1
|
Tseng AC, Nerurkar VR, Neupane KR, Kae H, Kaufusi PH. Membrane Retention of West Nile Virus NS5 Depends on NS1 or NS3 for Enzymatic Activity. Viruses 2024; 16:1303. [PMID: 39205277 PMCID: PMC11360346 DOI: 10.3390/v16081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) nonstructural protein 5 (NS5) possesses multiple enzymatic domains essential for viral RNA replication. During infection, NS5 predominantly localizes to unique replication organelles (ROs) at the rough endoplasmic reticulum (RER), known as vesicle packets (VPs) and convoluted membranes (CMs), with a portion of NS5 accumulating in the nucleus. NS5 is a soluble protein that must be in the VP, where its enzymatic activities are required for viral RNA synthesis. However, the mechanistic processes behind the recruitment of NS5 from the cytoplasm to the RER membrane remain unclear. Here, we utilize high-resolution confocal microscopy and sucrose density gradient ultracentrifugation to investigate whether the association of NS5 with other NS proteins contributes to its membrane recruitment and retention. We demonstrate that NS1 or NS3 partially influences the NS5 association with the membrane. We further demonstrate that processed NS5 is predominantly in the cytoplasm and nucleus, indicating that the processing of NS5 from the viral polyprotein does not contribute to its membrane localization. These observations suggest that other host or viral factors, such as the enwrapment of NS5 by the RO, may also be necessary for the complete membrane retention of NS5. Therefore, studies on the inhibitors that disrupt the membrane localization of WNV NS5 are warranted for antiviral drug development.
Collapse
Affiliation(s)
- Alanna C. Tseng
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
- Molecular Biosciences and Bioengineering Graduate Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
- Molecular Biosciences and Bioengineering Graduate Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Kabi R. Neupane
- Division of Math and Sciences, Leeward Community College, Pearl City, HI 96782, USA; (K.R.N.); (H.K.)
| | - Helmut Kae
- Division of Math and Sciences, Leeward Community College, Pearl City, HI 96782, USA; (K.R.N.); (H.K.)
| | - Pakieli H. Kaufusi
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
- Molecular Biosciences and Bioengineering Graduate Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
2
|
Mushtaq S, Khan MIU, Khan MT, Lodhi MS, Wei DQ. Novel mutations in structural proteins of dengue virus genomes. J Infect Public Health 2023; 16:1971-1981. [PMID: 37879150 DOI: 10.1016/j.jiph.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Genomic characterization of the dengue virus (DENV) is useful for understanding its molecular evolution, transmission, pathogenicity and infectivity. The DENV genomic RNA encodes three structural proteins, capsid (C) envelope (E) and membrane (M) proteins mediating viral entry and assembly during host infection. The current study aims to explore the DENV serotypes and mutations in the E and M proteins. METHODS Twenty-three samples of DENV-positive patients were processed and selected for whole genome sequencing (WGS) from the Punjab Province of Pakistan. RESULTS Among the 23 WGS, 19 samples showed numerous mutations (BioProject ID PRJNA943555). DENV1 and DENV2 are the most prevalent serotypes. A total of 179 mutations were detected in the E protein, in which K203E, T88A, I114L, and I293T are novel. The I270L, T272A, S273L, and T277A were found in the "kl" β-hairpin (aa 270-279). The M protein harbors 74 mutations, of which 24 were novel. Three prominent complementary regions in the prM and E protein complex formations include R6, E46, D47, D63, and D65 on 'pr' peptide, and E84, K64, and H244, K247 on E, remain conserved except R6C. To our knowledge, it is the first comprehensive study of mutations in structural proteins. CONCLUSION Genomic epidemiology is critical for analyzing emerging mutations and designing new policies therapeutic efforts for future outbreaks.
Collapse
Affiliation(s)
- Saira Mushtaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, KM Defence Road, Postal code: 5881, Lahore, Pakistan.
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, KM Defence Road, Postal code: 5881, Lahore, Pakistan.
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, KM Defence Road, Postal code: 5881, Lahore, Pakistan; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, PR China.
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, KM Defence Road, Postal code: 5881, Lahore, Pakistan.
| | - Dong Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China; Peng Cheng Laboratory, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
3
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
4
|
Development of a highly specific serodiagnostic ELISA for West Nile virus infection using subviral particles. Sci Rep 2021; 11:9213. [PMID: 33911132 PMCID: PMC8080695 DOI: 10.1038/s41598-021-88777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV), a member of the Japanese encephalitis virus (JEV) serocomplex group, causes lethal encephalitis in humans and horses. Because serodiagnosis of WNV and JEV is hampered by cross-reactivity, the development of a simple, secure, and WNV-specific serodiagnostic system is required. The coexpression of prM protein and E protein leads to the secretion of subviral particles (SPs). Deletion of the C-terminal region of E protein is reported to affect the production of SPs by some flaviviruses. However, the influence of such a deletion on the properties and antigenicity of WNV E protein is unclear. We analyzed the properties of full-length E protein and E proteins lacking the C-terminal region as novel serodiagnostics for WNV infection. Deletion of the C-terminal region of E protein suppressed the formation of SPs but did not affect the production of E protein. The sensitivity of an enzyme-linked immunosorbent assay (ELISA) using the full-length E protein was higher than that using the truncated E proteins. Furthermore, in the ELISA using full-length E protein, there was little cross-reactivity with anti-JEV antibodies, and the sensitivity was similar to that of the neutralization test.
Collapse
|
5
|
Rajput R, Sharma J, Nair MT, Khanna M, Arora P, Sood V. Regulation of Host Innate Immunity by Non-Coding RNAs During Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:588168. [PMID: 33330133 PMCID: PMC7734804 DOI: 10.3389/fcimb.2020.588168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
An estimated 3.9 billion individuals in 128 nations (about 40% of global population) are at risk of acquiring dengue virus infection. About 390 million cases of dengue are reported each year with higher prevalence in the developing world. A recent modeling-based report suggested that half of the population across the globe is at risk of dengue virus infection. In any given dengue outbreak, a percentage of infected population develops severe clinical manifestations, and this remains one of the “unsolved conundrums in dengue pathogenesis”. Although, host immunity and virus serotypes are known to modulate the infection, there are still certain underlying factors that play important roles in modulating dengue pathogenesis. Advanced genomics-based technologies have led to identification of regulatory roles of non-coding RNAs. Accumulating evidence strongly suggests that viruses and their hosts employ non-coding RNAs to modulate the outcome of infection in their own favor. The foremost ones seem to be the cellular microRNAs (miRNAs). Being the post-transcriptional regulators, miRNAs can be regarded as direct switches capable of turning “on” or “off” the viral replication process. Recently, role of long non-coding RNAs (lncRNAs) in modulating viral infections via interferon dependent or independent signaling has been recognized. Hence, we attempt to identify the “under-dog”, the non-coding RNA regulators of dengue virus infection. Such essential knowledge will enhance the understanding of dengue virus infection in holistic manner, by exposing the specific molecular targets for development of novel prophylactic, therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Roopali Rajput
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,Department of Molecular Medicine, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Mahima T Nair
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Madhu Khanna
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Applying a pan-flavivirus RT-qPCR assay in Brazilian public health surveillance. Arch Virol 2020; 165:1863-1868. [PMID: 32474687 DOI: 10.1007/s00705-020-04680-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to improve flavivirus field monitoring in Brazil using a reliable probe-based RT-qPCR assay. Standard flavivirus strains were employed to evaluate the performance of the assay, and its applicability was evaluated using 235 stored pools of Culicidae samples collected between 1993 and 1997 and in 2016. Flavivirus species were identified by sequencing. Sixteen (6.8%) samples tested positive: Ilheus virus, Iguape virus, and Saint Louis encephalitis virus were identified in historical specimens from 1993-1994, while insect-specific flaviviruses were detected in the samples from 2016. This approach was demonstrated to be accurate for flavivirus detection and characterization, and it can be successfully applied for vector surveillance and for monitoring and discovery of insect specific flaviviruses.
Collapse
|
7
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Multiple Virtual Screening Strategies for the Discovery of Novel Compounds Active Against Dengue Virus: A Hit Identification Study. Sci Pharm 2019. [DOI: 10.3390/scipharm88010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dengue infection is caused by a mosquito-borne virus, particularly in children, which may even cause death. No effective prevention or therapeutic agents to cure this disease are available up to now. The dengue viral envelope (E) protein was discovered to be a promising target for inhibition in several steps of viral infection. Structure-based virtual screening has become an important technique to identify first hits in a drug screening process, as it is possible to reduce the number of compounds to be assayed, allowing to save resources. In the present study, pharmacophore models were generated using the common hits approach (CHA), starting from trajectories obtained from molecular dynamics (MD) simulations of the E protein complexed with the active inhibitor, flavanone (FN5Y). Subsequently, compounds presented in various drug databases were screened using the LigandScout 4.2 program. The obtained hits were analyzed in more detail by molecular docking, followed by extensive MD simulations of the complexes. The highest-ranked compound from this procedure was then synthesized and tested on its inhibitory efficiency by experimental assays.
Collapse
|
9
|
Krol E, Wandzik I, Brzuska G, Eyer L, Růžek D, Szewczyk B. Antiviral Activity of Uridine Derivatives of 2-Deoxy Sugars against Tick-Borne Encephalitis Virus. Molecules 2019; 24:molecules24061129. [PMID: 30901934 PMCID: PMC6471225 DOI: 10.3390/molecules24061129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a causative agent of tick-borne encephalitis (TBE), one of the most important human infections involving the central nervous system. Although effective vaccines are available on the market, they are recommended only in endemic areas. Despite many attempts, there are still no specific antiviral therapies for TBEV treatment. Previously, we synthesized a series of uridine derivatives of 2-deoxy sugars and proved that some compounds show antiviral activity against viruses from the Flaviviridae and Orthomyxoviridae families targeting the late steps of the N-glycosylation process, affecting the maturation of viral proteins. In this study, we evaluated a series of uridine derivatives of 2-deoxy sugars for their antiviral properties against two strains of the tick-borne encephalitis virus; the highly virulent TBEV strain Hypr and the less virulent strain Neudoerfl. Four compounds (2, 4, 10, and 11) showed significant anti-TBEV activity with IC50 values ranging from 1.4 to 10.2 µM and low cytotoxicity. The obtained results indicate that glycosylation inhibitors, which may interact with glycosylated membrane TBEV E and prM proteins, might be promising candidates for future antiviral therapies against TBEV.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Luděk Eyer
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic.
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
10
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect 2018; 7:167. [PMID: 30301880 PMCID: PMC6177401 DOI: 10.1038/s41426-018-0168-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Dengue virus (DENV) is a mosquito-borne Flavivirus that is endemic in many tropical and sub-tropical countries where the transmission vectors Aedes spp. mosquitoes resides. There are four serotypes of the virus. Each serotype is antigenically different, meaning they elicit heterologous antibodies. Infection with one serotype will create neutralizing antibodies to the serotype. Cross-protection from other serotypes is not long term, instead heterotypic infection can cause severe disease. This review will focus on the innate immune response to DENV infection and the virus evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Activated innate immune pathways includes type I interferon, complement, apoptosis, and autophagy, which the virus can evade or exploit to exacerbate disease. It is important to understand out how the immune system reacts to infection and how the virus evades immune response in order to develop effective antivirals and vaccines.
Collapse
Affiliation(s)
- Naoko Uno
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J Virol 2018; 92:JVI.00093-18. [PMID: 29875238 DOI: 10.1128/jvi.00093-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1.IMPORTANCE PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.
Collapse
|
13
|
Saraiva RG, Fang J, Kang S, Angleró-Rodríguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis 2018; 12:e0006443. [PMID: 29694346 PMCID: PMC5937796 DOI: 10.1371/journal.pntd.0006443] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/07/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent and burdensome arbovirus transmitted by Aedes mosquitoes, against which there is only a limited licensed vaccine and no approved drug treatment. A Chromobacterium species, C. sp. Panama, isolated from the midgut of A. aegypti is able to inhibit DENV replication within the mosquito and in vitro. Here we show that C. sp. Panama mediates its anti-DENV activity through secreted factors that are proteinous in nature. The inhibitory effect occurs prior to virus attachment to cells, and is attributed to a factor that destabilizes the virion by promoting the degradation of the viral envelope protein. Bioassay-guided fractionation, coupled with mass spectrometry, allowed for the identification of a C. sp. Panama-secreted neutral protease and an aminopeptidase that are co-expressed and appear to act synergistically to degrade the viral envelope (E) protein and thus prevent viral attachment and subsequent infection of cells. This is the first study characterizing the anti-DENV activity of a common soil and mosquito-associated bacterium, thereby contributing towards understanding how such bacteria may limit disease transmission, and providing new tools for dengue prevention and therapeutics.
Collapse
Affiliation(s)
- Raúl G. Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jingru Fang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yesseinia I. Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
14
|
Klitting R, Roth L, Rey FA, de Lamballerie X. Molecular determinants of Yellow Fever Virus pathogenicity in Syrian Golden Hamsters: one mutation away from virulence. Emerg Microbes Infect 2018; 7:51. [PMID: 29593212 PMCID: PMC5874243 DOI: 10.1038/s41426-018-0053-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 11/12/2022]
Abstract
Yellow fever virus (Flavivirus genus) is an arthropod-borne pathogen, which can infect humans, causing a severe viscerotropic disease with a high mortality rate. Adapted viral strains allow the reproduction of yellow fever disease in hamsters with features similar to the human disease. Here, we used the Infectious Subgenomic Amplicons reverse genetics method to produce an equivalent to the hamster-virulent strain, Yellow Fever Ap7, by introducing a set of four synonymous and six nonsynonymous mutations into a single subgenomic amplicon, derived from the sequence of the Asibi strain. The resulting strain, Yellow Fever Ap7M, induced a disease similar to that described for Ap7 in terms of symptoms, weight evolution, viral loads in the liver and lethality. Using the same methodology, we produced mutant strains derived from either Ap7M or Asibi viruses and investigated the role of each of Ap7M nonsynonymous mutations in its in vivo phenotype. This allowed identifying key components of the virulence mechanism in hamsters. In Ap7M virus, the reversion of either E/Q27H or E/D155A mutations led to an important reduction of both virulence and in vivo replicative fitness. In addition, the introduction of the single D155A Ap7M mutation within the E protein of the Asibi virus was sufficient to drastically modify its phenotype in hamsters toward both a greater replication efficiency and virulence. Finally, inspection of the Asibi strain E protein structure combined to in vivo testing revealed the importance of an exposed α-helix in domain I, containing residues 154 and 155, for Ap7M virulence in hamsters.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- UMR EPV: "Émergence des Pathologies Virales", Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, 13385, Marseille Cedex 05, France.
| | - Laura Roth
- UMR EPV: "Émergence des Pathologies Virales", Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, 13385, Marseille Cedex 05, France
| | - Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, 75015, Paris, France
- CNRS UMR3569, Institut Pasteur, 75015, Paris, France
| | - Xavier de Lamballerie
- UMR EPV: "Émergence des Pathologies Virales", Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection, 13385, Marseille Cedex 05, France
| |
Collapse
|
15
|
Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 2018; 9:436. [PMID: 29382836 PMCID: PMC5789857 DOI: 10.1038/s41467-018-02882-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/03/2018] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 13,000 cases of human meningitis and encephalitis annually. However, the structure of the TBEV virion and its interactions with antibodies are unknown. Here, we present cryo-EM structures of the native TBEV virion and its complex with Fab fragments of neutralizing antibody 19/1786. Flavivirus genome delivery depends on membrane fusion that is triggered at low pH. The virion structure indicates that the repulsive interactions of histidine side chains, which become protonated at low pH, may contribute to the disruption of heterotetramers of the TBEV envelope and membrane proteins and induce detachment of the envelope protein ectodomains from the virus membrane. The Fab fragments bind to 120 out of the 180 envelope glycoproteins of the TBEV virion. Unlike most of the previously studied flavivirus-neutralizing antibodies, the Fab fragments do not lock the E-proteins in the native-like arrangement, but interfere with the process of virus-induced membrane fusion. The tick-borne encephalitis virus (TBEV) causes thousands of cases of meningitis and encephalitis annually. Here, the authors describe a cryo-EM structure of the TBEV virion bound by Fab fragments of the neutralizing antibody 19/1786, revealing a mechanism whereby this antibody prevents virus membrane fusion.
Collapse
|
16
|
Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res 2017; 141:140-149. [PMID: 28232248 DOI: 10.1016/j.antiviral.2017.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/20/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are mosquito-borne viruses of the Flavivirus genus that cause viral encephalitis and congenital microcephaly, respectively, in humans, and thus present a risk to global public health. The envelope glycoprotein (E protein) of flaviviruses is a class II viral fusion protein that mediates host cell entry through a series of conformational changes, including association between the stem region and domain II leading to virion-target cell membrane fusion. In this study, peptides derived from the JEV E protein stem were investigated for their ability to block JEV and ZIKV infection. Peptides from stem helix 2 inhibit JEV infection with the 50% inhibitory concentration (IC50) in the nanomolar range. One of these peptides (P5) protected mice against JEV-induced lethality by decreasing viral load, while abrogating histopathological changes associated with JEV infection. We also found that P5 blocked ZIKV infection with IC50 at the micromolar level. Moreover, P5 was proved to reduce the histopathological damages in brain and testes resulting from ZIKV infection in type I and II interferon receptor-deficient (AG6) mice. These findings provide a basis for the development of peptide-based drugs against JEV and ZIKV.
Collapse
|
17
|
Phongphaew W, Kobayashi S, Sasaki M, Carr M, Hall WW, Orba Y, Sawa H. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Res 2016; 228:114-123. [PMID: 27914931 PMCID: PMC7114552 DOI: 10.1016/j.virusres.2016.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
Inhibition of VCP by chemical inhibitors decreased WNV infection in a dose-dependent manner. Knockdown of endogenous VCP level using siRNA suppressed WNV infection. Depletion of VCP levels suppressed WNV infection at the early stages of WNV replication cycle. Depletion of VCP levels lowered nascent WNV genomic RNA. VCP participates in early stages and viral genomic RNA replication.
Valosin-containing protein (VCP) is classified as a member of the type II AAA+ ATPase protein family. VCP functions in several cellular processes, including protein degradation, membrane fusion, vesicular trafficking and disassembly of stress granules. Moreover, VCP is considered to play a role in the replication of several viruses, albeit through different mechanisms. In the present study, we have investigated the role of VCP in West Nile virus (WNV) infection. Endogenous VCP expression was inhibited using either VCP inhibitors or by siRNA knockdown. It could be shown that the inhibition of endogenous VCP expression significantly inhibited WNV infection. The entry assay revealed that silencing of endogenous VCP caused a significant reduction in the expression levels of WNV-RNA compared to control siRNA-treated cells. This indicates that VCP may play a role in early steps either the binding or entry steps of the WNV life cycle. Using WNV virus like particles and WNV-DNA-based replicon, it could be demonstrated that perturbation of VCP expression decreased levels of newly synthesized WNV genomic RNA. These findings suggest that VCP is involved in early steps and during genome replication of the WNV life cycle.
Collapse
Affiliation(s)
- Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Shintaro Kobayashi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michael Carr
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Center for Research in Infectious Diseases, University College of Dublin, Belfield, Dublin 4, Dublin, Ireland; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
18
|
Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity. PLoS One 2016; 11:e0158105. [PMID: 27341437 PMCID: PMC4920422 DOI: 10.1371/journal.pone.0158105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/12/2016] [Indexed: 02/02/2023] Open
Abstract
Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras.
Collapse
|
19
|
Shivanna V, Kim Y, Chang KO. Ceramide formation mediated by acid sphingomyelinase facilitates endosomal escape of caliciviruses. Virology 2015; 483:218-28. [PMID: 25985440 PMCID: PMC4516657 DOI: 10.1016/j.virol.2015.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Our recent results demonstrated that bile acids facilitate virus escape from the endosomes into the cytoplasm for successful replication of porcine enteric calicivirus (PEC). We report a novel finding that bile acids can be substituted by cold treatment for endosomal escape and virus replication. This endosomal escape by cold treatment or bile acids is associated with ceramide formation by acid sphingomyelinase (ASM). ASM catalyzes hydrolysis of sphingomyelin into ceramide, which is known to destabilize lipid bilayer. Treatment of LLC-PK cells with bile acids or cold led to ceramide formation, and small molecule antagonists or siRNA of ASM blocked ceramide formation in the endosomes and significantly reduced PEC replication. Inhibition of ASM resulted in the retention of PEC, feline calicivirus or murine norovirus in the endosomes in correlation with reduced viral replication. These results suggest the importance of viral escape from the endosomes for the replication of various caliciviruses.
Collapse
Affiliation(s)
- Vinay Shivanna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
20
|
Shwetank, Date OS, Carbone E, Manjunath R. Inhibition of ERK and proliferation in NK cell lines by soluble HLA-E released from Japanese encephalitis virus infected cells. Immunol Lett 2014; 162:94-100. [PMID: 25086398 DOI: 10.1016/j.imlet.2014.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/10/2023]
Abstract
Productive infection of human endothelial cells with Japanese encephalitis virus (JEV), a single stranded RNA virus induces shedding of sHLA-E. We show here that sHLA-E that is released upon infection with this flavivirus can inhibit IL-2 and PMA mediated ERK 1/2 phosphorylation in two NK cell lines, Nishi and NKL. Virus infected or IFN-γ treated cell culture supernatants containing sHLA-E were found to partially inhibit IL-2 mediated induction of CD25 molecules on NKL cells. It was also found that sHLA-E could inhibit IL-2 induced [(3)H]-thymidine incorporation suggesting that, similar to cell surface expressed HLA-E, sHLA-E could also inhibit NK cell responses. Hence JEV-induced shedding of sHLA-E needs further investigation to better understand immune responses in JEV infections since it may have a role in viral evasion of NK cell responses.
Collapse
Affiliation(s)
- Shwetank
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Onkar Sanjay Date
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine "G Salvatore", University of Catanzaro Magna Graecia, Catanzaro 88100, Italy.
| | | |
Collapse
|
21
|
Kumar G, Date OS, Kim KS, Manjunath R. Infection of human amniotic and endothelial cells by Japanese encephalitis virus: Increased expression of HLA-F. Virology 2014; 471-473:29-37. [PMID: 25461528 DOI: 10.1016/j.virol.2014.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Productive infection of human amniotic and endothelial cell lines with Japanese encephalitis virus (JEV) was established leading to the induction of NFκB and HLA-F, a non-classical MHC molecule. Induction of the HLA-F gene and protein in JEV-infected cells was shown to be NFκB dependent since it was blocked by inhibitors of NFκB activation. ShRNA targeting lentivirus-mediated stable knockdown of the p65 subunit of NFκB inhibited JEV-mediated induction of HLA-F both in the amniotic cell line, AV-3 as well as the human brain microendothelial cell line, HBMEC. The induction of HLA-F by treatment of AV-3 with TNF-α was also inhibited by ShRNA mediated knockdown of NFκB. TNF-α treatment of HEK293T cells that were transfected with reporter plasmids under the control of HLA-F enhancer A elements resulted in significant transactivation of the luciferase reporter gene. NFκB-mediated induction of HLA-F following JEV infection and TNF-α exposure is being suggested for the first time.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Onkar Sanjay Date
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Kwang Sik Kim
- Department of pediatric infectious diseases, John Hopkins university school of medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
22
|
Hua RH, Li YN, Chen ZS, Liu LK, Huo H, Wang XL, Guo LP, Shen N, Wang JF, Bu ZG. Generation and characterization of a new mammalian cell line continuously expressing virus-like particles of Japanese encephalitis virus for a subunit vaccine candidate. BMC Biotechnol 2014; 14:62. [PMID: 25011456 PMCID: PMC4094896 DOI: 10.1186/1472-6750-14-62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/04/2014] [Indexed: 12/02/2022] Open
Abstract
Background Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis in most Asian regions. There is no specific treatment available for Japanese encephalitis, and vaccination is the only effective way to prevent JEV infection in humans and domestic animals. The purpose of this study is to establish a new mammalian cell line stably and efficiently expressing virus-like particle of JEV for potential use of JEV subunit vaccine. Results We generated a new cell clone (BJ-ME cells) that stably produces a secreted form of Japanese encephalitis virus (JEV) virus-like particle (VLP). The BJ-ME cells were engineered by transfecting BHK-21 cells with a code-optimized cDNA encoding JEV prM and E protein expression plasmid. Cell line BJ-ME can stably produces a secreted form of Japanese encephalitis virus virus-like particle (JEV-VLP) which contains the JEV envelope glycoprotein (E) and membrane protein (M). The amount of JEV-VLP antigen released into the culture fluid of BJ-ME cells was as high as 15–20 μg/ml. JEV-VLP production was stable after multiple cell passages and 100% cell expression was maintained without detectable cell fusion or apoptosis. Cell culture fluid containing the JEV-VLP antigen could be harvested five to seven times continuously at intervals of 4–6 days while maintaining the culture. Mice immunized with the JEV-VLP antigen with or without adjuvant developed high titers of neutralizing antibodies and 100% protection against lethal JEV challenge. Conclusion These results suggest that the recombinant JEV-VLP antigen produced by the BJ-ME cell line is an effective, safe and affordable subunit Japanese encephalitis vaccine candidate, especially for domestic animals such as pig and horse.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Maduan Street, Harbin 150001, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zu X, Liu Y, Wang S, Jin R, Zhou Z, Liu H, Gong R, Xiao G, Wang W. Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antiviral Res 2014; 104:7-14. [PMID: 24468276 DOI: 10.1016/j.antiviral.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022]
Abstract
Japanese encephalitis virus (JEV) is a major cause of acute viral encephalitis in both humans and animals. Domain III of the virus envelope glycoprotein (E DIII) plays an important role in the interaction of viral particles with host cell receptors to facilitate viral entry. Intervention of the interaction between E DIII and its cognate host cell receptor would provide an important avenue for inhibiting JEV infection. A phage display peptide library was therefore panned against E DIII, which resulted in the identification of several peptides. One peptide, named P3, inhibited JEV infection of BHK-21 cells with an IC₅₀ of ∼1 μM and an IC₉₀ at ∼100 μM. Further characterization revealed that P3 bound to E DIII with a K(d) of 6.06 × 10⁻⁶ M and inhibited JEV infection by interfering with viral attachment to cells. Based on in silico prediction by ZDOCK, P3 was found to interact with E DIII via a hydrophobic pocket, which was confirmed by the binding assay of P3 to the V357A mutant. P3 was hypothesized to bind to E DIII by interacting with the sties adjacent to the BC and DE loops, which might interfere with the binding of JEV to cellular receptors, thus impeding viral infection. This newly isolated peptide may represent a new therapeutic candidate for treatment of JEV.
Collapse
Affiliation(s)
- Xiangyang Zu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Rui Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Haibin Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Rui Gong
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| |
Collapse
|
24
|
Kasprzak WK, Shapiro BA. MPGAfold in dengue secondary structure prediction. Methods Mol Biol 2014; 1138:199-224. [PMID: 24696339 PMCID: PMC6354254 DOI: 10.1007/978-1-4939-0348-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
This chapter presents the computational prediction of the secondary structures within the 5' and 3' untranslated regions of the dengue virus serotype 2 (DENV2), with the focus on the conformational prediction of the two dumbbell-like structures, 5' DB and 3' DB, found in the core region of the 3' untranslated region of DENV2. For secondary structure prediction purposes we used a 719 nt-long subgenomic RNA construct from DENV2, which we refer to as the minigenome. The construct combines the 5'-most 226 nt from the 5' UTR and a fragment of the capsid coding region with the last 42 nt from the non-structural protein NS5 coding region and the 451 nt of the 3' UTR. This minigenome has been shown to contain the elements needed for translation, as well as negative strand RNA synthesis. We present the Massively Parallel Genetic Algorithm MPGAfold, a non-deterministic algorithm, that was used to predict the secondary structures of the DENV2 719 nt long minigenome construct, as well as our computational workbench called StructureLab that was used to interactively explore the solution spaces produced by MPGAfold. The MPGAfold algorithm is first introduced at the conceptual level. Then specific parameters guiding its performance are discussed and illustrated with a representative selection of the results from the study. Plots of the solution spaces generated by MPGAfold illustrate the algorithm, while selected secondary structures focus on variable formation of the dumbbell structures and other identified structural motifs. They also serve as illustrations of some of the capabilities of the StructureLab workbench. Results of the computational structure determination calculations are discussed and compared to the experimental data.
Collapse
|
25
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
26
|
Shwetank, Date OS, Kim KS, Manjunath R. Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E. PLoS One 2013; 8:e79197. [PMID: 24236107 PMCID: PMC3827286 DOI: 10.1371/journal.pone.0079197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-β and TNF-α production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-α as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-α and IFN-β as well as the dsRNA analog, poly (I:C). Both IFN-β and TNF-α further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.
Collapse
Affiliation(s)
- Shwetank
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Onkar S. Date
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kwang S. Kim
- Department of Pediatric Infectious Diseases, John Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | |
Collapse
|
27
|
Brien JD, Lazear HM, Diamond MS. Propagation, quantification, detection, and storage of West Nile virus. ACTA ACUST UNITED AC 2013; 31:15D.3.1-15D.3.18. [PMID: 24510289 DOI: 10.1002/9780471729259.mc15d03s31] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
West Nile virus (WNV) is a member of the Flaviviridae family of enveloped, single-stranded, positive-sense RNA viruses. WNV, an emerging viral pathogen, is transmitted by mosquitoes to birds and mammals and is responsible for an increasing incidence of human disease in North America and Europe. Due to its ease of use in the laboratory and the availability of robust mouse models of disease, WNV provides an excellent experimental system for studying molecular virology and pathogenesis of infection by flaviviruses. Here, we describe common laboratory techniques used to propagate, quantify, detect, and store WNV. We also briefly describe appropriate safety precautions required for the laboratory use of WNV, which is classified as a Biosafety Level 3 pathogen by the United States Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- James D Brien
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,These authors contributed equally to this work
| | - Helen M Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,These authors contributed equally to this work
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Patel P, Landt O, Kaiser M, Faye O, Koppe T, Lass U, Sall AA, Niedrig M. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses. Virol J 2013; 10:58. [PMID: 23410000 PMCID: PMC3616844 DOI: 10.1186/1743-422x-10-58] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/13/2013] [Indexed: 12/19/2022] Open
Abstract
Background The genus Flavivirus includes several pathogenic agents that cause severe illness in humans. Re-emergence of West Nile virus in Europe and continuous spread of certain flaviviruses such as dengue, yellow fever and Japanese encephalitis viruses represent a global danger to public health. Therefore, a rapid and accurate molecular method is required for diagnostics and epidemiological surveillance of flaviviruses. Methods A Pan-Flavi quantitative RT-PCR assay using a Locked-Nucleic Acid probe targeting the flavivirus NS5 gene was developed and optimized to detect a wide range of flaviviruses simultaneously. The specificity and sensitivity of the Pan-Flavi assay were tested using RNA of different flaviviruses and non-flaviviruses. Furthermore, the assay was compared directly to flavivirus species-specific assays for the ability to detect flaviviruses sensitively. Results Two degenerate primers and one Locked-Nucleic Acids probe were designed to amplify most of the flaviviruses. To increase the specificity and fluorescence signal of the Pan-Flavi assay for detection of yellow fever virus and dengue virus 4, additional primers and probes were included. Viral RNA of thirty different flaviviruses was detected, verifying the broad range specificity. The testing of this assay was successful, using standard plasmid and RNA dilutions of yellow fever virus vaccine strain, dengue virus 1 and tick-borne encephalitis virus, with a sensitivity limit of 10–100 genome copies/reaction. Also comparatively good results were achieved for detecting different flaviviruses by the Pan-Flavi assay when compared to the flavivirus species-specific assays. Conclusion The assay is rapid, broad-range flavivirus-specific and highly sensitive making it a valuable tool for rapid detection of flaviviruses in livestock samples, epidemiological studies or as useful complement to single flavivirus-specific assays for clinical diagnosis.
Collapse
Affiliation(s)
- Pranav Patel
- Robert Koch Institute, Center for Biological Security 1 (ZBS1), Nordufer 20, Berlin, 13353, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mendes YS, Alves NS, Souza TLF, Sousa IP, Bianconi ML, Bernardi RC, Pascutti PG, Silva JL, Gomes AMO, Oliveira AC. The structural dynamics of the flavivirus fusion peptide-membrane interaction. PLoS One 2012; 7:e47596. [PMID: 23094066 PMCID: PMC3477123 DOI: 10.1371/journal.pone.0047596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 09/18/2012] [Indexed: 11/18/2022] Open
Abstract
Membrane fusion is a crucial step in flavivirus infections and a potential target for antiviral strategies. Lipids and proteins play cooperative roles in the fusion process, which is triggered by the acidic pH inside the endosome. This acidic environment induces many changes in glycoprotein conformation and allows the action of a highly conserved hydrophobic sequence, the fusion peptide (FP). Despite the large volume of information available on the virus-triggered fusion process, little is known regarding the mechanisms behind flavivirus-cell membrane fusion. Here, we evaluated the contribution of a natural single amino acid difference on two flavivirus FPs, FLA(G) ((98)DRGWGNGCGLFGK(110)) and FLA(H) ((98)DRGWGNHCGLFGK(110)), and investigated the role of the charge of the target membrane on the fusion process. We used an in silico approach to simulate the interaction of the FPs with a lipid bilayer in a complementary way and used spectroscopic approaches to collect conformation information. We found that both peptides interact with neutral and anionic micelles, and molecular dynamics (MD) simulations showed the interaction of the FPs with the lipid bilayer. The participation of the indole ring of Trp appeared to be important for the anchoring of both peptides in the membrane model, as indicated by MD simulations and spectroscopic analyses. Mild differences between FLA(G) and FLA(H) were observed according to the pH and the charge of the target membrane model. The MD simulations of the membrane showed that both peptides adopted a bend structure, and an interaction between the aromatic residues was strongly suggested, which was also observed by circular dichroism in the presence of micelles. As the FPs of viral fusion proteins play a key role in the mechanism of viral fusion, understanding the interactions between peptides and membranes is crucial for medical science and biology and may contribute to the design of new antiviral drugs.
Collapse
Affiliation(s)
- Ygara S. Mendes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia S. Alves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Theo L. F. Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivanildo P. Sousa
- Programa de Vacinas Virais, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Lucia Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael C. Bernardi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro G. Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa C. Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
30
|
Mohanram H, Nip A, Domadia PN, Bhunia A, Bhattacharjya S. NMR structure, localization, and vesicle fusion of Chikungunya virus fusion peptide. Biochemistry 2012; 51:7863-72. [PMID: 22978677 DOI: 10.1021/bi300901f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The virus-host cell fusion process is mediated by a membrane anchored viral fusion protein that inserts its hydrophobic fusion peptide into the plasma membrane of the host cell, initiating the fusion reaction. Therefore, fusion peptides are an important functional constituent of the fusion proteins of enveloped viruses. In this work, we characterize the fusion peptide or VT18 (V(84)YPFMWGGAYCFCDAENT(101)) of Chikungunya virus (CHIKV) using NMR and fluorescence spectroscopy in zwitterionic lipid environments. Our results demonstrate that the VT18 peptide is able to induce liposome fusions in a pH independent manner and interacts with the zwitterionic lipid vesicles. The NMR derived three-dimensional structure of VT18, in solution of dodecylphosphocholine (DPC) micelles, is typified by extended or β-type conformations for most of the residues, whereby residues M88-W89-G90-G91 adopt a type I β-turn conformation. Strikingly, the aromatic side chains of residues Y85, F87, Y93, and F95 in the VT18 structure are found to be well-packed forming an aromatic core. In particular, residue F87 is situated at the center of the aromatic core establishing a close proximity with other aromatic side chains. Further, the aromatic core residues are also involved in packing interactions with the side chains of residues M88, C94. Paramagnetic relaxation enhancement NMR, using spin labeled doxyl lipids, indicated that the aromatic core residues of VT18 are well inserted into the micelles, whereas the polar residues at the C-terminus may be surface localized. The atomic resolution structure and lipid interactions of CHIKV fusion peptide presented here will aid to uncover the fusion mechanism by the type II viral fusion proteins.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore 637551
| | | | | | | | | |
Collapse
|
31
|
Hua RH, Bu ZG. A monoclonal antibody against PrM/M protein of Japanese encephalitis virus. Hybridoma (Larchmt) 2012; 30:451-6. [PMID: 22008072 DOI: 10.1089/hyb.2011.0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Japanese encephalitis virus (JEV) is a major public health threat in the Asia-Pacific region. The pre-membrane (PrM) protein of Japanese encephalitis virus is cleaved during maturation by the cellular protease into the structural protein M and a pr-segment. Here, we describe a procedure to generate monoclonal antibody (MAb) against JEV PrM/M protein and investigate its characteristics. Western blot analysis showed that the MAbs produced in this study were against JEV PrM/M specifically. Indirect immunofluorescence assay demonstrated that they could recognize native PrM/M protein in JEV-infected BHK-21 cells. Preliminary studies identified the epitope of the MAb with a set of synthesized overlapping peptides covering the whole length of PrM protein of JEV. The MAbs reported here may provide valuable tools for the further exploration of biological properties and functions of PrM/M protein and may also be developed for potential clinical applications.
Collapse
Affiliation(s)
- Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | | |
Collapse
|
32
|
Sotelo E, Fernández-Pinero J, Jiménez-Clavero MÁ. La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enferm Infecc Microbiol Clin 2012; 30:75-83. [DOI: 10.1016/j.eimc.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
|
33
|
Langevin SA, Bowen RA, Ramey WN, Sanders TA, Maharaj PD, Fang Y, Cornelius J, Barker CM, Reisen WK, Beasley DWC, Barrett ADT, Kinney RM, Huang CYH, Brault AC. Envelope and pre-membrane protein structural amino acid mutations mediate diminished avian growth and virulence of a Mexican West Nile virus isolate. J Gen Virol 2011; 92:2810-2820. [PMID: 21865445 DOI: 10.1099/vir.0.035535-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hallmark attribute of North American West Nile virus (WNV) strains has been high pathogenicity in certain bird species. Surprisingly, this avian virulent WNV phenotype has not been observed during its geographical expansion into the Caribbean, Central America and South America. One WNV variant (TM171-03-pp1) isolated in Mexico has demonstrated an attenuated phenotype in two widely distributed North American bird species, American crows (AMCRs) and house sparrows (HOSPs). In order to identify genetic determinants associated with attenuated avian replication of the TM171-03-pp1 variant, chimeric viruses between the NY99 and Mexican strains were generated, and their replicative capacity was assessed in cell culture and in AMCR, HOSP and house finch avian hosts. The results demonstrated that mutations in both the pre-membrane (prM-I141T) and envelope (E-S156P) genes mediated the attenuation phenotype of the WNV TM171-03-pp1 variant in a chicken macrophage cell line and in all three avian species assayed. Inclusion of the prM-I141T and E-S156P TM171-03-pp1 mutations in the NY99 backbone was necessary to achieve the avian attenuation level of the Mexican virus. Furthermore, reciprocal incorporation of both prM-T141I and E-P156S substitutions into the Mexican virus genome was necessary to generate a virus that exhibited avian virulence equivalent to the NY99 virus. These structural changes may indicate the presence of new evolutionary pressures exerted on WNV populations circulating in Latin America or may signify a genetic bottleneck that has constrained their epiornitic potential in alternative geographical locations.
Collapse
Affiliation(s)
- Stanley A Langevin
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanichaya N Ramey
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Todd A Sanders
- Colorado Division of Wildlife, Fort Collins, CO 80526, USA
| | - Payal D Maharaj
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ying Fang
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jennine Cornelius
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Christopher M Barker
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - William K Reisen
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - David W C Beasley
- Departments of Pathology and Microbiology and Immunology, Center for Emerging Infectious Diseases and Biodefense, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D T Barrett
- Departments of Pathology and Microbiology and Immunology, Center for Emerging Infectious Diseases and Biodefense, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Richard M Kinney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Claire Y-H Huang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.,Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
34
|
Setoh Y, Hobson-Peters J, Prow N, Young P, Hall R. Expression of recombinant West Nile virus prM protein fused to an affinity tag for use as a diagnostic antigen. J Virol Methods 2011; 175:20-7. [DOI: 10.1016/j.jviromet.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/04/2011] [Accepted: 04/11/2011] [Indexed: 11/28/2022]
|
35
|
Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R. Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 2011; 286:22521-34. [PMID: 21515677 PMCID: PMC3121397 DOI: 10.1074/jbc.m111.234302] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Using the massively parallel genetic algorithm for RNA folding, we show that the core region of the 3'-untranslated region of the dengue virus (DENV) RNA can form two dumbbell structures (5'- and 3'-DBs) of unequal frequencies of occurrence. These structures have the propensity to form two potential pseudoknots between identical five-nucleotide terminal loops 1 and 2 (TL1 and TL2) and their complementary pseudoknot motifs, PK2 and PK1. Mutagenesis using a DENV2 replicon RNA encoding the Renilla luciferase reporter indicated that all four motifs and the conserved sequence 2 (CS2) element within the 3'-DB are important for replication. However, for translation, mutation of TL1 alone does not have any effect; TL2 mutation has only a modest effect in translation, but translation is reduced by ∼60% in the TL1/TL2 double mutant, indicating that TL1 exhibits a cooperative synergy with TL2 in translation. Despite the variable contributions of individual TL and PK motifs in translation, WT levels are achieved when the complementarity between TL1/PK2 and TL2/PK1 is maintained even under conditions of inhibition of the translation initiation factor 4E function mediated by LY294002 via a noncanonical pathway. Taken together, our results indicate that the cis-acting RNA elements in the core region of DENV2 RNA that include two DB structures are required not only for RNA replication but also for optimal translation.
Collapse
Affiliation(s)
- Mark Manzano
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Erin D. Reichert
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Stephanie Polo
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | - Barry Falgout
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | | | - Bruce A. Shapiro
- the Center for Cancer Research Nanobiology Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Radhakrishnan Padmanabhan
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| |
Collapse
|
36
|
Umamaheswari A, Kumar MM, Pradhan D, Marisetty H. Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus. Interdiscip Sci 2011; 3:64-77. [PMID: 21369890 DOI: 10.1007/s12539-011-0064-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/18/2022]
Abstract
Yellow fever is among one of the most lethal viral diseases for which approved antiviral therapies were yet to be discovered. Herein, functional assignment of complete YFV proteome was done through support vector machine. Major envelope (E) protein that mediates entry of YFV into host cell was selected as a potent molecular target. Three dimensional structure of the molecular target was predicted using Modeller9v7. The model was optimized in Maestro9.0 applying OPLS AA force field and was evaluated using PROCHECK, ProSA, ProQ and Profile 3D. The BOG pocket residues Val48, Glu197, Thr200, Ile204, Thr265, Thr268 and Gly278 were located in YFV E protein using SiteMap2.3. More than one million compounds of Ligandinfo Meta database were explored using a computational virtual screening protocol targeting BOG pocket of the E protein. Finally, ten top ranked lead molecules with strong binding affinity to BOG pocket of YFV E protein were identified based on XP Gscore. Drug likeliness and comparative bioactivity analysis for these leads using QikProp3.2 had shown that these molecules would have the potential to act as better drug. Thus, the 10 lead molecules suggested in the present study would be of interest as promising starting point for designing antiviral compound against yellow fever.
Collapse
Affiliation(s)
- Amineni Umamaheswari
- SVIMS Bioinformatics Centre, Department of Bioinformatics, SVIMS University, Tirupati, 517507, AP, India.
| | | | | | | |
Collapse
|
37
|
Chen Z, Lin X, Zhang Z, Huang J, Fu S, Huang R. EXO70 protein influences dengue virus secretion. Microbes Infect 2010; 13:143-50. [PMID: 21034848 DOI: 10.1016/j.micinf.2010.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
The involvement of host proteins in assisting the exocytosis of flaviviruses is largely unknown. In this study, we aimed to investigate if dengue virus (DENV) utilizes the exocyst components to aid the exocytosis of virus particles. This study identified that EXO70 protein, a member of the exocyst complex influenced DENV infection. Dengue virus production was significantly attenuated in EXO70 knock-down cells. EXO70 did not influence viral transcription and translation. It influenced virus egression/secretion from DENV-infected cells. We also showed that EXO70 expression was up-regulated from 18 h post-infection following DENV infection. Although the envelope protein of DENV influenced EXO70 expression, the co-expression of pre-membrane and envelope proteins significantly increased the expression levels of EXO70 during DENV infection. When pre-membrane protein was expressed alone, there was no significant difference in the expression levels of EXO70. This indicated that the presence of pre-membrane protein might help in the proper folding of envelope protein. Increased expression levels of EXO70 might help in the exocytosis process of virus or subviral particles.
Collapse
Affiliation(s)
- Zhaoni Chen
- Department of Pharmacology, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Japanese encephalitis virus utilizes the canonical pathway to activate NF-kappaB but it utilizes the type I interferon pathway to induce major histocompatibility complex class I expression in mouse embryonic fibroblasts. J Virol 2010; 84:5485-93. [PMID: 20357096 DOI: 10.1128/jvi.02250-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappaB. Using IKK1(-/-), IKK2(-/-), NEMO(-/-), and IKK1(-/-) IKK2(-/-) double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappaB in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappaB DNA binding activity induced upon virus infection was shown to be composed of RelA:p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappaB activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappaB-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappaB for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappaB-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappaB could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.
Collapse
|
39
|
In vitro reconstitution reveals key intermediate states of trimer formation by the dengue virus membrane fusion protein. J Virol 2010; 84:5730-40. [PMID: 20335260 DOI: 10.1128/jvi.00170-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flavivirus dengue virus (DV) infects cells through a low-pH-triggered membrane fusion reaction mediated by the viral envelope protein E. E is an elongated transmembrane protein with three domains and is organized as a homodimer on the mature virus particle. During fusion, the E protein homodimer dissociates, inserts the hydrophobic fusion loop into target membranes, and refolds into a trimeric hairpin in which domain III (DIII) packs against the central trimer. It is clear that E refolding drives membrane fusion, but the steps in hairpin formation and their pH requirements are unclear. Here, we have used truncated forms of the DV E protein to reconstitute trimerization in vitro. Protein constructs containing domains I and II (DI/II) were monomeric and interacted with membranes to form core trimers. DI/II-membrane interaction and trimerization occurred efficiently at both neutral and low pH. The DI/II core trimer was relatively unstable and could be stabilized by binding exogenous DIII or by the formation of mixed trimers containing DI/II plus E protein with all three domains. The mixed trimer had unoccupied DIII interaction sites that could specifically bind exogenous DIII at either low or neutral pH. Truncated DV E proteins thus reconstitute hairpin formation and define properties of key domain interactions during DV fusion.
Collapse
|
40
|
Kozlovskaya L, Osolodkin D, Shevtsova A, Romanova L, Rogova Y, Dzhivanian T, Lyapustin V, Pivanova G, Gmyl A, Palyulin V, Karganova G. GAG-binding variants of tick-borne encephalitis virus. Virology 2010; 398:262-72. [DOI: 10.1016/j.virol.2009.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/25/2009] [Accepted: 12/10/2009] [Indexed: 11/30/2022]
|
41
|
MKRN1 induces degradation of West Nile virus capsid protein by functioning as an E3 ligase. J Virol 2010; 84:426-36. [PMID: 19846531 DOI: 10.1128/jvi.00725-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
West Nile virus capsid protein (WNVCp) displays pathogenic toxicity via the apoptotic pathway. However, a cellular mechanism protective against this toxic effect has not been observed so far. Here, we identified Makorin ring finger protein 1 (MKRN1) as a novel E3 ubiquitin ligase for WNVCp. The cytotoxic effects of WNVCp as well as its expression levels were inhibited in U2OS cells that stably expressed MKRN1. Immunoprecipitation analyses revealed an interaction between MKRN1 and WNVCp. Domain analysis indicated that the C terminus of MKRN1 and the N terminus of WNVCp were required for the interaction. MKRN1 could induce WNVCp ubiquitination and degradation in a proteasome-dependent manner. Interestingly, the WNVCp mutant with amino acids 1 to 105 deleted WNVCp was degraded by MKRN1, whereas the mutant with amino acids 1 to 90 deleted was not. When three lysine sites at positions 101, 103, and 104 of WNVCp were replaced with alanine, MKRN1-mediated ubiquitination and degradation of the mutant were significantly inhibited, suggesting that these sites are required for the ubiquitination. Finally, U2OS cell lines stably expressing MKRN1 were resistant to cytotoxic effects of WNV. In contrast, cells depleted of MKRN1 were more susceptible to WNVCp cytotoxicity. Confirming this, overexpression of MKRN1 significantly reduced, but depletion of MKRN1 increased, WNV proliferation in 293T cells. Taken together, our results suggest that MKRN1 can protect cells from WNV by inducing WNVCp degradation.
Collapse
|
42
|
Abstract
Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies.
Collapse
Affiliation(s)
- Cornelia Schroeder
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307, Dresden, Germany.
| |
Collapse
|
43
|
Huang CYH, Butrapet S, Moss KJ, Childers T, Erb SM, Calvert AE, Silengo SJ, Kinney RM, Blair CD, Roehrig JT. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion. Virology 2009; 396:305-15. [PMID: 19913272 DOI: 10.1016/j.virol.2009.10.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/28/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.
Collapse
Affiliation(s)
- Claire Y-H Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, 3150 Rampart Rd., Fort Collins, CO 80521, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ciczora Y, Callens N, Séron K, Rouillé Y, Dubuisson J. Identification of a dominant endoplasmic reticulum-retention signal in yellow fever virus pre-membrane protein. J Gen Virol 2009; 91:404-14. [PMID: 19846669 DOI: 10.1099/vir.0.015339-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Yellow fever virus (YFV) encodes two envelope proteins, pre-membrane (prM) and envelope (E), that accumulate in the endoplasmic reticulum (ER). The C termini of prM and E form two antiparallel transmembrane alpha-helices that contain ER-retention signals. To understand further the ER retention of the prME heterodimer, we characterized the subcellular localization of chimeric proteins made of a reporter protein fused to the transmembrane segments of YFV envelope proteins. We showed that at least three of the transmembrane segments of the prME heterodimer are ER-retention signals. Interestingly, increasing the length of these alpha-helices led to the export of the chimeric proteins out of the ER. Furthermore, adding a diacidic export signal at the C terminus of the first transmembrane segment of the E protein also induced export to the cell surface. However, adding this export signal at the C terminus of the first transmembrane segment of E in the context of prME did not change the subcellular localization of the prME heterodimer, suggesting the presence of a stronger ER-retention signal outside the first transmembrane segment of E. Importantly, the diacidic export motif added to the C terminus of the first transmembrane segment of the prM protein was not sufficient to export a chimeric protein out of the ER, indicating that this sequence is a dominant ER-retention signal. Together, these data indicate that a combination of several signals of different strengths contributes to the ER retention of the YFV envelope protein heterodimer.
Collapse
Affiliation(s)
- Yann Ciczora
- Université Lille Nord de France, F-59000 Lille, France
| | | | | | | | | |
Collapse
|
45
|
Sultana H, Foellmer HG, Neelakanta G, Oliphant T, Engle M, Ledizet M, Krishnan MN, Bonafé N, Anthony KG, Marasco WA, Kaplan P, Montgomery RR, Diamond MS, Koski RA, Fikrig E. Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody. THE JOURNAL OF IMMUNOLOGY 2009; 183:650-60. [PMID: 19535627 DOI: 10.4049/jimmunol.0900093] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.
Collapse
Affiliation(s)
- Hameeda Sultana
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim SY, Jeong YE, Yun SM, Lee IY, Han MG, Ju YR. Molecular evidence for tick-borne encephalitis virus in ticks in South Korea. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:15-20. [PMID: 19239610 DOI: 10.1111/j.1365-2915.2008.00755.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To investigate whether tick-borne encephalitis viruses (TBEVs) are present in South Korea, Korean ixodid ticks were tested for TBEV RNA. Ticks (n = 2460) were collected from wild and domestic animals or by flagging at forest and grassland in 12 regions of five provinces in 2005-06. Four species in two genera were identified, yielding 197 sample pools (1-20 ticks per pool); from these, 12 envelope protein gene fragments of TBEV were amplified by reverse transcriptase-nested polymerase chain reaction (RT-nested PCR). Ten of the 2104 adult ticks (0.4%) and two of the 356 nymph ticks (0.2%) were positive for the envelope (E) gene of TBEV. Twelve TBEV RNA-positive samples were detected in Gyeonggi and Gangwon provinces. Phylogenetic analysis showed that the E genes of the TBEV isolates were clustered with the Western European subtype (98% identity). This study suggests that TBEVs may exist in Korea.
Collapse
Affiliation(s)
- S Y Kim
- Division of Arboviruses, Center for Immunology and Pathology, National Institute of Health, Centers for Disease Control and Prevention, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Ferreira GP, Trindade GS, Vilela JMC, Da Silva MIN, Andrade MS, Kroon EG. Climbing the steps of viral atomic force microscopy: visualization of Dengue virus particles. J Microsc 2008; 231:180-5. [PMID: 18638201 DOI: 10.1111/j.1365-2818.2008.02028.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, the application of atomic force microscopy (AFM) to biological systems has highlighted the potential of this technology. AFM provides insights into studies of biological structures and interactions and can also identify and characterize a large panel of pathogens, including viruses. The Flaviviridae family contains a number of viruses that are important human and animal pathogens. Among them, Dengue virus causes epidemics with fatal outcomes mainly in the tropics. In this study, Dengue virus is visualized for the first time using the in air AFM technique. Images were obtained from a potassium-tartrate gradient-purified virus. This study enhances the application of AFM as a novel tool for the visualization and characterization of virus particles. Because flavivirus members are closely related, studies of the morphologic structure of the Dengue virus can reveal strategies that may be useful to identify and study other important viruses in the family, including the West Nile virus.
Collapse
Affiliation(s)
- G P Ferreira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, caixa postal 486, CEP 31270-901, Belo Horizonte, MG, Brasil
| | | | | | | | | | | |
Collapse
|
48
|
Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J Virol 2008; 82:9245-53. [PMID: 18632857 DOI: 10.1128/jvi.00975-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.
Collapse
|
49
|
Li Z, Khaliq M, Zhou Z, Post CB, Kuhn RJ, Cushman M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J Med Chem 2008; 51:4660-71. [PMID: 18610998 DOI: 10.1021/jm800412d] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavivirus envelope proteins (E proteins) have been shown to play a pivotal role in virus assembly, morphogenesis, and infection of host cells. Inhibition of flavivirus infection of a host cell by means of a small molecule envelope protein antagonist is an attractive strategy for the development of antiviral agents. Virtual screening of the NCI chemical database using the dengue virus envelope protein structure revealed several hypothetical hit compounds. Bioassay results identified a class of thiazole compounds with antiviral potency in cell-based assays. Modification of these lead compounds led to a series of analogues with improved antiviral activity and decreased cytotoxicity. The most active compounds 11 and 36 were effective in the low micromolar concentration range in a cellular assay system.
Collapse
Affiliation(s)
- Ze Li
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences and the PurdueCancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abd-Jamil J, Cheah CY, AbuBakar S. Dengue virus type 2 envelope protein displayed as recombinant phage attachment protein reveals potential cell binding sites. Protein Eng Des Sel 2008; 21:605-611. [DOI: 10.1093/protein/gzn041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|