1
|
Chen H, Li T, Cai M, Huang Z, Gao J, Ding H, Li M, Guan W, Chen J, Wang W, Li C, Shi J. Study on gene expression in the liver at various developmental stages of human embryos. Front Cell Dev Biol 2025; 12:1515524. [PMID: 39845086 PMCID: PMC11751009 DOI: 10.3389/fcell.2024.1515524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background The normal development of the liver during human embryonic stages is critical for the functionality of the adult liver. Despite this, the essential genes, biological processes, and signal pathways that drive liver development in human embryos remain poorly understood. Methods In this study, liver samples were collected from human embryos at progressive developmental stages, ranging from 2-month-old to 7-month-old. Highly expressed genes and their associated enrichment processes at various developmental stages of the liver were identified through transcriptomic sequencing. Results The findings indicated that genes associated with humoral immune responses and B-cell-mediated immunity were highly expressed during the early developmental stages. Concurrently, numerous genes related to vitamin response, brown adipocyte differentiation, T cell differentiation, hormone secretion, hemostasis, peptide hormone response, steroid metabolism, and hematopoietic regulation exhibited increased expression aligned with liver development. Our results suggest that the liver may possess multiple functions during embryonic stages, beyond serving hematopoietic roles. Moreover, this study elucidated the complex regulatory interactions among genes involved in lymphocyte differentiation, the regulation of hemopoiesis, and liver development. Consequently, the development of human embryonic liver necessitates the synergistic regulation of numerous genes. Notably, alongside conventionally recognized genes, numerous previously uncharacterized genes involved in liver development and function were also identified. Conclusion These findings establish a critical foundation for future research on liver development and diseases arising from fetal liver abnormalities.
Collapse
Affiliation(s)
- Hanqing Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Tingting Li
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Ming Cai
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Zhiqi Huang
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jianjun Gao
- Department of Critical Care Medicine, Nantong Second People’s Hospital, Nantong, Jiangsu, China
| | - Hongping Ding
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Minmin Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiyu Guan
- Department of General Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jinpeng Chen
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Wenran Wang
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Chunhong Li
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Chi H, Qu B, Prawira A, Richardt T, Maurer L, Hu J, Fu RM, Lempp FA, Zhang Z, Grimm D, Wu X, Urban S, Dao Thi VL. An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes. EMBO Rep 2024; 25:4311-4336. [PMID: 39232200 PMCID: PMC11466959 DOI: 10.1038/s44319-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Huanting Chi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angga Prawira
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Talisa Richardt
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
| | - Jungen Hu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhenfeng Zhang
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dirk Grimm
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Xianfang Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Suppression of CEBPδ recovers exhaustion in anti-metastatic immune cells. Sci Rep 2023; 13:3903. [PMID: 36890150 PMCID: PMC9995318 DOI: 10.1038/s41598-023-30476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
The pre-metastatic microenvironment consists of pro-metastatic and anti-metastatic immune cells in the early stages of cancer, when the primary tumor begins to proliferate. Redundantly, pro-inflammatory immune cells predominated during tumor growth. Although it is well known that pre-metastatic innate immune cells and immune cells fighting primary tumor cells become exhausted, the mechanism by which this occurs is unknown. We discovered that anti-metastatic NK cells were mobilized from the liver to the lung during primary tumor progression and that the transcription factor CEBPδ, which was upregulated in a tumor-stimulated liver environment, inhibited NK cell attachment to the fibrinogen-rich bed in pulmonary vessels and sensitization to the environmental mRNA activator. CEBPδ-siRNA treated anti-metastatic NK cells regenerated the binding proteins that support sitting in fibrinogen-rich soil, such as vitronectin and thrombospondin, increasing fibrinogen attachment. Furthermore, CEBPδ knockdown restored an RNA-binding protein, ZC3H12D, which captured extracellular mRNA to increase tumoricidal activity. Refreshed NK cells using CEBPδ-siRNA with anti-metastatic abilities would work at metastatic risk areas in the pre-metastatic phase, resulting in a reduction in lung metastasis. Furthermore, tissue-specific siRNA-based therapy in lymphocyte exhaustion may be beneficial in the treatment of early metastases.
Collapse
|
6
|
Shokouhian B, Aboulkheyr Es H, Negahdari B, Tamimi A, Shahdoust M, Shpichka A, Timashev P, Hassan M, Vosough M. Hepatogenesis and hepatocarcinogenesis: Alignment of the main signaling pathways. J Cell Physiol 2022; 237:3984-4000. [PMID: 36037302 DOI: 10.1002/jcp.30862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022]
Abstract
Development is a symphony of cells differentiation in which different signaling pathways are orchestrated at specific times and periods to form mature and functional cells from undifferentiated cells. The similarity of the gene expression profile in malignant and undifferentiated cells is an interesting topic that has been proposed for many years and gave rise to the differentiation-therapy concept, which appears a rational insight and should be reconsidered. Hepatocellular carcinoma (HCC), as the sixth common cancer and the third leading cause of cancer death worldwide, is one of the health-threatening complications in communities where hepatotropic viruses are endemic. Sedentary lifestyle and high intake of calories are other risk factors. HCC is a complex condition in which various dimensions must be addressed, including heterogeneity of cells in the tumor mass, high invasiveness, and underlying diseases that limit the treatment options. Under these restrictions, recognizing, and targeting common signaling pathways during liver development and HCC could expedite to a rational therapeutic approach, reprograming malignant cells to well-differentiated ones in a functional state. Accordingly, in this review, we highlighted the commonalities of signaling pathways in hepatogenesis and hepatocarcinogenesis, and comprised an update on the current status of targeting these pathways in laboratory studies and clinical trials.
Collapse
Affiliation(s)
- Bahare Shokouhian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Shahdoust
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Timashev
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
7
|
Zhu S, Rao X, Qian Y, Chen J, Song R, Yan H, Yang X, Hu J, Wang X, Han Z, Zhu Y, Liu R, Jong-Leong Wong J, McCaughan GW, Zheng X. Liver Endothelial Heg Regulates Vascular/Biliary Network Patterning and Metabolic Zonation Via Wnt Signaling. Cell Mol Gastroenterol Hepatol 2022; 13:1757-1783. [PMID: 35202885 PMCID: PMC9059100 DOI: 10.1016/j.jcmgh.2022.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The liver has complex interconnecting blood vessel and biliary networks; however, how the vascular and biliary network form and regulate each other and liver function are not well-understood. We aimed to examine the role of Heg in mammalian liver development and functional maintenance. METHODS Global (Heg-/-) or liver endothelial cell (EC)-specific deletion of Heg (Lyve1-Cre;Hegfl/fl ) mice were used to study the in vivo function of Heg in the liver. Carbon-ink anterograde and retrograde injection were used to visualize the 3-dimensional patterning of liver portal and biliary networks, respectively. RNA sequencing, histology, and molecular and biochemical assays were used to assess liver gene expression, protein distribution, liver injury response, and function. RESULTS Heg deficiency in liver ECs led to a sparse liver vascular and biliary network. This network paucity does not compromise liver function under baseline conditions but did alter liver zonation. Molecular analysis revealed that endothelial Heg deficiency decreased expression of Wnt ligands/agonists including Wnt2, Wnt9b, and Rspo3 in ECs, which limits Axin2 mediated canonical Wnt signaling and the expression of cytochrome P450 enzymes in hepatocytes. Under chemical-induced stressed conditions, Heg-deficiency in liver ECs protected mice from drug-induced liver injuries. CONCLUSION Our study found that endothelial Heg is essential for the 3-D patterning of the liver vascular and indirectly regulates biliary networks and proper liver zonation via its regulation of Wnt ligand production in liver endothelial cells. The endothelial Heg-initiated changes of the liver metabolic zonation and metabolic enzyme expression in hepatocytes was functionally relevant to xenobiotic metabolism and drug induced liver toxicity.
Collapse
Affiliation(s)
- Shichao Zhu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiyun Rao
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yude Qian
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinbiao Chen
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, The University of Sydney, A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Huili Yan
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Justin Jong-Leong Wong
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, The University of Sydney, A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Correspondence Address correspondence to: Dr Xiangjian Zheng, Pharmacology, Tianjin Medical University, No 22 Qi Xiang Tai Rd, Tianjin 300070, China. tel: 86-22-8333-6835.
| |
Collapse
|
8
|
Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2022; 27:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
9
|
Di Maira G, Foglia B, Napione L, Turato C, Maggiora M, Sutti S, Novo E, Alvaro M, Autelli R, Colombatto S, Bussolino F, Carucci P, Gaia S, Rosso C, Biasiolo A, Pontisso P, Bugianesi E, Albano E, Marra F, Parola M, Cannito S. Oncostatin M is overexpressed in
NASH
‐related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. J Pathol 2022; 257:82-95. [PMID: 35064579 PMCID: PMC9315146 DOI: 10.1002/path.5871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)‐6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in non‐alcoholic fatty liver disease (NAFLD)/non‐alcoholic steatohepatitis (NASH). The role of OSM was investigated in (1) selected cohorts of NAFLD/NASH HCC patients, (2) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM, (3) murine HCC xenografts, and (4) a murine NASH‐related model of hepatic carcinogenesis. OSM was found to be selectively overexpressed in HCC cells of NAFLD/NASH patients, depending on tumor grade. OSM serum levels, barely detectable in patients with simple steatosis or NASH, were increased in patients with cirrhosis and more evident in those carrying HCC. In this latter group, OSM serum levels were significantly higher in the subjects with intermediate/advanced HCCs and correlated with poor survival. Cell culture experiments indicated that OSM upregulation in hepatic cancer cells contributes to HCC progression by inducing epithelial‐to‐mesenchymal transition and increased invasiveness of cancer cells as well as by inducing angiogenesis, which is of critical relevance. In murine xenografts, OSM overexpression was associated with slower tumor growth but an increased rate of lung metastases. Overexpression of OSM and its positive correlation with the angiogenic switch were also confirmed in a murine model of NAFLD/NASH‐related hepatocarcinogenesis. Consistent with this, analysis of liver specimens from human NASH‐related HCCs with vascular invasion showed that OSM was expressed by liver cancer cells invading hepatic vessels. In conclusion, OSM upregulation appears to be a specific feature of HCC arising on a NAFLD/NASH background, and it correlates with clinical parameters and disease outcome. Our data highlight a novel pro‐carcinogenic contribution for OSM in NAFLD/NASH, suggesting a role of this factor as a prognostic marker and a putative potential target for therapy. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Giovanni Di Maira
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Lucia Napione
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Applied Science and Technology Politecnico di Torino Torino Italy
| | - Cristian Turato
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Marina Maggiora
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Salvatore Sutti
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Maria Alvaro
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | | | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute – FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)
- Department of Oncology University of Torino Italy
| | - Patrizia Carucci
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Silvia Gaia
- Division of Gastroenterology Città della Salute e della Scienza University‐Hospital 10100 Turin Italy
| | - Chiara Rosso
- Department of Medical Sciences University of Torino Italy
| | | | | | | | - Emanuele Albano
- Dept. Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases University Amedeo Avogadro of East Piedmont Novara Italy
| | - Fabio Marra
- Department of Clinical and Experimental Medicine and Center Denothe University of Firenze Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology University of Torino Italy
| |
Collapse
|
10
|
Song Z, Shao W, Song L, Pei X, Li C. Human Hepatocyte Transduction with Adeno-Associated Virus Vector. Methods Mol Biol 2022; 2544:83-93. [PMID: 36125711 DOI: 10.1007/978-1-0716-2557-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the adeno-associated virus (AAV) vectors hold unique advantages over other viral vectors, AAV gene therapy has accumulated rapid progress and development. Liver-targeted gene therapy by AAV vectors has been successfully applied in clinical trials for many diseases. Low transduction efficiency and high prevalence of neutralizing antibodies (Nabs), however, are the major obstacles to further translate this therapeutic strategy into clinical trials. Pre-clinical evaluation on hepatocytes could help to elucidate the tropism of AAV serotypes for liver-targeted gene therapy, and could also provide a test model to develop novel AAV mutants with Nabs evasion and high liver tropism. Here, we described the basic laboratory procedure to apply the AAV vector to transduce human hepatocytes in vitro and in vivo with some tips gained from our own experience.
Collapse
Affiliation(s)
- Zhenwei Song
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Liujiang Song
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xieolei Pei
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chengwen Li
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
12
|
Fagg WS, Liu N, Patrikeev I, Saldarriaga OA, Motamedi M, Popov VL, Stevenson HL, Fair JH. Endoderm and Hepatic Progenitor Cells Engraft in the Quiescent Liver Concurrent with Intrinsically Activated Epithelial-to-Mesenchymal Transition. Cell Transplant 2021; 30:963689721993780. [PMID: 33657866 PMCID: PMC7940740 DOI: 10.1177/0963689721993780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stem cell transplantation to the liver is a promising therapeutic strategy for a variety of disorders. Hepatocyte transplantation has short-term efficacy but can be problematic due to portal hypertension, inflammation, and sinusoidal thrombosis. We have previously transplanted small mouse endoderm progenitor (EP) cells to successfully reverse a murine model of hemophilia B, and labeling these cells with iron nanoparticles renders them responsive to magnetic fields, which can be used to enhance engraftment. The mechanisms mediating progenitor cell migration from the sinusoidal space to the hepatocyte compartment are unknown. Here we find human EP and hepatic progenitor (HP) cells can be produced from human embryonic stem cells with high efficiency, and they also readily uptake iron nanoparticles. This provides a simple manner through which one can readily identify transplanted cells in vivo using electron microscopy, shortly after delivery. High resolution imaging shows progenitor cell morphologies consistent with epithelial-to-mesenchymal transition (EMT) mediating invasion into the hepatic parenchyma. This occurs in as little as 3 h, which is considerably faster than observed when hepatocytes are transplanted. We confirmed activated EMT in transplanted cells in vitro, as well as in vivo 24 h after transplantation. We conclude that EMT naturally occurs concurrent with EP and HP cell engraftment, which may mediate the rate, safety, and efficacy of early cell engraftment in the undamaged quiescent liver.
Collapse
Affiliation(s)
- W Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Naiyou Liu
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Igor Patrikeev
- Department of Vice President for Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Omar A Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeffrey H Fair
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
13
|
MicroRNA expression profiling reveals potential roles for microRNA in the liver during pigeon (Columba livia) development. Poult Sci 2020; 99:6378-6389. [PMID: 33248553 PMCID: PMC7705055 DOI: 10.1016/j.psj.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/23/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is the central organ for metabolism and influence the growth and development of the animals. To date, little is known about the microRNA (miRNA) in pigeon livers, particularly in different developmental stages. A comprehensive investigation into miRNA transcriptomes in livers across 3 pigeon developmental stages (1, 14, 28 d old) and an adult stage (2 y old) was performed by small RNA sequencing. We identified 312 known miRNA, 433 conserved miRNA, and 192 novel miRNA in pigeon livers. A set of differentially expressed (DE) miRNA in livers were screened out during pigeon development. This set of miRNA might be involved in hepatospecific phenotype and liver development. A Short Time-series Expression Miner analysis indicated significant expression variations in DE miRNA during liver development of pigeons. These DE miRNA with different expression patterns might play essential roles in response to growth factor, cell morphogenesis, and gland development, etc. Protein-protein interaction network and Molecular Complex Detection analysis identified several vital target genes (e.g., TNRC6B, FRS2, PTCH1, etc.) of DE miRNA, which is closely linked in liver development and enriched in PI3K cascade and regulation of growth. Our results expanded the repertoire of pigeon miRNA and may be of help in better understanding the mechanism of squab's rapid development from the perspective of liver development.
Collapse
|
14
|
Katsuda T, Hosaka K, Matsuzaki J, Usuba W, Prieto-Vila M, Yamaguchi T, Tsuchiya A, Terai S, Ochiya T. Transcriptomic Dissection of Hepatocyte Heterogeneity: Linking Ploidy, Zonation, and Stem/Progenitor Cell Characteristics. Cell Mol Gastroenterol Hepatol 2019; 9:161-183. [PMID: 31493546 PMCID: PMC6909008 DOI: 10.1016/j.jcmgh.2019.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS There is a long-standing debate regarding the biological significance of polyploidy in hepatocytes. Recent studies have provided increasing evidence that hepatocytes with different ploidy statuses behave differently in a context-dependent manner (eg, susceptibility to oncogenesis, regenerative ability after injury, and in vitro proliferative capacity). However, their overall transcriptomic differences in a physiological context is not known. METHODS By using microarray transcriptome analysis, we investigated the heterogeneity of hepatocyte populations with different ploidy statuses. Moreover, by using single-cell quantitative reverse-transcription polymerase chain reaction (scPCR) analysis, we investigated the intrapopulational transcriptome heterogeneity of 2c and 4c hepatocytes. RESULTS Microarray analysis showed that cell cycle-related genes were enriched in 8c hepatocytes, which is in line with the established notion that polyploidy is formed via cell division failure. Surprisingly, in contrast to the general consensus that 2c hepatocytes reside in the periportal region, in our bulk transcriptome and scPCR analyses, the 2c hepatocytes consistently showed pericentral hepatocyte-enriched characteristics. In addition, scPCR analysis identified a subpopulation within the 2c hepatocytes that co-express the liver progenitor cell markers Axin2, Prom1, and Lgr5, implying the potential biological relevance of this subpopulation. CONCLUSIONS This study provides new insights into hepatocyte heterogeneity, namely 2c hepatocytes are preferentially localized to the pericentral region, and a subpopulation of 2c hepatocytes show liver progenitor cell-like features in terms of liver progenitor cell marker expression (Axin2, Prom1, and Lgr5).
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kazunori Hosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Wataru Usuba
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Yamaguchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
15
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Cheng D, Chen Y, Lu C, Qian Y, Lv Z. Preliminary profiling of microRNA in the normal and regenerating liver of Chiloscyllium plagiosum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:60-67. [PMID: 28822868 DOI: 10.1016/j.cbd.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/30/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022]
Abstract
Liver is a vital organ present in animals for detoxification, protein synthesis, digestion and other functions and its powerful regenerative capacity is well known. C. plagiosum is an abundant fish that is representative of the cartilaginous class in the southeast coastal region of China and its liver accounts for >70% of the fish's visceral weight and contains many bioactive substances. MicroRNAs (microRNAs) play important roles in a wide range of biological processes in eukaryotes, including cell proliferation, differentiation, apoptosis. However, microRNAs in response to liver regeneration has not been well studied. This study aimed to identify the microRNAs that participate in liver regeneration and other liver-related diseases and to improve our understanding of the mechanisms of liver regeneration in sharks. To this end, normal and regenerating liver tissues from C. plagiosum were harvested 0, 3, 6, 12 and 24h after partial hepatectomy (pH) and were sequenced using the Illumina/Solexa platform. In total, 309 known microRNAs and 590 novel microRNAs were identified in C. plagiosum. There were many microRNAs differentially expressed in the normal and regenerating livers between time points. Using target prediction and GO analysis, most of the differentially expressed microRNAs were assigned to functional categories that may be involved in regulating liver regeneration, such as cell proliferation, differentiation and apoptosis. The microRNA expression profile of liver regeneration will pave the way for the development of effective strategies to fight against liver disease and other related disease.
Collapse
Affiliation(s)
- Dandan Cheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yanna Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Conger Lu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yuezhong Qian
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| |
Collapse
|
17
|
Detection of piRNAs in whitespotted bamboo shark liver. Gene 2016; 590:51-6. [PMID: 27267405 DOI: 10.1016/j.gene.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 01/12/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are 26 to 31-nt small non-coding RNAs that have been reported mostly in germ-line cells and cancer cells. However, the presence of piRNAs in the whitespotted bamboo shark liver has not yet been reported. In a previous study of microRNAs in shark liver, some piRNAs were detected from small RNAs sequenced by Solexa technology. A total of 4857 piRNAs were predicted and found in shark liver. We further selected 17 piRNAs with high and significantly differential expression between normal and regenerative liver tissues for subsequent verification by Northern blotting. Ten piRNAs were further identified, and six of these were matched to known piRNAs in piRNABank. The actual expression of six known and four novel piRNAs was validated by qRT-PCR. In addition, a total of 401 target genes of the 10 piRNAs were predicted by miRanda. Through GO and pathway function analyses, only five piRNAs could be annotated with eighteen GO annotations. The results indicated that the identified piRNAs are involved in many important biological responses, including immune inflammation, cell-specific differentiation and development, and angiogenesis. This manuscript provides the first identification of piRNAs in the liver of whitespotted bamboo shark using Solexa technology as well as further elucidation of the regulatory role of piRNAs in whitespotted bamboo shark liver. These findings may provide a useful resource and may facilitate the development of therapeutic strategies against liver damage.
Collapse
|
18
|
Adas G, Koc B, Adas M, Duruksu G, Subasi C, Kemik O, Kemik A, Sakiz D, Kalayci M, Purisa S, Unal S, Karaoz E. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch Surg 2016; 401:725-40. [PMID: 27094936 DOI: 10.1007/s00423-016-1380-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/08/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The study aims to determine the effects of mesenchymal stem cell (MSC) therapy and a combination therapy of MSCs transfected with vascular endothelial growth factor (VEGF) for liver regeneration after major resection. METHODS Thirty-eight rats were divided into four groups: group 1: control (sham operation); group 2: control (70 % hepatic resection); group 3: 70 % hepatic resection + systemically transplanted MSCs; and group 4: 70 % hepatic resection + systemically transplanted MSCs transfected with the VEGF gene. MSCs were injected via the portal vein route in study groups 3 and 4. Expression levels of VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor (TGF), hepatocyte growth factor (HGF), and augmenter of liver regeneration (ALR) were analyzed in the remnant liver tissue. We investigated the levels of angiogenic factors, VEGF-receptor, angiopoietin-1 (Angpt1) and Angpt2. Biochemical parameters of liver function in blood samples were measured and a histologic assessment of the livers was performed. The postoperative liver weight and volume of each rat were measured 14 days after surgery. RESULTS The expression levels of all measured growth factors were significantly increased in groups 3 and 4 compared to the control groups. The levels of Angpt1 and Angpt2 correlated with levels of VEGF and thus were also significantly higher in the study groups. There were significant differences between the estimated liver weights and volumes of group 4 and the resected controls in group 2. With the exception of portal inflammation, levels of all histological parameters were observed to be higher in MSC-treated groups when compared with the resected controls in group 2. CONCLUSIONS Transplanted stem cells and MSCs transfected with VEGF significantly accelerated many parameters of the healing process following major hepatic resection. After the injection of MSCs and VEGF-transfected MSCs into the portal vein following liver resection, they were engrafted in the liver. They increased bile duct and liver hepatocyte proliferation, and secreted many growth factors including HGF, TGFβ, VEGF, PDGF, EGF, and FGF via paracrine effects. These effects support liver function, regeneration, and liver volume/weight.
Collapse
Affiliation(s)
- Gokhan Adas
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Bora Koc
- Faculty of Medicine, Istanbul Training Hospital, Department of Surgery, Baskent University, Oymaci Sok. No:7, 34662, Altunizade Uskudar, Istanbul, Turkey.
| | - Mine Adas
- Department of Endocrinology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Cansu Subasi
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Ozgur Kemik
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ahu Kemik
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Damlanur Sakiz
- Department of Pathology, Bakirköy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Kalayci
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Sevim Purisa
- Faculty of Medicine, Department of Statistics, Istanbul University, Istanbul, Turkey
| | - Seda Unal
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), Liv Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Abstract
The mammalian liver is one of the most regenerative tissues in the body, capable of fully recovering mass and function after a variety of injuries. This factor alone makes the liver unusual among mammalian tissues, but even more atypical is the widely held notion that the method of repair depends on the manner of injury. Specifically, the liver is believed to regenerate via replication of existing cells under certain conditions and via differentiation from specialized cells--so-called facultative stem cells--under others. Nevertheless, despite the liver's dramatic and unique regenerative response, the cellular and molecular features of liver homeostasis and regeneration are only now starting to come into relief. This review provides an overview of normal liver function and development and focuses on the evidence for and against various models of liver homeostasis and regeneration.
Collapse
Affiliation(s)
- Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Abramson Family Cancer Research Institute, and Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
20
|
Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjug Chem 2015; 26:1984-2001. [PMID: 26280942 DOI: 10.1021/acs.bioconjchem.5b00360] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samad Ahadian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hojae Bae
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Centre
for Stem Cell Research, Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore 632002, India
| | - Ali Khademhosseini
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
- Department
of Medicine, Center for Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
De Assuncao TM, Sun Y, Jalan-Sakrikar N, Drinane M, Huang BQ, Li Y, Davila JI, Wang R, O’Hara SP, Lomberk GA, Urrutia RA, Ikeda Y, Huebert RC. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. J Transl Med 2015; 95:684-96. [PMID: 25867762 PMCID: PMC4447567 DOI: 10.1038/labinvest.2015.51] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 12/25/2022] Open
Abstract
Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore, the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs, using precise temporal exposure to key biliary morphogens, and we characterized the cells, using a variety of morphologic, molecular, cell biologic, functional, and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC, definitive endoderm, hepatic specification, hepatic progenitors, and ultimately cholangiocytes. Immunostaining, western blotting, and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP, form intact primary cilia, and self-assemble into duct-like structures in three-dimensional culture. In vivo, the cells engraft within mouse liver, following retrograde intrabiliary infusion. In summary, we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation, iDCs represent a platform for in vitro disease modeling, pharmacologic testing, and individualized, cell-based, regenerative therapies for the cholangiopathies.
Collapse
Affiliation(s)
- Thiago M. De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Yan Sun
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Mary Drinane
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Bing Q. Huang
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic and Foundation, Rochester, MN
| | - Jaime I. Davila
- Division of Biomedical Statistics and Informatics, Mayo Clinic and Foundation, Rochester, MN
| | - Ruisi Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Steven P. O’Hara
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN
| | - Gwen A. Lomberk
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN
| | - Raul A. Urrutia
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN
| | - Yasuhiro Ikeda
- Department of Molecular Medicine; Mayo Clinic and Foundation, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, MN
| |
Collapse
|
22
|
Czysz K, Minger S, Thomas N. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation. PLoS One 2015; 10:e0117689. [PMID: 25659159 PMCID: PMC4320104 DOI: 10.1371/journal.pone.0117689] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Background Definitive endoderm (DE) is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver, lungs, thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1, 2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO) to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. Materials and Methods Human embryonic stem cells (hESC) were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry, real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG), definitive endoderm (SOX17, CXCR4 & GATA4) and hepatic (AFP & ALB) genes to generate differentiation stage-specific signatures. Results Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG, accompanied by an increase expression of the DE genes SOX17, CXCR4 and GATA4. Importantly, the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.
Collapse
Affiliation(s)
- Katherine Czysz
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
- * E-mail:
| | - Stephen Minger
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
| | - Nick Thomas
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
| |
Collapse
|
23
|
Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2014; 141:1697-713. [PMID: 25270087 DOI: 10.1007/s00432-014-1840-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. METHODS In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. RESULTS Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. CONCLUSIONS The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions.
Collapse
Affiliation(s)
- Danupon Nantajit
- Radiation Oncology Unit, Chulabhorn Hospital, Bangkok, 10210, Thailand
| | | | | |
Collapse
|
24
|
Lysakova-Devine T, O'Farrelly C. Tissue-specific NK cell populations and their origin. J Leukoc Biol 2014; 96:981-90. [DOI: 10.1189/jlb.1ru0514-241r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 2014; 6:357-76. [PMID: 24471956 DOI: 10.4155/bio.13.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For the last few decades intense scientific research has been placed on the relationship between trace substances found in exhaled breath such as volatile organic compounds (VOC) and a wide range of local or systemic diseases. Although currently there is no general consensus, results imply that VOC have a different profile depending on the organ or disease that generates them. The association between a specific pathology and exhaled breath odor is particularly evident in patients with medical conditions such as liver, renal or oral diseases. In other cases the unpleasant odors can be associated with the whole body and have a genetic underlying cause. The present review describes the current advances in identifying and quantifying VOC used as biomarkers for a number of systemic diseases. A special focus will be placed on volatiles that characterize unpleasant breath 'fingerprints' such as fetor hepaticus; uremic fetor; fetor ex ore or trimethylaminuria.
Collapse
|
26
|
Caralt M, Velasco E, Lanas A, Baptista PM. Liver bioengineering: from the stage of liver decellularized matrix to the multiple cellular actors and bioreactor special effects. Organogenesis 2014; 10:250-9. [PMID: 25102189 DOI: 10.4161/org.29892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver bioengineering has been a field of intense research and popular excitement in the past decades. It experiences great interest since the introduction of whole liver acellular scaffolds generated by perfusion decellularization (1-3). Nevertheless, the different strategies developed so far have failed to generate hepatic tissue in vitro bioequivalent to native liver tissue. Even notable novel strategies that rely on iPSC-derived liver progenitor cells potential to self-organize in association with endothelial cells in hepatic organoids are lacking critical components of the native tissue (e.g., bile ducts, functional vascular network, hepatic microarchitecture, etc) (4). Hence, it is vital to understand the strengths and short comes of our current strategies in this quest to re-create liver organogenesis in vitro. To shed some light into these issues, this review describes the different actors that play crucial roles in liver organogenesis and highlights the steps still missing to successfully generate whole livers and hepatic organoids in vitro for multiple applications.
Collapse
Affiliation(s)
- Mireia Caralt
- Vall d'Hebron University Hospital; Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | - Angel Lanas
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| | - Pedro M Baptista
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| |
Collapse
|
27
|
Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 2014; 9:e101980. [PMID: 25000307 PMCID: PMC4084947 DOI: 10.1371/journal.pone.0101980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
Collapse
|
28
|
Goh HN, Rathjen PD, Familari M, Rathjen J. Endoderm complexity in the mouse gastrula is revealed through the expression of spink3. Biores Open Access 2014; 3:98-109. [PMID: 24940561 PMCID: PMC4048981 DOI: 10.1089/biores.2014.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation. Expression of serine peptidase inhibitor, Kazal type 3 (Spink3) was detected in EPL cell–derived endoderm, and in a band of endoderm immediately distal to the embryonic–extra-embryonic boundary in pregastrula and gastrulating embryos. Later expression marked a region of endoderm separating the yolk sac from the developing gut. In the embryo, Spink3 expression marked a region of endoderm comprising the distal visceral endoderm, as determined by an endocytosis assay, and the proximal region of the definitive endoderm. This region was distinct from the more distal definitive endoderm population, marked by thyrotropin-releasing hormone (Trh). Endoderm expressing either Spink3 or Trh could be formed during EPL cell differentiation, and the prevalence of these populations could be influenced by culture medium and growth factor addition. Moreover, further differentiation suggested that the potential of these populations differed. These approaches have revealed an unexpected complexity in the definitive endoderm lineage, a complexity that will need to be accommodated in differentiation protocols to ensure the formation of the appropriate definitive endoderm progenitor in the future.
Collapse
Affiliation(s)
- Hwee Ngee Goh
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Peter D Rathjen
- The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne , Victoria, Australia . ; The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| |
Collapse
|
29
|
Paganelli M, Nyabi O, Sid B, Evraerts J, El Malmi I, Heremans Y, Dollé L, Benton C, Calderon PB, van Grunsven L, Heimberg H, Campard D, Sokal E, Najimi M. Downregulation of Sox9 Expression Associates with Hepatogenic Differentiation of Human Liver Mesenchymal Stem/Progenitor Cells. Stem Cells Dev 2014; 23:1377-91. [DOI: 10.1089/scd.2013.0169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Massimiliano Paganelli
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Omar Nyabi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Brice Sid
- Toxicology and Cancer Biology Research Group, PMNT Unit, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jonathan Evraerts
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Imane El Malmi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carley Benton
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Pedro-Buc Calderon
- Toxicology and Cancer Biology Research Group, PMNT Unit, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Leo van Grunsven
- Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Campard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
30
|
Effects of coencapsulation of hepatocytes with adipose-derived stem cells in the treatment of rats with acute-on-chronic liver failure. Int J Artif Organs 2014; 37:133-41. [PMID: 24619896 PMCID: PMC6161594 DOI: 10.5301/ijao.5000284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 12/17/2022]
Abstract
Introduction Cell transplantation is an alternative to liver transplantation, which is hampered by short survival time and immunorejection. The goal of this study was to evaluate the therapeutic potential of hepatocytes coencapsulated with adipose-derived stem cells (ADSCs) in treating acute-on-chronic liver failure (ACLF). Methods Rat hepatocytes and ADSCs were isolated, and coencapsulated by alginate-poly-L-lysinealginate microencapsulation. The morphological and functional changes of heterotypic interactions were characterized. ACLF in rats was induced by D-galactosamine administration following CCl4-induced cirrhosis. These rats were subjected to intraperitoneal transplantation of 5 × 107 coencapsulated hepatocytes with ADSCs, 5 × 107 encapsulated hepatocytes alone, or empty vehicles after 24 h, respectively. The survival rate and liver functions were assessed. Results Hepatocyte performance levels such as albumin secretion and urea synthesis induction were all significantly enhanced in the coencapsulation group compared with the homo-encapsulated hepatocytes group (p<0.05). The results of cell cycle analysis showed that larger populations of hepatocytes with ADSC treatment were accumulated in the G2-S phase, and there were fewer in the G0-G1 phase compared to encapsulation of hepatocytes alone. Intraperitoneal transplantation of coencapsulated hepatocytes with ADSCs not only increased the survival rate, but also improved liver functions in a rat model of ACLF. Conclusions Transplantation of coencapsulated hepatocytes and ADSCs might be a promising strategy for cell-based therapy of acute liver diseases.
Collapse
|
31
|
Wei W, Hou J, Alder O, Ye X, Lee S, Cullum R, Chu A, Zhao Y, Warner SM, Knight DA, Yang D, Jones SJM, Marra MA, Hoodless PA. Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b and mir20a in repressing transforming growth factor-beta signaling. Hepatology 2013; 57:2491-501. [PMID: 23315977 DOI: 10.1002/hep.26252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are recently discovered small RNA molecules that regulate developmental processes, such as proliferation, differentiation, and apoptosis; however, the identity of miRNAs and their functions during liver development are largely unknown. Here we investigated the miRNA and gene expression profiles for embryonic day (E)8.5 endoderm, E14.5 Dlk1(+) liver cells (hepatoblasts), and adult liver by employing Illumina sequencing. We found that miRNAs were abundantly expressed at all three stages. Using K-means clustering analysis, 13 miRNA clusters with distinct temporal expression patterns were identified. mir302b, an endoderm-enriched miRNA, was identified as an miRNA whose predicted targets are expressed highly in E14.5 hepatoblasts but low in the endoderm. We validated the expression of mir302b in the endoderm by whole-mount in situ hybridization. Interestingly, mir20a, the most highly expressed miRNA in the endoderm library, was also predicted to regulate some of the same targets as mir302b. We found that through targeting Tgfbr2, mir302b and mir20a are able to regulate transforming growth factor beta (TGFβ) signal transduction. Moreover, mir302b can repress liver markers in an embryonic stem cell differentiation model. Collectively, we uncovered dynamic patterns of individual miRNAs during liver development, as well as miRNA networks that could be essential for the specification and differentiation of liver progenitors. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Wei Wei
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Katsuda T, Teratani T, Chowdhury MM, Ochiya T, Sakai Y. Hypoxia efficiently induces differentiation of mouse embryonic stem cells into endodermal and hepatic progenitor cells. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Chou MJ, Hsieh CH, Yeh PL, Chen PC, Wang CH, Huang YY. Application of open porous poly(D,L-lactide-co-glycolide) microspheres and the strategy of hydrophobic seeding in hepatic tissue cultivation. J Biomed Mater Res A 2013; 101:2862-9. [PMID: 23505008 DOI: 10.1002/jbm.a.34594] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/05/2012] [Accepted: 01/02/2013] [Indexed: 11/06/2022]
Abstract
In this article, porous poly(D,L-lactide-co-glycolide) (PLGA) microsphere scaffolds with a size of ∼ 400 μm and pores of ∼ 20 μm were prepared for constructing injectable three-dimensional hepatocyte spheroids. The porous sites of PLGA microspheres provided a spatial space for hepatocyte distribution. Hepatocytes spheroids were cocultured with human umbilical vein endothelial cell, bone marrow mesenchymal stem cell, or NIH/3T3 cells by combining the porous PLGA microspheres with the relatively hydrophobic culture strategy. The combination of open porous microspheres, hepatocytes, and nonparenchymal cells was demonstrated for application in functional hepatic tissue reconstruction. Hepatocellular-specific functions can sustained up to 2 weeks in the support of coculturing with nonparenchymal cells. The spheroidal hepatocyte coculture system had the advantages of an injectable delivery, higher cell seeding density, protection from exerted shear stress, better exchange of nutrients, oxygen and metabolites, and heterotypic cell-cell contact within and between microspheres.
Collapse
Affiliation(s)
- Ming-Ju Chou
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, Takikawa Y, Miyajima A. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27:169-81. [PMID: 23322300 DOI: 10.1101/gad.204776.112] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver is a unique organ with a remarkably high potential to regenerate upon injuries. In severely damaged livers where hepatocyte proliferation is impaired, facultative liver progenitor cells (LPCs) proliferate and are assumed to contribute to regeneration. An expansion of LPCs is often observed in patients with various types of liver diseases. However, the underlying mechanism of LPC activation still remains largely unknown. Here we show that a member of the fibroblast growth factor (FGF) family, FGF7, is a critical regulator of LPCs. Its expression was induced concomitantly with LPC response in the liver of mouse models as well as in the serum of patients with acute liver failure. Fgf7-deficient mice exhibited markedly depressed LPC expansion and higher mortality upon toxin-induced hepatic injury. Transgenic expression of FGF7 in vivo led to the induction of cells with characteristics of LPCs and ameliorated hepatic dysfunction. We revealed that Thy1(+) mesenchymal cells produced FGF7 and appeared in close proximity to LPCs, implicating a role for those cells as the functional LPC niche in the regenerating liver. These findings provide new insights into the cellular and molecular basis for LPC regulation and identify FGF7 as a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Hinako M Takase
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liver Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
36
|
Guo J, Ren W, Ding Y, Li A, Jia L, Su D, Liu X, Xu K, Yang T. Fat mass and obesity associated gene (FTO) expression is regulated negatively by the transcription factor Foxa2. PLoS One 2012; 7:e51082. [PMID: 23236435 PMCID: PMC3517585 DOI: 10.1371/journal.pone.0051082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/29/2012] [Indexed: 01/15/2023] Open
Abstract
Fat mass and obesity associated gene (FTO) is the first gene associated with body mass index (BMI) and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β) binding site and an upstream stimulatory factor (USF)-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS). Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14) as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP) assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.
Collapse
Affiliation(s)
- Jianjin Guo
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Ren
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; and Shanghai Clinical Center of Diabetes, Shanghai, China
| | - Ying Ding
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Aimei Li
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lu Jia
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongming Su
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiang Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kuanfeng Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
37
|
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial, evolutionarily conserved process that occurs during development and is essential for shaping embryos. Also implicated in cancer, this morphological transition is executed through multiple mechanisms in different contexts, and studies suggest that the molecular programs governing EMT, albeit still enigmatic, are embedded within developmental programs that regulate specification and differentiation. As we review here, knowledge garnered from studies of EMT during gastrulation, neural crest delamination and heart formation have furthered our understanding of tumor progression and metastasis.
Collapse
Affiliation(s)
- Jormay Lim
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
38
|
Bornstein R, Macias MI, de la Torre P, Grande J, Flores AI. Human decidua-derived mesenchymal stromal cells differentiate into hepatic-like cells and form functional three-dimensional structures. Cytotherapy 2012; 14:1182-92. [PMID: 22900961 DOI: 10.3109/14653249.2012.706706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AIMS Previously, we have shown that human decidua-derived mesenchymal stromal cells (DMSC) are mesenchymal stromal cells (MSC) with a clonal differentiation capacity for the three embryonic layers. The endodermal capacity of DMSC was revealed by differentiation into pulmonary cells. In this study, we examined the hepatic differentiation of DMSC. METHODS DMSC were cultured in hepatic differentiation media or co-cultured with murine liver homogenate and analyzed with phenotypic, molecular and functional tests. RESULTS AND CONCLUSIONS DMSC in hepatic differentiation media changed their fibroblast morphology to a hepatocyte-like morphology and later formed a 3-dimensional (3-D) structure or hepatosphere. Moreover, the hepatocyte-like cells and the hepatospheres expressed liver-specific markers such as synthesis of albumin (ALB), hepatocyte growth factor receptor (HGFR), α-fetoprotein (AFP) and cytokeratin-18 (CK-18), and exhibited hepatic functions including glycogen storage capacity and indocyanine green (ICG) uptake/secretion. Human DMSC co-cultured with murine liver tissue homogenate in a non-contact in vitro system showed hepatic differentiation, as evidenced by expression of AFP and ALB genes. The switch in the expression of these two genes resembled liver development. Indeed, the decrease in AFP and increase in ALB expression throughout the co-culture were consistent with the expression pattern observed during normal liver organogenesis in the embryo. Interestingly, AFP and ALB expression was significantly higher when DMSC were co-cultured with injured liver tissue, indicating that DMSC respond differently under normal and pathologic micro-environmental conditions. In conclusion, DMSC-derived hepatospheres and DMSC co-cultured with liver homogenate could be suitable in vitro models for toxicologic, developmental and pre-clinical hepatic regeneration studies.
Collapse
Affiliation(s)
- Rafael Bornstein
- Madrid Cord Blood Bank, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Significance of sonic hedgehog signaling after massive hepatectomy in a rat. Surg Today 2012; 43:300-7. [PMID: 22790641 DOI: 10.1007/s00595-012-0248-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/15/2012] [Indexed: 01/11/2023]
Abstract
PURPOSE To clarify the functional involvement of hedgehog signaling, especially sonic hedgehog (Shh) and glioma-associated oncogene (Gli)-1 which are known to play an important role in embryonic development and cancer, in the regeneration of a hepatectomized rat liver. METHODS Six-week-old male Wistar rats were subjected to 70 or 90 % hepatectomy (Hx). Animals were killed at 24, 48 and 72 h after Hx. The liver/body weight ratio was measured as an index of regeneration. Formalin-fixed liver samples were embedded in paraffin, stained for immunohistochemistry with proliferating cell nuclear antigen (PCNA) antibody, and the labeling index was calculated. Immunohistochemistry was also performed with Shh and Gli-1 antibodies. RESULTS The liver/body weight ratio gradually increased in both the 70 and 90 % Hx, groups. The hepatocytes were strongly stained for PCNA at 24 h after Hx. Non-parenchymal cells were gradually stained by PCNA from 24 to 72 h after Hx. Shh and Gli-1 expression in hepatocytes was higher after 24 h than at other times and then gradually decreased. Shh and Gli-1 expression in non-parenchymal cells increased gradually, and was found mainly in liver zone I at 72 h after 70 and 90 % Hx. CONCLUSIONS The expression of both markers suggested that Shh signaling contributes to tissue reconstruction after Hx.
Collapse
|
40
|
Zhou WL, Medine CN, Zhu L, Hay DC. Stem cell differentiation and human liver disease. World J Gastroenterol 2012; 18:2018-25. [PMID: 22563188 PMCID: PMC3342599 DOI: 10.3748/wjg.v18.i17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/26/2012] [Indexed: 02/06/2023] Open
Abstract
Human stem cells are scalable cell populations capable of cellular differentiation. This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells. Such an approach has the potential to improve our understanding of human biology and treating disease. In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases. In recent years, efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own. In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.
Collapse
|
41
|
Cienfuegos JA, Baixauli J. [Stem cells and liver regeneration: looking toward the future]. GASTROENTEROLOGIA Y HEPATOLOGIA 2012; 35:675. [PMID: 22534115 DOI: 10.1016/j.gastrohep.2012.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 11/27/2022]
|
42
|
Zhu C, Coombe DR, Zheng MH, Yeoh GCT, Li L. Liver progenitor cell interactions with the extracellular matrix. J Tissue Eng Regen Med 2012; 7:757-66. [PMID: 22467423 DOI: 10.1002/term.1470] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/26/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
Liver progenitor cells (LPCs) are a promising source of cells to treat liver disease by cell therapy, due to their capability for self-replication and bipotentiality. In order to establish useful culture systems of LPCs and apply them to future clinical therapies, it is necessary to understand their interactions with their microenvironment and especially with the extracellular matrix (ECM). There is considerable evidence from in vivo studies that matrix proteins affect the activation, expansion, migration and differentiation of LPCs, but the information on the role that specific ECMs play in regulating LPCs in vitro is more limited. Nevertheless, current studies suggest that laminin, collagen type III, collagen type IV and hyaluronic acid help to maintain the undifferentiated phenotype of LPCs and promote their proliferation when cultured in media supplemented with growth factors chosen for LPC expansion, whereas collagen type I and fibronectin are generally associated with a differentiated phenotype under the same conditions. Experimental evidence suggests that α6β1 and α5β1 integrins as well as CD44 on the surface of LPCs, and their related downstream signals, are important mediators of interactions between LPCs and the ECM. The interactions of LPCs with the ECM form the focus of this review and the contribution of ECM molecules to strategies for optimizing in vitro LPC cultures for therapeutic applications is discussed.
Collapse
Affiliation(s)
- Chunxia Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Crawford JM, Burt AD. Anatomy, pathophysiology and basic mechanisms of disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:1-77. [DOI: 10.1016/b978-0-7020-3398-8.00001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 2011; 38:689-97. [PMID: 22118888 DOI: 10.1016/j.ctrv.2011.11.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/05/2011] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In this process, cells acquire molecular alterations that facilitate dysfunctional cell-cell adhesive interactions and junctions. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Such transformation has implications in progression of breast carcinoma to metastasis, and increasing evidences support most tumors contain a subpopulation of cells with stem-like and mesenchymal features that is resistant to chemotherapy. This review focuses on the physiological and pathological role of EMT process, its molecular related network, its putative role in the metastatic process and its implications in response/resistance to the current and/or new approaching drugs in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Chiara Foroni
- U.O. Multidisciplinare di Patologia Mammaria, Laboratorio di Oncologia Molecolare Senologica, Istituti Ospitalieri di Cremona,Viale Concordia 1, 26100 Cremona, Italy
| | | | | | | |
Collapse
|
45
|
Au AY, Hasenwinkel JM, Frondoza CG. Micropatterned agarose scaffolds covalently modified with collagen for culture of normal and neoplastic hepatocytes. J Biomed Mater Res A 2011; 100:342-52. [DOI: 10.1002/jbm.a.33277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 11/08/2022]
|
46
|
Tanguy Y, Falluel-Morel A, Arthaud S, Boukhzar L, Manecka DL, Chagraoui A, Prevost G, Elias S, Dorval-Coiffec I, Lesage J, Vieau D, Lihrmann I, Jégou B, Anouar Y. The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology 2011; 152:4322-35. [PMID: 21896670 DOI: 10.1210/en.2011-1246] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selenoproteins contain the essential trace element selenium whose deficiency leads to major disorders including cancer, male reproductive system failure, or autoimmune thyroid disease. Up to now, 25 selenoprotein-encoding genes were identified in mammals, but the spatiotemporal distribution, regulation, and function of some of these selenium-containing proteins remain poorly documented. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein, is regulated by the trophic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) in differentiating but not mature adrenomedullary cells. In fact, our analysis revealed that, in rat, SelT is highly expressed in most embryonic structures, and then its levels decreased progressively as these organs develop, to vanish in most adult tissues. In the brain, SelT was abundantly expressed in neural progenitors in various regions such as the cortex and cerebellum but was undetectable in adult nervous cells except rostral migratory-stream astrocytes and Bergmann cells. In contrast, SelT expression was maintained in several adult endocrine tissues such as pituitary, thyroid, or testis. In the pituitary gland, SelT was found in secretory cells of the anterior lobe, whereas in the testis, the selenoprotein was present only in spermatogenic and Leydig cells. Finally, we found that SelT expression is strongly stimulated in liver cells during the regenerative process that occurs after partial hepatectomy. Taken together, these data show that SelT induction is associated with ontogenesis, tissue maturation, and regenerative mechanisms, indicating that this PACAP-regulated selenoprotein may play a crucial role in cell growth and activity in nervous, endocrine, and metabolic tissues.
Collapse
Affiliation(s)
- Yannick Tanguy
- INSERM, U982, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Sciences Faculty, University of Rouen, Place Emile Blondel, F-76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nagaoka M, Duncan SA. Transcriptional control of hepatocyte differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:79-101. [PMID: 21074730 DOI: 10.1016/b978-0-12-385233-5.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is the largest glandular organ in the body and plays a central role in controlling metabolism. During hepatogenesis, complex developmental processes must generate an array of cell types that are spatially arranged to generate a hepatic architecture that is essential to support liver function. The processes that control the ultimate formation of the liver are diverse and complex and in many cases poorly defined. Much of the focus of research during the past three decades has been on understanding how hepatocytes, which are the predominant liver parenchymal cells, differentiate during embryogenesis. Through a combination of mouse molecular genetics, embryology, and molecular biochemistry, investigators have defined a myriad of transcription factors that combine to control formation and function of hepatocytes. Here, we will review the major discoveries that underlie our current understanding of transcriptional regulation of hepatocyte differentiation.
Collapse
Affiliation(s)
- Masato Nagaoka
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
48
|
Ninomiya M, Shirabe K, Ijichi H, Toshima T, Harada N, Uchiyama H, Taketomi A, Yoshizumi T, Maehara Y. Temporal changes in the stiffness of the remnant liver and spleen after donor hepatectomy as assessed by acoustic radiation force impulse: A preliminary study. Hepatol Res 2011; 41:579-86. [PMID: 21561532 DOI: 10.1111/j.1872-034x.2011.00809.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Virtual touch tissue quantification (VTTQ) is an implementation of ultrasound acoustic radiation force impulse imaging that provides numerical measurements of tissue stiffness. We have evaluated the temporal changes of the remnant liver and spleen after living donor hepatectomy with special reference to the differences between right and left liver donation. METHODS Nineteen living donors who received right lobectomy (small remnant liver [SRL] group; n = 7) or extended left and caudate lobectomy (large remnant liver [LRL] group; n = 12) were enrolled. They underwent measurement of liver and spleen VTTQ before and after donor surgery. RESULTS Virtual touch tissue quantification of the remnant liver increased postoperatively until postoperative day (POD) 3-5, and the values in the SRL group were significantly higher than those in the LRL group at POD 3-9. The values of the spleen also increased after donor surgery and the values in the SRL group were significantly higher than those in the LRL group at POD 3-14. A significant positive correlation between postoperative maximum value of VTTQ and postoperative maximum total bilirubin levels was observed. In liver transplant recipients, there was a significant positive correlation between preoperative spleen VTTQ and the corresponding actual portal venous pressure that was measured at the time of transplant surgery. CONCLUSION Stiffness of the remaining liver and spleen in the smaller remnant liver group became harder than that in the larger remnant liver group. Perioperative measurement of liver and spleen VTTQ seems to be a useful means for assessing the physiology of liver regeneration.
Collapse
Affiliation(s)
- Mizuki Ninomiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhou F, Wang Y, Guan Y, Xu Y, Gao X, Wu W, Ye B. Construction and characterization of a cDNA library from shark regenerated hepatic tissue. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1170-1177. [PMID: 21382499 DOI: 10.1016/j.fsi.2011.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/21/2011] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Sharks are a type of fish with a full cartilaginous skeleton and have big livers. To better understand liver regeneration in sharks and screening for the important genes participated in disease-defense, in this study, a cDNA library of regenerated liver tissues of shark, Chiloscyllium plagiosum, was constructed. A total of 2103 expressed sequence tags (ESTs), which represents 997 unique genes, were sequenced. Among these genes, 434 (43.53%) of them showed significant similarity (E-values < 10⁻⁵) to the sequences in NCBI Nt database, 685 (68.71%) of these unique genes showed significant similarity (E-values < 10⁻⁵) to the sequences in NCBI Nr database, and 662 (66.40%) of these unique genes showed significant similarity (E-values < 10⁻⁵) to the Swiss-Prot database. Preliminary analysis of unique genes according to COG database showed that unigenes were further grouped into 21 functional categories including inorganic ion transport and metabolism, energy production and conversion, posttranslational modification, protein turnover and chaperones, general function prediction only, translation, and ribosomal structure and biogenesis. Several possible candidate genes involved in liver regeneration were selected to analyze their expression with relative quantification real-time PCR. This study may contribute to our better understanding of the molecular mechanism of regeneration in shark liver. Furthermore, the EST cataloguing and profiling of shark will be also benefited to the functional genomic research in this marine species.
Collapse
Affiliation(s)
- Feng Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Orsi G, De Maria C, Guzzardi M, Vozzi F, Vozzi G. HEMETβ: improvement of hepatocyte metabolism mathematical model. Comput Methods Biomech Biomed Engin 2011; 14:837-51. [DOI: 10.1080/10255842.2010.497145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|