting IL-10 isolated directly ex vivo or from in vitro-established human Th1 and Th2 clones. In contrast, in IFN-gamma(+) memory Th cells the promoter of the IFNG gene was hypomethylated, as compared with IFN-gamma-nonsecreting memory Th cells. In accordance with the lack of epigenetic memory, almost 90% of ex vivo-isolated IL-10-secreting Th cells lacked a functional memory for IL-10 re-expression after restimulation. Our data indicate that IL10 does not become epigenetically marked in human memory Th cells unlike effector cytokine genes such as IFNG. The exclusion of IL-10, but not effector cytokines, from the functional memory of human CD4(+) T lymphocytes ex vivo may reflect the need for appropriate regulation of IL-10 secretion, due to its potent immunoregulatory potential.
Collapse
Affiliation(s)
- Jun Dong
- Clinical Immunology Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Basu R, Bhaumik S, Haldar AK, Naskar K, De T, Dana SK, Walden P, Roy S. Hybrid cell vaccination resolves Leishmania donovani infection by eliciting a strong CD8+ cytotoxic T-lymphocyte response with concomitant suppression of interleukin-10 (IL-10) but not IL-4 or IL-13. Infect Immun 2007; 75:5956-66. [PMID: 17908806 PMCID: PMC2168357 DOI: 10.1128/iai.00944-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
There is an acute dearth of therapeutic interventions against visceral leishmaniasis that is required to restore an established defective cell-mediated immune response. Hence, formulation of effective immunotherapy requires the use of dominant antigen(s) targeted to elicit a specific antiparasitic cellular immune response. We implemented hybrid cell vaccination therapy in Leishmania donovani-infected BALB/c mice by electrofusing dominant Leishmania antigen kinetoplastid membrane protein 11 (KMP-11)-transfected bone marrow-derived macrophages from BALB/c mice with allogeneic bone marrow-derived dendritic cells from C57BL/6 mice. Hybrid cell vaccine (HCV) cleared the splenic and hepatic parasite burden, eliciting KMP-11-specific major histocompatibility complex class I-restricted CD8+ cytotoxic T-lymphocyte (CTL) responses. Moreover, splenic lymphocytes of HCV-treated mice not only showed the enhancement of gamma interferon but also marked an elevated expression of the Th2 cytokines interleukin-4 (IL-4) and IL-13 at both transcriptional and translational levels. On the other hand, IL-10 production from splenic T cells was markedly suppressed as a result of HCV therapy. CD8+ T-cell depletion completely abrogated HCV-mediated immunity and the anti-KMP-11 CTL response. Interestingly, CD8+ T-cell depletion completely abrogated HCV-induced immunity, resulting in a marked increase of IL-10 but not of IL-4 and IL-13. The present study reports the first implementation of HCV immunotherapy in an infectious disease model, establishing strong antigen-specific CTL generation as a correlate of HCV-mediated antileishmanial immunity that is reversed by in vivo CD8+ T-cell depletion of HCV-treated mice. Our findings might be extended to drug-nonresponsive visceral leishmaniasis patients, as well as against multiple infectious diseases with pathogen-specific immunodominant antigens.
Collapse
Affiliation(s)
- Rajatava Basu
- Department of Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rothoeft T, Fischer K, Zawatzki S, Schulz V, Schauer U, Körner Rettberg C. Differential response of human naive and memory/effector T cells to dendritic cells infected by respiratory syncytial virus. Clin Exp Immunol 2007; 150:263-73. [PMID: 17892510 PMCID: PMC2219349 DOI: 10.1111/j.1365-2249.2007.03497.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In vitro studies have contributed substantially to the understanding of immunopathology of respiratory syncytial virus (RSV)-mediated disease. In the present study we compared the effect of RSV-infected dendritic cells on the time-course of the primary and memory/effector T cell response in vitro. Cultures with uninfected dendritic cells known to elicit T helper 2 (Th2) responses and with polyinosinic-polycytidylic acid (poly-IC)-stimulated dendritic cells known to elicit Th1 responses served as controls. At day 1 after stimulation there was a high proportion of interleukin (IL)-2 and tumour necrosis factor (TNF)-alpha-producing T cells with no difference in number of producing T cells as well as concentration of secreted cytokines between RSV-infected and control cultures. However, up to day 3 generation of IFN-gamma was reduced markedly. In addition, there was a reduced proliferation in RSV cultures. At day 7 the RSV-treated cultures showed a preponderance of IL-4 generation. At days 21-24, after three rounds of restimulation, memory/effector T cells matured under the influence of RSV were still not fully polarized but in contrast to the primary response displayed a predominance of Th1 cytokines. Contact with RSV-infected HEp-2 cells inhibited proliferation of T cells; memory effector T cells were less sensitive to contact inhibition than naive T cells. In addition, RSV inhibited the stimulated rearrangement of cortical actin more effectively in naive compared to memory T cells. In summary, we have shown that RSV infection of dendritic cells has a distinct modulatory effect on the primary response and a less pronounced effect on the memory response.
Collapse
Affiliation(s)
- T Rothoeft
- Klinik für Kinder und Jugendmedizin, der Ruhr Universität Bochum, im St. Josef Hospital, Germany
| | | | | | | | | | | |
Collapse
|