1
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Heyman B. Antibody feedback regulation. Immunol Rev 2024. [PMID: 39180190 DOI: 10.1111/imr.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies are able to up- or downregulate antibody responses to the antigen they bind. Two major mechanisms can be distinguished. Suppression is most likely caused by epitope masking and can be induced by all isotypes tested (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgE). Enhancement is often caused by the redistribution of antigen in a favorable way, either for presentation to B cells via follicular dendritic cells (IgM and IgG3) or to CD4+ T cells via dendritic cells (IgE, IgG1, IgG2a, and IgG2b). IgM and IgG3 complexes activate complement and are transported from the marginal zone to follicles by marginal zone B cells expressing complement receptors. IgE-antigen complexes are captured by CD23+ B cells in the blood and transported to follicles, delivered to CD8α+ conventional dendritic cells, and presented to CD4+ T cells. Enhancement of antibody responses by IgG1, IgG2a, and IgG2b in complex with proteins requires activating FcγRs. These immune complexes are captured by dendritic cells and presented to CD4+ T cells, subsequently helping cognate B cells. Endogenous feedback regulation influences the response to booster doses of vaccines and passive administration of anti-RhD antibodies is used to prevent alloimmunization of RhD-negative women carrying RhD-positive fetuses.
Collapse
Affiliation(s)
- Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, (BMC), Uppsala, Sweden
| |
Collapse
|
3
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
5
|
Plattner K, Bachmann MF, Vogel M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. FRONTIERS IN ALLERGY 2023; 4:1117611. [PMID: 37056355 PMCID: PMC10089267 DOI: 10.3389/falgy.2023.1117611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Correspondence: Monique Vogel
| |
Collapse
|
6
|
Seeling M, Pöhnl M, Kara S, Horstmann N, Riemer C, Wöhner M, Liang C, Brückner C, Eiring P, Werner A, Biburger M, Altmann L, Schneider M, Amon L, Lehmann CHK, Lee S, Kunz M, Dudziak D, Schett G, Bäuerle T, Lux A, Tuckermann J, Vögtle T, Nieswandt B, Sauer M, Böckmann RA, Nimmerjahn F. Immunoglobulin G-dependent inhibition of inflammatory bone remodeling requires pattern recognition receptor Dectin-1. Immunity 2023; 56:1046-1063.e7. [PMID: 36948194 DOI: 10.1016/j.immuni.2023.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.
Collapse
Affiliation(s)
- Michaela Seeling
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sibel Kara
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nathalie Horstmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carolina Riemer
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Miriam Wöhner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Brückner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anja Werner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Leon Altmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Schneider
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Meik Kunz
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Bernhardt Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
7
|
Watanabe M, Motooka D, Yamasaki S. The kinetics of signaling through the common FcRγ chain determine cytokine profiles in dendritic cells. Sci Signal 2023; 16:eabn9909. [PMID: 36881655 DOI: 10.1126/scisignal.abn9909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2-like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion-activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries.
Collapse
Affiliation(s)
- Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
8
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
9
|
Winkler ES, Gilchuk P, Yu J, Bailey AL, Chen RE, Chong Z, Zost SJ, Jang H, Huang Y, Allen JD, Case JB, Sutton RE, Carnahan RH, Darling TL, Boon ACM, Mack M, Head RD, Ross TM, Crowe JE, Diamond MS. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 2021; 184:1804-1820.e16. [PMID: 33691139 PMCID: PMC7879018 DOI: 10.1016/j.cell.2021.02.026] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.
Collapse
Affiliation(s)
- Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Winkler ES, Gilchuk P, Yu J, Bailey AL, Chen RE, Zost SJ, Jang H, Huang Y, Allen JD, Case JB, Sutton RE, Carnahan RH, Darling TL, Boon ACM, Mack M, Head RD, Ross TM, Crowe JE, Diamond MS. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33398272 DOI: 10.1101/2020.12.28.424554] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes for therapeutic efficacy. Thus, potently neutralizing mAbs require Fc effector functions for maximal therapeutic benefit during therapy to modulate protective immune responses and mitigate lung disease.
Collapse
|
11
|
Sheng L, Cao X, Chi S, Wu J, Xing H, Liu H, Yang Z. Overexpression of FcγRIIB regulates downstream protein phosphorylation and suppresses B cell activation to ameliorate systemic lupus erythematosus. Int J Mol Med 2020; 46:1409-1422. [PMID: 32945349 PMCID: PMC7447306 DOI: 10.3892/ijmm.2020.4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/14/2020] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to examine the effects of FcγRIIB on systemic lupus erythematosus (SLE) and to investigate the underlying mechanisms. For this purpose, lentiviral vector carrying the membrane-bound type FcγRIIB gene (mFcγRIIB lentivirus) and soluble FcγRIIB (sFcγRIIB) protein were used to treat B cells from patients with SLE. The B cells were treated with calf thymus DNA (ctDNA) and anti-calf thymus DNA-immune complexes (anti-ctDNA-IC). mFcγRIIB lentivirus and sFcγRIIB protein were also injected into MRL/lpr SLE mice. The results revealed that anti-ctDNA-IC treatment significantly downregulated the IgG antibody secretion of B cells treated with mFcγRIIB lentivirus. mFcγRIIB and sFcγRIIB decreased the phosphorylation level of Bruton's tyrosine kinase (BTK) in B cells, and increased the phosphorylation level of Lyn proto-oncogene (Lyn), docking protein 1 (DOK1) and inositol polyphosphate-5-phospha-tase D (SHIP). mFcγRIIB promoted the apoptosis of B cells. Following the treatment of MRL/lpr SLE mice with mFcγRIIB lentivirus, the levels of urinary protein, serum anti-nuclear and anti-dsDNA antibodies were decreased, while the levels of mFcγRIIB in B cells were increased. mFcγRIIB ameliorated the pathologies of the kidneys, liver and lymph node tissues of the MRL/lpr SLE mice. Following treatment of the MRL/lpr SLE mice with sFcγRIIB, the levels of urinary protein, serum anti-dsDNA antibody and BTK and SHIP phosphorylation levels in B cells were decreased, while the serum sFcγRIIB and sFcγRIIB-IgG levels were increased. On the whole, the findings of the present study demonstrate that recombinant FcγRIIB inhibits the secretion of IgG antibody by B cells from patients with SLE, ameliorates the symptoms of SLE in mice, and alters the phosphorylation levels of downstream proteins of the FcγRIIB signaling pathway in B cells. These results suggest that FcγRIIB may play preventive and therapeutic roles in SLE by inhibiting B cell activation via the FcγRIIB signaling pathway, which provides a novel theory and strategy for the prevention and treatment of SLE.
Collapse
Affiliation(s)
- Linlin Sheng
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiuqin Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shuhong Chi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jing Wu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Huihui Xing
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Huiyu Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhiwei Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
12
|
Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11:1066. [PMID: 32582172 PMCID: PMC7280488 DOI: 10.3389/fimmu.2020.01066] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis is a cellular process for ingesting and eliminating particles larger than 0.5 μm in diameter, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is found in many types of cells and it is, in consequence an essential process for tissue homeostasis. However, only specialized cells termed professional phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These professional phagocytes express several phagocytic receptors that activate signaling pathways resulting in phagocytosis. The process of phagocytosis involves several phases: i) detection of the particle to be ingested, ii) activation of the internalization process, iii) formation of a specialized vacuole called phagosome, and iv) maturation of the phagosome to transform it into a phagolysosome. In this review, we present a general view of our current understanding on cells, phagocytic receptors and phases involved in phagocytosis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: a pathway to next-gen mAbs. Immunol Cell Biol 2020; 98:287-304. [PMID: 32157732 PMCID: PMC7228307 DOI: 10.1111/imcb.12326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
The human fragment crystallizable (Fc)γ receptor (R) interacts with antigen‐complexed immunoglobulin (Ig)G ligands to both activate and modulate a powerful network of inflammatory host‐protective effector functions that are key to the normal physiology of immune resistance to pathogens. More than 100 therapeutic monoclonal antibodies (mAbs) are approved or in late stage clinical trials, many of which harness the potent FcγR‐mediated effector systems to varying degrees. This is most evident for antibodies targeting cancer cells inducing antibody‐dependent killing or phagocytosis but is also true to some degree for the mAbs that neutralize or remove small macromolecules such as cytokines or other Igs. The use of mAb therapeutics has also revealed a “scaffolding” role for FcγR which, in different contexts, may either underpin the therapeutic mAb action such as immune agonism or trigger catastrophic adverse effects. The still unmet therapeutic need in many cancers, inflammatory diseases or emerging infections such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) requires increased effort on the development of improved and novel mAbs. A more mature appreciation of the immunobiology of individual FcγR function and the complexity of the relationships between FcγRs and antibodies is fueling efforts to develop more potent “next‐gen” therapeutic antibodies. Such development strategies now include focused glycan or protein engineering of the Fc to increase affinity and/or tailor specificity for selective engagement of individual activating FcγRs or the inhibitory FcγRIIb or alternatively, for the ablation of FcγR interaction altogether. This review touches on recent aspects of FcγR and IgG immunobiology and its relationship with the present and future actions of therapeutic mAbs.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,St John's Institute of Dermatology, King's College, London, UK
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Jessica C Anania
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Manoylov IK, Boneva GV, Doytchinova IA, Mihaylova NM, Tchorbanov AI. Suppression of Disease-Associated B Lymphocytes by GAD65 Epitope-Carrying Protein-Engineered Molecules in a Streptozotocin-Induced Mouse Model of Diabetes. Monoclon Antib Immunodiagn Immunother 2020; 38:201-208. [PMID: 31603741 DOI: 10.1089/mab.2019.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Type 1 diabetes mellitus is an autoimmune syndrome defined by the presence of autoreactive T and B cells, which results in destruction of insulin-producing beta cells. Autoantibodies against GAD65 (glutamic acid decarboxylase 65)-a membrane-bound enzyme on pancreatic beta cells, contribute to beta cells' destruction and the loss of pancreatic functions. Mouse FcγRIIb on B lymphocytes possesses an inhibitory effect on the activity of these cells. We hypothesized that it may be possible to suppress GAD65-specific B cells in mice with diabetes using chimeric molecules, containing an anti-FcγRIIb antibody, coupled to peptide B/T epitopes derived from the GAD65 protein. With these engineered chimeras, we expect to selectively co-cross-link the anti-GAD65-specific B cell receptor (BCR) and FcγRIIb, thus delivering a suppressive signal to the targeted B cells. An anti-FcγRIIb monoclonal antibody and two synthetic peptide epitopes derived from the GAD65 molecule were used for chimeras' construction. The suppressive activity of the engineered molecules was tested in vivo in mice with streptozotocin (STZ)-induced type 1 diabetes. These chimeric molecules exclusively bind disease-associated B cells by recognizing their GAD65-specific BCR and selectively deliver a strong inhibitory signal through their surface FcγRIIb receptors. A reduction in the number of anti-GAD65 IgG antibody-secreting plasmocytes and an increased percentage of apoptotic B lymphocytes were observed after treatment with protein-engineered antibodies of mice with STZ-induced type 1 diabetes.
Collapse
Affiliation(s)
- Iliyan Konstantinov Manoylov
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Gabriela Valentinova Boneva
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Nikolina Mihaylova Mihaylova
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andrey Ivanov Tchorbanov
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
15
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Xu H, Zhang L, Heyman B. IgG-mediated immune suppression in mice is epitope specific except during high epitope density conditions. Sci Rep 2018; 8:15292. [PMID: 30327481 PMCID: PMC6191431 DOI: 10.1038/s41598-018-33087-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/12/2018] [Indexed: 01/12/2023] Open
Abstract
Specific IgG antibodies, passively administered together with erythrocytes, suppress antibody responses against the erythrocytes. Although used to prevent alloimmunization in Rhesus (Rh)D-negative women carrying RhD-positive fetuses, the mechanism behind is not understood. In mice, IgG suppresses efficiently in the absence of Fcγ-receptors and complement, suggesting an Fc-independent mechanism. In line with this, suppression is frequently restricted to the epitopes to which IgG binds. However, suppression of responses against epitopes not recognized by IgG has also been observed thus arguing against Fc-independence. Here, we explored the possibility that non-epitope specific suppression can be explained by steric hindrance when the suppressive IgG binds to an epitope present at high density. Mice were transfused with IgG anti-4-hydroxy-3-nitrophenylacetyl (NP) together with NP-conjugated sheep red blood cells (SRBC) with high, intermediate, or low NP-density. Antibody titers and the number of single antibody-forming cells were determined. As a rule, IgG suppressed NP- but not SRBC-specific responses (epitope specific suppression). However, there was one exception: suppression of both IgM anti-SRBC and IgM anti-NP responses occurred when high density SRBC-NP was administered (non-epitope specific suppression). These findings answer a longstanding question in antibody feedback regulation and are compatible with the hypothesis that epitope masking explains IgG-mediated immune suppression.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Immune suppression of food allergy by maternal IgG in murine models. Allergol Int 2018; 67:506-514. [PMID: 29724483 DOI: 10.1016/j.alit.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Most of the patients develop food allergy early in life. The factors related to parental immune condition might be one of the conceivable causes. METHODS We reported murine models of food allergy and oral OVA tolerance. To investigate the influence of parental immune condition on infant food allergy, female and male mice with food allergy or oral tolerance were mated with each other. RESULTS Food allergy was suppressed by decreased IgE production in the offspring of mice with food allergy. On the contrary, anaphylaxis for OVA was induced in the offspring of mice with oral tolerance. The suppression of food allergy being dependent on a maternal factor was revealed in the offspring after cross-mating mice with food allergy and oral tolerance. Because OVA-specific IgG, presumed to be from the allergic mother, was detected in the serum of naïve infants from mothers allergic to food, we assumed that the suppression was dependent on a specific IgG. The serum IgG purified by a G-protein column was administered before OVA sensitization in the food allergy model, and OVA-specific IgE production was found to be diminished in the administered mice. However, OVA-specific monoclonal IgG1 and IgG2a administration could not suppress food allergy. Because we detected OVA-IgG immune complex in the serum of mothers allergic to food, it might be a cause of maternal immune suppression. CONCLUSIONS We demonstrated that maternal specific IgG conjugated food antigen is an important factor related to the development of food allergy and acquiring tolerance.
Collapse
|
18
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
19
|
Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. Front Immunol 2017; 8:280. [PMID: 28373871 PMCID: PMC5357773 DOI: 10.3389/fimmu.2017.00280] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG-FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
20
|
Bergström JJE, Xu H, Heyman B. Epitope-Specific Suppression of IgG Responses by Passively Administered Specific IgG: Evidence of Epitope Masking. Front Immunol 2017; 8:238. [PMID: 28321225 PMCID: PMC5337509 DOI: 10.3389/fimmu.2017.00238] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
Specific IgG, passively administered together with particulate antigen, can completely prevent induction of antibody responses to this antigen. The ability of IgG to suppress antibody responses to sheep red blood cells (SRBCs) is intact in mice lacking FcγRs, complement factor 1q, C3, or complement receptors 1 and 2, suggesting that Fc-dependent effector functions are not involved. Two of the most widely discussed explanations for the suppressive effect are increased clearance of IgG–antigen complexes and/or that IgG “hides” the antigen from recognition by specific B cells, so-called epitope masking. The majority of data on how IgG induces suppression was obtained through studies of the effects on IgM-secreting single spleen cells during the first week after immunization. Here, we show that IgG also suppresses antigen-specific extrafollicular antibody-secreting cells, germinal center B-cells, long-lived plasma cells, long-term IgG responses, and induction of memory antibody responses. IgG anti-SRBC reduced the amount of SRBC in the spleens of wild-type, but not of FcγR-deficient mice. However, no correlation between suppression and the amount of SRBC in the spleen was observed, suggesting that increased clearance does not explain IgG-mediated suppression. Instead, we found compelling evidence for epitope masking because IgG anti-NP administered with NP-SRBC suppressed the IgG anti-NP, but not the IgG anti-SRBC response. Vice versa, IgG anti-SRBC administered with NP-SRBC, suppressed only the IgG anti-SRBC response. In conclusion, passively transferred IgG suppressed all measured parameters of an antigen-specific antibody/B cell response and an important mechanism of action is likely to be epitope masking.
Collapse
Affiliation(s)
- Joakim J E Bergström
- Department of Medical Biochemistry and Microbiology, Uppsala University , Uppsala , Sweden
| | - Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University , Uppsala , Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
21
|
Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Clin Transl Med 2016; 5:35. [PMID: 27558401 PMCID: PMC4996813 DOI: 10.1186/s40169-016-0108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Longevity and accumulation of multiple context-dependent signaling pathways of long-standing inflammation (antigen-load or oxidative stress) are the results of decreased/altered regulation of immunity and loss of control switch mechanisms that we defined as Yin and Yang of acute inflammation or immune surveillance. Chronic inflammation is initiated by immune disruptors-induced progressive changes in physiology and function of susceptible host tissues that lead to increased immune suppression and multistep disease processes including carcinogenesis. The interrelated multiple hypotheses that are presented for the first time in this article are extension of author's earlier series of 'accidental' discoveries on the role of inflammation in developmental stages of immune dysfunction toward tumorigenesis and angiogenesis. Detailed analyses of data on chronic diseases suggest that nearly all age-associated illnesses, generally categorized as 'mild' (e.g., increased allergies), 'moderate' (e.g., hypertension, colitis, gastritis, pancreatitis, emphysema) or 'severe' (e.g., accelerated neurodegenerative and autoimmune diseases or site-specific cancers and metastasis) are variations of hypersensitivity responses of tissues that are manifested as different diseases in immune-responsive or immune-privileged tissues. Continuous release/presence of low level histamine (subclinical) in circulation could contribute to sustained oxidative stress and induction of 'mild' or 'moderate' or 'severe' (immune tsunami) immune disorders in susceptible tissues. Site-specific cancers are proposed to be 'severe' (irreversible) forms of cumulative delayed hypersensitivity responses that would induce immunological chaos in favor of tissue growth in target tissues. Shared or special features of growth from fetus development into adulthood and aging processes and carcinogenesis are briefly compared with regard to energy requirements of highly complex function of Yin and Yang. Features of Yang (growth-promoting) arm of acute inflammation during fetus and cancer growth will be compared for consuming low energy from glycolysis (Warburg effect). Growth of fetus and cancer cells under hypoxic conditions and impaired mitochondrial energy requirements of tissues including metabolism of essential branched amino acids (e.g., val, leu, isoleu) will be compared for proposing a working model for future systematic research on cancer biology, prevention and therapy. Presentation of a working model provides insightful clues into bioenergetics that are required for fetus growth (absence of external threat and lack of high energy-demands of Yin events and parasite-like survival in host), normal growth in adulthood (balance in Yin and Yang processes) or disease processes and carcinogenesis (loss of balance in Yin-Yang). Future studies require focusing on dynamics and promotion of natural/inherent balance between Yin (tumoricidal) and Yang (tumorigenic) of effective immunity that develop after birth. Lawless growth of cancerous cells and loss of cell contact inhibition could partially be due to impaired mitochondria (mitophagy) that influence metabolism of branched chain amino acids for biosynthesis of structural proteins. The author invites interested scientists with diverse expertise to provide comments, confirm, dispute and question and/or expand and collaborate on many components of the proposed working model with the goal to better understand cancer biology for future designs of cost-effective research and clinical trials and prevention of cancer. Initial events during oxidative stress-induced damages to DNA/RNA repair mechanisms and inappropriate expression of inflammatory mediators are potentially correctable, preventable or druggable, if future studies were to focus on systematic understanding of early altered immune response dynamics toward multistep chronic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute (NCI), the National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
22
|
Emerging evidence of signalling roles for PI(3,4)P2 in Class I and II PI3K-regulated pathways. Biochem Soc Trans 2016; 44:307-14. [PMID: 26862220 DOI: 10.1042/bst20150248] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are eight members of the phosphoinositide family of phospholipids in eukaryotes; PI, PI3P, PI4P, PI5P, PI(4,5)P2, PI(3,4)P2, PI(3,5)P2 and PI(3,4,5)P3. Receptor activation of Class I PI3Ks stimulates the phosphorylation of PI(4,5)P2 to form PI(3,4,5)P3. PI(3,4,5)P3 is an important messenger molecule that is part of a complex signalling network controlling cell growth and division. PI(3,4,5)P3 can be dephosphorylated by both 3- and 5-phosphatases, producing PI(4,5)P2 and PI(3,4)P2, respectively. There is now strong evidence that PI(3,4)P2 generated by this route does not merely represent another pathway for removal of PI(3,4,5)P3, but can act as a signalling molecule in its own right, regulating macropinocytosis, fast endophilin-mediated endocytosis (FEME), membrane ruffling, lamellipodia and invadopodia. PI(3,4)P2 can also be synthesized directly from PI4P by Class II PI3Ks and this is important for the maturation of clathrin-coated pits [clathrin-mediated endocytosis (CME)] and signalling in early endosomes. Thus PI(3,4)P2 is emerging as an important signalling molecule involved in the coordination of several specific membrane and cytoskeletal responses. Further, its inappropriate accumulation contributes to pathology caused by mutations in genes encoding enzymes responsible for its degradation, e.g. Inpp4B.
Collapse
|
23
|
Beppler J, Mkaddem SB, Michaloski J, Honorato RV, Velasco IT, de Oliveira PSL, Giordano RJ, Monteiro RC, Pinheiro da Silva F. Negative regulation of bacterial killing and inflammation by two novel CD16 ligands. Eur J Immunol 2016; 46:1926-35. [PMID: 27226142 DOI: 10.1002/eji.201546118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
Sepsis, a leading cause of death worldwide, involves exacerbated proinflammatory responses and inefficient bacterial clearance. Phagocytic cells play a crucial part in the prevention of sepsis by clearing bacteria through host innate receptors. Here, we used a phage display library to identify two peptides in Escherichia coli that interact with host innate receptors. One of these peptides, encoded by the wzxE gene of E. coli K-12, was involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. Peptide-receptor interactions induced CD16-mediated inhibitory immunoreceptor tyrosine-based activating motif signaling, blocking the production of ROS and bacterial killing. This CD16-mediated inhibitory signaling was abrogated in a WzxE(-/-) mutant of E. coli K-12, restoring the production of ROS and bacterial killing. Taken together, the two novel CD16 ligands identified negatively regulate bacterial killing and inflammation. Our findings may contribute toward the development of new immunotherapies for E. coli-mediated infectious diseases and inflammation.
Collapse
Affiliation(s)
- Jaqueline Beppler
- Emergency Medicine Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Sanae Ben Mkaddem
- Inserm Unit 1149 and ERL CNRS 8252, Center for Research on Inflammation, University Paris Diderot, Paris, France
| | - Jussara Michaloski
- Vascular Biology Laboratory, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Ricardo José Giordano
- Vascular Biology Laboratory, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Renato C Monteiro
- Inserm Unit 1149 and ERL CNRS 8252, Center for Research on Inflammation, University Paris Diderot, Paris, France
| | | |
Collapse
|
24
|
Nimmerjahn F. Translating Inhibitory Fc Receptor Biology into Novel Therapeutic Approaches. J Clin Immunol 2016; 36 Suppl 1:83-7. [DOI: 10.1007/s10875-016-0249-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
|
25
|
Fc Receptors and Fc Receptor-Like Molecules within the Immunoreceptor Family. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7152311 DOI: 10.1016/b978-0-12-374279-7.02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptors for the Fc portion of immunoglobulins (FcRs) account for most cell-mediated biological activities of antibodies. The majority of FcRs are encoded by a set of genes, clustered in the fcr locus, on chromosome 1 in humans and on chromosome 1 and 3 in mice. Eight (in humans) and six (in mice) new genes were found, intermixed with FcR genes in corresponding fcr loci, which encode FcR-like molecules (FcRLs). FcRs and FcRLs are genetically, phylogenetically, structurally, and functionally related. FcRs and FcRLs, however, markedly differ by their ligands, their tissue distribution, and, therefore, by the biological functions they control. A systematic comparison of their biological properties leads to the conclusion that FcRLs are not like FcRs. They altogether form a single family within the immunoreceptor family, whose members fulfill distinct but complementary roles in immunity by differentially controlling innate and adaptive responses.
Collapse
|
26
|
Bergström JJE, Heyman B. IgG Suppresses Antibody Responses in Mice Lacking C1q, C3, Complement Receptors 1 and 2, or IgG Fc-Receptors. PLoS One 2015; 10:e0143841. [PMID: 26619292 PMCID: PMC4664261 DOI: 10.1371/journal.pone.0143841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022] Open
Abstract
Antigen-specific IgG antibodies, passively administered to mice or humans together with large particulate antigens like erythrocytes, can completely suppress the antibody response against the antigen. This is used clinically in Rhesus prophylaxis, where administration of IgG anti-RhD prevents RhD-negative women from becoming immunized against RhD-positive fetal erythrocytes aquired transplacentally. The mechanisms by which IgG suppresses antibody responses are poorly understood. We have here addressed whether complement or Fc-receptors for IgG (FcγRs) are required for IgG-mediated suppression. IgG, specific for sheep red blood cells (SRBC), was administered to mice together with SRBC and the antibody responses analyzed. IgG was able to suppress early IgM- as well as longterm IgG-responses in wildtype mice equally well as in mice lacking FcγRIIB (FcγRIIB knockout mice) or FcγRI, III, and IV (FcRγ knockout mice). Moreover, IgG was able to suppress early IgM responses equally well in mice lacking C1q (C1qA knockout mice), C3 (C3 knockout mice), or complement receptors 1 and 2 (Cr2 knockout mice) as in wildtype mice. Owing to the previously described severely impaired IgG responses in the complement deficient mice, it was difficult to assess whether passively administered IgG further decreased their IgG response. In conclusion, Fc-receptor binding or complement-activation by IgG does not seem to be required for its ability to suppress antibody responses to xenogeneic erythrocytes.
Collapse
Affiliation(s)
- Joakim J. E. Bergström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Abstract
The fate of T and B lymphocytes, the key cells that direct the adaptive immune response, is regulated by a diverse network of signal transduction pathways. The T- and B-cell antigen receptors are coupled to intracellular tyrosine kinases and adaptor molecules to control the metabolism of inositol phospholipids and calcium release. The production of inositol polyphosphates and lipid second messengers directs the activity of downstream guanine-nucleotide-binding proteins and protein and lipid kinases/phosphatases that control lymphocyte transcriptional and metabolic programs. Lymphocyte activation is modulated by costimulatory molecules and cytokines that elicit intracellular signaling that is integrated with the antigen-receptor-controlled pathways.
Collapse
Affiliation(s)
- Doreen Cantrell
- College of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
28
|
Nimmerjahn F, Gordan S, Lux A. FcγR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol 2015; 36:325-36. [PMID: 25981969 DOI: 10.1016/j.it.2015.04.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
Given the widespread use of antibodies of the immunoglobulin G (IgG) class as cytotoxic, immunomodulatory, and neutralizing agents in the therapy of malignant, infectious, and autoimmune diseases, understanding the molecular and cellular mechanisms responsible for their therapeutic activity is of major importance. While Fcγ receptors (FcγR) have well-appreciated roles as effectors of cytotoxic IgG activity, it has only recently become clear that the functionality of immunomodulatory and neutralizing IgG preparations also depends on cellular FcγRs. Here, we review current models of IgG activity in infectious and inflammatory settings, and examine the importance of cell type-specific expression of FcγRs in determining functional outcome. We discuss how this knowledge may be used to improve the activity of therapeutic antibody preparations and outline important areas of focus for future research.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Institute of Genetics at the Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany.
| | - Sina Gordan
- Institute of Genetics at the Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics at the Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
29
|
Molfetta R, Quatrini L, Gasparrini F, Zitti B, Santoni A, Paolini R. Regulation of fc receptor endocytic trafficking by ubiquitination. Front Immunol 2014; 5:449. [PMID: 25278942 PMCID: PMC4166898 DOI: 10.3389/fimmu.2014.00449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Most immune cells, particularly phagocytes, express various receptors for the Fc portion of the different immunoglobulin isotypes (Fc receptors, FcRs). By binding to the antibody, they provide a link between the adaptive immune system and the powerful effector functions triggered by innate immune cells such as mast cells, neutrophils, macrophages, and NK cells. Upon ligation of the immune complexes, the downstream signaling pathways initiated by the different receptors are quite similar for different FcR classes leading to the secretion of preformed and de novo synthesized pro-inflammatory mediators. FcR engagement also promotes negative signals through the combined action of several molecules that limit the extent and duration of positive signaling. To this regard, ligand-induced ubiquitination of FcRs for IgE (FcεR) and IgG (FcγR) has become recognized as a key modification that generates signals for the internalization and/or delivery of engaged receptor complexes to lysosomes or cytoplasmic proteasomes for degradation, providing negative-feedback regulation of Fc receptor activity. In this review, we discuss recent advances in our understanding of the molecular mechanisms that ensure the clearance of engaged Fcε and Fcγ receptor complexes from the cell surface with an emphasis given to the cooperation between the ubiquitin pathway and endosomal adaptors including the endosomal sorting complex required for transport (ESCRT) in controlling receptor internalization and sorting along the endocytic compartments.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK , London , UK
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| |
Collapse
|
30
|
Kao D, Lux A, Schwab I, Nimmerjahn F. Targeting B cells and autoantibodies in the therapy of autoimmune diseases. Semin Immunopathol 2014; 36:289-99. [PMID: 24777745 DOI: 10.1007/s00281-014-0427-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/01/2014] [Indexed: 12/19/2022]
Abstract
B cells and B cell-derived autoantibodies play a central role in the pathogenesis of many autoimmune diseases. Thus, depletion of B cells via monoclonal antibodies such as Rituximab is an obvious therapeutic intervention and has been used successfully in many instances. More recently, novel therapeutic options targeting either the autoantibody itself or resetting the threshold for B cell activation have become available and show promising immunomodulatory and anti-inflammatory effects in a variety of animal models. The aim of this review is to summarize these results and to provide an insight into the underlying molecular and cellular pathways of these novel therapeutic interventions targeting autoantibodies and B cells and to discuss their value for human therapy.
Collapse
Affiliation(s)
- Daniela Kao
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058, Erlangen, Germany
| | | | | | | |
Collapse
|
31
|
Chu SY, Yeter K, Kotha R, Pong E, Miranda Y, Phung S, Chen H, Lee SH, Leung I, Bonzon C, Desjarlais JR, Stohl W, Szymkowski DE. Suppression of Rheumatoid Arthritis B Cells by XmAb5871, an Anti-CD19 Antibody That Coengages B Cell Antigen Receptor Complex and Fcγ Receptor IIb Inhibitory Receptor. Arthritis Rheumatol 2014; 66:1153-64. [DOI: 10.1002/art.38334] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | - Karen Yeter
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | - Roshan Kotha
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | | | | | | | | | | | | | | | | | - William Stohl
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | | |
Collapse
|
32
|
Gesheva V, Kerekov N, Nikolova K, Mihaylova N, Todorov T, Nikolova M, Tchorbanov A. Suppression of dsDNA-specific B lymphocytes reduces disease symptoms in SCID model of mouse lupus. Autoimmunity 2014; 47:162-72. [PMID: 24502777 DOI: 10.3109/08916934.2014.883502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Self-specific B cells play a main role in the pathogenesis of lupus. This autoimmune disease is characterized by the generation of autoantibodies against self antigens, and the elimination of B and T cells involved in the pathological immune response is a logical approach for effective therapy. We have previously constructed a chimeric molecule by coupling a DNA-mimotope peptides to an anti-CD32 antibody. Using this protein molecule for the treatment of lupus-prone MRL/lpr mice, we suppressed selectively the autoreactive B-lymphocytes by cross-linking B cell receptors with the inhibitory FcγRIIb receptors. This approach was limited by the development of anti-chimeric antibodies in MRL mice. In order to avoid this problem, we established a murine severe combined immunodeficiency lupus model, allowing a long-term chimera therapy. Elimination of the double-stranded DNA-specific B cells by chimera therapy in MRL-transferred immunodeficient mice resulted in inhibition of T cell proliferation and prevented the appearance of IgG anti-DNA antibodies and of proteinuria.
Collapse
Affiliation(s)
- Vera Gesheva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | | | | | | | | | | | | |
Collapse
|
33
|
LILR-B1 blocks activating FcγR signaling to allow antibody dependent enhancement of dengue virus infection. Proc Natl Acad Sci U S A 2014; 111:2404-5. [PMID: 24501131 DOI: 10.1073/pnas.1324286111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Lehmann B, Schwab I, Böhm S, Lux A, Biburger M, Nimmerjahn F. FcγRIIB: a modulator of cell activation and humoral tolerance. Expert Rev Clin Immunol 2014; 8:243-54. [DOI: 10.1586/eci.12.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
Antibodies in complex with specific antigen can dramatically change the antibody response to this antigen. Depending on antibody class and type of antigen, >99 % suppression or >100-fold enhancement of the response can take place. IgM and IgG3 are efficient enhancers and operate via the complement system. In contrast, IgG1, IgG2a, and IgG2b enhance antibody and CD4(+) T cell responses to protein antigens via activating Fcγ-receptors. IgE also enhances antibody and CD4(+) T cell responses to small proteins but uses the low-affinity receptor for IgE, CD23. Most likely, IgM and IgG3 work by increasing the effective concentration of antigen on follicular dendritic cells in splenic follicles. IgG1, IgG2a, IgG2b, and IgE probably enhance antibody responses by increasing antigen presentation by dendritic cells to T helper cells. IgG antibodies of all subclasses have a dual effect, and suppress antibody responses to particulate antigens such as erythrocytes. This capacity is used in the clinic to prevent immunization of Rhesus-negative women to Rhesus-positive fetal erythrocytes acquired via transplacental hemorrage. IgG-mediated suppression in mouse models can take place in the absence of Fcγ-receptors and complement and to date no knock-out mouse strain has been found where suppression is abrogated.
Collapse
Affiliation(s)
- Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden,
| |
Collapse
|
36
|
The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies. Curr Top Microbiol Immunol 2014; 382:321-52. [PMID: 25116107 DOI: 10.1007/978-3-319-07911-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.
Collapse
|
37
|
White AL, Beers SA, Cragg MS. FcγRIIB as a key determinant of agonistic antibody efficacy. Curr Top Microbiol Immunol 2014; 382:355-72. [PMID: 25116108 DOI: 10.1007/978-3-319-07911-0_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fc gamma Receptor (FcγR) IIB (CD32B) is an immunoreceptor tyrosine inhibitory motif (ITIM)-bearing Fc receptor that is involved in abrogating the signalling and function delivered from other receptors; archetypally those arising from other, activatory, FcγR and from the B cell receptor (BCR) for antigen. In the context of immunotherapy, it has convincingly been shown to limit a variety of clinically important therapeutic monoclonal antibodies (mAb) such as rituximab and trastuzumab in preclinical models. However, recent exploration of so-called immunomodulatory mAb, for example agonist mAb directed against various members of the TNFR super-family, has cast new light on the ability of FcγRIIB to regulate immune responses and immunotherapy. These data, accumulated by several independent groups, have shown the seemingly paradoxical ability of FcγRIIB to augment or even be absolutely required for the activity of this class of mAb. In this review we highlight the key role of FcγRIIB in regulating agonistic mAb, detail the likely mechanism of action and propose new ways in which this information may be exploited therapeutically.
Collapse
Affiliation(s)
- Ann L White
- Cancer Sciences Unit, Antibody and Vaccine Group (MP88), Faculty of Medicine, Southampton University, Tremona Road, Southampton, SO16 6YD, UK
| | | | | |
Collapse
|
38
|
Böhm S, Kao D, Nimmerjahn F. Sweet and sour: the role of glycosylation for the anti-inflammatory activity of immunoglobulin G. Curr Top Microbiol Immunol 2014; 382:393-417. [PMID: 25116110 DOI: 10.1007/978-3-319-07911-0_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The importance of immunoglobulin G (IgG) molecules for providing long-term sterile immunity as well as their major contribution to tissue inflammation during autoimmune diseases is generally accepted. In a similar manner, studies over the last years have elucidated many details of the molecular and cellular pathways underlying this protective activity in vivo, emphasizing the role of cellular recognizing the constant antibody fragment. In contrast, the active anti-inflammatory activity of IgG, despite being known and actually identified in human autoimmune patients more than 30 years ago, is much less defined. Recent evidence from several independent model systems suggests that IgG glycosylation is critical for the immunomodulatory activity of IgG and that both monomeric IgG as well as IgG immune complexes can diminish Fc receptor and complement dependent inflammatory processes. Moreover, there is increasing evidence that IgG molecules also modulate B and T cell responses, which may suggest that IgG is centrally involved in the establishment and maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Sybille Böhm
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058, Erlangen, Germany
| | | | | |
Collapse
|
39
|
Abstract
Antibodies are major molecular effectors of adaptive immune responses. Most, if not all, biological activities of antibodies, however, depend on the functional properties of cells that express receptors for the Fc portion of antibodies (FcR). Most FcR are activating receptors; some are inhibitory. When engaged by antibodies and antigen, the various FcR expressed by a given cell trigger a mixture of positive and negative signals whose integration determines cellular responses. Responses of cell populations can be either protective or pathogenic. As a consequence, FcR are potential target/tools in a variety of diseases including infection, allergy, autoimmune diseases, and cancer.
Collapse
|
40
|
Trist HM, Tan PS, Wines BD, Ramsland PA, Orlowski E, Stubbs J, Gardiner EE, Pietersz GA, Kent SJ, Stratov I, Burton DR, Hogarth PM. Polymorphisms and interspecies differences of the activating and inhibitory FcγRII of Macaca nemestrina influence the binding of human IgG subclasses. THE JOURNAL OF IMMUNOLOGY 2013; 192:792-803. [PMID: 24342805 DOI: 10.4049/jimmunol.1301554] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Little is known of the impact of Fc receptor (FcR) polymorphism in macaques on the binding of human (hu)IgG, and nothing is known of this interaction in the pig-tailed macaque (Macaca nemestrina), which is used in preclinical evaluation of vaccines and therapeutic Abs. We defined the sequence and huIgG binding characteristics of the M. nemestrina activating FcγRIIa (mnFcγRIIa) and inhibitory FcγRIIb (mnFcγRIIb) and predicted their structures using the huIgGFc/huFcγRIIa crystal structure. Large differences were observed in the binding of huIgG by mnFcγRIIa and mnFcγRIIb compared with their human FcR counterparts. MnFcγRIIa has markedly impaired binding of huIgG1 and huIgG2 immune complexes compared with huFcγRIIa (His(131)). In contrast, mnFcγRIIb has enhanced binding of huIgG1 and broader specificity, as, unlike huFcγRIIb, it avidly binds IgG2. Mutagenesis and molecular modeling of mnFcγRIIa showed that Pro(159) and Tyr(160) impair the critical FG loop interaction with huIgG. The enhanced binding of huIgG1 and huIgG2 by mnFcγRIIb was shown to be dependent on His(131) and Met(132). Significantly, both His(131) and Met(132) are conserved across FcγRIIb of rhesus and cynomolgus macaques. We identified functionally significant polymorphism of mnFcγRIIa wherein proline at position 131, also an important polymorphic site in huFcγRIIa, almost abolished binding of huIgG2 and huIgG1 and reduced binding of huIgG3 compared with mnFcγRIIa His(131). These marked interspecies differences in IgG binding between human and macaque FcRs and polymorphisms within species have implications for preclinical evaluation of Abs and vaccines in macaques.
Collapse
Affiliation(s)
- Halina M Trist
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang D, He J, Shen M, Wang R. CD16 inhibition increases host survival in a murine model of severe sepsis. J Surg Res 2013; 187:605-9. [PMID: 24331941 DOI: 10.1016/j.jss.2013.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/08/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND To investigate the therapeutic effect of monoclonal antibody (mAb)-induced CD16 (FcγRIII) inhibition in a murine model of high-grade (severe) sepsis. MATERIALS AND METHODS In a prospective controlled animal study, 2 μg of CD16/32 (FcγRIII/FcγRII) or the same volume of normal saline was administered intraperitoneally to BALB/c FcγRII(-/-) mice at the time of cecal ligation and puncture (CLP) in a murine model of high-grade sepsis. Subcutaneous administration of CD16/32 (0.5 μg/24 h) or normal saline continued for 7 d. Survival was evaluated, and the underlying therapeutic mechanism of mAb-induced CD16 inhibition was investigated. RESULTS CD16 expression was significantly increased on peripheral blood CD14(+) monocytes from mice with high-grade sepsis compared with non-septic control mice (1579.40 ± 217.75 versus 461.10 ± 36.13; P < 0.05). CD16/32 mAb treatment increased the survival of mice with high-grade sepsis (P < 0.05) and significantly decreased their elevated levels of serum tumor necrosis factor α (36.70 ± 9.97 versus 52.60 ± 10.69; P < 0.05) and interleukin 1β (1149.40 ± 244.09 versus 2605.60 ± 353.74; P < 0.05) at 6 and 24 h after CLP, respectively. Moreover, CD16/32 mAb-treated mice with high-grade sepsis had fewer bacteria in their blood and peritoneal lavage than mice just treated with normal saline at 24 h after CLP (P < 0.05). CONCLUSIONS CD16/32 mAb-induced CD16 inhibition increased the survival of mice with high-grade sepsis, which may have been because of the concomitant suppression of tumor necrosis factor α and interleukin 1β as well as the enhancement of monocyte phagocytosis. Thus, targeted inhibition of CD16 can potentially improve the outcome of selected patients with severe sepsis.
Collapse
Affiliation(s)
- Dewen Zhang
- Department of Emergency and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Jian He
- Department of Emergency and Critical Care Medicine, Changhai Hospital, Shanghai, China.
| | - Meihua Shen
- Department of Emergency and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Rui Wang
- Department of Emergency and Critical Care Medicine, Changhai Hospital, Shanghai, China
| |
Collapse
|
42
|
Bounab Y, Hesse AM, Iannascoli B, Grieco L, Couté Y, Niarakis A, Roncagalli R, Lie E, Lam KP, Demangel C, Thieffry D, Garin J, Malissen B, Daëron M. Proteomic analysis of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) interactome in resting and activated primary mast cells [corrected]. Mol Cell Proteomics 2013; 12:2874-89. [PMID: 23820730 PMCID: PMC3790297 DOI: 10.1074/mcp.m112.025908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/29/2013] [Indexed: 11/06/2022] Open
Abstract
We report the first proteomic analysis of the SLP76 interactome in resting and activated primary mouse mast cells. This was made possible by a novel genetic approach used for the first time here. It consists in generating knock-in mice that express signaling molecules bearing a C-terminal tag that has a high affinity for a streptavidin analog. Tagged molecules can be used as molecular baits to affinity-purify the molecular complex in which they are engaged, which can then be studied by mass spectrometry. We examined first SLP76 because, although this cytosolic adapter is critical for both T cell and mast cell activation, its role is well known in T cells but not in mast cells. Tagged SLP76 was expressed in physiological amounts and fully functional in mast cells. We unexpectedly found that SLP76 is exquisitely sensitive to mast cell granular proteases, that Zn(2+)-dependent metalloproteases are especially abundant in mast cells and that they were responsible for SLP76 degradation. Adding a Zn(2+) chelator fully protected SLP76 in mast cell lysates, thereby enabling an efficient affinity-purification of this adapter with its partners. Label-free quantitative mass spectrometry analysis of affinity-purified SLP76 interactomes uncovered both partners already described in T cells and novel partners seen in mast cells only. Noticeably, molecules inducibly recruited in both cell types primarily concur to activation signals, whereas molecules recruited in activated mast cells only are mostly associated with inhibition signals. The transmembrane adapter LAT2, and the serine/threonine kinase with an exchange factor activity Bcr were the most recruited molecules. Biochemical and functional validations established the unexpected finding that Bcr is recruited by SLP76 and positively regulates antigen-induced mast cell activation. Knock-in mice expressing tagged molecules with a normal tissue distribution and expression therefore provide potent novel tools to investigate signalosomes and to uncover novel signaling molecules in mast cells.
Collapse
Affiliation(s)
- Yacine Bounab
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| | - Anne-Marie- Hesse
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Bruno Iannascoli
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| | - Luca Grieco
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Yohann Couté
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Anna Niarakis
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Romain Roncagalli
- §§Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix Marseille, UM2, Marseille, France
- ¶¶Inserm, U1104, Marseille, France
- ‖‖CNRS, UMR7280, Marseille, France
- Centre d'Immunophénomique, Inserm US012, CNRS UMS3367, Université Aix Marseille, Marseille, France
| | - Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-601, Korea
| | - Kong-Peng Lam
- Immunology Group, Bioprocessing Technology Institute, A*STAR, Singapore
| | - Caroline Demangel
- Institut Pasteur, Département d'Immunologie, Unité d'Immunobiologie de l'infection, Paris, France
| | - Denis Thieffry
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Jérôme Garin
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Bernard Malissen
- §§Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix Marseille, UM2, Marseille, France
- ¶¶Inserm, U1104, Marseille, France
- ‖‖CNRS, UMR7280, Marseille, France
- Centre d'Immunophénomique, Inserm US012, CNRS UMS3367, Université Aix Marseille, Marseille, France
| | - Marc Daëron
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| |
Collapse
|
43
|
del Rio ML, Seebach JD, Fernández-Renedo C, Rodriguez-Barbosa JI. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses. Xenotransplantation 2013; 20:397-406. [PMID: 23968542 DOI: 10.1111/xen.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/31/2013] [Indexed: 12/24/2022]
Abstract
Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon, Leon, Spain; Leon University Hospital, Castilla and Leon Transplantation Regional Agency, Leon, Spain
| | | | | | | |
Collapse
|
44
|
Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4315-23. [PMID: 23509345 DOI: 10.4049/jimmunol.1200501] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IgG molecules are widely used as therapeutic agents either in the form of intact Abs or as Fc fusion proteins. Although efficient binding of the IgG Fc fragment to cellular FcγRs may be essential to achieve a high cytolytic activity, it may be advantageous for other applications to limit or abolish this interaction. Genetic or biochemical approaches have been used to generate these non-FcγR-binding IgG variants. By using soluble versions of FcγRs and monomeric versions of these altered IgG molecules, it was demonstrated that these IgG variants no longer bind to FcγRs. Importantly, however, these assays do not reflect the physiologic interaction of IgG with low-affinity cellular FcγRs occurring in the form of multimeric immune complexes. In this study, we investigated how the size of an immune complex can affect the interaction of normal and various versions of potentially non-FcγR-binding IgG variants with cellular FcγRs. We show that neither the D265A mutation nor EndoS treatment resulting in IgG molecules with only one N-acetylglucosamine and a fucose residue was fully able to abolish the interaction of all IgG subclasses with cellular FcγRs, suggesting that IgG subclass-specific strategies are essential to fully interfere with human FcγR binding.
Collapse
Affiliation(s)
- Anja Lux
- Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
45
|
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013; 13:176-89. [PMID: 23411799 DOI: 10.1038/nri3401] [Citation(s) in RCA: 586] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intravenous immunoglobulin (IVIG) preparations comprise pooled IgG antibodies from the serum of thousands of donors and were initially used as an IgG replacement therapy in immunocompromised patients. Since the discovery, more than 30 years ago, that IVIG therapy can ameliorate immune thrombocytopenia, the use of IVIG preparations has been extended to a wide range of autoimmune and inflammatory diseases. Despite the broad efficacy of IVIG therapy, its modes of action remain unclear. In this Review, we cover the recent insights into the molecular and cellular pathways that are involved in IVIG-mediated immunosuppression, with a particular focus on IVIG as a therapy for IgG-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Inessa Schwab
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058 Erlangen, Germany
| | | |
Collapse
|
46
|
|
47
|
Daëron M. IgE et IgG, basophiles et neutrophiles : l’arbre et la forêt. REVUE FRANCAISE D ALLERGOLOGIE 2012. [DOI: 10.1016/j.reval.2012.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Abstract
Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb's classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells be considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.
Collapse
Affiliation(s)
- Friederike Jönsson
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| | - Marc Daëron
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| |
Collapse
|
49
|
Kerekov NS, Mihaylova NM, Grozdev I, Todorov TA, Nikolova M, Baleva M, Nikolova M, Prechl J, Erdei A, Tchorbanov AI. Elimination of autoreactive B cells in humanized SCID mouse model of SLE. Eur J Immunol 2011; 41:3301-11. [DOI: 10.1002/eji.201141439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/24/2011] [Accepted: 08/03/2011] [Indexed: 02/04/2023]
|
50
|
Pfirsch-Maisonnas S, Aloulou M, Xu T, Claver J, Kanamaru Y, Tiwari M, Launay P, Monteiro RC, Blank U. Inhibitory ITAM Signaling Traps Activating Receptors with the Phosphatase SHP-1 to Form Polarized "Inhibisome" Clusters. Sci Signal 2011; 4:ra24. [DOI: 10.1126/scisignal.2001309] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|