1
|
Bernstein KE, Cao D, Shibata T, Saito S, Bernstein EA, Nishi E, Yamashita M, Tourtellotte WG, Zhao TV, Khan Z. Classical and nonclassical effects of angiotensin-converting enzyme: How increased ACE enhances myeloid immune function. J Biol Chem 2024; 300:107388. [PMID: 38763333 PMCID: PMC11208953 DOI: 10.1016/j.jbc.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tuantuan V Zhao
- Research Oncology, Gilead Sciences, Foster City, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Institute for Myeloma & Bone Cancer Research, West Hollywood, California, USA
| |
Collapse
|
2
|
Nargund R, Wyvratt M, Lin S, Sebhat I, Greenlee W. Annotated Bibliography of Dr. Arthur A. Patchett. J Med Chem 2023; 66:15567-15575. [PMID: 38032081 DOI: 10.1021/acs.jmedchem.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
|
3
|
Nagre K, Singh N, Ghoshal C, Tandon G, Iquebal MA, Nain T, Bana RS, Meena A. Probing the potential of bioactive compounds of millets as an inhibitor for lifestyle diseases: molecular docking and simulation-based approach. Front Nutr 2023; 10:1228172. [PMID: 37823087 PMCID: PMC10562582 DOI: 10.3389/fnut.2023.1228172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023] Open
Abstract
Millets are becoming more popular as a healthy substitute for people with lifestyle disorders. They offer dietary fiber, polyphenols, fatty acids, minerals, vitamins, protein, and antioxidants. The nutritional importance of millets leads to the present in-silico study of selective bioactive compounds docked against the targets of lifestyle diseases, viz., diabetes, hypertension, and atherosclerosis using molecular docking and molecular simulations approach. Pharmacokinetic analysis was also carried out to analyse ADME properties and toxicity analysis, drug-likeliness, and finally target prediction for new targets for uncharacterized compounds or secondary targets for recognized molecules by Swiss Target Prediction was also done. The docking results revealed that the bioactive compound flavan-4-ol, among all the 50 compounds studied, best docked to all the four targets of lifestyle diseases, viz., Human dipeptidyl peptidase IV (-5.94 kcal mol-1 binding energy), Sodium-glucose cotransporter-2 (-6.49 kcal mol-1) diabetes-related enzyme, the Human angiotensin-converting enzyme (-6.31 kcal mol-1) which plays a significant role in hypertension, and Proprotein convertase subtilisin kexin type 9 (-4.67 kcal mol-1) for atherosclerosis. Molecular dynamics simulation analysis substantiates that the flavan-4-ol forms a better stability complex with all the targets. ADMET profiles further strengthened the candidature of the flavan-4-ol bioactive compound to be considered for trial as an inhibitor of targets DPPIV, SGLT2, PCSK9, and hACE. We suggest that more research be conducted, taking Flavon-4-ol into account where it can be used as standard treatment for lifestyle diseases.
Collapse
Affiliation(s)
- Kajal Nagre
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Nirupma Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Chandrika Ghoshal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Gitanjali Tandon
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi, India
| | - Tarsem Nain
- Department of Genetics, Maharshi Dayanand University, Rohtak, India
| | - Ram Swaroop Bana
- Division of Agronomy, Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Anita Meena
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, India
| |
Collapse
|
4
|
Abdou MM, Dong D, O’Neill PM, Amigues E, Matziari M. Design, Synthesis, and Study of a Novel RXPA380- Proline Hybrid ( RXPA380-P) as an Antihypertensive Agent. ACS OMEGA 2022; 7:35035-35043. [PMID: 36211060 PMCID: PMC9535653 DOI: 10.1021/acsomega.2c03813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/02/2022] [Indexed: 06/12/2023]
Abstract
In drug discovery, molecular modification over the lead molecule is often crucial for the development of a drug. Herein, we report the molecular hybridization design of a novel RXPA380-proline hybrid via linking the parent compound, phosphinic peptide RXPA380, with a proline analogue. The presented synthetic route is straightforward and produces the desired product RXPA380-P in moderate yield. The C- and N-domain constructs of the angiotensin-converting enzyme of RXPA380-P appeared to be poor inhibitors of ACE as compared to the parent compound RXPA380.
Collapse
Affiliation(s)
- Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, P.O. Cairo 11727, Egypt
| | - Dewen Dong
- Changchun
Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun 130022, China
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Eric Amigues
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou 215123, PR China
| | - Magdalini Matziari
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou 215123, PR China
| |
Collapse
|
5
|
Repurposing of pharmaceutical drugs by high-throughput approach for antihypertensive activity as inhibitors of angiotensin-converting enzyme (ACE) using HPLC-ESI-MS/MS method. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog 2020; 16:e1008307. [PMID: 32069328 PMCID: PMC7048317 DOI: 10.1371/journal.ppat.1008307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/28/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drug-resistant strains of HIV-1 (IC50: ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by ≥ 10-20%), gene expression (0.01-0.46% by ≥ 2-5 fold), and protein abundance (0.02-0.34% by ≥ 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter K. Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qun Pan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J. Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Donald R. Branch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Infection and Immunity Group, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Efimov GA, Raats JMH, Chirivi RGS, van Rosmalen JWG, Nedospasov SA. Humanization of Murine Monoclonal anti-hTNF Antibody: The F10 Story. Mol Biol 2017. [DOI: 10.1134/s0026893317060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Danilov SM. Conformational Fingerprinting Using Monoclonal Antibodies (on the Example of Angiotensin I-Converting Enzyme-ACE). Mol Biol 2017; 51:906-920. [PMID: 32287393 PMCID: PMC7102274 DOI: 10.1134/s0026893317060048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/02/2017] [Indexed: 11/22/2022]
Abstract
During the past 30 years my laboratory has generated 40+ monoclonal antibodies (mAbs) directed to structural and conformational epitopes on human ACE as well as ACE from rats, mice and other species. These mAbs were successfully used for detection and quantification of ACE by ELISA, Western blotting, flow cytometry and immunohistochemistry. In all these applications mainly single mAbs were used. We hypothesized that we can obtain a completely new kind of information about ACE structure and function if we use the whole set of mAbs directed to different epitopes on the ACE molecule. When we finished epitope mapping of all mAbs to ACE (and especially, those recognizing conformational epitopes), we realized that we had obtained a new tool to study ACE. First, we demonstrated that binding of some mAbs is very sensitive to local conformational changes on the ACE surface-due to local denaturation, inactivation, ACE inhibitor or mAbs binding or due to diseases. Second, we were able to detect, localize and characterize several human ACE mutations. And, finally, we established a new concept-conformational fingerprinting of ACE using mAbs that in turn allowed us to obtain evidence for tissue specificity of ACE, which has promising scientific and diagnostic perspectives. The initial goal for the generation of mAbs to ACE 30 years ago was obtaining mAbs to organ-specific endothelial cells, which could be used for organ-specific drug delivery. Our systematic work on characterization of mAbs to numerous epitopes on ACE during these years has lead not only to the generation of the most effective mAbs for specific drug/gene delivery into the lung capillaries, but also to the establishment of the concept of conformational fingerprinting of ACE, which in turn gives a theoretical base for the generation of mAbs, specific for ACE from different organs. We believe that this concept could be applicable for any glycoprotein against which there is a set of mAbs to different epitopes.
Collapse
Affiliation(s)
- S. M. Danilov
- University of Illinois at Chicago, Chicago, USA
- Arizona University, Tucson, USA
- Medical Scientific and Educational Center of Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
9
|
Martinez J. Joseph Rudinger memorial lecture: Unexpected functions of angiotensin converting enzyme, beyond its enzymatic activity. J Pept Sci 2017. [DOI: 10.1002/psc.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jean Martinez
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-Université de Montpellier-ENSCM; Faculté de Pharmacie, 15 Avenue Charles Flahault 34093 Montpellier Cedex 5 France
| |
Collapse
|
10
|
Danilov SM, Tovsky SI, Schwartz DE, Dull RO. ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors. J Cardiovasc Pharmacol Ther 2017; 22:374-386. [DOI: 10.1177/1074248416686188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient’s response. Objectives: To investigate whether interindividual variability in the response to ACE inhibitors is explained by the “ACE phenotype”—for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. Methods: The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient’s blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Results: Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Conclusion: Due to the fact that “20% of patients do not respond to ACEI by blood pressure drop,” the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Stan I. Tovsky
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - David E. Schwartz
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Randal O. Dull
- Department of Anesthesiology, Anesthesiology Research Center, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Regulska K, Stanisz B, Regulski M, Murias M. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discov Today 2014; 19:1731-1743. [PMID: 24997281 DOI: 10.1016/j.drudis.2014.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACE-Is) are a valuable class of antihypertensive drugs used in the treatment of cardiovascular system-related diseases. Hence, constant research into, and the development of, such compounds remain within the priorities of modern medical sciences. In this respect, a thorough understanding of their chemistry and biology is an important aspect of drug design; therefore, we present here available data on the pharmaceutical properties of ACE-Is. We also review the structural and biochemical features of the molecular target of ACE-Is and demonstrate several known enzyme-inhibitor complexes. Finally, we attempt to create a mathematical model describing the relation between the potency and/or stability of ACE-Is and their structural characteristics using quantitative structure-activity relation (QSAR), and quantitative structure-property relation (QSPR) techniques.
Collapse
Affiliation(s)
- Katarzyna Regulska
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Chemistry, 6th Grunwaldzka Street, 60-780 Poznan, Poland; Greater Poland Oncology Center, 15th Garbary Street, 61-866 Poznań, Poland
| | - Beata Stanisz
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Chemistry, 6th Grunwaldzka Street, 60-780 Poznan, Poland.
| | - Miłosz Regulski
- Poznan University of Medical Sciences, Chair and Department of Toxicology, 30th Dojazd Street, 60-631 Poznan, Poland
| | - Marek Murias
- Poznan University of Medical Sciences, Chair and Department of Toxicology, 30th Dojazd Street, 60-631 Poznan, Poland
| |
Collapse
|
12
|
Wong RW, Balachandran A, Ostrowski MA, Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog 2013; 9:e1003241. [PMID: 23555254 PMCID: PMC3610647 DOI: 10.1371/journal.ppat.1003241] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
To develop new approaches to control HIV-1 replication, we examined the capacity of recently described small molecular modulators of RNA splicing for their effects on viral RNA metabolism. Of the drugs tested, digoxin was found to induce a dramatic inhibition of HIV-1 structural protein synthesis, a response due, in part, to reduced accumulation of the corresponding viral mRNAs. In addition, digoxin altered viral RNA splice site use, resulting in loss of the essential viral factor Rev. Digoxin induced changes in activity of the CLK family of SR protein kinases and modification of several SR proteins, including SRp20 and Tra2β, which could account for the effects observed. Consistent with this hypothesis, overexpression of SRp20 elicited changes in HIV-1 RNA processing similar to those observed with digoxin. Importantly, digoxin was also highly active against clinical strains of HIV-1 in vitro, validating this novel approach to treatment of this infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
13
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2012; 65:1-46. [PMID: 23257181 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Petrov MN, Shilo VY, Tarasov AV, Schwartz DE, Garcia JGN, Kost OA, Danilov SM. Conformational changes of blood ACE in chronic uremia. PLoS One 2012; 7:e49290. [PMID: 23166630 PMCID: PMC3500299 DOI: 10.1371/journal.pone.0049290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022] Open
Abstract
Background The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy.
Collapse
Affiliation(s)
- Maxim N. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Valery Y. Shilo
- Department of Nephrology, Moscow University for Medicine and Dentistry, Moscow, Russia
| | | | - David E. Schwartz
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joe G. N. Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Olga A. Kost
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei M. Danilov
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- National Cardiology Research Center, Moscow, Russia
- * E-mail:
| |
Collapse
|
15
|
Revilla-López G, Rodríguez-Ropero F, Curcó D, Torras J, Calaza MI, Zanuy D, Jiménez AI, Cativiela C, Nussinov R, Alemán C. Integrating the intrinsic conformational preferences of noncoded α-amino acids modified at the peptide bond into the noncoded amino acids database. Proteins 2011; 79:1841-52. [PMID: 21491493 PMCID: PMC3092812 DOI: 10.1002/prot.23009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/22/2011] [Accepted: 01/28/2011] [Indexed: 01/16/2023]
Abstract
Recently, we reported a database (Noncoded Amino acids Database; http://recerca.upc.edu/imem/index.htm) that was built to compile information about the intrinsic conformational preferences of nonproteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, the experimentally established conformational propensities, and applications (Revilla-López et al., J Phys Chem B 2010;114:7413-7422). The database initially contained the information available for α-tetrasubstituted α-amino acids. In this work, we extend NCAD to three families of compounds, which can be used to engineer peptides and proteins incorporating modifications at the--NHCO--peptide bond. Such families are: N-substituted α-amino acids, thio-α-amino acids, and diamines and diacids used to build retropeptides. The conformational preferences of these compounds have been analyzed and described based on the information captured in the database. In addition, we provide an example of the utility of the database and of the compounds it compiles in protein and peptide engineering. Specifically, the symmetry of a sequence engineered to stabilize the 3(10)-helix with respect to the α-helix has been broken without perturbing significantly the secondary structure through targeted replacements using the information contained in the database.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Francisco Rodríguez-Ropero
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - David Curcó
- Departament d’Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEI, Universitat Politècnica de Catalunya, Pça Rei 15, Igualada 08700, Spain
| | - M. Isabel Calaza
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
16
|
Metalloproteases and Proteolytic Processing. POST-TRANSLATIONAL MODIFICATIONS IN HEALTH AND DISEASE 2011. [PMCID: PMC7120770 DOI: 10.1007/978-1-4419-6382-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteolytic enzymes constitute around 2% of the human genome and are involved in all stages of cell and organism development from fertilization through to cell death. In the human genome the major classes of peptidases are represented by cysteine-, serine- and metalloenzymes, which possess a wide spectrum of substrate specificity and physiological functions. The identification of many novel peptidases from genome sequencing programmes has suggested potential new therapeutic targets. In addition, several well characterised peptidases were recently shown to possess new and unexpected biological roles in neuroinflammation, cancer and angiogenesis, cardiovascular diseases and neurodegeneration. This chapter will briefly characterize the main classes of metallopeptidases and their roles in health and disease. Particular attention will be paid to the angiotensin-converting enzyme (ACE), neprilysin (NEP) and adamalysin (ADAM) families of proteases and their pathophysiological roles with a particular emphasis on cancer and neurodegeneration. The roles and mechanisms of protein shedding which primarily involve the ADAMs family of metallopeptidases will be explained using amyloid protein precursor (APP) processing cascades as a well characterized example. The therapeutic significance of modulating (activating or inhibiting) metallopeptidase activity will be a particular focus of this chapter.
Collapse
|
17
|
Abstract
Angiotensin converting enzyme (ACE) inhibitors are widely used for treatment of cardiovascular diseases. The effects of ACE inhibitors on the human bradykinin receptors were investigated. The mode of action of ACE inhibitors is considered. There is evidence that ACE inhibitors exert effects on the vascular system that cannot be attributed simply to the inhibition of ACE activity and accumulation of locally produced bradykinin. ACE inhibitors augment bradykinin effects on receptors indirectly by inducing cross-talk between ACE and the B2 receptor when enzyme and receptor molecules are sterically close, possibly forming a heterodimer. ACE inhibitors activate B1 receptors directly and independently of ACE via the zink-binding consensus sequence HEXXH, which is present in B1, but not in B2 receptor. Particular structure of B2 and B1 are represented, as well as receptor amino acids coupled with the G-proteins. Activation of kinin receptors by ACE inhibitors leads to clinically beneficial effects of ACE inhibitors.
Collapse
Affiliation(s)
- E.V. Kugaevskaya
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences (RAMS)
| | - Yu.E. Elisseeva
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences (RAMS)
| |
Collapse
|
18
|
Sisquella X, de Pourcq K, Alguacil J, Robles J, Sanz F, Anselmetti D, Imperial S, Fernàndez-Busquets X. A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials. FASEB J 2010; 24:4203-17. [PMID: 20634351 DOI: 10.1096/fj.10-155507] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An important goal of nanotechnology is the application of individual molecule handling techniques to the discovery of potential new therapeutic agents. Of particular interest is the search for new inhibitors of metabolic routes exclusive of human pathogens, such as the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway essential for the viability of most human pathogenic bacteria and of the malaria parasite. Using atomic force microscopy single-molecule force spectroscopy (SMFS), we have probed at the single-molecule level the interaction of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which catalyzes the first step of the MEP pathway, with its two substrates, pyruvate and glyceraldehyde-3-phosphate. The data obtained in this pioneering SMFS analysis of a bisubstrate enzymatic reaction illustrate the substrate sequentiality in DXS activity and allow for the calculation of catalytic parameters with single-molecule resolution. The DXS inhibitor fluoropyruvate has been detected in our SMFS competition experiments at a concentration of 10 μM, improving by 2 orders of magnitude the sensitivity of conventional enzyme activity assays. The binding of DXS to pyruvate is a 2-step process with dissociation constants of k(off) = 6.1 × 10(-4) ± 7.5 × 10(-3) and 1.3 × 10(-2) ± 1.0 × 10(-2) s(-1), and reaction lengths of x(β) = 3.98 ± 0.33 and 0.52 ± 0.23 Å. These results constitute the first quantitative report on the use of nanotechnology for the biodiscovery of new antimalarial enzyme inhibitors and open the field for the identification of compounds represented only by a few dozens of molecules in the sensor chamber.
Collapse
Affiliation(s)
- Xavier Sisquella
- Nanotechnology Platform, Barcelona Science Park, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Revilla-López G, Torras J, Curcó D, Casanovas J, Calaza MI, Zanuy D, Jiménez AI, Cativiela C, Nussinov R, Grodzinski P, Alemán C. NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids. J Phys Chem B 2010; 114:7413-22. [PMID: 20455555 PMCID: PMC2896893 DOI: 10.1021/jp102092m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids--also called non-coded, non-canonical, or non-standard--is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized, and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, alpha-tetrasubstituted alpha-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EUETII, Universitat Politècnica de Catalunya, Pça Rei 15, Igualada 08700, Spain
| | - David Curcó
- Departament d’Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain
| | - Jordi Casanovas
- Departament de Química, Escola Politècnica Superior, Universitat de Lleida, c/ Jaume II n°69, Lleida E-25001, Spain
| | - M. Isabel Calaza
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Piotr Grodzinski
- Alliance for Nanotechnology in Cancer, National Cancer Institute, Bethesda, MD 20892, USA
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
20
|
Characterization of domain-selective inhibitor binding in angiotensin-converting enzyme using a novel derivative of lisinopril. Biochem J 2010; 428:67-74. [DOI: 10.1042/bj20100056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human ACE (angiotensin-converting enzyme) (EC 3.4.15.1) is an important drug target because of its role in the regulation of blood pressure via the renin–angiotensin–aldosterone system. Somatic ACE comprises two homologous domains, the differing substrate preferences of which present a new avenue for domain-selective inhibitor design. We have co-crystallized lisW-S, a C-domain-selective derivative of the drug lisinopril, with human testis ACE and determined a structure using X-ray crystallography to a resolution of 2.30 Å (1 Å=0.1 nm). In this structure, lisW-S is seen to have a similar binding mode to its parent compound lisinopril, but the P2′ tryptophan moiety takes a different conformation to that seen in other inhibitors having a tryptophan residue in this position. We have examined further the domain-specific interactions of this inhibitor by mutating C-domain-specific active-site residues to their N domain equivalents, then assessing the effect of the mutation on inhibition by lisW-S using a fluorescence-based assay. Kinetics analysis shows a 258-fold domain-selectivity that is largely due to the co-operative effect of C-domain-specific residues in the S2′ subsite. The high affinity and selectivity of this inhibitor make it a good lead candidate for cardiovascular drug development.
Collapse
|
21
|
Yedavalli VSRK, Zhang N, Cai H, Zhang P, Starost MF, Hosmane RS, Jeang KT. Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J Med Chem 2008; 51:5043-51. [PMID: 18680273 DOI: 10.1021/jm800332m] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of ring expanded nucleoside (REN) analogues were synthesized and screened for inhibition of cellular RNA helicase activity and human immunodeficiency virus type 1 (HIV-1) replication. We identified two compounds, 1 and 2, that inhibited the ATP dependent activity of human RNA helicase DDX3. Compounds 1 and 2 also suppressed HIV-1 replication in T cells and monocyte-derived macrophages. Neither compound at therapeutic doses was significantly toxic in ex vivo cell culture or in vivo in mice. Our findings provide proof-of-concept that a cellular factor, an RNA helicase, could be targeted for inhibiting HIV-1 replication.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Guy JL, Lambert DW, Turner AJ, Porter KE. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Exp Physiol 2008; 93:579-88. [DOI: 10.1113/expphysiol.2007.040139] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Efficient access to N-protected derivatives of (R,R,R)- and (S,S,S)-octahydroindole-2-carboxylic acid by HPLC resolution. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Eckman EA, Adams SK, Troendle FJ, Stodola BA, Kahn MA, Fauq AH, Xiao HD, Bernstein KE, Eckman CB. Regulation of Steady-state β-Amyloid Levels in the Brain by Neprilysin and Endothelin-converting Enzyme but Not Angiotensin-converting Enzyme. J Biol Chem 2006; 281:30471-8. [PMID: 16912050 DOI: 10.1074/jbc.m605827200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.
Collapse
Affiliation(s)
- Elizabeth A Eckman
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tzakos AG, Naqvi N, Comporozos K, Pierattelli R, Theodorou V, Husain A, Gerothanassis IP. The molecular basis for the selection of captopril cis and trans conformations by angiotensin I converting enzyme. Bioorg Med Chem Lett 2006; 16:5084-7. [PMID: 16889963 DOI: 10.1016/j.bmcl.2006.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/20/2022]
Abstract
Enzyme-inhibitor recognition is considered one of the most fundamental aspects in the area of drug discovery. However, the molecular mechanism of this recognition process (induced fit or prebinding and adaptive selection among multiple conformers) in several cases remains unexplored. In order to shed light toward this step of the recognition process in the case of human angiotensin I converting enzyme (hACE) and its inhibitor captopril, we have established a novel combinatorial approach exploiting solution NMR, flexible docking calculations, mutagenesis, and enzymatic studies. We provide evidence that an equimolar ratio of the cis and trans states of captopril exists in solution and that the enzyme selects only the trans state of the inhibitor that presents architectural and stereoelectronic complementarity with its substrate binding groove.
Collapse
Affiliation(s)
- Andreas G Tzakos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Viruses are replication competent genomes which are relatively gene-poor. Even the largest viruses (i.e. Herpesviruses) encode only slightly >200 open reading frames (ORFs). However, because viruses replicate obligatorily inside cells, and considering that evolution may be driven by a principle of economy of scale, it is reasonable to surmise that many viruses have evolved the ability to co-opt cell-encoded proteins to provide needed surrogate functions. An in silico survey of viral sequence databases reveals that most positive-strand and double-stranded RNA viruses have ORFs for RNA helicases. On the other hand, the genomes of retroviruses are devoid of virally-encoded helicase. Here, we review in brief the notion that the human immunodeficiency virus (HIV-1) has adopted the ability to use one or more cellular RNA helicases for its replicative life cycle.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Medicine, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
27
|
Chou CF, Loh CB, Foo YK, Shen S, Fielding BC, Tan THP, Khan S, Wang Y, Lim SG, Hong W, Tan YJ, Fu J. ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus). Gene 2006; 377:46-55. [PMID: 16781089 PMCID: PMC7125734 DOI: 10.1016/j.gene.2006.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/07/2006] [Accepted: 03/07/2006] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2), a newly identified member in the renin–angiotensin system (RAS), acts as a negative regulator of ACE. It is mainly expressed in cardiac blood vessels and the tubular epithelia of kidneys and abnormal expression has been implicated in diabetes, hypertension and heart failure. The mechanism and physiological function of this zinc metallopeptidase in mammals are not yet fully understood. Non-mammalian vertebrate models offer attractive and simple alternatives that could facilitate the exploration of ACE2 function. In this paper we report the in silico analysis of Ace2 genes from the Gallus (chicken), Xenopus (frog), Fugu and Tetraodon (pufferfish) genome assembly databases, and from the Danio (zebrafish) cDNA library. Exon ambiguities of Danio and Xenopus Ace2s were resolved by RT-PCR and 3′RACE. Analyses of the exon–intron structures, alignment, phylogeny and hydrophilicity plots, together with the conserved synteny among these vertebrates, support the orthologous relationship between mammalian and non-mammalian ACE2s. The putative promoters of Ace2 from human, Tetraodon and Xenopus tropicalis drove the expression of enhanced green fluorescent protein (EGFP) specifically in the heart tissue of transgenic Xenopus thus making it a suitable model for future functional genomic studies. Additionally, the search for conserved cis-elements resulted in the discovery of WGATAR motifs in all the putative Ace2 promoters from 7 different animals, suggesting a possible role of GATA family transcriptional factors in regulating the expression of Ace2.
Collapse
Affiliation(s)
- Chih-Fong Chou
- Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
To date, although many viral infections can be successfully prevented via vaccination, we lack effective knowledge of vaccines for numerous important human pathogens, including hepatitis C virus (HCV) and human immunodeficiency virus (HIV). Accordingly, antiviral drugs will be needed to treat many viral diseases. Virally encoded enzymes and cellular enzymes adapted for use by viruses for replication might represent useful targets for antiviral drugs. Drugs that target either a viral or cellular polypeptide hold different implications. Inhibitors of unique viral functions have a lower risk of toxicity, whereas inhibitors of cellular enzymes that are used by viruses have a narrower window for efficacy without creating toxicity. All viruses seem to require a helicase function for replication. HCV encodes a viral RNA helicase, and recent findings have shown that HIV-1 adapts a cellular RNA helicase for its viral lifecycle. These observations raise the possibility of small-molecule helicase inhibitors as a general mode of antiviral therapy. Helicases fall into three super-families (SF1, SF2 and SF3) with conserved motifs. The conserved motifs are associated with conserved helicase function. However, outside of the conserved motifs the primary sequences and tertiary structures between helicases are differ greatly. In this regard, differences in primary sequence and tertiary structure between the helicase of a viral pathogen and that of cellular helicases can be exploited to confer specificity to an antiviral inhibitor. The conformation of an active helicase can be broadly divided into an 'open' and a 'closed' complex. Strategies for identifying small-molecule helicase inhibitors include: inhibiting NTPase activity by direct competition with NTP binding; competitively inhibit nucleic-acid binding; inhibiting NTP hydrolysis or NDP release by blocking the movement of domain 2; inhibiting the process that couples NTP hydrolysis to translocation and unwinding of nucleic acid; inhibiting unwinding by sterically blocking helicase translocation; and inhibiting unwinding. Other potential inhibitory mechanisms include those that change the physical conformation of the helicase, or those that disrupt helicase turnover, or those that inhibit helicase interaction with other crucial proteins. Preclinical proof of concept for helicase inhibitors as antiviral agents has been obtained for HSV. This breakthrough finding provides the best evidence to date that it is possible to develop selective, potent inhibitors of a viral helicase as antiviral agents. Searches are ongoing for antihelicase molecules that have activity against HCV or HIV-1.
Although there has been considerable progress in the development of antiviral agents in recent years, there is still a pressing need for new drugs both to improve on the properties of existing agents and to combat the problem of viral resistance. Helicases, both viral and human, have recently emerged as novel targets for the treatment of viral infections. Here, we discuss the role of these enzymes, factors affecting their potential as drug targets and progress in the development of agents that inhibit their activity using the hepatitis C virus-encoded helicase NS3 and the cellular helicase DDX3 adopted for use by HIV-1 as examples.
Collapse
Affiliation(s)
- Ann D. Kwong
- Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, 02139 Massachusetts USA
| | - B. Govinda Rao
- Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, 02139 Massachusetts USA
| | - Kuan-Teh Jeang
- The National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Bethesda, 20892 Maryland USA
| |
Collapse
|
29
|
Tzakos AG, Gerothanassis IP. Domain-Selective Ligand-Binding Modes and Atomic Level Pharmacophore Refinement in Angiotensin I Converting Enzyme (ACE) Inhibitors. Chembiochem 2005; 6:1089-103. [PMID: 15883972 DOI: 10.1002/cbic.200400386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Somatic ACE (EC 3.4.15.1), a Zn(II) metalloproteinase, is composed of functionally active N and C domains resulting from tandem gene duplication. Despite the high degree of sequence similarity between the two domains, they differ in substrate and inhibitor specificity and in their activation by chloride ions. Because of the critical role of ACE in cardiovascular and renal diseases, both domains are attractive targets for drug design. Putative structural models have been generated for the interactions of ACE inhibitors (lisinopril, captoril, enalaprilat, keto-ACE, ramiprilat, quinaprilat, peridoprilat, fosinoprilat, and RXP 407) with both the ACE_C and the ACE_N domains. Inhibitor-domain selectivity was interpreted in terms of residue alterations observed in the four subsites of the binding grooves of the ACE_C/ACE_N domains (S1: V516/N494, V518/T496, S2: F391/Y369, E403/R381, S1': D377/Q355, E162/D140, V379/S357, V380/T358, and S2': D463/E431, T282/S260). The interactions governing the ligand-receptor recognition process in the ACE_C domain are: a salt bridge between D377, E162, and the NH(2) group (P1' position), a hydrogen bond of the inhibitor with Q281, the presence of bulky hydrophobic groups in the P1 and P2' sites, and a stacking interaction of F391 with a benzyl group in the P2 position. In ACE_N these interactions are: hydrogen bonds of the inhibitor with E431, Y369, and R381, and a salt bridge between the carboxy group in the P2 position of the inhibitor and R500. The calculated complexes were evaluated for their consistency with structure-activity relationships and site-directed mutagenesis data. A comparison between the calculated interaction free energies and the experimentally observed biological activities was also made. Pharmacophore refinement was achieved at an atomic level, and might provide an improved basis for structure-based rational design of second-generation, domain-selective inhibitors.
Collapse
Affiliation(s)
- Andreas G Tzakos
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | | |
Collapse
|
30
|
Kibler KV, Miyazato A, Yedavalli VSRK, Dayton AI, Jacobs BL, Dapolito G, Kim SJ, Jeang KT. Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 2004; 279:49055-63. [PMID: 15371436 DOI: 10.1074/jbc.m403394200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.
Collapse
Affiliation(s)
- Karen V Kibler
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Inguimbert N, Poras H, Dhotel H, Beslot F, Scalbert E, Bennejean C, Renard P, Fournié-Zaluski MC, Roques BP. In vivo properties of thiol inhibitors of the three vasopeptidases NEP, ACE and ECE are improved by introduction of a 7-azatryptophan in P2′ position. ACTA ACUST UNITED AC 2004; 63:99-107. [PMID: 15009531 DOI: 10.1111/j.1399-3011.2003.00121.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Three zinc metallopeptidases are implicated in the regulation of fluid homeostasis and vascular tone and represent interesting targets for the treatment of chronic heart failure. We have previously reported the synthesis of a triple inhibitor able to simultaneously inhibit neprilysin (NEP, EC 3.4.24.11), angiotensin-converting enzyme (ACE, EC 3.4.15.1) and endothelin-converting enzyme (ECE-1, EC 3.4.24.71) with nanomolar potency towards NEP and ACE and a lesser affinity for ECE. Here, we report the optimization and biological activities of analogs derived from lead compound 1 (2S)-2-[(2R)-2-((1S)-5-bromo-indan-1-yl)-3-mercapto-propionylamino]-3- (1H-indol-3-yl)-propionic acid by a structural approach. Among several inhibitors, compound 21, (2S)-2-[(2R)-2-((1S)-5-bromo-indan-1-yl)-3-mercapto-propionylamino]-3-(1H-pyrrolo[2,3-b]pyridin-3-yl)-propionic acid was selected by taking into account its good molecular adaptation with the recently published structures of the three vasopeptidases. This optimization procedure led to an improved pharmacologic activity when compared with 1.
Collapse
Affiliation(s)
- N Inguimbert
- Département de Pharmacochimie moléculaire et Structurale, U266 INSERM-FRE 2463 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'observatoire, 75270 Paris, Cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Acharya KR, Sturrock ED, Riordan JF, Ehlers MRW. Ace revisited: a new target for structure-based drug design. Nat Rev Drug Discov 2004; 2:891-902. [PMID: 14668810 PMCID: PMC7097707 DOI: 10.1038/nrd1227] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-converting enzyme (ACE) is a chloride-dependent metalloenzyme that catalyses the hydrolytic cleavage of dipeptides from the carboxyl terminus of many regulatory oligopeptides. ACE is central to the renin–angiotensin system that regulates blood pressure, fluid homeostasis, and renal and vascular function. It is therefore a major target for cardiovascular therapies. ACE inhibitors (for example, captopril, enalaprilat and lisinopril) have been on the market for more than 20 years. Side effects of treatment with ACE inhibitors include cough and angioedema. ACE comprises an N- and a C-domain, each containing an active site with distinct substrates and activation properties. The design of domain-selective inhibitors might produce new drugs with improved safety and efficacy — this endeavour will be facilitated by the recent determination of the three-dimensional structure of ACE. The C-domain seems to be primarily responsible for the regulation of blood pressure. Data indicate that C-domain-selective inhibitors will have less severe side effects than current-generation inhibitors, which generally target both the N- and C-domains. In contrast to the C-domain, the N-domain seems to have relatively low affinity for the peptides that control blood pressure. It preferentially hydrolyses at least three other physiologically important peptides, so targeted inhibition of the N-domain might have novel therapeutic applications.
Current-generation angiotensin-converting enzyme (ACE) inhibitors are widely used for cardiovascular diseases, including high blood pressure, heart failure, heart attack and kidney failure, and have combined annual sales in excess of US $6 billion. However, the use of these ACE inhibitors, which were developed in the late 1970s and early 1980s, is hampered by common side effects. Moreover, we now know that ACE actually consists of two parts (called the N- and C-domains) that have different functions. Therefore, the design of specific domain-selective ACE inhibitors is expected to produce next-generation drugs that might be safer and more effective. Here we discuss the structural features of current inhibitors and outline how next-generation ACE inhibitors could be designed by using the three-dimensional molecular structure of human testis ACE. The ACE structure provides a unique opportunity for rational drug design, based on a combination of in silico modelling using existing inhibitors as scaffolds and iterative lead optimization to drive the synthetic chemistry.
Collapse
Affiliation(s)
- K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
33
|
Abstract
The cell surface has various functions: communicating with other cells, integrating into the tissue, and interacting with the extracellular matrix. Proteases play a key role in these processes. This review focuses on cell-surface peptidases (ectopeptidases, oligopeptidases) that are involved in the inactivation or activation of extracellular regulatory peptides, hormones, paracrine peptides, cytokines, and neuropeptides. The nomenclature of cell-surface peptidases is explained in relation to other proteases, and information is provided on membrane anchoring, catalytic sites, regulation, and, in particular, on their physiological and pharmacological importance. Furthermore, nonenzymatic (binding) functions and participation in intracellular signal transduction of cell surfaces peptidases are described. An overview on the different cell-surface peptidases is given, and their divergent functions are explained in detail. An example of actual pharmacological importance, dipeptidyl-peptidase IV (CD26), is discussed.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, 24098 Kiel, Germany
| |
Collapse
|
34
|
Inguimbert N, Poras H, Teffo F, Beslot F, Selkti M, Tomas A, Scalbert E, Bennejean C, Renard P, Fournié-Zaluski MC, Roques BP. N-[2-(Indan-1-yl)-3-mercapto-propionyl] amino acids as highly potent inhibitors of the three vasopeptidases (NEP, ACE, ECE): In vitro and In vivo activities. Bioorg Med Chem Lett 2002; 12:2001-5. [PMID: 12113828 DOI: 10.1016/s0960-894x(02)00248-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously reported the design of a lead compound 1a for the joint inhibition of neprilysin (NEP, EC 3.4.24.11), angiotensin converting enzyme (ACE, EC 3.4.15.1) and endothelin converting enzyme (ECE-1, EC 3.4.24.71), three metallopeptidases which are implicated in the regulation of fluid homeostasis and vascular tone. We report here the synthesis and biological activities of analogues derived from this lead with inhibitory potencies in the nanomolar range for the three enzymes. Compounds 8b and 15c are the most potent triple inhibitors described to date.
Collapse
Affiliation(s)
- Nicolas Inguimbert
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, UMR 8600 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'observatoire, 75270 Cedex 06, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ignjatovic T, Tan F, Brovkovych V, Skidgel RA, Erdös EG. Novel mode of action of angiotensin I converting enzyme inhibitors: direct activation of bradykinin B1 receptor. J Biol Chem 2002; 277:16847-52. [PMID: 11880373 DOI: 10.1074/jbc.m200355200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin I converting enzyme (kininase II; ACE) inhibitors are important therapeutic agents widely used for treatment in cardiovascular and renal diseases. They inhibit angiotensin II release and bradykinin inactivation; these actions do not explain completely the clinical benefits. We found that enalaprilat and other ACE inhibitors in nanomolar concentrations activate human bradykinin B(1) receptors directly in the absence of ACE and the B(1) agonist des-Arg(10)-Lys(1)-bradykinin. These inhibitors activate at the Zn(2+)-binding consensus sequence HEXXH (195-199) in B(1), which is present also in ACE but not in the B(2) receptor. Activation elevates [Ca(2+)](i) and releases NO from endothelial or transfected cells expressing the B(1) receptor but is blocked by Ca-EDTA, a B(1) receptor antagonist, the synthetic undecapeptide sequence (192-202) of B(1), and the mutagenesis of His(195) to Ala(195). Except for the B(1) antagonist, these agents and manipulations did not block activation by a peptide ligand. Thus, Zn(2+) is essential for B(1) receptor activation by ACE inhibitors at the zinc-binding consensus sequence. Ischemia or cytokines induce abundant B(1) receptor expression. B(1) receptor activation by ACE inhibitors, a novel mode of action reported here first, can contribute to their therapeutic effects by releasing NO in the heart and to some side effects.
Collapse
Affiliation(s)
- Tatjana Ignjatovic
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Modulation of the renin-angiotensin system (RAS), and particularly inhibition of angiotensin-converting enzyme (ACE), a zinc metallopeptidase, has long been a prime strategy in the treatment of hypertension. However, other angiotensin metabolites are gaining in importance as our understanding of the RAS increases. Recently, genomic approaches have identified the first human homologue of ACE, termed ACEH (or ACE2). ACEH differs in specificity and physiological roles from ACE, which opens a potential new area for discovery biology. The gene that encodes collectrin, a homologue of ACEH, is upregulated in response to renal injury. Collectrin lacks a catalytic domain, which indicates that there is more to ACE-like function than simple peptide hydrolysis.
Collapse
Affiliation(s)
- Anthony J Turner
- Proteolysis Research Group, School of Biochemistry and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
| | | |
Collapse
|
37
|
Abstract
"Somatic" angiotensin I-converting enzyme (ACE) appears to be one of the evolutionary advances that made a closed circulation possible, and may have contributed to the Cambrian "explosion" of species approximately 540 million years ago. It also appears to be at the origin of a large number of common human diseases. A model is proposed in which the duplicated form of ACE ("somatic" ACE) functions as a mechanotransducer, defending downstream vessels and tissues from an increase in pressure. In the model, ACE senses shear stress (blood velocity) in regions of turbulent blood flow. An increase in shear stress strips an autoinhibitor tripeptide, FQP, from the N-terminal active site, thereby activating it. The C-terminal domain is constitutively activated by chloride. This model explains the clinical superiority of hydrophobic ACE inhibitors relative to hydrophilic ones.
Collapse
|