1
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
2
|
Vived C, Lee-Papastavros A, Aparecida da Silva Pereira J, Yi P, MacDonald TL. β Cell Stress and Endocrine Function During T1D: What Is Next to Discover? Endocrinology 2023; 165:bqad162. [PMID: 37947352 DOI: 10.1210/endocr/bqad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Canonically, type 1 diabetes (T1D) is a disease characterized by autoreactive T cells as perpetrators of endocrine dysfunction and β cell death in the spiral toward loss of β cell mass, hyperglycemia, and insulin dependence. β Cells have mostly been considered as bystanders in a flurry of autoimmune processes. More recently, our framework for understanding and investigating T1D has evolved. It appears increasingly likely that intracellular β cell stress is an important component of T1D etiology/pathology that perpetuates autoimmunity during the progression to T1D. Here we discuss the emerging and complex role of β cell stress in initiating, provoking, and catalyzing T1D. We outline the bridges between hyperglycemia, endoplasmic reticulum stress, oxidative stress, and autoimmunity from the viewpoint of intrinsic β cell (dys)function, and we extend this discussion to the potential role for a therapeutic β cell stress-metabolism axis in T1D. Lastly, we mention research angles that may be pursued to improve β cell endocrine function during T1D. Biology gleaned from studying T1D will certainly overlap to innovate therapeutic strategies for T2D, and also enhance the pursuit of creating optimized stem cell-derived β cells as endocrine therapy.
Collapse
Affiliation(s)
- Celia Vived
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jéssica Aparecida da Silva Pereira
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Yi
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tara L MacDonald
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Wenzlau JM, DiLisio JE, Barbour G, Dang M, Hohenstein AC, Nakayama M, Delong T, Baker RL, Haskins K. Insulin B-chain hybrid peptides are agonists for T cells reactive to insulin B:9-23 in autoimmune diabetes. Front Immunol 2022; 13:926650. [PMID: 36032090 PMCID: PMC9399855 DOI: 10.3389/fimmu.2022.926650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin is considered to be a key antigenic target of T cells in Type 1 Diabetes (T1D) and autoimmune diabetes in the NOD mouse with particular focus on the B-chain amino acid sequence B:9-23 as the primary epitope. Our lab previously discovered that hybrid insulin peptides (HIPs), comprised of insulin C-peptide fragments fused to other β-cell granule peptides, are ligands for several pathogenic CD4 T cell clones derived from NOD mice and for autoreactive CD4 T cells from T1D patients. A subset of CD4 T cell clones from our panel react to insulin and B:9-23 but only at high concentrations of antigen. We hypothesized that HIPs might also be formed from insulin B-chain sequences covalently bound to other endogenously cleaved ß-cell proteins. We report here on the identification of a B-chain HIP, termed the 6.3HIP, containing a fragment of B:9-23 joined to an endogenously processed peptide of ProSAAS, as a strong neo-epitope for the insulin-reactive CD4 T cell clone BDC-6.3. Using an I-Ag7 tetramer loaded with the 6.3HIP, we demonstrate that T cells reactive to this B-chain HIP can be readily detected in NOD mouse islet infiltrates. This work suggests that some portion of autoreactive T cells stimulated by insulin B:9-23 may be responding to B-chain HIPs as peptide ligands.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - James E. DiLisio
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Gene Barbour
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Mylinh Dang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, United States
| | - Anita C. Hohenstein
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Maki Nakayama
- Department of Pediatrics-Barbara Davis Center, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, United States
| | - Rocky L. Baker
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
4
|
Decker P, Moulinet T, Pontille F, Cravat M, De Carvalho Bittencourt M, Jaussaud R. An updated review of anti-Ro52 (TRIM21) antibodies impact in connective tissue diseases clinical management. Autoimmun Rev 2021; 21:103013. [PMID: 34896652 DOI: 10.1016/j.autrev.2021.103013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023]
Abstract
Anti-Ro52 (or anti-TRIM21) antibodies are part of the family of anti-Ro/SSA antibodies, historically markers of Sjögren syndrome and systemic lupus erythematosus. Anti-Ro52 antibodies represent one the most frequently encountered autoantibodies in patients with connective tissue disease (primary Sjögren syndrome, systemic lupus erythematosus, systemic sclerosis and idiopathic inflammatory myopathies). Because of their lack of specificity and detection in patients with non-autoimmune disorders, the usefulness of anti-Ro52 testing in connective tissue diseases is still matter of debate among clinicians and immunologists. Autoantibodies are mainly diagnostic markers for autoimmune diseases but some of them can also be directly involved in the generation of tissue damage. Over the past decade several authors reported associations of anti-Ro52 antibodies with some clinical features - especially interstitial lung disease - and survival in patients with connective tissue diseases. There is also a growing evidence of the role of anti-Ro52 antibodies in the pathogenesis of connective tissue diseases. In this review, we comprehensively discuss the clinical associations of anti-Ro52 antibodies in the different connective tissue diseases and the recent advances on their potential role in the inflammatory response.
Collapse
Affiliation(s)
- P Decker
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Systemic and Autoimmune Rare Diseases, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France.
| | - T Moulinet
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Systemic and Autoimmune Rare Diseases, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - F Pontille
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Systemic and Autoimmune Rare Diseases, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - M Cravat
- Laboratory of Immunology, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - M De Carvalho Bittencourt
- Laboratory of Immunology, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - R Jaussaud
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Systemic and Autoimmune Rare Diseases, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Nakayama M, Michels AW. Using the T Cell Receptor as a Biomarker in Type 1 Diabetes. Front Immunol 2021; 12:777788. [PMID: 34868047 PMCID: PMC8635517 DOI: 10.3389/fimmu.2021.777788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell. With the evolution of sequencing and computational analysis technologies, TCRs are now prime candidates for the development of next-generation non-cell based T cell biomarkers, which provide a surrogate measure to assess the presence of antigen-specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a prototypical organ specific autoimmune disease in which T cells play a pivotal role in targeting pancreatic insulin-producing beta cells. While the disease is now predictable by measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and can be a measure of disease activity. This review focuses on the potential and challenges of developing TCR biomarkers for T1D. We summarize current knowledge about TCR repertoires and clonotypes specific for T1D and discuss challenges that are unique for autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from individuals with and without T1D along with computational 'big data' analysis will facilitate the development of TCRs as potentially powerful biomarkers in the development of T1D.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Amdare N, Purcell AW, DiLorenzo TP. Noncontiguous T cell epitopes in autoimmune diabetes: From mice to men and back again. J Biol Chem 2021; 297:100827. [PMID: 34044020 PMCID: PMC8233151 DOI: 10.1016/j.jbc.2021.100827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that affects the insulin-producing beta cells of the pancreatic islets. The nonobese diabetic mouse is a widely studied spontaneous model of the disease that has contributed greatly to our understanding of T1D pathogenesis. This is especially true in the case of antigen discovery. Upon review of existing knowledge concerning the antigens and peptide epitopes that are recognized by T cells in this model, good concordance is observed between mouse and human antigens. A fascinating recent illustration of the contribution of the nonobese diabetic mouse in the area of epitope identification is the discovery of noncontiguous CD4+ T cell epitopes. This novel epitope class is characterized by the linkage of an insulin-derived peptide to, most commonly, a fragment of a natural cleavage product of another beta cell secretory granule constituent. These so-called hybrid insulin peptides are also recognized by T cells in patients with T1D, although the precise mechanism for their generation has yet to be defined and is the subject of active investigation. Although evidence from the tumor immunology arena documented the existence of noncontiguous CD8+ T cell epitopes, generated by proteasome-mediated peptide splicing involving transpeptidation, such CD8+ T cell epitopes were thought to be a rare immunological curiosity. However, recent advances in bioinformatics and mass spectrometry have challenged this view. These developments, coupled with the discovery of hybrid insulin peptides, have spurred a search for noncontiguous CD8+ T cell epitopes in T1D, an exciting frontier area still in its infancy.
Collapse
Affiliation(s)
- Nitin Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
7
|
Mannering SI, Rubin AF, Wang R, Bhattacharjee P. Identifying New Hybrid Insulin Peptides (HIPs) in Type 1 Diabetes. Front Immunol 2021; 12:667870. [PMID: 33995402 PMCID: PMC8120023 DOI: 10.3389/fimmu.2021.667870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
In 2016 Delong et al. discovered a new type of neoepitope formed by the fusion of two unrelated peptide fragments. Remarkably these neoepitopes, called hybrid insulin peptides, or HIPs, are recognized by pathogenic CD4+ T cells in the NOD mouse and human pancreatic islet-infiltrating T cells in people with type 1 diabetes. Current data implicates CD4+ T-cell responses to HIPs in the immune pathogenesis of human T1D. Because of their role in the immune pathogenesis of human T1D it is important to identify new HIPs that are recognized by CD4+ T cells in people at risk of, or with, T1D. A detailed knowledge of T1D-associated HIPs will allow HIPs to be used in assays to monitor changes in T cell mediated beta-cell autoimmunity. They will also provide new targets for antigen-specific therapies for T1D. However, because HIPs are formed by the fusion of two unrelated peptides there are an enormous number of potential HIPs which makes it technically challenging to identify them. Here we review the discovery of HIPs, how they form and discuss approaches to identifying new HIPs relevant to the immune pathogenesis of human type 1 diabetes.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ruike Wang
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Reed BK, Kappler JW. Hidden in Plain View: Discovery of Chimeric Diabetogenic CD4 T Cell Neo-Epitopes. Front Immunol 2021; 12:669986. [PMID: 33986758 PMCID: PMC8111216 DOI: 10.3389/fimmu.2021.669986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
The T cell antigens driving autoimmune Type 1 Diabetes (T1D) have been pursued for more than three decades. When diabetogenic CD4 T cell clones and their relevant MHCII antigen presenting alleles were first identified in rodents and humans, the path to discovering the peptide epitopes within pancreatic beta cell proteins seemed straightforward. However, as experimental results accumulated, definitive data were often absent or controversial. Work within the last decade has helped to clear up some of the controversy by demonstrating that a number of the important MHCII presented epitopes are not encoded in the natural beta cell proteins, but in fact are fusions between peptide fragments derived from the same or different proteins. Recently, the mechanism for generating these MHCII diabetogenic chimeric epitopes has been attributed to a form of reverse proteolysis, called transpeptidation, a process that has been well-documented in the production of MHCI presented epitopes. In this mini-review we summarize these data and their implications for T1D and other autoimmune responses.
Collapse
Affiliation(s)
- Brendan K Reed
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - John W Kappler
- Research Division, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States.,Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, United States
| |
Collapse
|
9
|
Kim H, Perovanovic J, Shakya A, Shen Z, German CN, Ibarra A, Jafek JL, Lin NP, Evavold BD, Chou DHC, Jensen PE, He X, Tantin D. Targeting transcriptional coregulator OCA-B/Pou2af1 blocks activated autoreactive T cells in the pancreas and type 1 diabetes. J Exp Med 2021; 218:e20200533. [PMID: 33295943 PMCID: PMC7731945 DOI: 10.1084/jem.20200533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 11/04/2022] Open
Abstract
The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Crosses, Genetic
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Female
- Gene Deletion
- Germ Cells/metabolism
- Humans
- Inflammation Mediators/metabolism
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Ovalbumin
- Pancreas/metabolism
- Pancreas/pathology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell/metabolism
- Spleen/pathology
- T-Lymphocytes/immunology
- Trans-Activators/deficiency
- Trans-Activators/metabolism
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrea Ibarra
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jillian L Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Nai-Pin Lin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Danny H-C Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Peter E Jensen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
10
|
DiLisio JE, Haskins K. Induction of Antigen-Specific Tolerance in Autoimmune Diabetes with Nanoparticles Containing Hybrid Insulin Peptides. Biomedicines 2021; 9:biomedicines9030240. [PMID: 33673706 PMCID: PMC7997429 DOI: 10.3390/biomedicines9030240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Autoreactive T cells are thought to orchestrate the onset and progression of autoimmune diabetes. Key cognate antigens of these diabetogenic T cells include hybrid insulin peptides, formed by the fusion of insulin fragments to cleavage products of other β-cell granule proteins. Here we review initial work exploring tolerance induction to a hybrid insulin peptide using a biodegradable, nanoparticle delivery system in non-obese diabetic (NOD) mice. The immune phenotype(s) and possible mechanism(s) behind antigen-specific tolerance induction were dissected with a disease transfer model using transgenic autoreactive mouse T cells. Treatment of NOD mice with peptide-coupled nanoparticles appeared to have a dual function in preventing diabetes onset, inducing anergy in effector T cells and enhancing the activity of regulatory T cells. Importantly, the ratio of these two cell types in the pancreas was pushed toward tolerance. Antigen-specific tolerance induction to hybrid insulin peptides has the translational potential to preserve islet β-cells in new-onset or at-risk patients and prevent recurrent autoimmunity in transplant patients.
Collapse
|
11
|
Matsumoto Y, Kishida K, Matsumoto M, Matsuoka S, Kohyama M, Suenaga T, Arase H. A TCR-like antibody against a proinsulin-containing fusion peptide ameliorates type 1 diabetes in NOD mice. Biochem Biophys Res Commun 2020; 534:680-686. [PMID: 33208230 DOI: 10.1016/j.bbrc.2020.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of insulin-producing β cells. The response of autoreactive T cells to β cell antigens plays a central role in the development of T1D. Recently, fusion peptides composed by insulin C-peptide fragments and other proteins were reported as β cell target antigens for diabetogenic CD4+ T cells in non-obese diabetic (NOD) mice. In this study, we generated a T cell-receptor (TCR)-like monoclonal antibody (mAb) against a fusion peptide bound to major histocompatibility complex (MHC) class II component to elucidate the function of the fusion peptides in T1D. In addition, we developed a novel NFAT-GFP TCR reporter system to evaluate the TCR-like mAb. The NFAT-GFP reporter T cells expressing the diabetogenic TCR were specifically activated by the fusion peptide presented on the MHC class II molecules. By using the NFAT-GFP reporter T cells, we showed that the TCR-like mAb blocks the diabetogenic T cell response against the fusion peptide presented on the MHC class II molecules. Furthermore, the development of T1D was ameliorated when pre-diabetic NOD mice were treated with this mAb. These findings suggest that NFAT-GFP reporter T cells are useful to assess the function of specific TCR and the recognition of fusion peptides by T cells is crucial for the pathogenesis of T1D.
Collapse
Affiliation(s)
- Yushi Matsumoto
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kishida
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maki Matsumoto
- Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sumiko Matsuoka
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masako Kohyama
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Lu G, Rausell-Palamos F, Zhang J, Zheng Z, Zhang T, Valle S, Rosselot C, Berrouet C, Conde P, Spindler MP, Graham JG, Homann D, Garcia-Ocaña A. Dextran Sulfate Protects Pancreatic β-Cells, Reduces Autoimmunity, and Ameliorates Type 1 Diabetes. Diabetes 2020; 69:1692-1707. [PMID: 32381645 PMCID: PMC7372066 DOI: 10.2337/db19-0725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low-molecular-weight dextran sulfate (DS) is a sulfated semisynthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity, and ameliorate T1D is unknown. In this study, we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a proinflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in prediabetic NOD mice and, most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/HS proteoglycan expression, and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory costimulatory molecule programmed death-1 (PD-1) in T cells, reduces interferon-γ+CD4+ and CD8+ T cells, and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation, and immunomodulation can reverse diabetes in NOD mice, highlighting its therapeutic potential for the treatment of T1D.
Collapse
Affiliation(s)
- Geming Lu
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Francisco Rausell-Palamos
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiamin Zhang
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Zihan Zheng
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Carolina Rosselot
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Cecilia Berrouet
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Matthew P Spindler
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John G Graham
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dirk Homann
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Baker RL, Jamison BL, Haskins K. Hybrid insulin peptides are neo-epitopes for CD4 T cells in autoimmune diabetes. Curr Opin Endocrinol Diabetes Obes 2019; 26:195-200. [PMID: 31166225 PMCID: PMC6830731 DOI: 10.1097/med.0000000000000490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The current review covers recent advances in our knowledge of the newest autoantigen neo-epitopes in type 1 diabetes (T1D): hybrid insulin peptides or HIPs. These ligands for autoreactive T cells are formed by peptide fusion, a novel posttranslational modification process that we first reported in 2016. RECENT FINDINGS Two major HIPs in the nonobese diabetic mouse model, ligands for diabetogenic CD4 T-cell clones, have been incorporated into tetramers and used to track HIP-reactive T cells during progression of disease. HIPs have also been used in strategies for induction of antigen-specific tolerance and show promise for delaying or reversing disease in the nonobese diabetic mouse. Importantly, CD4 T cells reactive to various HIPs have been detected in the islets and peripheral blood mononuclear cell of T1D patients and newly developed human T-cell clones are being employed to gather more data on the phenotype and function of HIP-reactive T cells in patients. SUMMARY These new hybrid insulin peptide epitopes may provide the basis for establishing autoreactive T cells as biomarkers of disease and as potential tolerogens for treatment of T1D.
Collapse
|
15
|
Abstract
Mounting evidence implicates hybrid insulin peptides (HIPs) as important autoantigens in the development of type 1 diabetes (T1D). These fusion peptides formed between insulin and other pancreatic beta cell-derived peptides contain non-genomically encoded amino acid sequences, making them plausible targets for autoreactive T cells in T1D. HIPs are detectable by mass spectrometry in human and murine islets and are targeted by diabetes-inducing T cells in non-obese diabetic mice as well as by T cells isolated from the residual pancreatic islets of human organ donors with T1D. The discovery of HIPs comes with numerous new challenges, as well as opportunities to study the pathogenesis of T1D. Here we review the original discovery of HIPs and describe recent studies investigating the role of HIP-reactive T cells in the development of diabetes. We also discuss potential mechanisms that may be responsible for the generation of HIPs in beta cells and describe challenges that need to be addressed in the field of mass spectrometry to enable the discovery of new HIPs. The identification of these potentially disease-driving antigens in T1D is of key interest to the field as it may provide new tools to predict, prevent and potentially reverse the disease.
Collapse
Affiliation(s)
- T A Wiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - T Delong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
16
|
Previte DM, Piganelli JD. Reactive Oxygen Species and Their Implications on CD4 + T Cells in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1399-1414. [PMID: 28990401 DOI: 10.1089/ars.2017.7357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.
Collapse
Affiliation(s)
- Dana M Previte
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jon D Piganelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Burrack AL, Landry LG, Siebert J, Coulombe M, Gill RG, Nakayama M. Simultaneous Recognition of Allogeneic MHC and Cognate Autoantigen by Autoreactive T Cells in Transplant Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1504-1512. [PMID: 29311365 PMCID: PMC5809255 DOI: 10.4049/jimmunol.1700856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022]
Abstract
The autoimmune condition is a primary obstacle to inducing tolerance in type 1 diabetes patients receiving allogeneic pancreas transplants. It is unknown how autoreactive T cells that recognize self-MHC molecules contribute to MHC-disparate allograft rejection. In this report, we show the presence and accumulation of dual-reactive, that is autoreactive and alloreactive, T cells in C3H islet allografts that were transplanted into autoimmune diabetic NOD mice. Using high-throughput sequencing, we discovered that T cells prevalent in allografts share identical TCRs with autoreactive T cells present in pancreatic islets. T cells expressing TCRs that are enriched in allograft lesions recognized C3H MHC molecules, and five of six cell lines expressing these TCRs were also reactive to NOD islet cells. These results reveal the presence of autoreactive T cells that mediate cross-reactive alloreactivity, and indicate a requirement for regulating such dual-reactive T cells in tissue replacement therapies given to autoimmune individuals.
Collapse
Affiliation(s)
- Adam L Burrack
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Marilyne Coulombe
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ronald G Gill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
18
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
19
|
T Cell Repertoire Diversity Is Decreased in Type 1 Diabetes Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:338-348. [PMID: 28024918 PMCID: PMC5200939 DOI: 10.1016/j.gpb.2016.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 02/01/2023]
Abstract
Type 1 diabetes mellitus (T1D) is an immune-mediated disease. The autoreactive T cells in T1D patients attack and destroy their own pancreatic cells. In order to systematically investigate the potential autoreactive T cell receptors (TCRs), we used a high-throughput immune repertoire sequencing technique to profile the spectrum of TCRs in individual T1D patients and controls. We sequenced the T cell repertoire of nine T1D patients, four type 2 diabetes (T2D) patients, and six nondiabetic controls. The diversity of the T cell repertoire in T1D patients was significantly decreased in comparison with T2D patients (P=7.0E-08 for CD4+ T cells, P=1.4E-04 for CD8+ T cells) and nondiabetic controls (P=2.7E-09 for CD4+ T cells, P=7.6E-06 for CD8+ T cells). Moreover, T1D patients had significantly more highly-expanded T cell clones than T2D patients (P=5.2E-06 for CD4+ T cells, P=1.9E-07 for CD8+ T cells) and nondiabetic controls (P=1.7E-07 for CD4+ T cells, P=3.3E-03 for CD8+ T cells). Furthermore, we identified a group of highly-expanded T cell receptor clones that are shared by more than two T1D patients. Although further validation in larger cohorts is needed, our data suggest that T cell receptor diversity measurements may become a valuable tool in investigating diabetes, such as using the diversity as an index to distinguish different types of diabetes.
Collapse
|
20
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
21
|
An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J Autoimmun 2016; 78:11-18. [PMID: 27802879 DOI: 10.1016/j.jaut.2016.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
BDC-6.9, a diabetogenic CD4 T cell clone isolated from a non-obese diabetic (NOD) mouse, responds to pancreatic islet cells from NOD but not BALB/c mice. We recently reported that a hybrid insulin peptide (HIP), 6.9HIP, formed by linkage of an insulin C-peptide fragment and a fragment of islet amyloid polypeptide (IAPP), is the antigen for BDC-6.9. We report here that the core 12-mer peptide from 6.9HIP, centered on the hybrid peptide junction, is also highly antigenic for BDC-6.9. In agreement with the observation that BALB/c islet cells fail to stimulate the T cell clone, a single amino acid difference in the BALB/c IAPP sequence renders the BALB/c version of the HIP only weakly antigenic. Mutant peptide analysis indicates that each parent molecule-insulin C-peptide and IAPP-donates residues critical for antigenicity. Through mass spectrometric analysis, we determine the distribution of naturally occurring 6.9HIP across chromatographic fractions of proteins from pancreatic beta cells. This distribution closely matches the profile of the T cell response to the fractions, confirming that 6.9HIP is the endogenous islet antigen for the clone. Using a new MHC II tetramer reagent, 6.9HIP-tet, we show that T cells specific for the 6.9HIP peptide are prevalent in the pancreas of diabetic NOD mice. Further study of HIPs and HIP-reactive T cells could yield valuable insight into key factors driving progression to diabetes and thereby inform efforts to prevent or reverse this disease.
Collapse
|
22
|
Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, Armstrong M, Powell RL, Reisdorph N, Kumar N, Elso CM, DeNicola M, Bottino R, Powers AC, Harlan DM, Kent SC, Mannering SI, Haskins K. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 2016; 351:711-4. [PMID: 26912858 DOI: 10.1126/science.aad2791] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T cell-mediated destruction of insulin-producing β cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in β cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in β cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in β cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.
Collapse
Affiliation(s)
- Thomas Delong
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Timothy A Wiles
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gene Barbour
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael Armstrong
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Roger L Powell
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nitesh Kumar
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Megan DeNicola
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA. VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - David M Harlan
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sally C Kent
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
24
|
Viret C, Mahiddine K, Baker RL, Haskins K, Guerder S. The T Cell Repertoire-Diversifying Enzyme TSSP Contributes to Thymic Selection of Diabetogenic CD4 T Cell Specificities Reactive to ChgA and IAPP Autoantigens. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209627 DOI: 10.4049/jimmunol.1401683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple studies highlighted the overtly self-reactive T cell repertoire in the diabetes-prone NOD mouse. This autoreactivity has primarily been linked to defects in apoptosis induction during central tolerance. Previous studies suggested that thymus-specific serine protease (TSSP), a putative serine protease expressed by cortical thymic epithelial cells and thymic dendritic cells, may edit the repertoire of self-peptides presented by MHC class II molecules and shapes the self-reactive CD4 T cell repertoire. To gain further insight into the role of TSSP in the selection of self-reactive CD4 T cells by endogenous self-Ags, we examined the development of thymocytes expressing distinct diabetogenic TCRs sharing common specificity in a thymic environment lacking TSSP. Using mixed bone marrow chimeras, we evaluated the effect of TSSP deficiency confined to different thymic stromal cells on the differentiation of thymocytes expressing the chromogranin A-reactive BDC-2.5 and BDC-10.1 TCRs or the islet amyloid polypeptide-reactive TCR BDC-6.9 and BDC-5.2.9. We found that TSSP deficiency resulted in deficient positive selection and induced deletion of the BDC-6.9 and BDC-10.1 TCRs, but it did not affect the differentiation of the BDC-2.5 and BDC-5.2.9 TCRs. Hence, TSSP has a subtle role in the generation of self-peptide ligands directing diabetogenic CD4 T cell development. These results provide additional evidence for TSSP activity as a novel mechanism promoting autoreactive CD4 T cell development/accumulation in the NOD mouse.
Collapse
Affiliation(s)
- Christophe Viret
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| | - Karim Mahiddine
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| | - Rocky Lee Baker
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | - Kathryn Haskins
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| |
Collapse
|
25
|
Mahmoud MH, Badr G, Badr BM, Kassem AU, Mohamed MS. Elevated IFN-alpha/beta levels in a streptozotocin-induced type I diabetic mouse model promote oxidative stress and mediate depletion of spleen-homing CD8+ T cells by apoptosis through impaired CCL21/CCR7 axis and IL-7/CD127 signaling. Cell Signal 2015; 27:2110-9. [PMID: 26192098 DOI: 10.1016/j.cellsig.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/27/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1D) is associated with increased type 1 interferon (IFN) levels and subsequent severe defects in lymphocyte function, which increase susceptibility to infections. The blockade of type 1 IFN receptor 1 (IFNAR1) in non-obese diabetic mice has been shown to delay T1D onset and decrease T1D incidence by enhancing spleen CD4+ T cells and restoring B cell function. However, the effect of type 1 IFN blockade during T1D on splenic CD8+ T cells has not previously been studied. Therefore, we investigated, for the first time, the effect of IFNAR1 blockade on the survival and architecture of spleen-homing CD8+ T cells in a streptozotocin-induced T1D mouse model. Three groups of mice were examined: a non-diabetic control group; a diabetic group; and a diabetic group treated with an anti-IFNAR1 blocking antibody. We observed that T1D induction was accompanied by a marked destruction of β cells followed by a marked reduction in insulin levels and increased IFN-α and IFN-β levels in the diabetic group. The diabetic mice also exhibited many abnormal changes including an elevation in blood and spleen free radical (reactive oxygen species and nitric oxide) and pro-inflammatory cytokine (IL-6 and TNF-α) levels, a significant decrease in IL-7 levels, and subsequently, a significant decrease in the numbers of spleen-homing CD8+ T cells. This decrease in spleen-homing CD8+ T cells resulted from a marked reduction in the CCL21-mediated entry of CD8+ T cells into the spleen and from increased apoptosis due to a marked reduction in IL-7-mediated STAT5 and AKT phosphorylation. Interestingly, type 1 IFN signaling blockade in diabetic mice significantly restored the numbers of splenic CD8+ T cells by restoring free radical, pro-inflammatory cytokine and IL-7 levels. These effects subsequently rescued splenic CD8+ T cells from apoptosis through a mechanism that was dependent upon CCL21- and IL-7-mediated signaling. Our data suggest that type 1 IFN is an essential mediator of pathogenesis in T1D and that this role results from the negative effect of IFN signaling on the survival of splenic CD8+ T cells.
Collapse
Affiliation(s)
- Mohamed H Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia; Food Science and Nutrition Department, National Research Center, Dokki, Cairo, Egypt
| | - Gamal Badr
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt. http://www.aun.edu.eg/
| | - Badr Mohamed Badr
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Ahmad Usama Kassem
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Mahmoud Shaaban Mohamed
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| |
Collapse
|
26
|
Nayak DK, Calderon B, Vomund AN, Unanue ER. ZnT8-reactive T cells are weakly pathogenic in NOD mice but can participate in diabetes under inflammatory conditions. Diabetes 2014; 63:3438-48. [PMID: 24812429 PMCID: PMC4171664 DOI: 10.2337/db13-1882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autoantibodies to the islet-specific Zn transporter ZnT8 (Slc30a8), as well as CD4 T cells, have been identified in patients with type 1 diabetes. Here we examined for CD4 T-cell reactivity to ZnT8 epitopes in the NOD mouse. Immunization with a cytoplasmic domain of the protein or with peptides predicted to bind to I-A(g7) resulted in a CD4 T-cell response, indicating a lack of deletional tolerance. However, presentation by intraislet antigen-presenting cells (APC) to the T cells was not detectable in prediabetic mice. Presentation by islet APC was found only in islets of mice with active diabetes. In accordance, a culture assay indicated the weak transfer of ZnT8 reactivity from insulinomas or primary β-cells to APC for presentation to T cells. A T cell directed to one peptide (345-359) resulted in the transfer of diabetes, but only in conditions in which the recipient NOD mice or NOD.Rag1(-/-) mice were subjected to light irradiation. In late diabetic NOD mice, CD4 T cells were found as well as a weak antibody response. We conclude that in NOD mice, ZnT8 is a minor diabetogenic antigen that can participate in diabetes in conditions in which the islet is first made receptive to immunological insults.
Collapse
Affiliation(s)
- Deepak K Nayak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Boris Calderon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
27
|
Rahman MJ, Regn D, Bashratyan R, Dai YD. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes 2014; 63:1008-20. [PMID: 24170696 PMCID: PMC3931393 DOI: 10.2337/db13-0859] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes (EXOs) are secreted, nano-sized membrane vesicles that contain potent immunostimulatory materials. We have recently demonstrated that insulinoma-released EXOs can stimulate the autoimmune responses in nonobese diabetic (NOD) mice, a spontaneous disease model for type 1 diabetes. To investigate whether primary islet cells can produce EXOs, we isolated cells from the islet of Langerhans of NOD mice and cultured them in vitro. Interestingly, cultured islets release fibroblast-like, fast-replicating cells that express mesenchymal stem cell (MSC) markers, including CD105 and stem-cell antigen-1. These islet MSC-like cells release highly immunostimulatory EXOs that could activate autoreactive B and T cells endogenously primed in NOD mice. Serum EXO levels and EXO-induced interferon-γ production were positively correlated with disease progression at the early prediabetic stage. Consistent with these observations, immunohistological analysis of pancreata showed that CD105(+) cells are restricted to the peri-islet area in normal islets but penetrate into the β-cell area as lymphocyte infiltration occurs. Immunization with EXOs promoted expansion of transferred diabetogenic T cells and accelerated the effector T cell-mediated destruction of islets. Thus, EXOs could be the autoantigen carrier with potent adjuvant activities and may function as the autoimmune trigger in NOD mice.
Collapse
|
28
|
Abstract
This paper reviews the presentation of peptides by major histocompatibility complex (MHC) class II molecules in the autoimmune diabetes of the nonobese diabetic (NOD) mouse. Islets of Langerhans contain antigen-presenting cells that capture the proteins and peptides of the beta cells' secretory granules. Peptides bound to I-A(g7), the unique MHC class II molecule of NOD mice, are presented in islets and in pancreatic lymph nodes. The various beta cell-derived peptides interact with selected CD4 T cells to cause inflammation and beta cell demise. Many autoreactive T cells are found in NOD mice, but not all have a major role in the initiation of the autoimmune process. I emphasize here the evidence pointing to insulin autoreactivity as a seminal component in the diabetogenic process.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
29
|
Baker RL, Delong T, Barbour G, Bradley B, Nakayama M, Haskins K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:3990-4. [PMID: 24043895 DOI: 10.4049/jimmunol.1301480] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported a peptide KS20 from islet amyloid polypeptide (IAPP) to be the target Ag for a highly diabetogenic CD4 T cell clone BDC-5.2.9. To track IAPP-reactive T cells in NOD mice and determine how they contribute to the pathogenesis of type 1 diabetes, we designed a new I-Ag7 tetramer with high affinity for BDC-5.2.9 that contains the peptide KS20. We found that significant numbers of KS20 tetramer(+) CD4 T cells can be detected in the pancreas of prediabetic and diabetic NOD mice. To verify pathogenicity of IAPP-reactive cells, we sorted KS20 tetramer(+) cells and cloned them from uncloned T cell lines isolated from spleen and lymph nodes of diabetic mice. We isolated a new KS20-reactive Th1 CD4 T cell clone that rapidly transfers diabetes. Our results suggest that IAPP triggers a broad autoimmune response by CD4 T cells in NOD mice.
Collapse
Affiliation(s)
- Rocky L Baker
- Integrated Department of Immunology, University of Colorado at Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | | | | | | | | | | |
Collapse
|
30
|
Ramirez L, Hamad ARA. Status of autoimmune diabetes 20-year after generation of BDC2.5-TCR transgenic non-obese diabetic mouse. World J Diabetes 2013; 4:88-91. [PMID: 23961318 PMCID: PMC3746090 DOI: 10.4239/wjd.v4.i4.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/22/2013] [Accepted: 06/10/2013] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of insulin-producing β cells by autoreactive T cells, leading to lifelong dependency on insulin therapy and increased risk of long-term cardiovascular complications. Here we take the opportunity of the 20th anniversary of the generation of the BDC2.5 TCR transgenic non-obese diabetic (NOD) mouse model, to provide a brief overview of the significant progress that has been made in understanding the role of T cells in the disease pathogenesis period. This included development of hundreds of reagents that block or even reverse new-onset disease by directly or indirectly controlling T cells. We also reflect on the sobering fact that none of these strategies has shown significant efficacy in clinical trials and discuss potential reasons hindering translation of the preclinical findings into successful therapeutic strategies and potential ways forward.
Collapse
|
31
|
Kuriya G, Uchida T, Akazawa S, Kobayashi M, Nakamura K, Satoh T, Horie I, Kawasaki E, Yamasaki H, Yu L, Iwakura Y, Sasaki H, Nagayama Y, Kawakami A, Abiru N. Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia 2013; 56:1773-80. [PMID: 23699989 DOI: 10.1007/s00125-013-2935-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/22/2013] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS T helper type (Th) 17 cells have been shown to play important roles in mouse models of several autoimmune diseases that have been classified as Th1 diseases. In the NOD mouse, the relevance of Th1 and Th17 is controversial, because single-cytokine-deficient NOD mice develop diabetes similarly to wild-type NOD mice. METHODS We studied the impact of IL-17/IFN-γ receptor double deficiency in NOD mice on the development of insulitis/diabetes compared with IL-17 single-deficient mice and wild-type mice by monitoring diabetes-related phenotypes. The lymphocyte phenotypes were determined by flow cytometric analysis. RESULTS IL-17 single-deficient NOD mice showed delayed onset of diabetes and reduced severity of insulitis, but the cumulative incidence of longstanding diabetes in the IL-17-deficient mice was similar to that in wild-type mice. The IL-17/IFN-γ receptor double-deficient NOD mice showed an apparent decline in longstanding diabetes onset, but not in insulitis compared with that in the IL-17 single-deficient mice. We also found that double-deficient NOD mice had a severe lymphopenic phenotype and preferential increase in regulatory T cells among CD4(+) T cells compared with the IL-17 single-deficient mice and wild-type NOD mice. An adoptive transfer study with CD4(+)CD25(-) T cells from young non-diabetic IL-17 single-deficient NOD mice, but not those from older mice, showed significantly delayed disease onset in immune-deficient hosts compared with the corresponding wild-type mice. CONCLUSIONS/INTERPRETATION These results indicate that IL-17/Th17 participates in the development of insulitis and that both IL-17 and IFN-γ signalling may synergistically contribute to the development of diabetes in NOD mice.
Collapse
Affiliation(s)
- G Kuriya
- Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Delong T, Baker RL, He J, Haskins K. Novel autoantigens for diabetogenic CD4 T cells in autoimmune diabetes. Immunol Res 2013; 55:167-72. [PMID: 22971988 DOI: 10.1007/s12026-012-8375-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoreactive CD4 T cells play a central role in the development of type 1 diabetes. The BDC panel of diabetogenic T cell clones was originally isolated from non-obese diabetic mice and has been used to study the role of autoreactive CD4 T cells and T cell autoantigens in the development of diabetes. Recent studies by our group have led to the identification of two new target antigens for clones of this panel. This review describes the proteomic strategy used for antigen identification, the antigens identified, and the potential contribution of post-translational modification to autoantigen generation. In addition, we compare peptide epitopes for the T cell clones and discuss their potential applications in investigating the role of T cell autoantigens in the pathogenesis and regulation of disease.
Collapse
Affiliation(s)
- Thomas Delong
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
33
|
Cordova KN, Willis VC, Haskins K, Holers VM. A citrullinated fibrinogen-specific T cell line enhances autoimmune arthritis in a mouse model of rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 190:1457-65. [PMID: 23319740 DOI: 10.4049/jimmunol.1201517] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Citrullinated proteins, derived from the conversion of peptidyl-arginine to peptidyl-citrulline, are present in the joints of patients with rheumatoid arthritis (RA), who also uniquely produce high levels of anti-citrullinated protein Abs. Citrullinated fibrinogen (CF) is abundant in rheumatoid synovial tissue, and anti-citrullinated protein Ab-positive RA patients exhibit circulating immune complexes containing CF. Thus, CF is a potential major target of pathogenic autoimmunity in RA. T cells are believed to be involved in this process by initiating, controlling, and driving Ag-specific immune responses in RA. In this study, we isolated a CD4 T cell line specific for CF that produces inflammatory cytokines. When transferred into mice with collagen-induced arthritis (CIA), this T cell line specifically enhanced the severity of autoimmune arthritis. Additionally, pathogenic IgG2a autoantibody levels to mouse type II collagen were increased in mice that received the T cells in CIA, and levels of these T cells were increased in the synovium, suggesting the T cells may have had systemic effects on the B cell response as well as local effects on the inflammatory environment. This work demonstrates that CD4 T cells specific for CF can amplify disease severity after onset of CIA.
Collapse
Affiliation(s)
- Kristen N Cordova
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
34
|
Delong T, Baker RL, He J, Barbour G, Bradley B, Haskins K. Diabetogenic T-cell clones recognize an altered peptide of chromogranin A. Diabetes 2012; 61:3239-46. [PMID: 22912420 PMCID: PMC3501882 DOI: 10.2337/db12-0112] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chromogranin A (ChgA) has been identified as the antigen target for three NOD-derived, diabetogenic CD4 T-cell clones, including the well-known BDC-2.5. These T-cell clones respond weakly to the peptide WE14, a naturally occurring proteolytic cleavage product from ChgA. We show here that WE14 can be converted into a highly antigenic T-cell epitope through treatment with the enzyme transglutaminase (TGase). The WE14 responses of three NOD-derived CD4 T-cell clones, each with different T-cell receptors (TCRs), and of T cells from BDC-2.5 TCR transgenic mice are increased after TGase conversion of the peptide. Primary CD4 T cells isolated from NOD mice also respond to high concentrations of WE14 and significantly lower concentrations of TGase-treated WE14. We hypothesize that posttranslational modification plays a critical role in the generation of T-cell epitopes in type 1 diabetes.
Collapse
|
35
|
Delmastro MM, Styche AJ, Trucco MM, Workman CJ, Vignali DA, Piganelli JD. Modulation of redox balance leaves murine diabetogenic TH1 T cells "LAG-3-ing" behind. Diabetes 2012; 61:1760-8. [PMID: 22586584 PMCID: PMC3379669 DOI: 10.2337/db11-1591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Preventing activation of diabetogenic T cells is critical for delaying type 1 diabetes onset. The inhibitory molecule lymphocyte activation gene 3 (LAG-3) and metalloprotease tumor necrosis factor-α converting enzyme (TACE) work together to regulate TH1 responses. The aim of this study was to determine if regulating redox using a catalytic antioxidant (CA) could modulate TACE-mediated LAG-3 shedding to impede diabetogenic T-cell activation and progression to disease. A combination of in vitro experiments and in vivo analyses using NOD mouse strains was conducted to test the effect of redox modulation on LAG-3 shedding, TACE enzymatic function, and disease onset. Systemic treatment of NOD mice significantly delayed type 1 diabetes onset. Disease prevention correlated with decreased activation, proliferation, and effector function of diabetogenic T cells; reduced insulin-specific T-cell frequency; and enhanced LAG-3(+) cells. Redox modulation also affected TACE activation, diminishing LAG-3 cleavage. Furthermore, disease progression was monitored by measuring serum soluble LAG-3, which decreased in CA-treated mice. Therefore, affecting redox balance by CA treatment reduces the activation of diabetogenic T cells and impedes type 1 diabetes onset via decreasing T-cell effector function and LAG-3 cleavage. Moreover, soluble LAG-3 can serve as an early T-cell-specific biomarker for type 1 diabetes onset and immunomodulation.
Collapse
Affiliation(s)
- Meghan M. Delmastro
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alexis J. Styche
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Massimo M. Trucco
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Creg J. Workman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Dario A.A. Vignali
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jon D. Piganelli
- Diabetes Institute, Division of Immunogenetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Corresponding author: Jon D. Piganelli,
| |
Collapse
|
36
|
Liu Z, Cort L, Eberwine R, Herrmann T, Leif JH, Greiner DL, Yahalom B, Blankenhorn EP, Mordes JP. Prevention of type 1 diabetes in the rat with an allele-specific anti-T-cell receptor antibody: Vβ13 as a therapeutic target and biomarker. Diabetes 2012; 61:1160-8. [PMID: 22368175 PMCID: PMC3331757 DOI: 10.2337/db11-0867] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In earlier studies of the Iddm14 diabetes susceptibility locus in the rat, we identified an allele of the T-cell receptor (TCR) β-chain, Tcrb-V13S1A1, as a candidate gene. To establish its importance, we treated susceptible rats with a depleting anti-rat Vβ13 monoclonal antibody and then exposed them to either polyinosinic:polycytidylic acid or a diabetogenic virus to induce diabetes. The overall frequency of diabetes in the controls was 74% (n = 50), compared with 17% (n = 30) in the anti-Vβ13-treated animals, with minimal islet pathology in nondiabetic treated animals. T cells isolated from islets on day 5 after starting induction showed a greater proportion of Vβ13(+) T cells than did peripheral lymph node T cells. Vβ13 transcripts recovered from day 5 islets revealed focused Jβ usage and less CDR3 diversity than did transcripts from peripheral Vβ13(+) T cells. CDR3 usage was not skewed in control Vβ16 CDR3 transcripts. Anti-rat Vβ13 antibody also prevented spontaneous diabetes in BBDP rats. The Iddm14 gene is likely to be Tcrb-V13, indicating that TCR β-chain usage is a determinant of susceptibility to autoimmune diabetes in rats. It may be possible to prevent autoimmune diabetes by targeting a limited element of the T-cell repertoire.
Collapse
MESH Headings
- Alleles
- Animals
- Antibodies, Monoclonal/therapeutic use
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Genetic Testing
- Islets of Langerhans/cytology
- Islets of Langerhans/metabolism
- Male
- Poly I-C/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Laura Cort
- Department of Microbiology and Immunology, Center for Immunogenetics and Inflammatory Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ryan Eberwine
- Department of Microbiology and Immunology, Center for Immunogenetics and Inflammatory Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jean H. Leif
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dale L. Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Barak Yahalom
- Division of Research Development, Biomedical Research Models, Worcester, Massachusetts
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Center for Immunogenetics and Inflammatory Diseases, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - John P. Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Corresponding author: John P. Mordes,
| |
Collapse
|
37
|
Baker RL, Mallevaey T, Gapin L, Haskins K. T cells interact with T cells via CD40-CD154 to promote autoimmunity in type 1 diabetes. Eur J Immunol 2012; 42:672-80. [PMID: 22488364 PMCID: PMC3697870 DOI: 10.1002/eji.201142071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have investigated the role of CD40 signaling in islet-reactive, diabetogenic CD4(+) Th1 T-cell clones. Using multispectral flow cytometry, we showed that CD40 and CD154 are co-expressed and form complexes on the surface of activated T cells. We also demonstrate that activated Tcells can transactivate CD4(+) CD40(+) T cells through the CD40-CD154 pathway. To investigate the role of CD40 signaling on Th1 cells, we used the diabetogenic clone BDC-5.2.9 retrovirally transduced with a truncated form of the CD40 molecule to produce a CD40 dominant-negative T-cell clone. Upon challenge with antigen in vitro, the production of IFN-γ by BDC-5.2.9 CD40DN was greatly reduced and, in vivo, the dominant-negative variant was unable to induce diabetes. Transduction with the CD40DN vector was also effective in preventing transfer of disease by primary NOD CD4(+) T cells. Ex vivo analysis of pancreatic infiltrates after transfer of BDC-5.2.9 CD40DN cells revealed an overall reduction of cell numbers and cytokine production by both T cells and macrophages. These data indicate that CD40 is an important signaling molecule on autoreactive CD4(+) T cells and contributes to their pathogenic effector function.
Collapse
Affiliation(s)
- Rocky L Baker
- Integrated Department of Immunology, University of Colorado at Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
39
|
Haskins K, Cooke A. CD4 T cells and their antigens in the pathogenesis of autoimmune diabetes. Curr Opin Immunol 2011; 23:739-45. [PMID: 21917439 PMCID: PMC3940273 DOI: 10.1016/j.coi.2011.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 02/03/2023]
Abstract
Pathogenesis of type 1 diabetes (T1D) is mediated by effector T cells and CD4 Th1 and Th17T cells have important roles in this process. While effector function of Th1 cells is well established, because of their inherent plasticity Th17 cells have been more controversial. Th17 cells contribute to pathogenicity, but several studies indicate that Th17 cells transfer disease through conversion to Th1 cells in vivo. CD4T cells are attracted to islets by β-cell antigens which include insulin and the two new autoantigens, chromogranin A and islet amyloid polypeptide, all proteins of the secretory granule. Peptides of insulin and ChgA bind to the NOD class II molecule in an unconventional manner and since autoantigenic peptides may typically bind to MHC with low affinity, it is postulated that post-translational modifications of β-cell peptides could contribute to the interaction between peptides, MHC, and the autoreactive TCR.
Collapse
Affiliation(s)
- Kathryn Haskins
- Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO, USA.
| | | |
Collapse
|
40
|
Abstract
Type 1 diabetes is a T-cell-mediated autoimmune disease against pancreatic beta cells. T cells target various antigens such as insulin, chromogranin A, glutamic acid decarboxylase and islet-specific glucose-6-phosphatase catalytic subunit-related protein. Elimination of insulin dramatically prevents diabetes in the non-obese diabetic (NOD) mouse model and response to insulin occurs prior to that to other antigens. These findings suggest that insulin is a target antigen at the early stage of the disease and is likely to be essential to cause anti-islet autoimmunity in NOD mice. In this review, we discuss whether insulin is truly essential and is only the single essential autoantigen for NOD mice and potentially for man. Although the ultimate principle is still being addressed, it is certain that T-cell response to insulin is a major check point to develop type 1 diabetes in NOD mice. Given multiple similarities between diabetes of NOD mice and man, targeting insulin and insulin-reactive T cells may provide opportunities to develop robust immunotherapies.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Delong T, Baker RL, Reisdorph N, Reisdorph R, Powell RL, Armstrong M, Barbour G, Bradley B, Haskins K. Islet amyloid polypeptide is a target antigen for diabetogenic CD4+ T cells. Diabetes 2011; 60:2325-30. [PMID: 21734016 PMCID: PMC3161333 DOI: 10.2337/db11-0288] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To investigate autoantigens in β-cells, we have used a panel of pathogenic T-cell clones that were derived from the NOD mouse. Our particular focus in this study was on the identification of the target antigen for the highly diabetogenic T-cell clone BDC-5.2.9. RESEARCH DESIGN AND METHODS To purify β-cell antigens, we applied sequential size exclusion chromatography and reverse-phase high-performance liquid chromatography to membrane preparations of β-cell tumors. The presence of antigen was monitored by measuring the interferon-γ production of BDC-5.2.9 in response to chromatographic fractions in the presence of NOD antigen-presenting cells. Peak antigenic fractions were analyzed by ion-trap mass spectrometry, and candidate proteins were further investigated through peptide analysis and, where possible, testing of islet tissue from gene knockout mice. RESULTS Mass-spectrometric analysis revealed the presence of islet amyloid polypeptide (IAPP) in antigen-containing fractions. Confirmation of IAPP as the antigen target was demonstrated by the inability of islets from IAPP-deficient mice to stimulate BDC-5.2.9 in vitro and in vivo and by the existence of an IAPP-derived peptide that strongly stimulates BCD-5.2.9. CONCLUSIONS IAPP is the target antigen for the diabetogenic CD4 T-cell clone BDC-5.2.9.
Collapse
|
42
|
Cantor J, Slepak M, Ege N, Chang JT, Ginsberg MH. Loss of T cell CD98 H chain specifically ablates T cell clonal expansion and protects from autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:851-60. [PMID: 21670318 DOI: 10.4049/jimmunol.1100002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD98 H chain (4F2 Ag, Slc3a2) was discovered as a lymphocyte-activation Ag. Deletion of CD98 H chain in B cells leads to complete failure of B cell proliferation, plasma cell formation, and Ab secretion. In this study, we examined the role of T cell CD98 in cell-mediated immunity and autoimmune disease pathogenesis by specifically deleting it in murine T cells. Deletion of T cell CD98 prevented experimental autoimmune diabetes associated with dramatically reduced T cell clonal expansion. Nevertheless, initial T cell homing to pancreatic islets was unimpaired. In sharp contrast to B cells, CD98-null T cells showed only modestly impaired Ag-driven proliferation and nearly normal homeostatic proliferation. Furthermore, these cells were activated by Ag, leading to cytokine production (CD4) and efficient cytolytic killing of targets (CD8). The integrin-binding domain of CD98 was necessary and sufficient for full clonal expansion, pointing to a role for adhesive signaling in T cell proliferation and autoimmune disease. When we expanded CD98-null T cells in vitro, they adoptively transferred diabetes, establishing that impaired clonal expansion was responsible for protection from disease. Thus, the integrin-binding domain of CD98 is required for Ag-driven T cell clonal expansion in the pathogenesis of an autoimmune disease and may represent a useful therapeutic target.
Collapse
Affiliation(s)
- Joseph Cantor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA.
| | | | | | | | | |
Collapse
|
43
|
Chaparro RJ, Dilorenzo TP. An update on the use of NOD mice to study autoimmune (Type 1) diabetes. Expert Rev Clin Immunol 2011; 6:939-55. [PMID: 20979558 DOI: 10.1586/eci.10.68] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The widely used nonobese diabetic (NOD) mouse model of autoimmune (Type 1) diabetes mellitus shares multiple characteristics with the human disease, and studies employing this model continue to yield clinically relevant and important information. Here, we review some of the recent key findings obtained from NOD mouse investigations that have both advanced our understanding of disease pathogenesis and suggested new therapeutic targets and approaches. Areas discussed include antigen discovery, identification of genes and pathways contributing to disease susceptibility, development of strategies to image islet inflammation and the testing of therapeutics. We also review recent technical advances that, combined with an improved understanding of the NOD mouse model's limitations, should work to ensure its popularity, utility and relevance in the years ahead.
Collapse
Affiliation(s)
- Rodolfo José Chaparro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
44
|
Nikoopour E, Sandrock C, Huszarik K, Krougly O, Lee-Chan E, Masteller EL, Bluestone JA, Singh B. Cutting edge: vasostatin-1-derived peptide ChgA29-42 is an antigenic epitope of diabetogenic BDC2.5 T cells in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:3831-5. [PMID: 21357258 DOI: 10.4049/jimmunol.1003617] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mechanistic and therapeutic insights in autoimmune diabetes would benefit from a more complete identification of relevant autoantigens. BDC2.5 TCR transgenic NOD mice express transgenes for TCR Vα1 and Vβ4 chains from the highly diabetogenic BDC2.5 CD4(+) T cell clone, which recognizes pancreatic β cell membrane Ags presented by NOD I-A(g7) MHC class II molecules. The antigenic epitope of BDC2.5 TCR is absent in β cells that do not express chromogranin A (ChgA) protein. However, characterization of the BDC2.5 epitope in ChgA has given inconclusive results. We have now identified a ChgA29-42 peptide within vasostatin-1, an N-terminal natural derivative of ChgA as the BDC2.5 TCR epitope. Having the necessary motif for binding to I-A(g7), it activates BDC2.5 T cells and induces an IFN-γ response. More importantly, adoptive transfer of naive BDC2.5 splenocytes activated with ChgA29-42 peptide transferred diabetes into NOD/SCID mice.
Collapse
Affiliation(s)
- Enayat Nikoopour
- Centre for Human Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Codina-Busqueta E, Scholz E, Muñoz-Torres PM, Roura-Mir C, Costa M, Xufré C, Planas R, Vives-Pi M, Jaraquemada D, Martí M. TCR bias of in vivo expanded T cells in pancreatic islets and spleen at the onset in human type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2011; 186:3787-97. [PMID: 21325620 DOI: 10.4049/jimmunol.1002423] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoreactive T cells, responsible for the destruction of pancreatic β cells in type 1 diabetes, are known to have a skewed TCR repertoire in the NOD mouse. To define the autoreactive T cell repertoire in human diabetes, we searched for intraislet monoclonal expansions from a recent onset in human pancreas to then trace them down to the patient's peripheral blood and spleen. Islet infiltration was diverse, but five monoclonal TCR β-chain variable expansions were detected for Vβ1, Vβ7, Vβ11, Vβ17, and Vβ22 families. To identify any sequence bias in the TCRs from intrapancreatic T cells, we analyzed 139 different CDR3 sequences. We observed amino acid preferences in the NDN region that suggested a skewed TCR repertoire within infiltrating T cells. The monoclonal expanded TCR sequences contained amino acid combinations that fit the observed bias. Using these CDR3 sequences as a marker, we traced some of these expansions in the spleen. There, we identified a Vβ22 monoclonal expansion with identical CDR3 sequence to that found in the islets within a polyclonal TCR β-chain variable repertoire. The same Vβ22 TCR was detected in the patient's PBMCs, making a cross talk between the pancreas and spleen that was reflected in peripheral blood evident. No other pancreatic monoclonal expansions were found in peripheral blood or the spleen, suggesting that the Vβ22 clone may have expanded or accumulated in situ by an autoantigen present in both the spleen and pancreas. Thus, the patient's spleen might be contributing to disease perpetuation by expanding or retaining some autoreactive T cells.
Collapse
Affiliation(s)
- Eva Codina-Busqueta
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Description of the immunologic components needed for autoimmune diabetes. RECENT FINDINGS The major histocompatability complex (MHC) class II molecules are the primary susceptibility genes for many autoimmune diseases, including type 1 diabetes. Understanding of the structural interaction between MHC molecules, antigenic peptides, and T-cell receptors (the three components of the trimolecular complex) has increased greatly over the past several years. The components of the anti-insulin trimolecular complex and findings that insulin is a key autoantigen in type 1 diabetes are reviewed. SUMMARY The anti-insulin trimolecular complex is well defined in the nonobese diabetic mouse model. Insulin and specifically, the amino acid sequence 9 to 23 of the insulin B chain, represents a primary antigenic target for islet autoimmunity in the nonobese diabetic mouse model of type 1 diabetes with a specific mutation of this peptide preventing all diabetes. Initial studies suggest the human homologs of the anti-insulin trimolecular complex may be relevant in human disease.
Collapse
Affiliation(s)
- Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
47
|
Mannering SI, Brodnicki TC. Recent insights into CD4+ T-cell specificity and function in type 1 diabetes. Expert Rev Clin Immunol 2010; 3:557-64. [PMID: 20477160 DOI: 10.1586/1744666x.3.4.557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is caused by T-cell-mediated destruction of the insulin-producing beta-cells in the pancreas. Genetic and immunological evidence from humans and mouse models indicates that CD4(+) T cells play a crucial role in the development and prevention of T1D. The dichotomy between CD4(+) T regulatory and effector T cells has encouraged research into the role of these cell subsets in T1D. New antigens and epitopes recognized by CD4(+) T cells in affected individuals have been identified. Growing knowledge of T-cell specificity and function is helping to develop new assays for analyzing islet antigen-specific CD4(+) T cells from human blood. Here we discuss, with particular reference to human studies, advances in our understanding of CD4(+) T-cell responses in T1D.
Collapse
Affiliation(s)
- Stuart I Mannering
- Autoimmunity & Transplantation Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
48
|
Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 2010; 11:350-4. [PMID: 20190756 PMCID: PMC3080751 DOI: 10.1038/ni.1850] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/04/2010] [Indexed: 11/08/2022]
Abstract
In addition to the genetic framework, there are two other critical requirements for the development of tissue-specific autoimmune disease. First, autoreactive T cells need to escape thymic negative selection. Second, they need to find suitable conditions for autoantigen presentation and activation in the target tissue. We show here that these two conditions are fulfilled in diabetic mice of the nonobese diabetic (NOD) strain. A set of autoreactive CD4(+) T cells specific for an insulin peptide, with the noteworthy feature of not recognizing the insulin protein when processed by antigen-presenting cells (APCs), escaped thymic control, participated in diabetes and caused disease. Moreover, APCs in close contact with beta cells in the islets of Langerhans bore vesicles with the antigenic insulin peptides and activated peptide-specific T cells. Our findings may be relevant for other cases of endocrine autoimmunity.
Collapse
|
49
|
Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol 2010; 11:225-31. [PMID: 20139986 DOI: 10.1038/ni.1844] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/15/2010] [Indexed: 12/16/2022]
Abstract
Autoreactive CD4(+) T cells are involved in the pathogenesis of many autoimmune diseases, but the antigens that stimulate their responses have been difficult to identify and in most cases are not well defined. In the nonobese diabetic (NOD) mouse model of type 1 diabetes, we have identified the peptide WE14 from chromogranin A (ChgA) as the antigen for highly diabetogenic CD4(+) T cell clones. Peptide truncation and extension analysis shows that WE14 bound to the NOD mouse major histocompatibility complex class II molecule I-A(g7) in an atypical manner, occupying only the carboxy-terminal half of the I-A(g7) peptide-binding groove. This finding extends the list of T cell antigens in type 1 diabetes and supports the idea that autoreactive T cells respond to unusually presented self peptides.
Collapse
|
50
|
Customized Cell-Based Treatment Options to Combat Autoimmunity and Restore β-Cell Function in Type 1 Diabetes Mellitus: Current Protocols and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:641-65. [DOI: 10.1007/978-90-481-3271-3_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|