1
|
Jiang CS, Schrader M. Modelling Peroxisomal Disorders in Zebrafish. Cells 2025; 14:147. [PMID: 39851575 PMCID: PMC11764017 DOI: 10.3390/cells14020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by PEX genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication. Defects in peroxins or peroxisomal enzymes can result in severe disorders, including developmental and neurological abnormalities. The drive to understand the role of peroxisomes in human health and disease, as well as their functions in tissues and organs or during development, has led to the establishment of vertebrate models. The zebrafish (Danio rerio) has become an attractive vertebrate model organism to investigate peroxisomal functions. Here, we provide an overview of the visualisation of peroxisomes in zebrafish, as well as the peroxisomal metabolic functions and peroxisomal protein inventory in comparison to human peroxisomes. We then present zebrafish models which have been established to investigate peroxisomal disorders. These include model zebrafish for peroxisome biogenesis disorders/Zellweger Spectrum disorders, and single enzyme deficiencies, particularly adrenoleukodystrophy and fatty acid beta-oxidation abnormalities. Finally, we highlight zebrafish models for deficiencies of dually targeted peroxisomal/mitochondrial proteins. Advantages for the investigation of peroxisomes during development and approaches to the application of zebrafish models for drug screening are discussed.
Collapse
Affiliation(s)
| | - Michael Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
2
|
Diaz de Cerio O, Bilbao E, Izagirre U, Etxebarria N, Moreno G, Díez G, Cajaraville MP, Cancio I. Toxicology tailored low density oligonucleotide microarray for the thicklip grey mullets (Chelon labrosus): Biomarker gene transcription profile after caging in a polluted harbour. MARINE ENVIRONMENTAL RESEARCH 2018; 140:265-277. [PMID: 30042060 DOI: 10.1016/j.marenvres.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
In aquatic organisms inhabiting polluted waters genes are activated to build an adaptive/compensatory defence against the possible effects of pollutants. Such responses can be used as biomarkers of exposure to chemical compounds, outlining the molecular mechanisms activated under specific pollution scenarios. With the aim of exploiting such approach in environmental health assessment, toxicologically relevant gene fragments were sequenced in the thicklip grey mullet (Chelon labrosus) and a toxicologically tailored low-density (160 genes) oligonucleotide microarray was customised. The tool was validated comparing organ/sex specific gene expression profiles and characterising responses under laboratory exposure to model chemicals. Finally, juvenile mullets were caged in a polluted harbour and hepatic gene expression profiles analysed after 5 and 21 days of deployment. Cages were deployed in the inner (IH) and outer (OH) Pasaia harbour, Bay of Biscay. Mussels (Mytilus galloprovincialis) were also caged as biological matrix for chemical bioaccumulation analysis and stress biomarkers measurements. Slightly higher concentrations of chemicals (metals, tributyltin, PAHs, phthalates) were quantified in IH than in OH, fish bile metabolites also revealing higher availability of PAHs in IH. Lysosome membrane stability in mussels was reduced, indicating stress condition in both sites. The developed microarray discriminated mullets showing distinctive expression profiles depending on site and deployment time. Genes related to immune and hypoxia responses were regulated comparing IH and OH at day 5. Phase I and II biotransformation genes, such as cyp2, cyp3 and ugt, were up-regulated in IH, together with the aryl hydrocarbon receptor 2 (ahr2) and the ahr repressor. Similarly, TBT-binding proteins and genes involved in lipid metabolism (pparγ, cyp7) were up-regulated with deployment time. Even if nowadays higher throughput approaches for gene expression analyses are available, the developed mullet tool constitutes a comprehensive tool to assess molecular responses of mullets exposed to pollutants, although it remains to be explored whether it can be applied to assess pollutant exposure in active pollution monitorings and in environmental health assessment.
Collapse
Affiliation(s)
- O Diaz de Cerio
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - E Bilbao
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - U Izagirre
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - N Etxebarria
- IBEA Res Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Analytical Chemistry Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - G Moreno
- International Seafood Sustainability Foundation (ISSF), 805 15th Street NW, Washington, DC, 20005, USA
| | - G Díez
- AZTI, Marine Research Division, Txatxarramendi irla z/g, 48395, Sukarrieta, Bizkaia, Spain
| | - M P Cajaraville
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - I Cancio
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain.
| |
Collapse
|
3
|
Marigómez I, Zorita I, Izagirre U, Ortiz-Zarragoitia M, Navarro P, Etxebarria N, Orbea A, Soto M, Cajaraville MP. Combined use of native and caged mussels to assess biological effects of pollution through the integrative biomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:32-48. [PMID: 23643723 DOI: 10.1016/j.aquatox.2013.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
Native and caged mussels were used in combination for the monitoring of pollution biological effects through an integrative biomarker approach. Mussels (Mytilus galloprovincialis) were deployed in cages in two well-known model localities with different pollution levels in the Basque coast. After 3 weeks caged and native mussels were collected from each site and a suite of effect and exposure biomarkers (from molecular/cellular to organism level) was applied and chemical contaminants (metals, PAHs, PCBs, phthalates and nonylphenol ethoxylates) were analytically determined. Integrative biomarker indices and pollutant indices of tissues were calculated. Several biomarkers used herein responded similarly in native and caged mussels, whereas others exhibited significant differences. Overall, biomarkers in-a-suite depicted site-specific profiles useful for the diagnostic of mussel health status and therefore for ecosystem health assessment in marine pollution biomonitoring. On the other hand, biomarkers and bioaccumulation exhibited different response times, which was especially evident when comparing biomarker and pollutant indices of tissues. The suite of biomarkers was more sensitive after caging (short-term response), whereas tissue pollutant concentrations were more sensitive in native mussels (long-term response). Thus, the combination of native and caged mussels is highly recommended to monitor biological effects of pollution in mussels through the integrative biomarker approach, especially in chronically polluted sites.
Collapse
Affiliation(s)
- Ionan Marigómez
- CBET Res Grp, Res Ctr Experimental Marine Biology & Biotechnology (PIE) & Zoology & Cell Biology Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Minguez L, Boiché A, Sroda S, Mastitsky S, Brulé N, Bouquerel J, Giambérini L. Cross-effects of nickel contamination and parasitism on zebra mussel physiology. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:538-547. [PMID: 22076027 DOI: 10.1007/s10646-011-0814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are exposed to pollution which may make them more susceptible to infections and diseases. The present investigation evaluated effects of nickel contamination and parasitism (ciliates Ophryoglena spp. and intracellular bacteria Rickettsiales-like organisms), alone and in combination, on biological responses of the zebra mussel Dreissena polymorpha, and also the infestation abilities of parasites, under laboratory controlled conditions. Results showed that after 48 h, more organisms were infected in nickel-exposed groups, which could be related to weakening of their immune system. Acting separately, nickel contamination and infections were already stressful conditions; however, their combined action caused stronger biological responses in zebra mussels. Our data, therefore, confirm that the parasitism in D. polymorpha represents a potential confounding factor in ecotoxicological studies that involve this bivalve.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université Paul Verlaine-Metz, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Minguez L, Buronfosse T, Beisel JN, Giambérini L. Parasitism can be a confounding factor in assessing the response of zebra mussels to water contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 162:234-240. [PMID: 22243869 DOI: 10.1016/j.envpol.2011.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Biological responses measured in aquatic organisms to monitor environmental pollution could be also affected by different biotic and abiotic factors. Among these environmental factors, parasitism has often been neglected even if infection by parasites is very frequent. In the present field investigation, the parasite infra-communities and zebra mussel biological responses were studied up- and downstream a waste water treatment plant in northeast France. In both sites, mussels were infected by ciliates and/or intracellular bacteria, but prevalence rates and infection intensities were different according to the habitat. Concerning the biological responses differences were observed related to the site quality and the infection status. Parasitism affects both systems but seemed to depend mainly on environmental conditions. The influence of parasites is not constant, but remains important to consider it as a potential confounding factor in ecotoxicological studies. This study also emphasizes the interesting use of integrative indexes to synthesize data set.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université Paul Verlaine-Metz, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | | | | | | |
Collapse
|
6
|
Brooks S, Harman C, Zaldibar B, Izagirre U, Glette T, Marigómez I. Integrated biomarker assessment of the effects exerted by treated produced water from an onshore natural gas processing plant in the North Sea on the mussel Mytilus edulis. MARINE POLLUTION BULLETIN 2011; 62:327-39. [PMID: 21055778 DOI: 10.1016/j.marpolbul.2010.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/11/2010] [Accepted: 10/15/2010] [Indexed: 05/04/2023]
Abstract
The biological impact of a treated produced water (PW) was investigated under controlled laboratory conditions in the blue mussel, Mytilus edulis. Mussel health status was assessed using an integrated biomarker approach in combination with chemical analysis of both water (with SPMDs), and mussel tissues. Acyl-CoA oxidase activity, neutral lipid accumulation, catalase activity, micronuclei formation, lysosomal membrane stability in digestive cells and haemocytes, cell-type composition in digestive gland epithelium, and the integrity of the digestive gland tissue were measured after 5 week exposure to 0%, 0.01%, 0.1%, 0.5% and 1% PW. The suite of biomarkers employed were sensitive to treated PW exposure with significant sublethal responses found at 0.01-0.5% PW, even though individual chemical compounds of PW were at extremely low concentrations in both water and mussel tissues. The study highlights the benefits of an integrated biomarker approach for determining the potential effects of exposure to complex mixtures at low concentrations. Biomarkers were integrated in the Integrative Biological Response (IBR/n) index.
Collapse
Affiliation(s)
- Steven Brooks
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
7
|
Bilbao E, Raingeard D, de Cerio OD, Ortiz-Zarragoitia M, Ruiz P, Izagirre U, Orbea A, Marigómez I, Cajaraville MP, Cancio I. Effects of exposure to Prestige-like heavy fuel oil and to perfluorooctane sulfonate on conventional biomarkers and target gene transcription in the thicklip grey mullet Chelon labrosus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:282-296. [PMID: 20362344 DOI: 10.1016/j.aquatox.2010.02.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 05/29/2023]
Abstract
Thicklip grey mullets Chelon labrosus inhabit coastal and estuarine areas where they can be chronically exposed to commonly released pollutants such as polycyclic aromatic hydrocarbons (PAHs) and perfluorinated compounds. These pollutants can also originate from accidental spills, such as the Prestige oil spill in 2002, which resulted in the release of a heavy fuel oil that affected coastal ecosystems in the Bay of Biscay. Peroxisome proliferation (PP), induced biotransformation metabolism, immunosuppression and endocrine disruption are some of the possible biological effects caused by such chemicals. With the aim of studying the effects of organic toxic chemicals on such biological processes at the transcriptional and at the cell/tissue level, juvenile mullets were exposed to the typical mammalian peroxisome proliferator perfluorooctane sulfonate (PFOS), and to fresh (F) and weathered (WF) Prestige-like heavy fuel oil for 2 and 16 days. First, fragments of genes relevant to biotransformation, immune/inflammatory and endocrine disruption processes were cloned using degenerate primers. Fuel oil elicited a significant PP response as proved by the transcriptional upregulation of palmitoyl-CoA oxidase (aox1), peroxisome proliferator activated receptor alpha (pparalpha) and retinoic X receptor, by the AOX1 activity induction and by the increased peroxisomal volume density. PFOS only elicited a significant induction of AOX1 activity at day 2 and of PPARalpha mRNA expression at day 16. All treatments significantly increased catalase mRNA expression at day 16 in liver and at day 2 in gill. Cyp1a transcription (liver and gill) and EROD activity were induced in fuel oil treated organisms. In the case of phase II metabolism only hepatic glutathione S-transferase mRNA was overexpressed in mullets exposed to WF for 16 days. Functionally, this response was reflected in a significant accumulation of bile PAH metabolites. WF treated fish accumulated mainly high molecular weight metabolites while F exposure resulted in accumulation of mainly low molecular ones. Fuel oil significantly regulated immune response related complement component C3 and hepcidin transcription followed by a significant regulation of inflammatory response related apolipoprotein-A1 and fatty acid binding protein mRNAs at day 16. These responses were accompanied by a significant hepatic inflammatory response with lymphocyte accumulations (IRLA) and accumulation of melanomacrophage centers (MMC). PFOS did not elicit any transcriptional response in the studied biotransformation and immune related genes, although histologically significant effects were recorded in IRLA and MMC. A significant reduction of lysosomal membrane stability was observed in all exposed animals. No endocrine disruption effects were observed in liver while brain aromatase mRNA was overexpressed after all treatments at day 2 and estrogen receptor alpha was downregulated under WF exposure at day 16. These results show new molecular and cellular biomarkers of exposure to organic chemicals and demonstrate that in mullets PP could be regulated through molecular mechanisms similar to those in rodents, although the typical mammalian peroxisome proliferator PFOS and heavy fuel oil follow divergent mechanisms of action.
Collapse
Affiliation(s)
- E Bilbao
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - D Raingeard
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - O Diaz de Cerio
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - M Ortiz-Zarragoitia
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - P Ruiz
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - U Izagirre
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - A Orbea
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - I Marigómez
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - M P Cajaraville
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain
| | - I Cancio
- Laboratory of Cell Biology and Histology; Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
8
|
Bilbao E, Cajaraville MP, Cancio I. Cloning and expression pattern of peroxisomal β-oxidation genes palmitoyl-CoA oxidase, multifunctional protein and 3-ketoacyl-CoA thiolase in mussel Mytilus galloprovincialis and thicklip grey mullet Chelon labrosus. Gene 2009; 443:132-42. [DOI: 10.1016/j.gene.2009.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/24/2009] [Accepted: 05/13/2009] [Indexed: 11/17/2022]
|
9
|
Zorita I, Ortiz-Zarragoitia M, Apraiz I, Cancio I, Orbea A, Soto M, Marigómez I, Cajaraville MP. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using red mullets as sentinel organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 153:157-68. [PMID: 17869394 DOI: 10.1016/j.envpol.2007.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 07/09/2007] [Accepted: 07/13/2007] [Indexed: 05/17/2023]
Abstract
A biomonitoring program was carried out in spring and autumn in three pollution hot-spots and sensitive areas of the NW Mediterranean Sea using red mullets (Mullus barbatus) as sentinel organisms and a battery of biomarkers together with gonad histology. In fish from anthropogenic impacted areas (Fos-sur-mer, Cortiou, Arenzano, Delta of Ebro) lysosomal membrane destabilization occurred indicating disturbed health. There were no significant differences in metallothionein (MT) levels among stations. Peroxisomal acyl-CoA oxidase (AOX) activity was highest in fish from Cortiou. Both MT levels and AOX activities were significantly correlated with gamete development. Prevalence of melanomacrophage centers were high in Cortiou in all samplings and in Fos-sur-mer in September samplings. In conclusion, the application of a battery of biomarkers in red mullets provided relevant data for the assessment of environmental pollution in the NW Mediterranean Sea but also showed the difficulties of using native fish as sentinels. For future studies caging strategies are recommended.
Collapse
Affiliation(s)
- Izaskun Zorita
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Bilbao, Basque Country, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zaldibar B, Cancio I, Soto M, Marigómez I. Digestive cell turnover in digestive gland epithelium of slugs experimentally exposed to a mixture of cadmium and kerosene. CHEMOSPHERE 2007; 70:144-54. [PMID: 17706745 DOI: 10.1016/j.chemosphere.2007.06.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/01/2007] [Accepted: 06/19/2007] [Indexed: 05/16/2023]
Abstract
Slugs, Arion ater (L), have been proposed as sentinel organisms to assess soil health. In slugs under the influence of pollutants, digestive cell loss and the concomitant increase of excretory cells of the digestive gland have been described. The aim of the present work was to determine up to what extent digestive cell loss affects biomarkers and whether the affectation is reversible after exposure to a mixture of metal and organic pollutants. Slugs were dosed with a mixture of cadmium and kerosene in the food for 27 days. Apart from chemical analyses, the volume density of black silver deposits (Vv(BSD)) after autometallography, and acyl-CoA oxidase (AOX) activity were used as biomarkers of exposure to metals and organic compounds, respectively. As effect biomarkers, changes in the volume density of the cell types that constitute the digestive gland epithelium were calculated. Proliferating cells were identified by means of bromodeoxyuridine (BrdU) immunohistochemistry. Results revealed that the mixture of pollutants provoked an increase in Vv(BSD) and AOX activity and a decrease in the number of digestive cells. These changes had no effect in the digestive gland accumulation capacity or in the effect and exposure biomarkers employed. BrdU-labelling showed that exposure to pollutants provoked an enhanced digestive cell proliferation.
Collapse
Affiliation(s)
- B Zaldibar
- Cell Biology & Histology Lab, Zoology & Animal Cell Biology Department, School of Science & Technology, University of the Basque Country, Bilbo, Basque Country, Spain
| | | | | | | |
Collapse
|
11
|
Osako K, Saito H, Hossain MA, Kuwahara K, Okamoto A. Docosahexaenoic acid levels in the lipids of spotted mackerel Scomber australasicus. Lipids 2006; 41:713-20. [PMID: 17069355 DOI: 10.1007/s11745-006-5022-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The lipid and FA compositions of various organs and of the stomach contents of Scomber australasicus were analyzed. DHA was characteristically the major FA of all the major lipid classes of all organs except for liver TAG. The mean DHA contents of the various organs accounted for more than 17% of the total FA (TFA), whereas those in the stomach contents, originating from the prey, fluctuated and were generally low. In particular, the DHA levels in the TAG from all organs of S. australasicus accounted for up to 17% of TFA, even though it is a neutral depot lipid. S. australasicus contained markedly high levels of DHA, even though it is a small-sized Scombridae species, and its high levels of DHA were close to those in large-sized highly migratory tuna species. Furthermore, DHA levels in its muscle TAG were consistently high, compared with those in the visceral TAG, which might be directly influenced by the prey lipids. These phenomena suggest that long-distance migration has a close relationship with high accumulation of DHA in fish tissues, since S. australasicus is reported to migrate in offshore water, similar to highly migratory tuna species. Additionally, the physiological selective accumulation of DHA in the muscle during migration is caused by in vivo metabolism of FA in the vascular system, suggesting that DHA is poorly used as a source of migration energy, though it is provided abundantly through the prey lipids.
Collapse
Affiliation(s)
- Kazufumi Osako
- Food Science and Technology Section, Nagasaki Prefectural Institute of Fisheries, Nagasaki-shi 851-2213, Japan.
| | | | | | | | | |
Collapse
|
12
|
Bilbao E, de Cerio OD, Cajaraville MP, Cancio I. Cloning and expression pattern of peroxisomal enzymes in the mussel Mytilus galloprovincialis and in the thicklip grey mullet Chelon labrosus: generation of new tools to study peroxisome proliferation. MARINE ENVIRONMENTAL RESEARCH 2006; 62 Suppl:S109-12. [PMID: 16709435 DOI: 10.1016/j.marenvres.2006.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aquatic organisms living in coastal/estuarine areas show peroxisome proliferation after exposure to different environmentally relevant pollutants. In order to generate new tools to assess peroxisome proliferation in aquatic animals, peroxisomal enzymes were cloned using degenerate primers in the mussel Mytilus galloprovincialis and in the thicklip grey mullet Chelon labrosus. Fragments of catalase (CAT), thiolase (THIO), polyamine oxidase (POX) and xanthine oxidoreductase (XOR) were cloned and their expression pattern studied in different tissues by semi-quantitative RT-PCR. In mussels, CAT, THIO, POX and XOR were expressed in digestive gland, mantle and gills while in mullets CAT, THIO and POX were expressed in liver, spleen, brain, heart, muscle and gills. XOR was mainly expressed in liver and heart. Mature mullets showed the highest expression of peroxisomal enzymes in liver, spleen and brain, while in juveniles expression was mainly found in muscle tissues, liver and gills. Laboratory experiments of exposure to organic pollutants are being performed to study the usefulness of these tools to study peroxisome proliferation in pollution biomonitoring programmes.
Collapse
Affiliation(s)
- Eider Bilbao
- Laboratory of Cell Biology and Histology, Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, E-48080 Bilbo, Basque Country, Spain
| | | | | | | |
Collapse
|
13
|
Cajaraville MP, Ortiz-Zarragoitia M. Specificity of the peroxisome proliferation response in mussels exposed to environmental pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78 Suppl 1:S117-23. [PMID: 16600397 DOI: 10.1016/j.aquatox.2006.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisome proliferation has been proposed as novel biomarker of exposure to organic pollutants in aquatic organisms. Peroxisome proliferator compounds comprise a heterogeneous group of substances known for their ability to cause massive proliferation of peroxisomes and liver carcinogenesis in sensitive species such as rodents. Recently, several marine organisms (mussels and fish) have been shown as target species of peroxisome proliferators. In the present work, we aimed to investigate the specificity of the peroxisome proliferation response in mussels. For this purpose, mussels (Mytilus edulis) were exposed for three weeks to North Sea crude oil (NSO), a mixture of NSO, alkylphenols and extra PAHs (MIX), diallylphthalate (DAP), bisphenol-A (BPA) and tetrabromodiphenylether (TBDE), or transplanted for three weeks to four stations showing different copper concentrations in a copper mine. Peroxisome proliferation was assessed by measuring the activity of the peroxisomal beta-oxidation enzyme acyl-CoA oxidase (AOX) and the volume density occupied by peroxisomes (V(VP)) in the digestive gland. Mussels exposed to NSO and MIX showed significantly increased AOX activities and V(VP) compared to control animals. Significantly higher V(VP) was also found in DAP and TBDE exposed mussels. V(VP) did not vary in mussels transplanted into a copper concentration gradient. Our results confirm the usefulness and specificity of peroxisome proliferation as a suitable biomarker of exposure to organic contaminants such as oil derived hydrocarbons, phthalate plasticizers and polybrominated flame retardants in mussels.
Collapse
Affiliation(s)
- Miren P Cajaraville
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, 644 P.K., E-48080 Bilbao, Basque Country, Spain.
| | | |
Collapse
|
14
|
Guerlet E, Ledy K, Giambérini L. Field application of a set of cellular biomarkers in the digestive gland of the freshwater snail Radix peregra (Gastropoda, Pulmonata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:19-32. [PMID: 16330108 DOI: 10.1016/j.aquatox.2005.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 10/07/2005] [Accepted: 10/19/2005] [Indexed: 05/05/2023]
Abstract
An active biomonitoring study was performed in the vicinity of two pulp and paper mill effluents (PPMEs) released in two different streams in northeastern France. Freshwater gastropods, Radix peregra (=Lymnaea peregra or Lymnaea pereger), were transplanted for 0, 3, 14 and 21 days at two to three sites located upstream and downstream from the mill discharge points in both rivers. Lysosomal and peroxisomal systems, as well as lipofuscin and neutral lipids, were tested using histochemical methods on cryostat sections of digestive gland tissues, and stereological data were obtained by image analysis. Evidence of structural changes in the lysosomal system was found in animals exposed to both effluents, comprising general stress responses such as enlarged and more numerous lysosomes; and also possible specific pluri-phasic effects. Modifications of the lysosomal and cytoplasmic contents of lipid-related materials were also described, namely enhanced lipofuscin deposit and neutral lipid depletion. The peroxisomal proliferation in exposed snails seems to show its implication in oxidative stress detoxication, without preventing higher lipoperoxidation, as indicated by the increased amounts of digestive lipofuscin. Structural changes of the lysosomal and peroxisomal systems, digestive lipofuscin and neutral lipid contents have potential for use as early cellular biomarkers in Radix peregra exposed to environmental stressors, which deserve further investigations.
Collapse
Affiliation(s)
- Edwige Guerlet
- Laboratoire Ecotoxicité, Santé Environnementale, CNRS UMR 7146, Université de Metz, Rue Général Délestraint, F-57070 Metz, France
| | | | | |
Collapse
|
15
|
Ortiz-Zarragoitia M, Cajaraville MP. Biomarkers of exposure and reproduction-related effects in mussels exposed to endocrine disruptors. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:361-9. [PMID: 16328616 DOI: 10.1007/s00244-005-1082-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/26/2005] [Indexed: 05/05/2023]
Abstract
Biomarkers are useful tools to study the health of estuarine and marine ecosystems. Biomarkers can be measured in different organisms, but mussels have acquired a global importance as sentinels in marine pollution-monitoring programs. In the present work, we aimed to determine the effects of different endocrine disruptors in mussels by using peroxisome proliferation as a biomarker of exposure to organic pollutants and the levels of vitellogenin (Vtg)-like proteins as biomarker of endocrine disruption. In experiment 1, mussels Mytilus edulis were exposed for 3 weeks to North Sea crude oil (NSO 0.5 ppm) and a mixture of 0.5 ppm NSO, 0.1 ppm alkylphenol mix, and 0.1 ppm extra polycyclic aromatic hydrocarbons (PAHs) (MIX). In experiment 2, mussels were exposed for 3 weeks to diallylphthalate (DAP 50 ppb), bisphenol-A (BPA 50 ppb), and tetrabromodiphenylether (TBDE 5 ppb). Peroxisome proliferation was assessed by measuring acyl-CoA oxidase (AOX) activity and peroxisomal volume density (VVp) in digestive gland. Vtg-like protein levels were measured in gonads by the alkali-labile phosphate (ALP) method. Gonad was also analyzed histologically, and the gonad index (GI) calculated. Mussels exposed to NSO and MIX showed significantly increased AOX activities and VVP compared with control animals. Significantly higher VVP was also found in DAP- and TBDE-exposed mussels. Effects on ALP and GI depended significantly on sex and time of year. In female mussels, ALP levels and GI were lower in the NSO group. In male mussels, ALP levels were significantly increased in the MIX group. The volume density of athretic oocytes was higher in the NSO and MIX exposure groups than in controls, and gonad resorption was observed in the BPA exposure group. Our results confirm the usefulness of peroxisome proliferation as a biomarker of exposure to organic contaminants in mussels and indicate that changes in Vtg-like proteins could be used as potential indicator of pollutant effects on mussel reproduction.
Collapse
Affiliation(s)
- M Ortiz-Zarragoitia
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, UPV/EHU, 644 PK, Bilbao, Basque Country, E-48080, Spain
| | | |
Collapse
|
16
|
Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:63-9. [PMID: 16393660 PMCID: PMC1332658 DOI: 10.1289/ehp.8397] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/20/2005] [Indexed: 05/06/2023]
Abstract
Atmospheric pollution from vehicular traffic is a matter of growing interest, often leading to temporary restrictions in urban areas. Although guidelines indicate limits for several parameters, the real toxicologic impacts remain largely unexplored in field conditions. In this study our aim was to validate an ecotoxicologic approach to evaluate both bioaccumulation and toxicologic effects caused by airborne pollutants. Specimens of the land snail Helix aspersa were caged in five sites in the urban area of Ancona, Italy. After 4 weeks, trace metals (cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc) and polycyclic aromatic hydrocarbons (PAHs) were measured and these data integrated with the analyses of molecular and biochemical responses. Such biomarkers reflected the induction of detoxification pathways or the onset of cellular toxicity caused by pollutants. Biomarkers that correlated with contaminant accumulation included levels of metallothioneins, activity of biotransformation enzymes (ethoxyresorufin O-deethylase, ethoxycoumarin O-deethylase), and peroxisomal proliferation. More general responses were investigated as oxidative stress variations, including efficiency of antioxidant defenses (catalase, glutathione reductase, glutathione S-transferases, glutathione peroxidases, and total glutathione) and total oxyradical scavenging capacity toward peroxyl and hydroxyl radicals, onset of cellular damages (i.e., lysosomal destabilization), and loss of DNA integrity. Results revealed a marked accumulation of metals and PAHs in digestive tissues of organisms maintained in more traffic-congested sites. The contemporary appearance of several alterations confirmed the cellular reactivity of these chemicals with toxicologic effects of potential concern for human health. The overall results of this exploratory study suggest the utility of H. aspersa as a sentinel organism for biomonitoring the biologic impact of atmospheric pollution in urban areas. Key words: atmospheric pollutants, bioindicators, biomarkers, DNA integrity, lysosomes, metallothioneins, oxidative stress, peroxisomes, polycyclic aromatic hydrocarbons, trace metals.
Collapse
Affiliation(s)
- Francesco Regoli
- Istituto di Biologia e Genetica, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity in response to cellular and environmental conditions. Novel proteins and pathways that mediate and control peroxisome formation, growth, and division continue to be discovered, and the cellular machineries that act together to regulate peroxisome number and size are under active investigation. Here, advances in the field of peroxisomal dynamics and proliferation in mammals and yeast are reviewed. The authors address the signals, conditions, and proteins that affect, regulate, and control the number and size of this essential organelle, especially the components involved in the division of peroxisomes. Special emphasis is on the function of dynamin-related proteins (DRPs), on Fis1, a putative adaptor for DRPs, on the role of the Pex11 family of peroxisomal membrane proteins, and the cytoskeleton.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
18
|
Saito H, Seike Y, Ioka H, Osako K, Tanaka M, Takashima A, Keriko JM, Kose S, Rodriguez Souza JC. High docosahexaenoic acid levels in both neutral and polar lipids of a highly migratory fish: Thunnus tonggol (Bleeker). Lipids 2005; 40:941-53. [PMID: 16329467 DOI: 10.1007/s11745-005-1455-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lipid and FA compositions of various organs (light muscle, dark muscle, liver, pyloric cecum, and the orbital region) and of the stomach contents of a highly migratory fish species Thunnus tonggol (Bleeker) were analyzed. TAG and phospholipids (PE and PC) were the major lipid classes in the total lipids of T. tonggol. DHA was characteristically the major FA of all the major classes of all its organs except for only one case of liver TAG. The mean DHA contents of the various organs accounted for more than 20% of the total FA (TFA), even though it is a neutral depot lipid. However, DHA in the stomach contents, originating from their prey, fluctuated and was generally low. DHA levels were generally higher in a year (2000) when water temperatures were colder than in one when it was warmer (1998). Furthermore, DHA levels in muscle TAG were consistently high in spite of the fluctuation of those in the visceral TAG, which might be directly influenced by the prey lipids. This phenomenon suggests the physiological selective accumulation of DHA in the muscle, after the migration of the digested FA in the vascular system and absorption of the prey lipids in the intestine. In contrast, the FA composition of other species is generally variable and their DHA contents of TAG are usually less than 20% of TFA.
Collapse
Affiliation(s)
- Hiroaki Saito
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama-shi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ortiz-Zarragoitia M, Cajaraville MP. Effects of selected xenoestrogens on liver peroxisomes, vitellogenin levels and spermatogenic cell proliferation in male zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:133-44. [PMID: 16002344 DOI: 10.1016/j.cca.2005.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 04/30/2005] [Accepted: 05/02/2005] [Indexed: 01/09/2023]
Abstract
Environmental estrogenic compounds or xenoestrogens can mimic natural estrogens and cause a variety of adverse effects on aquatic wildlife. The purpose of the present work was to investigate if xenoestrogens are able to cause proliferation of liver peroxisomes using zebrafish (Danio rerio) as a model. Adult male zebrafish were exposed for 15 days to 17beta-estradiol (E2) and the xenoestrogens dibutylphthalate (DBP), methoxychlor (MXC), 4-tert-octylphenol (OP) and 17alpha-ethynylestradiol (EE2). All five tested compounds caused significant proliferation of liver peroxisomes (p < 0.05) as indicated by increased peroxisomal surface and numerical densities and elevated activities of the peroxisomal beta-oxidation enzyme acyl-CoA oxidase (AOX). In the case of DBP, MXC and E2, positive significant correlations between peroxisomal density parameters and AOX were found. The treatments did not produce gross alterations in testis histology, but spermatogenic cell proliferation was disturbed in E2 and EE2-treated groups and vitellogenin levels increased significantly in fish exposed to MXC, OP, EE2 and E2 with respect to controls. Furthermore, a significant correlation between vitellogenin levels and AOX activity was found for MXC, OP and EE2 treatments, suggesting that for the latter xenoestrogens early estrogenic effects are associated with liver peroxisome proliferation. No such association occurred with typical peroxisome proliferators such as DBP.
Collapse
Affiliation(s)
- Maren Ortiz-Zarragoitia
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, UPV/EHU, 644 PK, E-48080 Bilbo, Basque Country, Spain
| | | |
Collapse
|
20
|
Ibabe A, Grabenbauer M, Baumgart E, Völkl A, Fahimi HD, Cajaraville MP. Expression of peroxisome proliferator-activated receptors in the liver of gray mullet (Mugil cephalus). Acta Histochem 2004; 106:11-9. [PMID: 15032324 DOI: 10.1016/j.acthis.2003.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the last decade, peroxisome proliferation has emerged as a novel biomarker of exposure to certain organic chemical pollutants in aquatic organisms. Peroxisome proliferation is mediated by nuclear receptors, peroxisome proliferator-activated receptors (PPARs). Three PPAR subtypes have been described in mammals: PPAR alpha, PPAR beta and PPAR gamma. PPARs have also been discovered in several fish species. The aim of the present study was to investigate the expression of PPAR subtypes and their cellular distribution patterns in the liver of gray mullet Mugil cephalus, a fish species widely distributed in estuaries and coastal areas in Europe and used as sentinel of environmental pollution. For this purpose, antibodies were generated against the three subtypes of mouse PPARs and different protocols of antigen retrieval were used. In western blots, main bands were detected of approximately 44 kDa for PPAR alpha, two bands of 44 and 58 kDa for PPAR beta and a single band of 56 kDa for PPAR gamma. Similar results were obtained in mouse liver and may indicate antibody recognition of two forms of the protein in certain cases. PPAR alpha was the subtype most markedly expressed in gray mullet liver, being expressed mainly in melanomacrophages, nuclei of hepatocytes and sinusoidal cells and connective tissue surrounding bile ducts. PPAR beta was expressed in the same cell types but immunolabeling was generally weaker than for PPAR alpha. PPAR gamma showed very weak expression; positivity was mainly found in melanomacrophages and connective tissue surrounding bile ducts. Our results demonstrate that all the three PPAR subtypes are expressed in gray mullet liver but in different intensities. The cellular distribution patterns of PPAR subtypes in gray mullet liver resembled partly those found in mouse liver with PPAR alpha as the main subtype expressed in hepatocytes. The fact that melanomacrophages, cells of the immune system in fish, show strong expression of both PPAR alpha and PPAR beta whereas PPAR gamma expression is almost restricted to this cell type suggest a significant role of PPAR-mediated regulation of cell function in melanomacrophages.
Collapse
Affiliation(s)
- Arantza Ibabe
- Laboratory of Cell Biology and Histology, Department of Zoology and Cell Biology, University of the Basque Country, Bilbo, Basque Country, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Biomonitoring of environmental pollution along the Basque coast, using molecular, cellular and tissue-level biomarkers: an integrative approach. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0422-9894(04)80052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Cajaraville MP, Cancio I, Ibabe A, Orbea A. Peroxisome proliferation as a biomarker in environmental pollution assessment. Microsc Res Tech 2003; 61:191-202. [PMID: 12740826 DOI: 10.1002/jemt.10329] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisome proliferators comprise a heterogeneous group of compounds known for their ability to cause massive proliferation of peroxisomes and liver carcinogenesis in rodents. In recent years it has become evident that other animals may be threatened by peroxisome proliferators, in particular aquatic organisms living in coastal and estuarine areas. These animals are exposed to a variety of pollutants of industrial, agricultural and urban origin which are potential peroxisome proliferators. Both laboratory and field studies have shown that phthalate ester plasticizers, PAHs and oil derivatives, PCBs, certain pesticides, bleached kraft pulp and paper mill effluents, alkylphenols and estrogens provoke peroxisome proliferation in different fish or bivalve mollusc species. The response appears to be mediated by peroxisome-proliferator activated receptors, members of the nuclear receptor family, recently cloned in fish. Based on these results it is proposed that peroxisome proliferation could be used as a biomarker of exposure to a variety of pollutants in environmental pollution assessment. This is illustrated by a case study in which mussels, used worldwide as sentinels of environmental pollution, were transplanted from reference to contaminated areas and vice versa. In mussels native to an area polluted with PAHs and PCBs, peroxisomal acyl-CoA oxidase (AOX) activity and peroxisomal volume density were 2-3 fold and 5-fold higher, respectively, compared to the reference site. When animals were transplanted to the polluted station, with increased concentration of organic xenobiotics, a concomitant significant increase of AOX was recorded. Conversely, in animals transplanted to the cleaner station, AOX activity and peroxisomal volume density decreased significantly. These results indicate that peroxisome proliferation is a rapid (i.e., two days) and reversible response to pollution in mussels. Before peroxisome proliferation can be implemented as a biomarker in biomonitoring programs, a well-defined protocol should be established and validated in intercalibration and quality assurance programmes. Furthermore, the influence of biotic and abiotic factors, some of which are known to affect peroxisome proliferation (season, tide level, interpopulation and interindividual variability), should be taken into consideration. The possible hepatocarcinogenic effects as well as the potential adverse effects on reproduction, development, and growth of peroxisome proliferators are unknown in aquatic organisms, thus providing a challenge for future investigations.
Collapse
Affiliation(s)
- Miren P Cajaraville
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Animali Zelulen Dinamika Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea, 644 P.K., E-48080 Bilbo, Basque Country, Spain.
| | | | | | | |
Collapse
|
23
|
|
24
|
Rocha MJ, Rocha E, Resende AD, Lobo-da-Cunha A. Measurement of peroxisomal enzyme activities in the liver of brown trout (Salmo trutta), using spectrophotometric methods. BMC BIOCHEMISTRY 2003; 4:2. [PMID: 12697068 PMCID: PMC153543 DOI: 10.1186/1471-2091-4-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2002] [Accepted: 03/11/2003] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study was aimed primarily at testing in the liver of brown trout (Salmo trutta) spectrophotometric methods previously used to measure the activities of catalase and hydrogen peroxide producing oxidases in mammals. To evaluate the influence of temperature on the activities of those peroxisomal enzymes was the second objective. A third goal of this work was the study of enzyme distribution in crude cell fractions of brown trout liver. RESULTS The assays revealed a linear increase in the activity of all peroxisomal enzymes as the temperature rose from 10 degrees to 37 degrees C. However, while the activities of hydrogen peroxide producing oxidases were strongly influenced by temperature, catalase activity was only slightly affected. A crude fraction enriched with peroxisomes was obtained by differential centrifugation of liver homogenates, and the contamination by other organelles was evaluated by the activities of marker enzymes for mitochondria (succinate dehydrogenase), lysosomes (aryl sulphatase) and microsomes (NADPH cytochrome c reductase). For peroxisomal enzymes, the activities per mg of protein (specific activity) in liver homogenates were strongly correlated with the activities per g of liver and with the total activities per liver. These correlations were not obtained with crude peroxisomal fractions. CONCLUSIONS The spectrophotometric protocols originally used to quantify the activity of mammalian peroxisomal enzymes can be successfully applied to the study of those enzymes in brown trout. Because the activity of all studied peroxisomal enzymes rose in a linear mode with temperature, their activities can be correctly measured between 10 degrees and 37 degrees C. Probably due to contamination by other organelles and losses of soluble matrix enzymes during homogenisation, enzyme activities in crude peroxisomal fractions do not correlate with the activities in liver homogenates. Thus, total homogenates will be used in future seasonal and toxicological studies of brown trout peroxisomes.
Collapse
Affiliation(s)
- Maria João Rocha
- Department of Chemistry, Institute of Health Sciences-North (ISCS-N), Rua Central de Gandra no. 1317, 14585-116 Gandra PRD, Portugal
- Center for Marine and Environmental Research (CIIMAR), Rua do Campo Alegre no. 823, 4150-180 Porto, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Largo Prof. Abel Salazar no.2, 4099-003 Porto, Portugal
- Center for Marine and Environmental Research (CIIMAR), Rua do Campo Alegre no. 823, 4150-180 Porto, Portugal
| | - Albina D Resende
- Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Largo Prof. Abel Salazar no.2, 4099-003 Porto, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Largo Prof. Abel Salazar no.2, 4099-003 Porto, Portugal
- Center for Marine and Environmental Research (CIIMAR), Rua do Campo Alegre no. 823, 4150-180 Porto, Portugal
| |
Collapse
|
25
|
Orbea A, Ortiz-Zarragoitia M, Solé M, Porte C, Cajaraville MP. Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2002; 58:75-98. [PMID: 12062156 DOI: 10.1016/s0166-445x(01)00226-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the aim of studying levels of antioxidant and peroxisomal enzymes and the structure of peroxisomes in relation to body burdens of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), mussels Mytilus galloprovincialis, oysters Crassostrea sp., crabs Carcinus maenas and mullets Mugil cephalus were sampled in two Basque estuaries (Bay of Biscay): Urdaibai (Laida, Txatxarramendi, Arteaga, and downstream a sewage treatment plant-STP) and Plentzia. In general, animals showed higher concentrations of contaminants in winter than in summer and no relevant differences were detected among locations. Conversely, antioxidant enzyme activities were higher in summer. Enzyme expression was studied in mullets using immunochemical methods. By immunoblotting season-dependent differences were detected for Mn-superoxide dismutase (Mn-SOD). As for the immunohistochemical staining, mullets sampled in summer in Plentzia showed significantly higher optical densities for acyl-CoA oxidase and lower for both Cu,Zn-SOD and Mn-SOD than those collected downstream a STP as well as higher catalase immunostaining than those collected in winter. Peroxisomal volume density (V(vp)) of mussels sampled in Laida and Txatxarramendi did not show seasonal variations, while for oysters collected in Laida and Arteaga V(vp) was higher in summer. Crab and mullet V(vp) were also higher in summer. In conclusion, the estuaries of Urdaibai and Plentzia can be considered as low to moderately polluted areas and levels of PAHs and PCBs do not show marked variations apart from seasonal variations. Animals can be adapted to low pollution conditions and, under these circumstances, seasonal factors might affect biomarker responses to a greater extent than pollution variations.
Collapse
Affiliation(s)
- Amaia Orbea
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Animali Zelulen Dinamika Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea/Universidad del País Vasco, 644 P.K., E-48080 Bilbo, Basque Country, Spain
| | | | | | | | | |
Collapse
|
26
|
del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:1255-1272. [PMID: 11997374 DOI: 10.1093/jxb/53.372.1255] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Peroxisomes are subcellular organelles with an essentially oxidative type of metabolism. Like chloroplasts and mitochondria, plant peroxisomes also produce superoxide radicals (O2*(-)) and there are, at least, two sites of superoxide generation: one in the organelle matrix, the generating system being xanthine oxidase, and another site in the peroxisomal membranes dependent on NAD(P)H. In peroxisomal membranes, three integral polypeptides (PMPs) with molecular masses of 18, 29 and 32 kDa have been shown to generate radicals O2*(-). Besides catalase, several antioxidative systems have been demonstrated in plant peroxisomes, including different superoxide dismutases, the ascorbate-glutathione cycle, and three NADP-dependent dehydrogenases. A CuZn-SOD and two Mn-SODs have been purified and characterized from different types of peroxisomes. The four enzymes of the ascorbate-glutathione cycle (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase) as well as the antioxidants glutathione and ascorbate have been found in plant peroxisomes. The recycling of NADPH from NADP(+) can be carried out in peroxisomes by three dehydrogenases: glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase. In the last decade, different experimental evidence has suggested the existence of cellular functions for peroxisomes related to reactive oxygen species (ROS), but the recent demonstration of the presence of nitric oxide synthase (NOS) in plant peroxisomes implies that these organelles could also have a function in plant cells as a source of signal molecules like nitric oxide (NO*), superoxide radicals, hydrogen peroxide, and possibly S-nitrosoglutathione (GSNO).
Collapse
Affiliation(s)
- Luis A del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Orbea A, Ortiz-Zarragoitia M, Cajaraville MP. Interactive effects of benzo(a)pyrene and cadmium and effects of di(2-ethylhexyl) phthalate on antioxidant and peroxisomal enzymes and peroxisomal volume density in the digestive gland of mussel Mytilus galloprovincialis Lmk. Biomarkers 2002; 7:33-48. [PMID: 12101783 DOI: 10.1080/13547500110066119] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Exposure of marine animals to certain organic and metal pollutants is thought to enhance reactive oxygen species (ROS) production with concomitant alterations of antioxidant defence mechanisms. Some of these organic pollutants cause peroxisome proliferation, a process resulting also in possible enhanced production of ROS. The aim of this study was to investigate the effects of two organic xenobiotics, benzo(a)pyrene (B(a)P) and di(2-ethylhexyl)phthalate (DEHP), as well as the effects of cadmium (Cd), on antioxidant and peroxisomal enzymes and on peroxisomal volume density in the digestive gland of mussel, Mytilus galloprovincialis Lmk., experimentally exposed for 21 days. Special attention was paid to the interactive effects of organic and metal compounds by exposing one group of mussels to a mixture of B(a)P and Cd. Exposure of mussels to Cd caused a decrease in superoxide dismutase (SOD) activity, in Mn-SOD protein levels and in volume density of peroxisomes. B(a)P exposure significantly increased catalase and glutathione peroxidase (GPX) and inhibited Mn-SOD after 21 days of exposure. B(a)P also caused a slight increase in acyl-CoA oxidase (AOX) activity and peroxisomal volume density after 21 days of exposure. Cd tended to inhibit changes provoked by B(a)P, indicating that responses to organic xenobiotics can be modulated by concomitant exposure to metal contaminants. Exposure to DEHP increased catalase and AOX and inhibited SOD activity and Mn-SOD protein levels. In conclusion, peroxisome proliferation, measured as an increase of the peroxisomal enzymes catalase and AOX (up to 1.53-fold for AOX), is a specific response to organic contaminants such as B(a)P and DEHP, whereas Cd does not cause peroxisome proliferation. Thus, peroxisome proliferation may be a specific biomarker of organic pollutants in mussels. Both organic and metal pollutants inhibited SOD activity and protein levels (up to 0.21-fold for Mn-SOD protein levels), the latter offering potential as general marker of pollution.
Collapse
Affiliation(s)
- Amaia Orbea
- Biologia Zelularra eta Histologia Laborategia, Zoologia eta Animali Zelulen Dinamika Saila, Zientzi Fakultatea, Euskal Herriko Unibertsitatea/Universidad del País Vasco, 644 P.K., E-48080 Bilbo, Basque Country, Spain
| | | | | |
Collapse
|
28
|
Parveen Z, Large A, Grewal N, Lata N, Cancio I, Cajaraville MP, Perry CJ, Connock MJ. D-Aspartate oxidase and D-amino acid oxidase are localised in the peroxisomes of terrestrial gastropods. Eur J Cell Biol 2001; 80:651-60. [PMID: 11713869 DOI: 10.1078/0171-9335-00197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
D-Aspartate oxidase and D-amino acid oxidase were found in high activity in the tissues of representative species of terrestrial gastropods. Analytical subcellular fractionation demonstrated that both of these oxidases co-localised with the peroxisome markers, acyl-CoA oxidase and catalase, in the digestive gland homogenate. Electron microscopy of peak peroxisome fractions showed particles of uniform size with generally well preserved variably electron-dense matrices bounded by an apparently single limiting membrane. Many of the particles exhibited a core region of enhanced electron density. Catalase cytochemistry of peak fractions confirmed the peroxisome identity of the organelles. Peroxisome-enriched subcellular fractions were used to investigate the properties of gastropod D-aspartate oxidase and D-amino acid oxidase activities. The substrate and inhibitor specificities of the two activities demonstrated that two distinct enzymes were present analogous to, but not identical to, the equivalent mammalian peroxisomal enzymes.
Collapse
Affiliation(s)
- Z Parveen
- School of Applied Sciences, University of Wolverhampton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Corpas FJ, Barroso JB, del Río LA. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. TRENDS IN PLANT SCIENCE 2001; 6:145-50. [PMID: 11286918 DOI: 10.1016/s1360-1385(01)01898-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The important role of plant peroxisomes in a variety of metabolic reactions such as photorespiration, fatty acid beta-oxidation, the glyoxylate cycle and generation-degradation of hydrogen peroxide is well known. In recent years, the presence of a novel group of enzymes, mainly involved in the metabolism of oxygen free-radicals, has been shown in peroxisomes. In addition to hydrogen peroxide, peroxisomes can generate superoxide-radicals and nitric oxide, which are known cellular messengers with a variety of physiological roles in intra- and inter-cellular communication. Nitric oxide and hydrogen peroxide can permeate the peroxisomal membrane and superoxide radicals can be produced on the cytosolic side of the membrane. The signal molecule-generating capacity of peroxisomes can have important implications for cellular metabolism in plants, particularly under biotic and abiotic stress.
Collapse
Affiliation(s)
- F J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| | | | | |
Collapse
|