1
|
Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res 2021; 89:1619-1626. [PMID: 33027803 PMCID: PMC8249239 DOI: 10.1038/s41390-020-01177-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Integrins are heterodimeric transmembrane cell adhesion molecules made up of alpha (α) and beta (β) subunits arranged in numerous dimeric pairings. These complexes have varying affinities to extracellular ligands. Integrins regulate cellular growth, proliferation, migration, signaling, and cytokine activation and release and thereby play important roles in cell proliferation and migration, apoptosis, tissue repair, as well as in all processes critical to inflammation, infection, and angiogenesis. This review presents current evidence from human and animal studies on integrin structure and molecular signaling, with particular emphasis on signal transduction in infants. We have included evidence from our own laboratory studies and from an extensive literature search in databases PubMed, EMBASE, Scopus, and the electronic archives of abstracts presented at the annual meetings of the Pediatric Academic Societies. To avoid bias in identification of existing studies, key words were short-listed prior to the actual search both from anecdotal experience and from PubMed's Medical Subject Heading (MeSH) thesaurus. IMPACT: Integrins are a family of ubiquitous αβ heterodimeric receptors that interact with numerous ligands in physiology and disease. Integrins play a key role in cell proliferation, tissue repair, inflammation, infection, and angiogenesis. This review summarizes current evidence from human and animal studies on integrin structure and molecular signaling and promising role in diseases of inflammation, infection, and angiogenesis in infants. This review shows that integrin receptors and ligands are novel therapeutic targets of clinical interest and hold promise as novel therapeutic targets in the management of several neonatal diseases.
Collapse
Affiliation(s)
- Olachi J. Mezu-Ndubuisi
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Akhil Maheshwari
- grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
2
|
Integrins Have Cell-Type-Specific Roles in the Development of Motor Neuron Connectivity. J Dev Biol 2019; 7:jdb7030017. [PMID: 31461926 PMCID: PMC6787651 DOI: 10.3390/jdb7030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/11/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Formation of the nervous system requires a complex series of events including proper extension and guidance of neuronal axons and dendrites. Here we investigate the requirement for integrins, a class of transmembrane cell adhesion receptors, in regulating these processes across classes of C. elegans motor neurons. We show α integrin/ina-1 is expressed by both GABAergic and cholinergic motor neurons. Despite this, our analysis of hypomorphic ina-1(gm144) mutants indicates preferential involvement of α integrin/ina-1 in GABAergic commissural development, without obvious involvement in cholinergic commissural development. The defects in GABAergic commissures of ina-1(gm144) mutants included both premature termination and guidance errors and were reversed by expression of wild type ina-1 under control of the native ina-1 promoter. Our results also show that α integrin/ina-1 is important for proper outgrowth and guidance of commissures from both embryonic and post-embryonic born GABAergic motor neurons, indicating an ongoing requirement for integrin through two phases of GABAergic neuron development. Our findings provide insights into neuron-specific roles for integrin that would not be predicted based solely upon expression analysis.
Collapse
|
3
|
You Y, Chen J, Zhu F, Xu Q, Han L, Gao X, Zhang X, Luo HR, Miao J, Sun X, Ren H, Du Y, Guo L, Wang X, Wang Y, Chen S, Huang N, Li J. Glutaredoxin 1 up-regulates deglutathionylation of α4 integrin and thereby restricts neutrophil mobilization from bone marrow. J Biol Chem 2018; 294:2616-2627. [PMID: 30598505 DOI: 10.1074/jbc.ra118.006096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
α4 integrin plays a crucial role in retention and release of neutrophils from bone marrow. Although α4 integrin is known to be a potential target of reactive oxygen species (ROS)-induced cysteine glutathionylation, the physiological significance and underlying regulatory mechanism of this event remain elusive. Here, using in vitro and in vivo biochemical and cell biology approaches, we show that physiological ROS-induced glutathionylation of α4 integrin in neutrophils increases the binding of neutrophil-associated α4 integrin to vascular cell adhesion molecule 1 (VCAM-1) on human endothelial cells. This enhanced binding was reversed by extracellular glutaredoxin 1 (Grx1), a thiol disulfide oxidoreductase promoting protein deglutathionylation. Furthermore, in a murine inflammation model, Grx1 disruption dramatically elevated α4 glutathionylation and subsequently enhanced neutrophil egress from the bone marrow. Corroborating this observation, intravenous injection of recombinant Grx1 into mice inhibited α4 glutathionylation and thereby suppressed inflammation-induced neutrophil mobilization from the bone marrow. Taken together, our results establish ROS-elicited glutathionylation and its modulation by Grx1 as pivotal regulatory mechanisms controlling α4 integrin affinity and neutrophil mobilization from the bone marrow under physiological conditions.
Collapse
Affiliation(s)
| | - Junli Chen
- From the Departments of Pathophysiology and
| | - Feimei Zhu
- From the Departments of Pathophysiology and
| | - Qian Xu
- From the Departments of Pathophysiology and
| | - Lu Han
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiang Gao
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hongbo R Luo
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Lab Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| | | | - Xiaodong Sun
- Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyu Ren
- From the Departments of Pathophysiology and
| | - Yu Du
- From the Departments of Pathophysiology and
| | - Lijuan Guo
- From the Departments of Pathophysiology and
| | | | - Yi Wang
- From the Departments of Pathophysiology and
| | | | - Ning Huang
- From the Departments of Pathophysiology and
| | - Jingyu Li
- From the Departments of Pathophysiology and
| |
Collapse
|
4
|
Lim JH, Lee CH, Kim KY, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Baek MC, Park JB, Kim YH, Chung BH, Lee SH, Kim CD. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study. PLoS One 2018; 13:e0204204. [PMID: 30226858 PMCID: PMC6143249 DOI: 10.1371/journal.pone.0204204] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute rejection is hazardous to graft survival in kidney transplant recipients (KTRs). We aimed to identify novel biomarkers for early diagnosis of acute T cell-mediated rejection (TCMR) in urinary exosomes of KTRs. METHODS Among 458 graft biopsies enrolled in a cross-sectional multicenter study, 22 patients with stable graft function (STA) who had not shown pathologic abnormality and 25 patients who diagnosed biopsy-proven TCMR were analyzed. We performed proteomic analysis using nano-ultra performance liquid chromatography-tandem mass spectrometry (nano-UPLC-MS/MS) to identify candidate biomarkers for early TCMR diagnosis on urinary exosomes. We confirmed the protein levels of each candidate biomarker by western blot analysis. RESULTS A total of 169 urinary exosome proteins were identified by nano-UPLC-MS/MS. Forty-six proteins showed increased expression in STA patients, while 17 proteins were increased in TCMR patients. Among them, we selected five proteins as candidate biomarkers for early diagnosis of TCMR according to significance, degree of quantity variance, and information from the ExoCarta database. We confirmed the proteomic expression levels of five candidate biomarkers by western blot analysis in each patient. Of all candidate biomarkers, tetraspanin-1 and hemopexin were significantly higher in TCMR patients (STA:TCMR ratio = 1:1.8, P = 0.009, and 1:3.5, P = 0.046, respectively). CONCLUSIONS Tetraspanin-1 and hemopexin were detected in KTR urine and could act as potential diagnostic proteins for TCMR.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Chan-Hyeong Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyu Yeun Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Young Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Young-Hoon Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Inje University, Pusan, South Korea
| | - Byung Ha Chung
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
5
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
6
|
Bayer ML, Schjerling P, Herchenhan A, Zeltz C, Heinemeier KM, Christensen L, Krogsgaard M, Gullberg D, Kjaer M. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One 2014; 9:e86078. [PMID: 24465881 PMCID: PMC3897642 DOI: 10.1371/journal.pone.0086078] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022] Open
Abstract
Mechanical loading of tendon cells results in an upregulation of mechanotransduction signaling pathways, cell-matrix adhesion and collagen synthesis, but whether unloading removes these responses is unclear. We investigated the response to tension release, with regard to matrix proteins, pro-inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors showed a contrasting response with a clear drop in integrin subunit α11 mRNA and protein expression, and an increase in α2 integrin mRNA and protein levels. Further, specific markers for tendon cell differentiation declined and normal tendon architecture was disturbed, whereas pro-inflammatory molecules were upregulated. Stimulation with the cytokine TGF-β1 had distinct effects on some tendon-related genes in both tensioned and de-tensioned tissue. These findings indicate an important role of mechanical loading for cellular and matrix responses in tendon, including that loss of tension leads to a decrease in phenotypical markers for tendon, while expression of pro-inflammatory mediators is induced.
Collapse
Affiliation(s)
- Monika L Bayer
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Herchenhan
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Zeltz
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Katja M Heinemeier
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Christensen
- Department of Pathology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Michael Krogsgaard
- Section for Sports Traumatology, Department of Orthopedic Surgery M, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Michael Kjaer
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Schmid MC, Varner JA. Myeloid cells in tumor inflammation. Vasc Cell 2012; 4:14. [PMID: 22938502 PMCID: PMC3479419 DOI: 10.1186/2045-824x-4-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 02/08/2023] Open
Abstract
Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients.
Collapse
Affiliation(s)
- Michael C Schmid
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0912, USA.
| | | |
Collapse
|
8
|
Abstract
A detailed understanding of the biophysical features that affect cell growth and development is important in guiding the design of biomimetic scaffolds. The cellular microenvironment is a network of structural and functional components that provide mechanical and chemical stimuli, which influence cell function and fate. Important developmental signals are conveyed to cells through interactions with neighboring cells, the extracellular matrix (ECM), and growth factors. Currently, there are number of approaches to create 3D tissue models in vitro that allow for control over cell adhesion, the physical properties of the surrogate matrix, and the spatial distribution of growth factors. This review describes some of the most significant biological features of the ECM, and several engineering methods currently being implemented to design and tune synthetic scaffolds to mimic these features.
Collapse
Affiliation(s)
- Shawn C Owen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Pan D, Song Y. Role of altered sialylation of the I-like domain of beta1 integrin in the binding of fibronectin to beta1 integrin: thermodynamics and conformational analyses. Biophys J 2010; 99:208-17. [PMID: 20655849 DOI: 10.1016/j.bpj.2010.03.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/04/2010] [Accepted: 03/22/2010] [Indexed: 01/02/2023] Open
Abstract
N-glycosylation of the I-like domain of beta1 integrin plays an essential role in integrin structure and function, and the altered sialylation of beta1 integrin regulates beta1 integrin binding to fibronectin. However, the structural basis underlying the effect of altered sialylation of the beta1 I-like domain on beta1 integrin binding to fibronectin remains largely unknown. In this study, we used a combination of molecular dynamics simulations and binding free energy analyses to investigate changes in binding thermodynamics and in conformation of the glycosylated beta1 I-like domain-FN-III(9-10) complex caused by altered sialylation of the beta1 I-like domain. Binding free energy analyses showed that desialylation of beta1 I-like domain increased beta1 integrin binding to fibronectin, consistent with experimental results. Interaction analyses showed that altered sialylation of the beta1 I-like domain resulted in significant changes in the interaction of the N-glycans of the I-like domain with both the I-like domain and fibronectin, and these changes could directly affect the allosteric regulation of the interaction between the I-like domain and fibronectin. Altered sialylation of the beta1 I-like domain caused significant conformational changes in key functional sites of both the beta1 I-like domain and fibronectin. In addition, altered sialylation of the beta1 I-like domain resulted in changes in the degree of correlated motions between residues in the I-like domain and residues in fibronectin, and in the degree of motion changes in fibronectin, which could affect beta1 integrin binding to fibronectin. We believe results from this study provide thermodynamic and structural evidence for a role of altered sialylation of beta1 integrin in regulating beta1 integrin binding to fibronectin and it's induced cellular activities.
Collapse
Affiliation(s)
- Di Pan
- Department of Biomedical Engineering, The University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
10
|
Up-regulation of ß1 integrin on tonsillar T cells and its induction by in vitro stimulation with α-streptococci in patients with pustulosis Palmaris et Plantaris. J Clin Immunol 2010; 30:861-71. [PMID: 20714794 DOI: 10.1007/s10875-010-9451-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/01/2010] [Indexed: 12/11/2022]
Abstract
Pustulosis palmaris et plantaris (PPP) is a tonsil-related disease that can be cured with tonsillectomy. Recent immunological studies have shown that hyperactivation of tonsillar T cells is caused by a hyperimmune response to α-streptococci; recruitment of the T cells to lesions may be involved in the pathogenesis of PPP. ß1 integrin, expressed on T cells, not only provides a costimulatory signal for T-cell activation but also facilitates the accumulation of T cells in inflammatory skin lesions. In this study, we found that expression of ß1 integrin on both tonsillar and peripheral blood CD4-positive T cells was higher in PPP patients than in non-PPP patients. In vitro stimulation with α-streptococcal antigen significantly enhanced ß1 integrin expression on tonsillar CD4-positive T cells in PPP patients, but not in non-PPP patients. The chemotactic response of tonsillar CD4-positive T cells to vascular cell adhesion molecule-1, the ß1 integrin ligand, was significantly better in PPP patients than in non-PPP patients. The percentage of ß1 integrin-positive peripheral blood CD4-positive T cells decreased after tonsillectomy in PPP patients. The numbers of ß1 integrin-positive T cells and the expression of vascular cell adhesion molecule-1 were more elevated in plantar PPP skin lesions than in normal skin. These results suggest that ß1 integrin may play a key role in the pathogenesis of PPP.
Collapse
|
11
|
Walker AJ, Lacchini AH, Sealey KL, Mackintosh D, Davies AJ. Spreading by snail (Lymnaea stagnalis) defence cells is regulated through integrated PKC, FAK and Src signalling. Cell Tissue Res 2010; 341:131-45. [PMID: 20512591 DOI: 10.1007/s00441-010-0986-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/21/2010] [Indexed: 12/25/2022]
Abstract
Cell adhesion and spreading are vital to immune function. In molluscs, haemocytes (circulating phagocytes) are sentinels and effectors of the internal defence system; however, molecular mechanisms that regulate integrin-mediated spreading by haemocytes have not been characterised in detail. Visualisation of Lymnaea stagnalis haemocytes by scanning electron microscopy revealed membrane ruffling, formation of lamellipodia and extensive filopodia during early stages of cell adhesion and spreading. These events correlated with increased phosphorylation (activation) of protein kinase C (PKC) and focal adhesion kinase (FAK), sustained for 60 min. Treatment of haemocytes with the PKC inhibitors GF109203X or Gö 6976, or the Src/tyrosine kinase inhibitors SrcI or herbimycin A, attenuated haemocyte spread by 64, 46, 32 and 35%, respectively (P <or= 0.001); PKC or Src inhibition also prevented focal adhesion formation. Western blotting demonstrated that during spreading and adhesion these inhibitors also impaired PKC and FAK activation, with Gö 6976 or SrcI inhibiting FAK phosphorylation by at least 70% (P <or= 0.001), and herbimycin A or SrcI inhibiting PKC phosphorylation by at least 46% (P <or= 0.01). Confocal microscopy revealed phosphorylated PKC colocalised with focal adhesion sites, particularly during early phases of adhesion and spreading. Finally, fibronectin promoted PKC and FAK phosphorylation in suspended haemocytes demonstrating that activation can occur independent of cell adhesion. These novel data are consistent with PKC and FAK/Src playing an integrated role in integrin activation and integrin-mediated spreading by L. stagnalis haemocytes. We propose a model in which integrin engagement mediates association of PKC with FAK/Src complexes to promote focal adhesion assembly during immune recognition by these cells.
Collapse
Affiliation(s)
- Anthony J Walker
- School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, UK.
| | | | | | | | | |
Collapse
|
12
|
Altincicek B, Berisha A, Mukherjee K, Spengler B, Römpp A, Vilcinskas A. Identification of collagen IV derived danger/alarm signals in insect immunity by nanoLC-FTICR MS. Biol Chem 2009; 390:1303-11. [DOI: 10.1515/bc.2009.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractThe immune system can be stimulated by microbial molecules as well as by endogenously derived danger/alarm signals of host origin. Using the lepidopteran model insectGalleria mellonella, we recently discovered that fragments of collagen IV, resulting from hydrolysis by microbial metalloproteinases, represent danger/alarm signals in insects. Here, we characterized immune-stimulatory peptides generated by thermolysin-mediated degradation of collagen IV using nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) after separation by nanoscale liquid chromatography (nanoLC). The combination of FTICR MS analysis andde novopeptide sequencing resulted in the identification of 38 specific collagen IV fragments of which several peptides included the integrin-binding motif RGD/E known from numerous mammalian immune-related proteins. Custom-synthesized peptides corresponding either to the presently identified collagen peptide GIRGEHyp or to a well-known integrin-binding RGD peptide (GRGDS) were injected intoG. mellonellato determine their immune-stimulatory activitiesin vivo. Both peptides stimulated immune cells and systemically the expression of lysozyme and a specific inhibitor of microbial metalloproteinases. Further examination using specific MAP kinase inhibitors indicated that MEK/ERK and p38 are involved in RGD/E-mediated immune-signaling pathways, whereas JNK seems to play only a minor role.
Collapse
|
13
|
CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat Immunol 2009; 10:412-9. [PMID: 19270713 PMCID: PMC2672195 DOI: 10.1038/ni.1712] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 01/27/2009] [Indexed: 11/08/2022]
Abstract
The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates.
Collapse
|
14
|
Woodard-Grice AV, McBrayer AC, Wakefield JK, Zhuo Y, Bellis SL. Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins. J Biol Chem 2008; 283:26364-73. [PMID: 18650447 PMCID: PMC2546544 DOI: 10.1074/jbc.m800836200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/21/2008] [Indexed: 12/11/2022] Open
Abstract
Differentiation of monocytes into macrophages is accompanied by increased cell adhesiveness, due in part to the activation of alpha4beta1 integrins. Here we report that the sustained alpha4beta1 activation associated with macrophage differentiation results from expression of beta1 integrin subunits that lack alpha2-6-linked sialic acids, a carbohydrate modification added by the ST6Gal-I sialyltransferase. During differentiation of U937 monocytic cells and primary human CD14(+) monocytes, ST6Gal-I is down-regulated, leading to beta1 hyposialylation and enhanced alpha4beta1-dependent VCAM-1 binding. Importantly, ST6Gal-I down-regulation results from cleavage by the BACE1 secretase, which we show is dramatically up-regulated during macrophage differentiation. BACE1 up-regulation, ST6Gal-I shedding, beta1 hyposialylation, and alpha4beta1-dependent VCAM-1 binding are all temporally correlated and share the same signaling mechanism (protein kinase C/Ras/ERK). Preventing ST6Gal-I down-regulation (and therefore integrin hyposialylation), through BACE1 inhibition or ST6Gal-I constitutive overexpression, eliminates VCAM-1 binding. Similarly, preventing integrin hyposialylation inhibits a differentiation-induced increase in the expression of an activation-dependent conformational epitope on the beta1 subunit. Collectively, these results describe a novel mechanism for alpha4beta1 regulation and further suggest an unanticipated role for BACE1 in macrophage function.
Collapse
Affiliation(s)
- Alencia V. Woodard-Grice
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Alexis C. McBrayer
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - John K. Wakefield
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Ya Zhuo
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Susan L. Bellis
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| |
Collapse
|
15
|
Kodera M, Grailer JJ, Karalewitz APA, Subramanian H, Steeber DA. T lymphocyte migration to lymph nodes is maintained during homeostatic proliferation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:211-224. [PMID: 18312727 DOI: 10.1017/s1431927608080215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The immune system maintains appropriate cell numbers through regulation of cell proliferation and death. Normal tissue distribution of lymphocytes is maintained through expression of specific adhesion molecules and chemokine receptors such as L-selectin and CCR7, respectively. Lymphocyte insufficiency or lymphopenia induces homeostatic proliferation of existing lymphocytes to increase cell numbers. Interestingly, homeostatic proliferation of T lymphocytes induces a phenotypic change from naïve- to memory-type cell. Naïve T cells recirculate between blood and lymphoid tissues whereas memory T cells migrate to nonlymphoid sites such as skin and gut. To assess effects of homeostatic proliferation on migratory ability of T cells, a murine model of lymphopenia-induced homeostatic proliferation was used. Carboxyfluorescein diacetate, succinimidyl ester-labeled wild-type splenocytes were adoptively transferred into recombination activation gene-1-deficient mice and analyzed by flow cytometry, in vitro chemotactic and in vivo migration assays, and immunofluorescence microscopy. Homeostatically proliferated T cells acquired a mixed memory-type CD44high L-selectinhigh CCR7low phenotype. Consistent with this, chemotaxis to secondary lymphoid tissue chemokine in vitro was reduced by 22%-34%. By contrast, no differences were found for migration or entry into lymph nodes during in vivo migration assays. Therefore, T lymphocytes that have undergone homeostatic proliferation recirculate using mechanisms similar to naïve T cells.
Collapse
Affiliation(s)
- Masanari Kodera
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | | | | | | | | |
Collapse
|
16
|
Lee J, Hong J, Nam TG, Peters EC, Orth AP, Geierstanger BH, Goldfinger LE, Ginsberg MH, Cho CY, Schultz PG. A small molecule inhibitor of alpha4 integrin-dependent cell migration. Bioorg Med Chem 2008; 17:977-80. [PMID: 18329275 DOI: 10.1016/j.bmc.2008.02.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/17/2022]
Abstract
A small molecule inhibitor of alpha4 integrin-dependent cell migration was identified through a cell-based screen of small molecule libraries. Biochemical and cellular experiments suggest that this molecule functions by interacting with gamma-parvin. This molecule should serve as a useful tool to study alpha4 integrin signaling and may lead to new therapeutics for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jongkook Lee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Data from several investigators suggest that the alpha2beta1 integrin, a receptor for collagens, laminins, decorin, E-cadherin, matrix metalloproteinase-1, endorepellin, and several viruses, is required for innate immunity and regulation of autoimmune/allergic disorders. We demonstrated that the innate immune response to Listeria monocytogenes required alpha2beta1 integrin expression by peritoneal mast cells (PMCs). Ligation of the alpha2beta1 integrin by C1q contained in immune complexes comprised of Listeria and antibody was required for PMC activation in vitro and in vivo. However, ligation of the alpha2beta1 integrin alone was insufficient to activate cytokine secretion, suggesting that one or more additional signals emanating from a coreceptor were required for PMC activation. Here, we demonstrate that C1q, but neither other complement proteins nor FcRgamma, is required for early innate immune response to Listeria. The binding of Listeria's Internalin B (InlB) to hepatocyte growth factor receptor (HGF-R)/c-met provides the costimulatory function required for PMC activation. Either HGF or Listeria InlB bound to c-met and either C1q or type I collagen bound to alpha2beta1 integrin stimulates PMC activation. These findings suggest that crosstalk between c-met and the alpha2beta1 integrin may contribute to mast-cell activation in autoimmune and inflammatory disorders.
Collapse
|
18
|
Caswell CC, Lukomska E, Seo NS, Höök M, Lukomski S. Scl1-dependent internalization of group A Streptococcus via direct interactions with the alpha2beta(1) integrin enhances pathogen survival and re-emergence. Mol Microbiol 2007; 64:1319-31. [PMID: 17542923 DOI: 10.1111/j.1365-2958.2007.05741.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular pathogenesis of infections caused by group A Streptococcus (GAS) is not fully understood. We recently reported that a recombinant protein derived from the collagen-like surface protein, Scl1, bound to the human collagen receptor, integrin alpha(2)beta(1). Here, we investigate whether the same Scl1 variant expressed by GAS cells interacts with the integrin alpha2beta(1) and affects the biological outcome of host-pathogen interactions. We demonstrate that GAS adherence and internalization involve direct interactions between surface expressed Scl1 and the alpha2beta(1) integrin, because (i) both adherence and internalization of the scl1-inactivated mutant were significantly decreased, and were restored by in-trans complementation of Scl1 expression, (ii) GAS internalization was reduced by pre-treatment of HEp-2 cells with anti-alpha2 integrin-subunit antibody and type I collagen, (iii) recombinant alpha2-I domain bound the wild-type GAS cells and (iv) internalization of wild-type cells was significantly increased in C2C12 cells expressing the alpha2beta(1) integrin as the only collagen-binding integrin. Next, we determined that internalized GAS re-emerges from epithelial cells into the extracellular environment. Taken together, our data describe a new molecular mechanism used by GAS involving the direct interaction between Scl1 and integrins, which increases the overall capability of the pathogen to survive and re-emerge.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
19
|
Zutter MM, Edelson BT. The alpha2beta1 integrin: a novel collectin/C1q receptor. Immunobiology 2007; 212:343-53. [PMID: 17544819 DOI: 10.1016/j.imbio.2006.11.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Accepted: 11/27/2006] [Indexed: 11/18/2022]
Abstract
Our laboratory focuses on the alpha2beta1 integrin, a receptor for a number of matrix and non-matrix ligands, including collagens, laminins, decorin, E-cadherin, matrix metalloproteinase-1 (MMP-1), endorepellin, and several viruses. The alpha2beta1 integrin is expressed on numerous different cell types, including epithelial cells, endothelial cells, fibroblasts, and hematopoietic elements, including platelets and specific subsets of leukocytes. Although alpha2beta1 integrin expression is widespread, it is not ubiquitous. Rather, it is expressed in a differentiation-dependent and activation-dependent manner. Interactions between the alpha2beta1 integrin and extracellular matrix ligands have been implicated in important biological processes including inflammation and immunity. Studies from a number of laboratories have demonstrated a role for the alpha2beta1 integrin during the immune response. Our laboratory generated an alpha2beta1 integrin-deficient mouse to define the role of the alpha2beta1 integrin in vivo. Our studies demonstrated that the alpha2-null mice have a profound defect in the innate immune response. We have recently reported the identification of a novel family of ligands for the alpha2beta1 integrin, which include C1q and the collectins. The goal of this article is to review the important role that the interaction between the alpha2beta1 integrin and C1q plays in the innate immune response. The identification of C1q and the collectins as ligands for the alpha2beta1 integrin suggests that the integrin may play important roles in a number of immunological responses.
Collapse
Affiliation(s)
- Mary M Zutter
- Department of Pathology, Cancer Biology and Immunology, Vanderbilt University School of Medicine, C3321A MCN, 1161 21st Avenue S, Nashville, TN 37232, USA.
| | | |
Collapse
|
20
|
Abstract
During evolution, the development of secondary lymphoid organs has evolved as a strategy to promote adaptive immune responses at sites of antigen sequestration. Mesenteric lymph nodes (LNs) and Peyer's patches (PPs) are localized in proximity to mucosal surfaces, and their development is coordinated by a series of temporally and spatially regulated molecular events involving the collaboration between hematopoietic, mesenchymal, and, for PPs, epithelial cells. Transcriptional control of cellular differentiation, production of cytokines as well as adhesion molecules are mandatory for organogenesis, recruitment of mature leukocytes, and lymphoid tissue organization. Similar to fetal and neonatal organogenesis, lymphoid tissue neoformation can occur in adult individuals at sites of chronic stimulation via cytokines and TNF-family member molecules. These molecules represent new therapeutic targets to manipulate the microenvironment during autoimmune diseases.
Collapse
Affiliation(s)
- D Finke
- Center for Biomedicine, Developmental Immunology, Department of Clinical and Biological Sciences (DKBW), University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| | | |
Collapse
|
21
|
Fok JY, Ekmekcioglu S, Mehta K. Implications of tissue transglutaminase expression in malignant melanoma. Mol Cancer Ther 2006; 5:1493-503. [PMID: 16818508 DOI: 10.1158/1535-7163.mct-06-0083] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human malignant melanoma is a highly aggressive form of cancer; the 5-year survival rate in patients with stage III or IV disease is <5%. In patients with metastatic melanoma, systemic therapy becomes ineffective because of the high resistance of melanoma cells to various anticancer therapies. We have found previously that development of the drug resistance and metastatic phenotypes in breast cancer cells is associated with increased tissue transglutaminase (TG2) expression. In the study reported here, we investigated TG2 expression and its implications in metastatic melanoma. We found that metastatic melanoma cell lines expressed levels of TG2 up to 24-fold higher than levels in radial growth phase of primary melanoma cell lines. Activation of endogenous TG2 by the calcium ionophore A23187 induced a rapid and strong apoptotic response in A375 cells and A23187-induced apoptosis could be blocked by TG2-specific inhibitors. These findings indicated that activation of endogenous TG2 could serve as a strategy for inducing apoptosis in malignant melanomas. Importantly, tumor samples from patients with malignant melanomas showed strong expression of TG2, suggesting that TG2 expression is selectively up-regulated during advanced developmental stages of melanoma. We observed that 20% to 30% of TG2 protein was present on cell membranes in association with beta1 and beta5 integrins. This association of TG2 with cell surface integrins promoted strong attachment of A375 cells to fibronectin-coated surfaces, resulting in increased cell survival in serum-free medium. Inhibition of TG2 by small interfering RNA inhibited fibronectin-mediated cell attachment and cell survival functions in A375 cells. Overall, our results suggest that TG2 expression contributes to the development of chemoresistance in malignant melanoma cells by exploiting integrin-mediated cell survival signaling pathways.
Collapse
Affiliation(s)
- Jansina Y Fok
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
22
|
Schön MP, Ludwig RJ. Lymphocyte trafficking to inflamed skin--molecular mechanisms and implications for therapeutic target molecules. Expert Opin Ther Targets 2006; 9:225-43. [PMID: 15934912 DOI: 10.1517/14728222.9.2.225] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tissue-selective recruitment of lymphocytes to peripheral organs, such as the skin, is crucial for spatial compartmentalisation within the immune system as well as immune surveillance under normal conditions. In addition, this process plays a key role for the pathogenesis of various diseases including common inflammatory disorders such as atopic dermatitis or psoriasis, but also malignancies such as cutaneous T cell lymphomas. Recruitment of lymphocytes to the skin is a highly complex process that involves adhesion to the endothelial lining, extravasation, migration through the connective tissue, and, finally, localisation of a subpopulation of lymphocytes to the epithelial compartment, the epidermis. An intertwined network of constitutively expressed and inducible cytokines, chemokines and other mediators provides guidance for lymphocyte migration, and a large number of adhesion receptors mediate sequential steps of cell-cell- and cell-substrate-interactions resulting in tissue-specific localisation of immune cells. Selectively targeting the functions of one or several key molecules involved in this complex cascade promises exciting new therapeutic options for treating inflammatory disorders, but at the same time, bears considerable imponderables which will be discussed in this article.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology and Venereology, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Bayerische Julius-Maximilians University, Würzburg, Germany.
| | | |
Collapse
|
23
|
Brandsma D, Ulfman L, Reijneveld JC, Bracke M, Taphoorn MJB, Zwaginga JJ, Gebbink MFB, de Boer H, Koenderman L, Voest EE. Constitutive integrin activation on tumor cells contributes to progression of leptomeningeal metastases. Neuro Oncol 2006; 8:127-36. [PMID: 16533879 PMCID: PMC1871936 DOI: 10.1215/15228517-2005-013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Leptomeningeal metastases are a serious neurological complication in cancer patients and associated with a dismal prognosis. Tumor cells that enter the subarachnoid space adhere to the leptomeninges and form tumor deposits. It is largely unknown which adhesion molecules mediate tumor cell adhesion to leptomeninges. We studied the role of integrin expression and activation in the progression of leptomeningeal metastases. For this study, we used a mouse acute lymphocytic leukemic cell line that was grown in suspension (L1210-S cell line) to develop an adherent L1210 cell line (L1210-A) by selectively culturing the few adherent cells in the cell culture. beta1, beta2, and beta3 integrins were in a constitutively high active state on L1210-A cells and in a low, but inducible, active state on L1210-S cells. Expression levels of these integrins were comparable in the two cell lines. Static adhesion levels of L1210-A cells on a leptomeningeal cell layer were significantly higher than those of L1210-S cells. All mice that were injected intrathecally with L1210-A cells died rapidly of leptomeningeal leukemia. In contrast, 45% long-term survival was seen after intrathecal injection of mice with L1210-S cells. Our data indicate that constitutive integrin activation on leukemic cells promotes progression of leptomeningeal leukemia by increased tumor cell adhesion to the leptomeninges. We argue that an aberrantly regulated inside-out signaling pathway underlies constitutive integrin activation on the adherent leukemic cell population.
Collapse
Affiliation(s)
- Dieta Brandsma
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gokoh M, Kishimoto S, Oka S, Metani Y, Sugiura T. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, enhances the adhesion of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes. FEBS Lett 2005; 579:6473-8. [PMID: 16288744 DOI: 10.1016/j.febslet.2005.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/29/2005] [Accepted: 10/12/2005] [Indexed: 01/21/2023]
Abstract
2-Arachidonoylglycerol (2-AG), an endogenous cannabionoid receptor (CB1 and CB2) ligand, enhanced the adhesion of HL-60 cells differentiated into macrophage-like cells to fibronectin and the vascular cell adhesion molecule-1. The CB2 receptor, Gi/Go, intracellular free Ca(2+) and phosphatidylinositol 3-kinase were shown to be involved in 2-AG-induced augmented cell adhesion. 2-AG also enhanced the adhesion of human monocytic leukemia U937 cells and peripheral blood monocytes. These results strongly suggest that 2-AG plays some essential role in inflammatory reactions and immune responses by inducing robust adhesion to extracellular matrix proteins and adhesion molecules in several types of inflammatory cells and immune-competent cells.
Collapse
Affiliation(s)
- Maiko Gokoh
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
| | | | | | | | | |
Collapse
|
25
|
Louis NA, Hamilton KE, Colgan SP. Lipid mediator networks and leukocyte transmigration. Prostaglandins Leukot Essent Fatty Acids 2005; 73:197-202. [PMID: 15979294 DOI: 10.1016/j.plefa.2005.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In intact tissues, vascular endothelial cells lie anatomically positioned as the central coordinator of inflammation. Endothelia communicate with underlying cells (e.g. smooth muscle, fibroblasts, epithelia) in ways that both coordinate leukocyte trafficking, and control the composition of the inflammatory microenvironment. Such coordination occurs through both direct communication (e.g. cell adhesion) as well as via soluble mediators liberated at sites of inflammation (e.g. chemokines, cytokines, lipids). Locally generated mediators bind to surface receptors, and mediate both physiologic and pathophysiologic functional responses. Important in this regard, both endothelial and subendothelial cell populations express enzymes capable of utilizing arachidonic acid substrates to generate bioactive lipid mediators (e.g. lipoxygenases, cyclooxygenases). Such lipid mediators can signal via autocrine or paracrine pathways and, depending on the tissue microenvironment, can convey a pro- or anti-inflammatory message. This review will highlight recent studies characterizing inflammatory responses to lipid mediators liberated at sites of inflammation, with a particular emphasis on neutrophil (polymorphonuclear leukocyte or PMN) trafficking.
Collapse
Affiliation(s)
- Nancy A Louis
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Dynamic purine signaling and metabolism during neutrophil-endothelial interactions. Purinergic Signal 2005; 1:229-39. [PMID: 18404508 PMCID: PMC2096542 DOI: 10.1007/s11302-005-6323-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/07/2005] [Accepted: 03/23/2005] [Indexed: 01/09/2023] Open
Abstract
During episodes of hypoxia and inflammation, polymorphonuclear leukocytes (PMN) move into underlying tissues by initially passing between endothelial cells that line the inner surface of blood vessels (transendothelial migration, TEM). TEM creates the potential for disturbances in vascular barrier and concomitant loss of extravascular fluid and resultant edema. Recent studies have demonstrated a crucial role for nucleotide metabolism and nucleoside signaling during inflammation. These studies have implicated multiple adenine nucleotides as endogenous tissue protective mechanisms invivo. Here, we review the functional components of vascular barrier, identify strategies for increasing nucleotide generation and nucleoside signaling, and discuss potential therapeutic targets to regulate the vascular barrier during inflammation.
Collapse
|
27
|
Liu-Bryan R, Pay S, Schraufstatter IU, Rose DM. The CXCR1 tail mediates beta1 integrin-dependent cell migration via MAP kinase signaling. Biochem Biophys Res Commun 2005; 332:117-25. [PMID: 15896307 DOI: 10.1016/j.bbrc.2005.04.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
In this study, we examined how IL-8 induces leukocyte migration on major beta1 integrin ligands derived from the extracellular matrix protein fibronectin. We assessed individual contributions of signaling by IL-8 receptors by transfection of CXCR1 and CXCR2 into rat basophilic leukemia (RBL) cells and human monocytic THP-1 cells. CXCR1 expressing cells migrated on the fibronectin ligands for alpha4beta1 and alpha5beta1 integrins in response to IL-8, whereas CXCR2 expressing cells did not. RBL cells expressing the chimeric CXCR1 receptor containing the cytoplasmic tail of CXCR2 had greatly blunted migration, while cells expressing the CXCR2 chimera with the tail of CXCR1 had augmented migration. Last, inhibitors of p38 and JNK MAP kinases blocked IL-8-induced migration in CXCR1+ cells. We conclude that IL-8 stimulated beta1 integrin-mediated leukocyte migration on fibronectin through CXCR1 is dependent on the C-terminal cytoplasmic domain of CXCR1 and subsequent p38 and JNK MAPK signaling.
Collapse
Affiliation(s)
- Ru Liu-Bryan
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
28
|
Shon W, Lim S, Bae KS, Baek S, Lee W. The expression of alpha4 integrins by human polymorphonuclear neutrophils in response to sonicated extracts of Enterococcus faecalis. J Endod 2005; 31:369-72. [PMID: 15851931 DOI: 10.1097/01.don.0000145420.29539.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was undertaken to investigate immunopathologic mechanism of Enterococcus faecalis in relation to persistent apical periodontitis. We monitored the expression levels of alpha4 integrin in human polymorphonuclear neutophils (PMNs) after stimulated with sonicated extracts of E. faecalis (SEF) and compared with lipopolycaccarides (LPS) of Escherichia coli for various incubation time. Venous blood was collected from healthy volunteers and then PMNs were isolated and cultured with various concentrations of SEF for different periods of time. The levels of alpha4 integrin were measured by flow cytometry analysis. E. coli LPS group was used as a positive control and untreated PMNs as a negative control. Results showed that the expressions levels of alpha4 integrin were increased in human PMNs stimulated with E. coli LPS in comparison with unstimulated control cells (p < 0.05). In case of SEF stimulated group, the expression levels were decreased in time-dependent manner in comparison to E. coli LPS group (p < 0.05). Notably, after 12 h for incubation with SEF, the expression of alpha4 integrin was decreased in dose-dependent manner (p < 0.05). These findings suggest that E. faecalis seem to suppress PMNs recruiting activity by down-regulating alpha4 integrin expression, providing the possible mechanism that E. faecalis may play a crucial role in persistent apical periodontitis.
Collapse
Affiliation(s)
- WonJun Shon
- Department of Conservative Dentistry, Seoul National University, School of Dentistry, Seoul, Korea.
| | | | | | | | | |
Collapse
|
29
|
Marshall DR, Olivas E, Andreansky S, La Gruta NL, Neale GA, Gutierrez A, Wichlan DG, Wingo S, Cheng C, Doherty PC, Turner SJ. Effector CD8+ T cells recovered from an influenza pneumonia differentiate to a state of focused gene expression. Proc Natl Acad Sci U S A 2005; 102:6074-9. [PMID: 15831586 PMCID: PMC1087947 DOI: 10.1073/pnas.0501960102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The restriction of influenza A virus replication to mouse respiratory epithelium means that this host response is anatomically compartmentalized, on the one hand, to sites of T cell stimulation and proliferation in the secondary lymphoid tissue and, on the other hand, to the site of effector T cell function and pathology in the pneumonic lung. Thus, it is hardly surprising that virus-specific CD8(+) T cells recovered by bronchoalveolar lavage (BAL) from the infected respiratory tract seem more "activated" in terms of both cytolytic activity and cytokine production than those cells isolated from the spleen. The present analysis uses Affymetrix microarray technology to compare profiles of gene expression in these two lineage-related, yet anatomically separate, lymphocyte populations. Ninety differentially expressed genes were identified for influenza-specific CD8(+)D(b)NP(366)(+) T cells obtained directly ex vivo by BAL or spleen disruption, with nine genes being further analyzed by quantitative, real-time PCR at the population level. Integrin alphaE, for example, was shown by Affymetrix and real-time mRNA analyses and then by single-cell PCR and protein staining to be present at a much higher prevalence on the BAL CD8(+)D(b)NP(366)(+) set. The unpredicted finding, however, was that mRNA expression for 75% of the 90 genes was lower in T cells from the BAL than from the spleen. Apparently, the localization of virus-specific CD8(+) T cells to the site of virus-induced pathology is associated with a narrowing, or "focusing," of gene expression that favors enhanced effector function in the damaged, "high-antigen load" environment of the pneumonic lung.
Collapse
Affiliation(s)
- Dana R Marshall
- Department of Immunology, Hartwell Center for Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch. J Biol Chem 2005; 280:16546-9. [PMID: 15760908 DOI: 10.1074/jbc.c400455200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical tension is a critical determinant of cell growth, differentiation, apoptosis, migration, and development. Integrins have been implicated in sensing force but little is known about how forces are transduced to biochemical signals. We now show that mechanical strain stimulates conformational activation of integrin alphavbeta3 in NIH3T3 cells. Integrin activation is mediated by phosphoinositol 3-kinase and is followed by an increase in integrin binding to extracellular matrix proteins. Mechanical stretch stimulation of JNK was dependent on new integrin binding to extracellular matrix. These data define a molecular mechanism for the role of integrins in mechanotransduction.
Collapse
Affiliation(s)
- Akira Katsumi
- Cardiovascular Research Center, Departments of Microbiology and Biomedical Engineering, Mellon Prostate Research Institute, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Systemic Manifestations of Mucosal Diseases: Trafficking of Gut Immune Cells to Joints and Liver. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 2004; 104:3849-57. [PMID: 15297319 DOI: 10.1182/blood-2004-01-0222] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1; also known as stabilin-1 or FEEL-1) is a large multifunctional glycoprotein implicated in scavenging, angiogenesis, and cell adhesion. Here we studied the function of human CLEVER-1 in leukocyte trafficking. Lymphatic vessels expressed CLEVER-1 constitutively in skin in vivo, whereas on vascular endothelium it appeared only upon inflammation. On isolated vascular endothelial cells, CLEVER-1 supported rolling and transmigration of peripheral blood mononuclear cells (PBMCs) under physiologically relevant laminar shear stress. Intriguingly, CLEVER-1 also mediated transmigration of leukocytes through cultured lymphatic endothelium under static conditions. Thus, synthesis of CLEVER-1 is differentially regulated on the 2 anatomically distinct vascular beds, and CLEVER-1 mediates the transmigration step of the leukocyte traffic in both of them. Notably, CLEVER-1 is the first adhesion molecule shown to be involved in the PBMC transmigration through the lymphatic arm of the immune system.
Collapse
Affiliation(s)
- Marko Salmi
- MediCity Research Laboratory, Turku University, Tykistökatu 6A, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Integrin receptors mediate adhesive events that are critical for a specific and effective immune response to foreign pathogens. Integrin-dependent interactions of lymphocytes and antigen-presenting cells (APCs) to endothelium regulate the efficiency and specificity of trafficking into secondary lymphoid organs and peripheral tissue. Within these sites, integrins facilitate cell movement via interactions with the extracellular matrix, and promote and stabilize antigen-specific interactions between T lymphocytes and APCs that are critical for initiating T cell-activation events. In this review, we discuss the role of integrins in T cell-mediated immunity, with a focus on how these receptors participate in lymphocyte recirculation and T cell activation, how antigen stimulation regulates integrin activity, and how integrins define functionally unique subsets of T cells and APCs.
Collapse
Affiliation(s)
- Jonathan T Pribila
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
35
|
Goda S, Quale AC, Woods ML, Felthauser A, Shimizu Y. Control of TCR-Mediated Activation of β1 Integrins by the ZAP-70 Tyrosine Kinase Interdomain B Region and the Linker for Activation of T Cells Adapter Protein. THE JOURNAL OF IMMUNOLOGY 2004; 172:5379-87. [PMID: 15100278 DOI: 10.4049/jimmunol.172.9.5379] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the earliest functional responses of T lymphocytes to extracellular signals that activate the Ag-specific CD3/TCR complex is a rapid, but reversible, increase in the functional activity of integrin adhesion receptors. Previous studies have implicated the tyrosine kinase zeta-associated protein of 70 kDa (ZAP-70) and the lipid kinase phosphatidylinositol 3-kinase, in the activation of beta(1) integrins by the CD3/TCR complex. In this report, we use human ZAP-70-deficient Jurkat T cells to demonstrate that the kinase activity of ZAP-70 is required for CD3/TCR-mediated increases in beta(1) integrin-mediated adhesion and activation of phosphatidylinositol 3-kinase. A tyrosine to phenylalanine substitution at position 315 in the interdomain B of ZAP-70 inhibits these responses, whereas a similar substitution at position 292 enhances these downstream signals. These mutations in the ZAP-70 interdomain B region also specifically affect CD3/TCR-mediated tyrosine phosphorylation of residues 171 and 191 in the cytoplasmic domain of the linker for activation of T cells (LAT) adapter protein. CD3/TCR signaling to beta(1) integrins is defective in LAT-deficient Jurkat T cells, and can be restored with expression of wild-type LAT. Mutant LAT constructs with tyrosine to phenylalanine substitutions at position 171 and/or position 191 do not restore CD3/TCR-mediated activation of beta(1) integrins in LAT-deficient T cells. Thus, these studies demonstrate that the interdomain B region of ZAP-70 regulates beta(1) integrin activation by the CD3/TCR via control of tyrosine phosphorylation of tyrosine residues 171 and 191 in the LAT cytoplasmic domain.
Collapse
Affiliation(s)
- Seiji Goda
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
36
|
Pribila JT, Itano AA, Mueller KL, Shimizu Y. The alpha 1 beta 1 and alpha E beta 7 integrins define a subset of dendritic cells in peripheral lymph nodes with unique adhesive and antigen uptake properties. THE JOURNAL OF IMMUNOLOGY 2004; 172:282-91. [PMID: 14688336 DOI: 10.4049/jimmunol.172.1.282] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DCs) are a heterogeneous population of APCs with critical roles in T cell activation and immune regulation. We report in this study the identification and characterization of a novel subset of DCs resident in skin-draining peripheral lymph nodes of normal mice. This subset of CD11c(high)CD40(high)CD8alpha(intermediate (int)) DCs expresses the collagen-binding integrin, alpha1beta1, and the E-cadherin-binding integrin, alphaEbeta7. Although alpha1beta1 and alphaEbeta7 are also expressed on CD11c(high)CD40(int)CD8alpha(high) lymphoid DCs, CD11c(high)CD40(high)CD8alpha(int) DCs demonstrate preferential integrin-mediated adhesion to collagen and fibronectin. This DC subset most likely acquires expression of these integrins in peripheral lymph node, as this subset is not found in the spleen or mesenteric lymph node, and recent DC migrants from the skin lack expression of alpha1beta1 and alphaEbeta7 integrins. Resident CD40(high) DCs express alpha1beta1 integrin and colocalize with collagen in lymph nodes. When compared with CD11c(high)CD40(high)CD8alpha(int) DCs lacking expression of these integrins, the alpha1beta1+alphaEbeta7+DC subset exhibits more efficient formation of Ag-independent conjugates with T cells, and a decreased ability to acquire soluble Ag. Thus, the alpha1beta1 and alphaEbeta7 integrins define a unique population of peripheral lymph node-derived DCs with altered functional properties and adhesive potential that localizes these cells to sites in lymph nodes where Ag presentation to T cells occurs.
Collapse
Affiliation(s)
- Jonathan T Pribila
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
37
|
Lamarque D. Physiopathologie des lésions gastro-duodénales induites par les anti-inflammatoires non stéroïdiens. ACTA ACUST UNITED AC 2004; 28 Spec No 3:C18-26. [PMID: 15366671 DOI: 10.1016/s0399-8320(04)95275-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pathogenesis of the gastroduodenal lesions induced by non-steroidal anti-inflammatory drugs and aspirin is primarily caused by a reduction in mucosal blood flow, which is the consequence of inhibition of cyclooxygenase-producing vasodilator prostaglandins. The subsequent phase is adherence of leukocytes to the endothelium, which may depend on cyclooxygenase-2. Endothelial lesions accentuate the fall of mucosal blood flow and promote the inflammatory process in the gastric mucosa. The inflammatory process is amplified by expression of TNFalpha in polymorphonuclears induced by non-steroidal anti-inflammatory drugs. A few days after starting treatment, epithelial proliferation and increased mucosal blood flow, partly dependent on cyclooxygenase-2 and nitric oxide expression, compensates for the damaging process. Selective inhibitors of inducible cyclooxygenase-2 have reduced gastrointestinal toxicity, which could partially be explained by the protection effect of cyclooxygenase-2 on the gastrointestinal mucosa during inflammation or epithelial repair. Selective inhibitors may worsen inflammatory bowel disease. Non-steroidal inflammatory drugs and aspirin, but perhaps not selective inhibitors, increase the mucosal lesions associated with Helicobacter pylori-induced gastritis. Co-administration of selective inhibitors and aspirin leads to gastrointestinal toxicity equivalent to that of non-specific anti-inflammatory drugs.
Collapse
|
38
|
Edelson BT, Li Z, Pappan LK, Zutter MM. Mast cell–mediated inflammatory responses require the α2β1 integrin. Blood 2004; 103:2214-20. [PMID: 14645004 DOI: 10.1182/blood-2003-08-2978] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractAlthough the α2β1 integrin is widely expressed and has been extensively studied, it has not been previously implicated in mast cell biology. We observed that α2 integrin subunit-deficient mice exhibited markedly diminished neutrophil and interleukin-6 responses during Listeria monocytogenes– and zymosan-induced peritonitis. Since exudative neutrophils of wild-type mice expressed little α2β1 integrin, it seemed unlikely that this integrin mediated neutrophil migration directly. Here, we demonstrate constitutive α2β1 integrin expression on peritoneal mast cells. Although α2-null mice contain normal numbers of peritoneal mast cells, these α2-null cells do not support in vivo mast cell–dependent inflammatory responses. We conclude that α2β1 integrin provides a costimulatory function required for mast cell activation and cytokine production in response to infection.
Collapse
Affiliation(s)
- Brian T Edelson
- Department of Pathology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | |
Collapse
|
39
|
Sainz IM, Uknis AB, Isordia-Salas I, Dela Cadena RA, Pixley RA, Colman RW. Interactions between bradykinin (BK) and cell adhesion molecule (CAM) expression in peptidoglycan‐polysaccharide (PG‐PS)‐induced arthritis. FASEB J 2004; 18:887-9. [PMID: 15001555 DOI: 10.1096/fj.03-0835fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bradykinin (BK), a vasoactive, proinflammatory nonapeptide, promotes cell adhesion molecule (CAM) expression, leukocyte sequestration, inter-endothelial gap formation, and protein extravasation in postcapillary venules. These effects are mediated by bradykinin-1 (B1R) and-2 (B2R) receptors. We delineated some of the mechanisms by which BK could influence chronic inflammation by altering CAM expression on leukocytes, endothelium, and synovium in joint sections of peptidoglycan-polysaccharide-injected Lewis rats. Blocking B1R results in significantly increased joint inflammation. Immunohistochemistry of the B1R antagonist group revealed increased leukocyte and synovial CD11b and CD54 expression and increased CD11b and CD44 endothelial expression. B2R antagonism decreased leukocyte and synovial CD44 and CD54 and endothelial CD11b expression. Although these findings implicate B2R involvement in the acute phase of inflammation by facilitating leukocyte activation (CD11b), homing (CD44), and transmigration (CD54). Treatment with a B2R antagonist did not affect the disease evolution in this model. In contrast, when both BK receptors are blocked, the aggravation of inflammation by B1R blockade is neutralized and there is no difference from the disease-untreated model. Our findings suggest that B1R and B2R signaling show physiologic antagonism. B1R signaling suggests involvement in down-regulation of leukocyte activation, transmigration, and homing. Further studies are needed to evaluate the B1 receptor agonist's role in this model.
Collapse
Affiliation(s)
- I M Sainz
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kinashi T, Aker M, Sokolovsky-Eisenberg M, Grabovsky V, Tanaka C, Shamri R, Feigelson S, Etzioni A, Alon R. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 2004; 103:1033-6. [PMID: 14551137 DOI: 10.1182/blood-2003-07-2499] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractRecently, we reported a rare leukocyte adhesion deficiency (LAD) associated with severe defects in integrin activation by chemokine signals, despite normal ligand binding of leukocyte integrins.1 We now report that the small GTPase, Rap1, a key regulator of inside-out integrin activation is abnormally regulated in LAD Epstein-Barr virus (EBV) lymphocyte cells. Both constitutive and chemokine-triggered activation of Rap1 were abolished in LAD lymphocytes despite normal chemokine signaling. Nevertheless, Rap1 expression and activation by phorbol esters were intact, ruling out an LAD defect in Rap1 guanosine triphosphate (GTP) loading. The very late antigen 4 (VLA-4) integrin abnormally tethered LAD EBV lymphocytes to its ligand vascular cell adhesion molecule 1 (VCAM-1) under shear flow due to impaired generation of high-avidity contacts despite normal ligand binding and intact avidity to surface-bound anti-VLA-4 monoclonal antibody (mAb). Thus, a defect in constitutive Rap1 activation results in an inability of ligand-occupied integrins to generate high-avidity binding to ligand under shear flow. This is a first report of an inherited Rap1 activation defect associated with a pathologic disorder in leukocyte integrin function, we herein term it “LAD-III.” (Blood. 2004;103:1033-1036)
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Starr TK, Daniels MA, Lucido MM, Jameson SC, Hogquist KA. Thymocyte sensitivity and supramolecular activation cluster formation are developmentally regulated: a partial role for sialylation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4512-20. [PMID: 14568924 DOI: 10.4049/jimmunol.171.9.4512] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TCR reactivity is tuned during thymic development. Immature thymocytes respond to low-affinity self-ligands resulting in positive selection. Following differentiation, T cells no longer respond to low-affinity ligands, but respond well to high-affinity (foreign) ligands. We show in this study that this response includes integrin activation, supramolecular activation cluster formation, Ca(2+) flux, and CD69 expression. Because glycosylation patterns are known to change during T cell development, we tested whether alterations in sialylation influence CD8 T cell sensitivity to low affinity TCR ligands. Using neuraminidase treatment or genetic deficiency in the ST3Gal-I sialyltransferase, we show that desialylation of mature CD8 T cells enhances their sensitivity to low-affinity ligands, although these treatments do not completely recapitulate the dynamic range of immature T cells. These studies identify sialylation as one of the factors that regulate CD8 T cell tuning during development.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology, Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | | | | |
Collapse
|
42
|
Schön MP, Zollner TM, Boehncke WH. The molecular basis of lymphocyte recruitment to the skin: clues for pathogenesis and selective therapies of inflammatory disorders. J Invest Dermatol 2004; 121:951-62. [PMID: 14708592 DOI: 10.1046/j.1523-1747.2003.12563.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spatial compartmentalization and tissue-selective localization of T lymphocytes to the skin are crucial for immune surveillance and the pathogenesis of various disorders including common inflammatory diseases such as atopic dermatitis or psoriasis, but also malignancies such as cutaneous T cell lymphomas. Cutaneous recruitment of lymphocytes is a highly complex process that involves extravasation, migration through the dermal connective tissue, and eventually, localization to the epidermis. An intertwined network of cytokines and chemokines provides the road signs for leukocyte migration, while various adhesion receptors orchestrate the dynamic events of cell-cell and cell-substrate interactions resulting in cutaneous localization of T cells. Selectively targeting the functions of molecules involved in this interplay promises exciting new therapeutic options for treating inflammatory skin disorders.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | |
Collapse
|
43
|
Dwir O, Grabovsky V, Alon R. Selectin avidity modulation by chemokines at subsecond endothelial contacts: a novel regulatory level of leukocyte trafficking. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:109-35. [PMID: 14579777 DOI: 10.1007/978-3-662-05397-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- O Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
44
|
Chen H, Mocsai A, Zhang H, Ding RX, Morisaki JH, White M, Rothfork JM, Heiser P, Colucci-Guyon E, Lowell CA, Gresham HD, Allen PM, Brown EJ. Role for plastin in host defense distinguishes integrin signaling from cell adhesion and spreading. Immunity 2003; 19:95-104. [PMID: 12871642 DOI: 10.1016/s1074-7613(03)00172-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Integrin ligation activates both cell adhesion and signal transduction, in part through reorganization of the actin cytoskeleton. Plastins (also known as fimbrins) are actin-crosslinking proteins of the cortical cytoskeleton present in all cells and conserved from yeast to mammals. Here we show that plastin-deficient polymorphonuclear neutrophils (PMN) are deficient in killing the bacterial pathogen Staphylococcus aureus in vivo and in vitro, despite normal phagocytosis. Like integrin beta2-deficient PMN, plastin-deficient PMN cannot generate an adhesion-dependent respiratory burst, because of markedly diminished integrin-dependent syk activation. Unlike beta2(-/-) PMN, plastin-deficient PMN adhere and spread normally. Deficiency of plastin thus separates the classical integrin receptor functions of adhesion and spreading from intracellular signal transduction.
Collapse
Affiliation(s)
- Hua Chen
- Program in Microbial Pathogenesis and Host Defense and University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rose DM, Liu S, Woodside DG, Han J, Schlaepfer DD, Ginsberg MH. Paxillin binding to the alpha 4 integrin subunit stimulates LFA-1 (integrin alpha L beta 2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5912-8. [PMID: 12794117 DOI: 10.4049/jimmunol.170.12.5912] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).
Collapse
Affiliation(s)
- David M Rose
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Alon R, Aker M, Feigelson S, Sokolovsky-Eisenberg M, Staunton DE, Cinamon G, Grabovsky V, Shamri R, Etzioni A. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 2003; 101:4437-45. [PMID: 12595312 DOI: 10.1182/blood-2002-11-3427] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leukocyte arrest on vascular endothelium under disruptive shear flow is a multistep process that requires in situ integrin activation on the leukocyte surface by endothelium-displayed chemoattractants, primarily chemokines. A genetic deficiency of leukocyte adhesion to endothelium associated with defective beta2 integrin expression or function (LAD-1) has been described. We now report a novel severe genetic disorder in this multistep process associated with functional defects in multiple leukocyte integrins, reflected in recurrent infections, profound leukocytosis, and a bleeding tendency. This syndrome is associated with an impaired ability of neutrophil and lymphocyte beta1 and beta2 integrins to generate high avidity to their endothelial ligands and arrest cells on vascular endothelium in response to endothelial chemoattractant signals. Patient leukocytes roll normally on endothelial selectins, express intact integrins and G protein-coupled chemokine receptors (GPCR), spread on integrin ligands, and migrate normally along a chemotactic gradient. Activation of beta2 integrins in response to GPCR signals and intrinsic soluble ligand binding properties of the very late activation antigen-4 (VLA-4) integrin are also retained in patient leukocytes. Nevertheless, all integrins fail to generate firm adhesion to immobilized ligands in response to in situ GPCR-mediated activation by chemokines or chemoattractants, a result of a primary defect in integrin rearrangement at ligand-bearing contacts. This syndrome is the first example of a human integrin-activation deficiency associated with defective GPCR stimulation of integrin avidity at subsecond contacts, a key step in leukocyte arrest on vascular endothelium under shear flow.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krivacic KA, Levine AD. Extracellular matrix conditions T cells for adhesion to tissue interstitium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5034-44. [PMID: 12734348 DOI: 10.4049/jimmunol.170.10.5034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation and differentiation of peripheral blood T cells (PBT) are known to correlate with increased surface expression and adhesive capacity of beta(1) integrins, which mediate adhesion to the extracellular matrix (ECM). However, little is known about the regulation of integrin expression, affinity, and avidity on tissue T cells after they are embedded in the interstitial ECM. In this study we show that tissue T cells, freshly isolated from their residence in the interstitial ECM of the intestinal lamina propria, express a distinct subset of functionally active integrins that contribute to enhanced adhesion to purified collagen, fibronectin, and cell-derived ECM when compared with freshly isolated, short term activated, and long term cultured PBT. Furthermore, integrin usage is distinct between circulating and tissue-derived T cells, in that lamina propria T cells prefer to bind to collagen, while PBT lymphoblasts choose fibronectin when presented with a complex, three-dimensional, cell-derived matrix. To identify the extrinsic factors that regulate the conversion from a nonadhesive PBT to highly adhesive tissue T cell, we demonstrate that activation of PBT in the presence of fibronectin or collagen rapidly generates a surface integrin expression profile, an integrin usage pattern, and adhesive capacity mirroring that of a tissue T cell. These results indicate that the tissue ECM microenvironment instructs newly arrived T cells for further interactions with the underlying matrix and thereby imprints them with a signature tissue adhesive phenotype.
Collapse
Affiliation(s)
- Kimberly A Krivacic
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
48
|
Caruso M, Belloni L, Sthandier O, Amati P, Garcia MI. Alpha4beta1 integrin acts as a cell receptor for murine polyomavirus at the postattachment level. J Virol 2003; 77:3913-21. [PMID: 12634351 PMCID: PMC150644 DOI: 10.1128/jvi.77.7.3913-3921.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Accepted: 12/18/2002] [Indexed: 11/20/2022] Open
Abstract
The initial interaction of murine polyomavirus (Py) with host cells occurs through direct binding of the major capsid protein VP1 with cell membrane molecules containing terminal sialic acids; however, these Py receptor molecules have not yet been identified. Analysis of the capsid protein primary sequences of all murine strains revealed the presence of integrin ligand motifs in the DE and EF loops of VP1 (LDV and DLXXL, respectively) and at the N terminus of VP2 (DGE). We show that infectivity of the Py A2 strain in mouse Swiss 3T3 fibroblasts is significantly reduced only in the presence of natural integrin ligands carrying an LDV motif or antibodies directed against the alpha4 and beta1 integrin subunits. Furthermore, we demonstrate that expression of the alpha4 subunit in the alpha4-deficient BALB/c 3T3 cells increases viral infectivity. Addition of alpha4 function-blocking antibodies, prior to or after virus adsorption, blocks this increased infectivity without affecting virus binding to cells. Taken together, these data indicate that expression of alpha4 integrin enhances permissivity to Py, probably by acting as one of the postattachment receptors.
Collapse
Affiliation(s)
- Maddalena Caruso
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
49
|
Holleran BJ, Barbar E, Payet MD, Dupuis G. Differential recruitment of alpha2beta1 and alpha4beta1 integrins to lipid rafts in Jurkat T lymphocytes exposed to collagen type IV and fibronectin. J Leukoc Biol 2003; 73:243-52. [PMID: 12554801 DOI: 10.1189/jlb.0902439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Collagen type IV (CnIV) and fibronectin (Fn) were used as ligands to study the distribution of alpha(2)beta(1) and alpha(4)beta(1) integrins in low-density, detergent-resistant microdomains (DRM) of Jurkat lymphocytes. CnIV-coated microspheres induced (optical trapping) the redistribution of GM(1)-associated fluorescence from the cell periphery to the area of contact. This was not observed in cells treated with beta-methyl cyclodextrin (MCD). Fn- or bovine serum albumin-coated microspheres did not modify the peripheral distribution of fluorescence. These observations were confirmed by confocal microscopy. Western blot analysis of cells exposed to surfaces coated with CnIV revealed that the alpha(2)-subunit was initially present at low levels in DRM, became strongly associated after 40 min, and returned to basal levels after 75 min. Fn induced a slight recruitment of the beta(1)-integrin alpha(4)-subunit in DRM after 5 and 10 min, followed by a return to basal levels. Neither CnIV nor Fn triggered significant changes in the distribution of the beta(1)-subunit in DRM. Fn- and CnIV-coated microspheres or surfaces coated with these ligands triggered a MCD-sensitive mobilization of Ca(2)(+). MCD did not alter the state of the Ca(2)(+) reserves. The differential distributions of the alpha(2)beta(1) and alpha(4)beta(1) integrins in DRM may provide one additional step in the regulation of outside-in signaling involving these integrins.
Collapse
Affiliation(s)
- Brian J Holleran
- Signal Transduction Laboratory, Graduate Program in Immunology, Clinical Research Center, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
50
|
Miyamoto YJ, Mitchell JS, McIntyre BW. Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes. Mol Immunol 2003; 39:739-51. [PMID: 12531285 DOI: 10.1016/s0161-5890(02)00255-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.
Collapse
Affiliation(s)
- Yuko J Miyamoto
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 180, Houston, TX 77030, USA
| | | | | |
Collapse
|