1
|
Nava Lara RA, Beltrán JA, Brizuela CA, Del Rio G. Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques. Pharmaceuticals (Basel) 2020; 13:ph13090204. [PMID: 32825532 PMCID: PMC7559829 DOI: 10.3390/ph13090204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Polypharmacologic human-targeted antimicrobials (polyHAM) are potentially useful in the treatment of complex human diseases where the microbiome is important (e.g., diabetes, hypertension). We previously reported a machine-learning approach to identify polyHAM from FDA-approved human targeted drugs using a heterologous approach (training with peptides and non-peptide compounds). Here we discover that polyHAM are more likely to be found among antimicrobials displaying a broad-spectrum antibiotic activity and that topological, but not chemical features, are most informative to classify this activity. A heterologous machine-learning approach was trained with broad-spectrum antimicrobials and tested with human metabolites; these metabolites were labeled as antimicrobials or non-antimicrobials based on a naïve text-mining approach. Human metabolites are not commonly recognized as antimicrobials yet circulate in the human body where microbes are found and our heterologous model was able to classify those with antimicrobial activity. These results provide the basis to develop applications aimed to design human diets that purposely alter metabolic compounds proportions as a way to control human microbiome.
Collapse
Affiliation(s)
- Rodrigo A. Nava Lara
- Department of Biochemistry and Structural Biology, Instituto de Fisiologia Celular, UNAM, Mexico City 04510, Mexico;
| | - Jesús A. Beltrán
- Department of Computer Science, CICESE Research Center, Ensenada 22860, Mexico; (J.A.B.); (C.A.B.)
| | - Carlos A. Brizuela
- Department of Computer Science, CICESE Research Center, Ensenada 22860, Mexico; (J.A.B.); (C.A.B.)
| | - Gabriel Del Rio
- Department of Biochemistry and Structural Biology, Instituto de Fisiologia Celular, UNAM, Mexico City 04510, Mexico;
- Correspondence:
| |
Collapse
|
2
|
Hajj M, De Vita T, Vol C, Renassia C, Bologna JC, Brabet I, Cazade M, Pastore M, Blahos J, Labesse G, Pin JP, Prézeau L. Nonclassical Ligand-Independent Regulation of Go Protein by an Orphan Class C G-Protein–Coupled Receptor. Mol Pharmacol 2019; 96:233-246. [DOI: 10.1124/mol.118.113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/28/2019] [Indexed: 01/20/2023] Open
|
3
|
Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019; 10:1884-1891. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are chemical messengers that act to regulate a number of physiological processes, including feeding, reward, pain, and memory, among others. PEN is one of the most abundant hypothalamic neuropeptides; however, until recently, its target receptor remained unknown. In this Review, we summarize recent developments in research focusing on PEN and its receptor GPR83. We describe the studies leading to the deorphanization of GPR83 as the receptor for PEN. We also describe the signaling mediated by the PEN-GPR83 system, as well as the physiological roles in which PEN-GPR83 has been implicated. As studies have suggested a role for the PEN-GPR83 system in food intake and body weight regulation, as well as in drug addiction and reward disorders, a thorough understanding of this novel neuropeptide-receptor system will help identify novel therapeutic targets to treat pathophysiological conditions involving PEN-GPR83.
Collapse
Affiliation(s)
- Seshat M. Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
4
|
Chopra G, Samudrala R. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform. Curr Pharm Des 2017; 22:3109-23. [PMID: 27013226 DOI: 10.2174/1381612822666160325121943] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Traditional drug discovery approaches focus on a limited set of target molecules for treatment against specific indications/diseases. However, drug absorption, dispersion, metabolism, and excretion (ADME) involve interactions with multiple protein systems. Drugs approved for particular indication(s) may be repurposed as novel therapeutics for others. The severely declining rate of discovery and increasing costs of new drugs illustrate the limitations of the traditional reductionist paradigm in drug discovery. METHODS We developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform based on a hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for therapeutic repurposing and discovery. We compiled a library of compounds that are human ingestible with minimal side effects, followed by an 'all-compounds' vs 'all-proteins' fragment-based multitarget docking with dynamics screen to construct compound-proteome interaction matrices that were then analyzed to determine similarity of drug behavior. The proteomic signature similarity of drugs is then ranked to make putative drug predictions for all indications in a shotgun manner. RESULTS We have previously applied this platform with success in both retrospective benchmarking and prospective validation, and to understand the effect of druggable protein classes on repurposing accuracy. Here we use the CANDO platform to analyze and determine the contribution of multitargeting (polypharmacology) to drug repurposing benchmarking accuracy. Taken together with the previous work, our results indicate that a large number of protein structures with diverse fold space and a specific polypharmacological interactome is necessary for accurate drug predictions using our proteomic and evolutionary drug discovery and repurposing platform. CONCLUSION These results have implications for future drug development and repurposing in the context of polypharmacology.
Collapse
Affiliation(s)
- Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA.
| |
Collapse
|
5
|
Smith SD, Kawash JK, Karaiskos S, Biluck I, Grigoriev A. Evolutionary adaptation revealed by comparative genome analysis of woolly mammoths and elephants. DNA Res 2017; 24:359-369. [PMID: 28369217 PMCID: PMC5737375 DOI: 10.1093/dnares/dsx007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Comparative genomics studies typically limit their focus to single nucleotide variants (SNVs) and that was the case for previous comparisons of woolly mammoth genomes. We extended the analysis to systematically identify not only SNVs but also larger structural variants (SVs) and indels and found multiple mammoth-specific deletions and duplications affecting exons or even complete genes. The most prominent SV found was an amplification of RNase L (with different copy numbers in different mammoth genomes, up to 9-fold), involved in antiviral defense and inflammasome function. This amplification was accompanied by mutations affecting several domains of the protein including the active site and produced different sets of RNase L paralogs in four mammoth genomes likely contributing to adaptations to environmental threats. In addition to immunity and defense, we found many other unique genetic changes in woolly mammoths that suggest adaptations to life in harsh Arctic conditions, including variants involving lipid metabolism, circadian rhythms, and skeletal and body features. Together, these variants paint a complex picture of evolution of the mammoth species and may be relevant in the studies of their population history and extinction.
Collapse
Affiliation(s)
- Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ian Biluck
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
6
|
Miller S, Hu SSJ, Leishman E, Morgan D, Wager-Miller J, Mackie K, Bradshaw HB, Straiker A. A GPR119 Signaling System in the Murine Eye Regulates Intraocular Pressure in a Sex-Dependent Manner. Invest Ophthalmol Vis Sci 2017; 58:2930-2938. [PMID: 28593245 PMCID: PMC5469424 DOI: 10.1167/iovs.16-21330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose GPR119 is a G protein–coupled receptor that may be the endogenous target for 2-oleoylglycerol (2-OG), a lipid related to the endocannabinoid family of neuromodulators. Interest in GPR119 has centered on its role in regulating insulin secretion; however, the role of GPR119 has not been examined in the eye. The purpose of this study was to explore a potential GPR119-based signaling system in the murine eye. Methods We used a combination of RT-PCR, immunohistochemistry, lipid measurement, and IOP measurement in a normotensive mouse model, with GPR119 knockout mice as controls. Results We detected GPR119 mRNA and protein in the anterior eye of the mouse and cow, with GPR119 mRNA levels elevated in female relative to male mice. GPR119 protein expression is most prominent in structures near the angle, including trabecular meshwork, as well as iris and corneal epithelium. We detected 2-OG in the anterior eye and detected alterations in lipid levels in GPR119 knockout versus wild type and also by sex. Last, we found that 2-OG preferentially reduces IOP in female mice in a normotensive model. Conclusions In summary, we offer evidence for a GPR119-based signaling system in the mammalian eye, with receptors, ligands, and function in the form of a reduction in IOP. Notably this reduction in pressure is restricted to female mice.
Collapse
Affiliation(s)
- Sally Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Dan Morgan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
7
|
Wu Y, Li Y, Fu B, Jin L, Zheng X, Zhang A, Sun R, Tian Z, Wei H. Programmed differentiated natural killer cells kill leukemia cells by engaging SLAM family receptors. Oncotarget 2017; 8:57024-57038. [PMID: 28915651 PMCID: PMC5593622 DOI: 10.18632/oncotarget.18659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells are important innate immune cells that can directly kill transformed or virus-infected cells. The adoptive transfer of NK cells has been used to treat hematological malignancies; however, the limited sources and quantities of NK cells have restricted their clinical application. Here, we acquired sufficient quantities of functional NK cells from CD34+ cells treated with a cytokine cocktail. Microarray analysis of the cultured cells revealed a two-stage pattern of programmed differentiation during NK cell development. Different transcription factors were enriched during these two stages, suggesting that preparation of progenitors committed to the NK cell lineage occurs in program 1, while NK cell transformation and maturation occur in program 2. Cultured NK cells highly expressed signaling lymphocytic activation molecule (SLAM) family receptors (SFRs), while leukemia cells expressed SFR ligands. The engagement of these SFRs strengthened the cytotoxicity of NK cells toward leukemia cells. These results demonstrate a simple method of obtaining sufficient NK cells for clinical application, and have categorized NK cell differentiation according to commitment and transformation programs. Moreover, the binding between SFRs on NK cells and their ligands on leukemia cells suggests a new basis for NK cell therapy for treatment of leukemia.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Young Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Linlin Jin
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Aimei Zhang
- Central Laboratory, Anhui Provincial Hospital, Hefei, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
9
|
Shahi N, Singh AK, Sahoo M, Mallik SK, Thakuria D. Molecular cloning, characterization and expression profile of kisspeptin1 and kisspeptin1 receptor at brain-pituitary-gonad (BPG) axis of golden mahseer, Tor putitora (Hamilton, 1822) during gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2017; 205:13-29. [DOI: 10.1016/j.cbpb.2016.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
10
|
Furlong M, Seong JY. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomol Ther (Seoul) 2017; 25:57-68. [PMID: 28035082 PMCID: PMC5207463 DOI: 10.4062/biomolther.2016.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.
Collapse
Affiliation(s)
- Michael Furlong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jae Young Seong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Ngo T, Kufareva I, Coleman JL, Graham RM, Abagyan R, Smith NJ. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol 2016; 173:2934-51. [PMID: 26837045 PMCID: PMC5341249 DOI: 10.1111/bph.13452] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/18/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
GPCRs are the most successful pharmaceutical targets in history. Nevertheless, the pharmacology of many GPCRs remains inaccessible as their endogenous or exogenous modulators have not been discovered. Tools that explore the physiological functions and pharmacological potential of these 'orphan' GPCRs, whether they are endogenous and/or surrogate ligands, are therefore of paramount importance. Rates of receptor deorphanization determined by traditional reverse pharmacology methods have slowed, indicating a need for the development of more sophisticated and efficient ligand screening approaches. Here, we discuss the use of structure-based ligand discovery approaches to identify small molecule modulators for exploring the function of orphan GPCRs. These studies have been buoyed by the growing number of GPCR crystal structures solved in the past decade, providing a broad range of template structures for homology modelling of orphans. This review discusses the methods used to establish the appropriate signalling assays to test orphan receptor activity and provides current examples of structure-based methods used to identify ligands of orphan GPCRs. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Tony Ngo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - James Lj Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Nicola J Smith
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| |
Collapse
|
12
|
Buckley SJ, Fitzgibbon QP, Smith GG, Ventura T. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. Gen Comp Endocrinol 2016; 228:111-127. [PMID: 26850661 DOI: 10.1016/j.ygcen.2016.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations.
Collapse
Affiliation(s)
- Sean J Buckley
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Quinn P Fitzgibbon
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory G Smith
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
13
|
Yun S, Furlong M, Sim M, Cho M, Park S, Cho EB, Reyes-Alcaraz A, Hwang JI, Kim J, Seong JY. Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily. Mol Biol Evol 2015; 32:2803-17. [DOI: 10.1093/molbev/msv179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Felip A, Espigares F, Zanuy S, Gómez A. Differential activation of kiss receptors by Kiss1 and Kiss2 peptides in the sea bass. Reproduction 2015; 150:227-43. [PMID: 26047834 DOI: 10.1530/rep-15-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Abstract
Two forms of kiss gene (kiss1 and kiss2) have been described in the teleost sea bass. This study assesses the cloning and characterization of two Kiss receptor genes, namely kissr2 and kissr3 (known as gpr54-1b and gpr54-2b, respectively), and their signal transduction pathways in response to Kiss1 and Kiss2 peptides. Phylogenetic and synteny analyses indicate that these paralogs originated by duplication of an ancestral gene before teleost specific duplication. The kissr2 and kissr3 mRNAs encode proteins of 368 and 378 amino acids, respectively, and share 53.1% similarity in amino acid sequences. In silico analysis of the putative promoter regions of the sea bass Kiss receptor genes revealed conserved flanking regulatory sequences among teleosts. Both kissr2 and kissr3 are predominantly expressed in brain and gonads of sea bass, medaka and zebrafish. In the testis, the expression levels of sea bass kisspeptins and Kiss receptors point to a significant variation during the reproductive cycle. In vitro functional analyses revealed that sea bass Kiss receptor signals are transduced both via the protein kinase C and protein kinase A pathway. Synthetic sea bass Kiss1-15 and Kiss2-12 peptides activated Kiss receptors with different potencies, indicating a differential ligand selectivity. Our data suggest that Kissr2 and Kissr3 have a preference for Kiss1 and Kiss2 peptides, respectively, thus providing the basis for future studies aimed at establishing their physiologic roles in sea bass.
Collapse
Affiliation(s)
- Alicia Felip
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Felipe Espigares
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Silvia Zanuy
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Ana Gómez
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| |
Collapse
|
15
|
Moon MJ, Lee YN, Park S, Reyes-Alcaraz A, Hwang JI, Millar RP, Choe H, Seong JY. Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1 (GLP-1) receptor core domain. J Biol Chem 2015; 290:5696-706. [PMID: 25561730 DOI: 10.1074/jbc.m114.612606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis through its receptor GLP1R. Due to its multiple beneficial effects, GLP-1 has gained great attention for treatment of type 2 diabetes and obesity. However, little is known about the molecular mechanism underlying the interaction of GLP-1 with the heptahelical core domain of GLP1R conferring high affinity ligand binding and ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R, we determined that the evolutionarily conserved amino acid residue Arg(380) flanked by hydrophobic Leu(379) and Phe(381) in extracellular loop 3 (ECL3) may have an interaction with Asp(9) and Gly(4) of the GLP-1 peptide. The molecular modeling study showed that Ile(196) at transmembrane helix 2, Met(233) at ECL1, and Asn(302) at ECL2 of GLP1R have contacts with His(1) and Thr(7) of GLP-1. This study may shed light on the mechanism underlying high affinity interaction between the ligand and the binding pocket that is formed by these conserved residues in the GLP1R core domain.
Collapse
Affiliation(s)
- Mi Jin Moon
- From the Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Yoo-Na Lee
- From the Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Sumi Park
- From the Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Arfaxad Reyes-Alcaraz
- From the Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Jong-Ik Hwang
- From the Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Robert Peter Millar
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0028, Medical Research Council Receptor Biology Unit, and University of Cape Town, Cape Town 7925, South Africa, and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH164TJ, Scotland, and
| | - Han Choe
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jae Young Seong
- From the Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea,
| |
Collapse
|
16
|
Cruz-Barbosa R, Vellido A, Giraldo J. The influence of alignment-free sequence representations on the semi-supervised classification of class C G protein-coupled receptors: semi-supervised classification of class C GPCRs. Med Biol Eng Comput 2014; 53:137-49. [PMID: 25367737 DOI: 10.1007/s11517-014-1218-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) are integral cell membrane proteins of relevance for pharmacology. The tertiary structure of the transmembrane domain, a gate to the study of protein functionality, is unknown for almost all members of class C GPCRs, which are the target of the current study. As a result, their investigation must often rely on alignments of their amino acid sequences. Sequence alignment entails the risk of missing relevant information. Various approaches have attempted to circumvent this risk through alignment-free transformations of the sequences on the basis of different amino acid physicochemical properties. In this paper, we use several of these alignment-free methods, as well as a basic amino acid composition representation, to transform the available sequences. Novel semi-supervised statistical machine learning methods are then used to discriminate the different class C GPCRs types from the transformed data. This approach is relevant due to the existence of orphan proteins to which type labels should be assigned in a process of deorphanization or reverse pharmacology. The reported experiments show that the proposed techniques provide accurate classification even in settings of extreme class-label scarcity and that fair accuracy can be achieved even with very simple transformation strategies that ignore the sequence ordering.
Collapse
Affiliation(s)
- Raúl Cruz-Barbosa
- Computer Science Institute, Universidad Tecnológica de la Mixteca, Huajuapan, Oaxaca, México,
| | | | | |
Collapse
|
17
|
Chi Y, Suadicani SO, Schuster VL. Regulation of prostaglandin EP1 and EP4 receptor signaling by carrier-mediated ligand reuptake. Pharmacol Res Perspect 2014; 2:e00051. [PMID: 25505603 PMCID: PMC4186417 DOI: 10.1002/prp2.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/09/2014] [Indexed: 01/28/2023] Open
Abstract
After synthesis and release from cells, prostaglandin E2 (PGE2) undergoes reuptake by the prostaglandin transporter (PGT), followed by cytoplasmic oxidation. Although genetic inactivation of PGT in mice and humans results in distinctive phenotypes, and although experiments in localized environments show that manipulating PGT alters downstream cellular events, a direct mechanistic link between PGT activity and PGE2 (EP) receptor activation has not been made. Toward this end, we created two reconstituted systems to examine the effect of PGT expression on PGE2 signaling via two of its receptors (EP1 and EP4). In human embryonic kidney cells engineered to express the EP1 receptor, exogenous PGE2 induced a dose-dependent increase in cytoplasmic Ca2+. When PGT was expressed at the plasma membrane, the PGE2 dose–response curve was right-shifted, consistent with reduction in cell surface PGE2 availability; a potent PGT inhibitor acutely reversed this shift. When bradykinin was used to induce endogenous PGE2 release, PGT expression similarly induced a reduction in Ca2+ responses. In separate experiments using Madin–Darby Canine Kidney cells engineered to express the PGE2 receptor EP4, bradykinin again induced autocrine PGE2 signaling, as judged by an abrupt increase in intracellular cAMP. As in the EP1 experiments, expression of PGT at the plasma membrane caused a reduction in bradykinin-induced cAMP accumulation. Pharmacological concentrations of exogenous PGE2 induced EP4 receptor desensitization, an effect that was mitigated by PGT. Thus, at an autocrine/paracrine level, plasma membrane PGT regulates PGE2 signaling by decreasing ligand availability at cell surface receptors.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Sylvia O Suadicani
- Department of Urology, Albert Einstein College of Medicine Bronx, New York, 10461 ; Department of Neuroscience, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Victor L Schuster
- Department of Medicine, Albert Einstein College of Medicine Bronx, New York, 10461 ; Department of Physiology & Biophysics, Albert Einstein College of Medicine Bronx, New York, 10461
| |
Collapse
|
18
|
Abstract
Glucagon-like peptide 1 (GLP1) is an intestinal incretin that regulates glucose homeostasis through stimulation of insulin secretion from pancreatic β-cells and inhibits appetite by acting on the brain. Thus, it is a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Studies using synteny and reconstructed ancestral chromosomes suggest that families for GLP1 and its receptor (GLP1R) have emerged through two rounds (2R) of whole genome duplication and local gene duplications before and after 2R. Exon duplications have also contributed to the expansion of the peptide family members. Specific changes in the amino acid sequence following exon/gene/genome duplications have established distinct yet related peptide and receptor families. These specific changes also confer selective interactions between GLP1 and GLP1R. In this review, we present a possible macro (genome level)- and micro (gene/exon level)-evolution mechanisms of GLP1 and GLP1R, which allows them to acquire selective interactions between this ligand-receptor pair. This information may provide critical insight for the development of potent therapeutic agents targeting GLP1R.
Collapse
Affiliation(s)
- Jong-Ik Hwang
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Seongsik Yun
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Mi Jin Moon
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Cho Rong Park
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Jae Young Seong
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| |
Collapse
|
19
|
Targeting GPR119 for the Potential Treatment of Type 2 Diabetes Mellitus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:95-131. [DOI: 10.1016/b978-0-12-800101-1.00004-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nat Commun 2013; 4:1968. [PMID: 23744028 PMCID: PMC3709495 DOI: 10.1038/ncomms2968] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/02/2013] [Indexed: 12/25/2022] Open
Abstract
The G protein-coupled receptor 83 (Gpr83) is widely expressed in brain regions regulating energy metabolism. Here we report that hypothalamic expression of Gpr83 is regulated in response to nutrient availability and is decreased in obese mice compared with lean mice. In the arcuate nucleus, Gpr83 colocalizes with the ghrelin receptor (Ghsr1a) and the agouti-related protein. In vitro analyses show heterodimerization of Gpr83 with Ghsr1a diminishes activation of Ghsr1a by acyl-ghrelin. The orexigenic and adipogenic effect of ghrelin is accordingly potentiated in Gpr83-deficient mice. Interestingly, Gpr83 knock-out mice have normal body weight and glucose tolerance when fed a regular chow diet, but are protected from obesity and glucose intolerance when challenged with a high-fat diet, despite hyperphagia and increased hypothalamic expression of agouti-related protein, Npy, Hcrt and Ghsr1a. Together, our data suggest that Gpr83 modulates ghrelin action but also indicate that Gpr83 regulates systemic metabolism through other ghrelin-independent pathways.
Collapse
|
21
|
Kumar P, Kumar A, Song ZH. Structure-activity relationships of fatty acid amide ligands in activating and desensitizing G protein-coupled receptor 119. Eur J Pharmacol 2013; 723:465-72. [PMID: 24184668 DOI: 10.1016/j.ejphar.2013.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022]
Abstract
The purpose of the current study was to apply a high throughput assay to investigate the structure-activity relationships of fatty acid amides for activating and desensitizing G protein-coupled receptor 119, a promising therapeutic target for both type 2 diabetes and obesity. A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring G protein-coupled receptor 119-mediated increase of cyclic adenosine monophosphate (cAMP) levels was validated and applied in this study. Using novel fatty acid amides and detailed potency and efficacy analyses, we have demonstrated that degree of saturation in acyl chain and charged head groups of fatty acid amides have profound effects on the ability of these compounds to activate G protein-coupled receptor 119. In addition, we have demonstrated for the first time that pretreatments with G protein-coupled receptor 119 agonists desensitize the receptor and the degrees of desensitization caused by fatty acid amides correlate well with their structure-activity relationships in activating the receptor.
Collapse
Affiliation(s)
- Pritesh Kumar
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville KY 40292, United States of America
| | - Akhilesh Kumar
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville KY 40292, United States of America
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville KY 40292, United States of America.
| |
Collapse
|
22
|
Jang EJ, Seok YM, Arterburn JB, Olatunji LA, Kim IK. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor-dependent signalling pathway. J Pharm Pharmacol 2013; 65:1488-99. [DOI: 10.1111/jphp.12113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/15/2013] [Indexed: 01/07/2023]
Abstract
Abstract
Objectives
The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor.
Methods
Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1.
Key findings
G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L-Nω-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1.
Conclusions
G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta.
Collapse
Affiliation(s)
- Eun Jin Jang
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Young Mi Seok
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry MSC 3C, New Mexico State University, Las Cruces, New Mexico, USA
| | - Lawrence A Olatunji
- Department of Physiology, Cardiovascular and Membrane Physiology, Ilorin, Nigeria
- Basic Medical Sciences Unit, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - In Kyeom Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
23
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Kisspeptin receptor, GPR54, as a candidate for the regulation of testicular activity in the frog Rana esculenta. Biol Reprod 2013; 88:73. [PMID: 23365413 DOI: 10.1095/biolreprod.112.103515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kisspeptins, acting via GPR54, are new players in the control of reproductive axis. They have the ability to communicate with GnRH neurons sending environmental, metabolic, and gonadal signals, with the induction of GnRH and LH secretion as final effect. At present, the physiological significance of kisspeptin signaling in the gonad is poorly investigated. We cloned GPR54 receptor from the anuran amphibian Rana esculenta testis and investigated its expression in several tissues (brain, spinal cord, ovary, muscle, and kidney). In particular, the expression analysis was carried out in pituitary and testis during the annual sexual cycle. Pituitary and testicular GPR54 mRNA increased at the end of the winter stasis (February) and reached high levels during the breeding season (April). The analysis of GPR54 expression in testis was reinforced by in situ hybridization that revealed GPR54 presence in the interstitial compartment and in proliferating germ cells. Testicular GPR54 expression in February and in June was indicated to be estradiol dependent. Furthermore, in February, kisspeptin-10 (Kp-10) induced the testicular expression of both GPR54 and estrogen receptor alpha (ERalpha) in a dose-dependent manner. Conversely, in March, Kp-10 had a biphasic effect on the expression of ERalpha, being inhibitory at short (1 h) and stimulatory at longer (4 h) incubation time. In conclusion, our results demonstrate that frog testis expresses GPR54 in an estradiol-dependent manner and that Kp-10 modulates the testicular expression of ERalpha; thus, the kisspeptin/GPR54 system might be locally involved in the regulation of estrogen-dependent testicular functions such as germ cell proliferation and steroidogenesis.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi," Seconda Università di Napoli, Napoli, Italy
| | | | | | | | | |
Collapse
|
24
|
Hwang JI, Moon MJ, Park S, Kim DK, Cho EB, Ha N, Son GH, Kim K, Vaudry H, Seong JY. Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evol 2013; 30:1119-30. [PMID: 23427277 DOI: 10.1093/molbev/mst031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In humans, the secretin-like G protein-coupled receptor (GPCR) family comprises 15 members with 18 corresponding peptide ligand genes. Although members have been identified in a large variety of vertebrate and nonvertebrate species, the origin and relationship of these proteins remain unresolved. To address this issue, we employed large-scale genome comparisons to identify genome fragments with conserved synteny and matched these fragments to linkage groups in reconstructed early gnathostome ancestral chromosomes (GAC). This genome comparison revealed that most receptor and peptide genes were clustered in three GAC linkage groups and suggested that the ancestral forms of five peptide subfamilies (corticotropin-releasing hormone-like, calcitonin-like, parathyroid hormone-like, glucagon-like, and growth hormone-releasing hormone-like) and their cognate receptor families emerged through tandem local gene duplications before two rounds (2R) of whole-genome duplication. These subfamily genes have, then, been amplified by 2R whole-genome duplication, followed by additional local duplications and gene loss prior to the divergence of land vertebrates and teleosts. This study delineates a possible evolutionary scenario for whole secretin-like peptide and receptor family members and may shed light on evolutionary mechanisms for expansion of a gene family with a large number of paralogs.
Collapse
Affiliation(s)
- Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Quattrocchi CC, Zanni G, Napolitano A, Longo D, Cordelli DM, Barresi S, Randisi F, Valente EM, Verdolotti T, Genovese E, Specchio N, Vitiello G, Spiegel R, Bertini E, Bernardi B. Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics 2012; 14:77-83. [DOI: 10.1007/s10048-012-0352-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
|
26
|
Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Exp Hematol 2012; 41:102-12. [PMID: 23022127 DOI: 10.1016/j.exphem.2012.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
Abstract
Gpr171 is an orphan G-protein-coupled receptor putatively related to the P2Y family of purinergic receptors (P2YRs) for extracellular nucleotides, a group of mediators previously shown to regulate hematopoietic progenitor cells. No information is currently available on the ligand responsible for Gpr171 activation and its biological role remains unknown. We reconstructed Gpr171 phylogenesis in mice and confirmed that Gpr171 is evolutionally related to members of a P2Y gene-cluster localized on mouse chromosome 3. As a first step toward unveiling a role for Gpr171, we investigated its expression profile in murine hematopoietic cells. As opposed to other P2YRs, we found that Gpr171 expression is down-regulated in monocytes and granulocytes, suggesting a negative role in myeloid lineage specification. To test Gpr171 functional role, we next enforced Gpr171 expression in a myeloblastic cell line (32D cells) and in primary Sca-1(+) hematopoietic progenitors, and observed a decreased expression of myeloid markers upon induction of Gpr171, as well as an increased generation of colonies in vitro. Conversely, Gpr171 silencing induced opposite results, diminishing the expression of myeloid markers and the clonogenic potential of 32D cells. In vivo, mice transplanted with hematopoietic progenitor cells overexpressing Gpr171 displayed a significant reduction in the percentage of Mac-1(+)Gr-1(-) cells. As a preliminary step in the investigation of Gpr171 role in murine hematopoiesis, our findings indicate that the orphan receptor Gpr171 negatively regulates myeloid differentiation. Together with phylogenic analyses, our data suggest that Gpr171 may have followed a separate evolutionary pathway as compared to other P2YRs belonging to the same gene cluster.
Collapse
|
27
|
Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 2012; 33:363-71. [PMID: 22367282 DOI: 10.1038/aps.2011.210] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in diverse physiological and pathological functions. GPCRs are the most successful targets of modern medicine, and approximately 36% of marketed pharmaceuticals target human GPCRs. However, the endogenous ligands of more than 140 GPCRs remain unidentified, leaving the natural functions of those GPCRs in doubt. These are the so-called orphan GPCRs, a great source of drug targets. This review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and their potential functions in immunology, development, and cancers. In this review, we present the current approaches and difficulties of orphan GPCR deorphanization and characterization.
Collapse
|
28
|
Kim DK, Cho EB, Moon MJ, Park S, Hwang JI, Do Rego JL, Vaudry H, Seong JY. Molecular Coevolution of Neuropeptides Gonadotropin-Releasing Hormone and Kisspeptin with their Cognate G Protein-Coupled Receptors. Front Neurosci 2012; 6:3. [PMID: 22291614 PMCID: PMC3265131 DOI: 10.3389/fnins.2012.00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/05/2012] [Indexed: 12/12/2022] Open
Abstract
The neuropeptides gonadotropin-releasing hormone (GnRH) and kisspeptin (KiSS), and their receptors gonadotropin-releasing hormone receptor (GnRHR) and kisspeptin receptor (KiSSR) play key roles in vertebrate reproduction. Multiple paralogous isoforms of these genes have been identified in various vertebrate species. Two rounds of genome duplication in early vertebrates likely contributed to the generation of these paralogous genes. Genome synteny and phylogenetic analyses in a variety of vertebrate species have provided insights into the evolutionary origin of and relationship between paralogous genes. The paralogous forms of these neuropeptides and their receptors have coevolved to retain high selectivity of the ligand–receptor interaction. These paralogous forms have become subfunctionalized, neofunctionalized, or dysfunctionalized during evolution. This article reviews the evolutionary mechanism of GnRH/GnRHR and KiSS/KiSSR, and the fate of the duplicated paralogs in vertebrates.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Graduate School of Medicine, Korea University Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Roesler R, Schwartsmann G. Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target. Front Endocrinol (Lausanne) 2012; 3:159. [PMID: 23251133 PMCID: PMC3523293 DOI: 10.3389/fendo.2012.00159] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides acting on specific cell membrane receptors of the G protein-coupled receptor (GPCR) superfamily regulate a range of important aspects of nervous and neuroendocrine function. Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that binds to the GRP receptor (GRPR, BB2). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system (CNS) plays an important role in regulating brain function, including aspects related to emotional responses, social interaction, memory, and feeding behavior. In addition, some alterations in GRP or GRPR expression or function have been described in patients with neurodegenerative, neurodevelopmental, and psychiatric disorders, as well as in brain tumors. Findings from preclinical models are consistent with the view that the GRPR might play a role in brain disorders, and raise the possibility that GRPR agonists might ameliorate cognitive and social deficits associated with neurological diseases, while antagonists may reduce anxiety and inhibit the growth of some types of brain cancer. Further preclinical and translational studies evaluating the potential therapeutic effects of GRPR ligands are warranted.
Collapse
Affiliation(s)
- Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- *Correspondence: Rafael Roesler, Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil. e-mail:
| | - Gilberto Schwartsmann
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
30
|
Kisspeptin neurons mediate reflex ovulation in the musk shrew (Suncus murinus). Proc Natl Acad Sci U S A 2011; 108:17527-32. [PMID: 21987818 DOI: 10.1073/pnas.1113035108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study investigated whether kisspeptin-G protein-coupled receptor 54 (GPR54) signaling plays a role in mediating mating-induced ovulation in the musk shrew (Suncus murinus), a reflex ovulator. For this purpose, we cloned suncus Kiss1 and Gpr54 cDNA from the hypothalamus and found that suncus kisspeptin (sKp) consists of 29 amino acid residues (sKp-29). Injection of exogenous sKp-29 mimicked the mating stimulus to induce follicular maturation and ovulation. Administration of several kisspeptins and GPR54 agonists also induced presumed ovulation in a dose-dependent manner, and Gpr54 mRNA was distributed in the hypothalamus, showing that kisspeptins induce ovulation through binding to GPR54. The sKp-29-induced ovulation was blocked completely by pretreatment with a gonadotropin-releasing hormone (GnRH) antagonist, suggesting that kisspeptin activates GnRH neurons to induce ovulation in the musk shrew. In addition, in situ hybridization revealed that Kiss1-expressing cells are located in the medial preoptic area (POA) and arcuate nucleus in the musk shrew hypothalamus. The number of Kiss1-expressing cells in the POA or arcuate nucleus was up-regulated or down-regulated by estradiol, suggesting that kisspeptin neurons in these regions were the targets of the estrogen feedback action. Finally, mating stimulus largely induced c-Fos expression in Kiss1-positive cells in the POA, indicating that the mating stimulus activates POA kisspeptin neurons to induce ovulation. Taken together, these results indicate that kisspeptin-GPR54 signaling plays a role in the induction of ovulation in the musk shrew, a reflex ovulator, as it does in spontaneous ovulators.
Collapse
|
31
|
Sarkar A, Kumar S, Sundar D. The G protein-coupled receptors in the pufferfish Takifugu rubripes. BMC Bioinformatics 2011; 12 Suppl 1:S3. [PMID: 21342560 PMCID: PMC3044285 DOI: 10.1186/1471-2105-12-s1-s3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Guanine protein-coupled receptors (GPCRs) constitute a eukaryotic transmembrane protein family and function as "molecular switches" in the second messenger cascades and are found in all organisms between yeast and humans. They form the single, biggest drug-target family due to their versatility of action and their role in several physiological functions, being active players in detecting the presence of light, a variety of smells and tastes, amino acids, nucleotides, lipids, chemicals etc. in the environment of the cell. Comparative genomic studies on model organisms provide information on target receptors in humans and their function. The Japanese teleost Fugu has been identified as one of the smallest vertebrate genomes and a compact model to study the human genome, owing to the great similarity in its gene repertoire with that of human and other vertebrates. Thus the characterization of the GPCRs of Fugu would provide insights to the evolution of the vertebrate genome. RESULTS We classified the GPCRs in the Fugu genome and our analysis of its 316 membrane-bound receptors, available on the public databases as well as from literature, detected 298 GPCRs that were grouped into five main families according to the GRAFS classification system (namely, Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin). We also identified 18 other GPCRs that could not be grouped under the GRAFS family and hence were classified as 'Other 7TM' receptors. On comparison of the GPCR information from the Fugu genome with those in the human and chicken genomes, we detected 96.83% (306/316) and 96.51% (305/316) orthology in GPCRs among the Fugu-human genomes and Fugu-chicken genomes, respectively. CONCLUSIONS This study reveals the position of pisces in vertebrate evolution from the GPCR perspective. Fugu can act as a reference model for the human genome for other protein families as well, going by the high orthology observed for GPCRs between Fugu and human. The evolutionary comparison of GPCR sequences between key vertebrate classes of mammals, birds and fish will help in identifying key functional residues and motifs so as to fill in the blanks in the evolution of GPCRs in vertebrates.
Collapse
Affiliation(s)
- Anita Sarkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | | | | |
Collapse
|
32
|
Shpakov AO, Shpakova EA. [Low-molecular regulators of polypeptide hormones receptors containing LGR repeats]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2010; 56:303-18. [PMID: 20695210 DOI: 10.18097/pbmc20105603303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During the last years the low-molecular non-peptidic regulators of the polypeptide hormones receptors containing LGR-repeats were identified. In the review the data on the structure and the molecular mechanisms of action of these regulators as agonists and antagonists of the luteinizing, follicle-stimulating and thyrotropin hormones are analyzed and systematized. The regulators interact with the serpentine domain of LGR-receptor and trigger the signaling cascades coupled with the receptor. Low-molecular agonists and antagonists of the LGR-receptors are considered as a new generation of the drugs that regulates the functional activity of sensitive to pituitary glycoprotein hormones signaling systems with high efficiency and selectivity. These regulators are more accessible compared to the hormones and can be use orally.
Collapse
|
33
|
Shpakov AO, Shpakova EA. Low-molecular regulators of polypeptide hormone receptors containing LGR-repeats. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809040040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Godlewski G, Offertáler L, Wagner JA, Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat 2009; 89:105-11. [PMID: 19615459 DOI: 10.1016/j.prostaglandins.2009.07.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/07/2009] [Indexed: 02/07/2023]
Abstract
Acylethanolamides are lipid substances widely distributed in the body, generated from a membrane phospholipid precursor, N-acylphosphatidylethanolamine (NAPE). The recent identification of arachidonoyl ethanolamide (anandamide or AEA) as an endogenous cannabinoid ligand has focused attention on acylethanolamides, which has further increased with the subsequent identification of related additional acylethanolamides with signaling function, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Most of the biological functions of anandamide are mediated by the two G protein-coupled cannabinoid receptors identified to date, CB(1) and CB(2), with the transient receptor potential vanilloid-1 receptor being an additional potential target. There has been increasing pharmacological evidence for the existence of additional cannabinoid receptors, with the orphan G protein-coupled receptor GPR55 being the most actively scrutinized, and is one of the subjects of this review. The other receptor reviewed here is GPR119, which can recognize OEA and PEA. These two acylethanolamides, although structurally related to anandamide, do not interact with classical cannabinoid receptors. Instead, they have high affinity for the nuclear receptor PPARalpha, which is believed to mediate many of their biological effects.
Collapse
Affiliation(s)
- Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
35
|
Hwang JI, Kim DK, Kwon HB, Vaudry H, Seong JY. Phylogenetic History, Pharmacological Features, and Signal Transduction of Neurotensin Receptors in Vertebrates. Ann N Y Acad Sci 2009; 1163:169-78. [DOI: 10.1111/j.1749-6632.2008.03636.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Moon JS, Lee YR, Oh DY, Hwang JI, Lee JY, Kim JI, Vaudry H, Kwon HB, Seong JY. Molecular cloning of the bullfrog kisspeptin receptor GPR54 with high sensitivity to Xenopus kisspeptin. Peptides 2009; 30:171-9. [PMID: 18550222 DOI: 10.1016/j.peptides.2008.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 11/28/2022]
Abstract
Kisspeptin and its receptor, GPR54, play important roles in mammalian reproduction and cancer development. However, little is known about their function in nonmammalian species. In the present study, we have isolated the cDNA encoding the kisspeptin receptor, GPR54, from the bullfrog, Rana catesbeiana. The bullfrog GPR54 (bfGPR54) cDNA encodes a 379-amino acid heptahelical G protein-coupled receptor. bfGPR54 exhibits 45-46% amino acid identity with mammalian GPR54s and 70-74% identity with fish GPR54s. RT-PCR analysis showed that bfGPR54 mRNA is highly expressed in the forebrain, hypothalamus and pituitary. Upon stimulation by synthetic human kisspeptin-10 with Phe-amide residue at the C-terminus (h-Kiss-10F), bfGPR54 induces SRE-luc activity, a PKC-specific reporter, evidencing the PKC-linked signaling pathway of bfGPR54. Using a blast search, we found a gene encoding a kisspeptin-like peptide in Xenopus. The C-terminal decapeptide of Xenopus kisspeptin shows higher amino acid sequence identity to fish Kiss-10s than mammalian Kiss-10s. A synthetic Xenopus kisspeptin peptide (x-Kiss-12Y) showed a higher potency than mammalian Kiss-10s in the activation of bfGPR54. This study expands our understanding of the physiological roles and molecular evolution of kisspeptins and their receptors.
Collapse
Affiliation(s)
- Jung Sun Moon
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O'Dell DK, Walker JM, Na HS, Lee MG, Kwon HB, Kim K, Seong JY. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem 2008; 283:21054-64. [PMID: 18499677 DOI: 10.1074/jbc.m708908200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of small compounds acting at the orphan G protein-coupled receptor GPR92 were screened using a signaling pathway-specific reporter assay system. Lipid-derived molecules including farnesyl pyrophosphate (FPP), N-arachidonylglycine (NAG), and lysophosphatidic acid were found to activate GPR92. FPP and lysophosphatidic acid were able to activate both G(q/11)- and G(s)-mediated signaling pathways, whereas NAG activated only the G(q/11)-mediated signaling pathway. Computer-simulated modeling combined with site-directed mutagenesis of GPR92 indicated that Thr(97), Gly(98), Phe(101), and Arg(267) of GPR92 are responsible for the interaction of GPR92 with FPP and NAG. Reverse transcription-PCR analysis revealed that GPR92 mRNA is highly expressed in the dorsal root ganglia (DRG) but faint in other brain regions. Peripheral tissues including, spleen, stomach, small intestine, and kidney also expressed GPR92 mRNA. Immunohistochemical analysis revealed that GPR92 is largely co-localized with TRPV1, a nonspecific cation channel that responds to noxious heat, in mouse and human DRG. FPP and NAG increased intracellular Ca(2+) levels in cultured DRG neurons. These results suggest that FPP and NAG play a role in the sensory nervous system through activation of GPR92.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors and Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cho HJ, Moon MJ, Kwon HB, Hwang JI, Seong JY. Extracellular loop 3 (ECL3) and ECL3-proximal transmembrane domains VI and VII of the mesotocin and vasotocin receptors confer differential ligand selectivity and signaling activity. Gen Comp Endocrinol 2008; 156:71-82. [PMID: 18158152 DOI: 10.1016/j.ygcen.2007.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/15/2022]
Abstract
Mesotocin (MT) and vasotocin (VT) are the nonmammalian orthologs of mammalian oxytocin (OT) and arginine vasopressin (AVP), respectively. The OT/AVP family of peptides has arisen from gene duplication but has evolved to possess high selectivity toward their cognate receptors. The process of molecular evolution of receptors to confer high selectivity to their cognate ligands, however, is poorly understood. We constructed a series of reciprocal chimeras using a pair of bullfrog MT receptor (MTR) and VT1 receptor (VT1R) DNA fragments. Among the MTR/VT1R chimeras, the MTR chimera containing a region from transmembrane domain (TMD) VI to the carboxyl-terminal tail (C-tail) of VT1R showed an increased sensitivity to VT, while a chimeric VT1R containing TMD VI to C-tail of MTR showed an increased sensitivity to MT. Further dissection of domains using additional chimeras demonstrated that the receptor with the fragment containing extracellular loop 3 (ECL3) and ECL3-proximal TMDs VI and VII of MTR increased MT selectivity. This fragment is also important for receptor conformation that permits the signaling ability of the receptor. Particularly, the amino acids Val/Ile(6.54) in TMD VI and Pro/Glu(7.29) in ECL3 appear to be involved in this activity, since double mutation of these amino acids completely blocked signaling activity while maintaining ligand binding activity. Mutations at these residues in human OT and AVP 1a receptors markedly decreased receptor signaling activity. This study provides clues for understanding molecular coevolution of the OT/AVP peptides and their receptors with regard to receptor-ligand binding and receptor signaling activity.
Collapse
Affiliation(s)
- Hyun Ju Cho
- Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Levoye A, Jockers R. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?]. Med Sci (Paris) 2007; 23:746-50. [PMID: 17875294 DOI: 10.1051/medsci/20072389746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs), also called seven transmembrane domain (7TM) proteins, represent the largest family of cell surface receptors. GPCRs control a variety of physiological processes, are involved in multiple diseases and are major drug targets. Despite a vast effort of academic and industrial research, more than one hundred receptors remain orphans. These orphan GPCRs offer a great potential for drug discovery, as almost 60% of currently prescribed drugs target GPCRs. Deorphenization strategies have concentrated mainly on the identification of the natural ligands of these proteins. Recent advances have shown that orphan GPCRs, similar to orphan nuclear receptors, can regulate the function of non-orphan receptors by heterodimerization. These findings not only help to better understand the extraordinary diversity of GPCRs, but also open new perspectives for the identification of the function of these orphan receptors that hold great therapeutic potential.
Collapse
Affiliation(s)
- Angélique Levoye
- Institut Pasteur, Laboratoire de Pathogénie Virale Moléculaire, INSERM U819, Département de Virologie, 28, rue du Docteur Roux, 75724, Paris, France.
| | | |
Collapse
|
40
|
Cho HJ, Acharjee S, Moon MJ, Oh DY, Vaudry H, Kwon HB, Seong JY. Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. Gen Comp Endocrinol 2007; 153:98-107. [PMID: 17286976 DOI: 10.1016/j.ygcen.2006.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/22/2006] [Accepted: 12/25/2006] [Indexed: 01/04/2023]
Abstract
Recently, we cloned many of the bullfrog neuropeptide G protein-coupled receptors (GPCRs), including receptors for vasotocin (VT), mesotocin, gonadotropin-releasing hormone (GnRH), neurotensin, apelin, and metastin. Bullfrog GPCRs usually have high affinity for bullfrog ligands but relatively low affinity for mammalian ligands. Reciprocally, synthetic agonists and antagonists developed based upon mammalian ligands display lower affinity at bullfrog receptors. Studies using chimeric or domain-swapped receptors indicate that the motifs responsible for differential ligand selectivity usually reside within transmembrane domain 6 (TMD6)-extracellular loop 3 (ECL3)-transmembrane domain 7 (TMD7). Triple mutation of mammalian V1aR (Phe(6.51) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) increases VT affinity but greatly reduces arginine vasopressin affinity. This binding profile is similar to that of bullfrog VT1R. Changing just three amino acids in the bullfrog GnRH receptor-1 (i.e. Ser-Gln-Ser in the ECL3) to those found in the type-I mammalian GnRH receptor (i.e. Ser-Glu-Pro) reverses GnRH selectivity. In conclusion, specific receptor motifs that govern ligand selectivity can be determined by comparative molecular analyses of GPCRs and their ligands. Such analysis provides clues for understanding how GPCRs maintain high affinity to their authentic ligands.
Collapse
Affiliation(s)
- Hyun Ju Cho
- Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|