1
|
Bagga AD, Johnson BP, Zhang Q. Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins. Pflugers Arch 2025:10.1007/s00424-024-03060-6. [PMID: 39751918 DOI: 10.1007/s00424-024-03060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Brian P Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Avalos JG, Champagne CD, Crocker DE, Khudyakov JI. The plasma proteome reveals markers of recent and repeated stress in free-ranging seals. CONSERVATION PHYSIOLOGY 2024; 12:coae075. [PMID: 39498350 PMCID: PMC11533252 DOI: 10.1093/conphys/coae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Animals in nature potentially experience multiple stressors, and those of anthropogenic origin are likely to be repeated or chronic. However, stress hormone levels are highly context-dependent and are not consistent predictors of chronic stress in wildlife. Profiling the downstream consequences of repeated stress responses, such as changes in metabolism or gene expression, may be more informative for predicting their individual-level health consequences and population-level impacts, which are key objectives for wildlife conservation. We previously found that in free-ranging juvenile elephant seals, the blubber transcriptome and proteome, but not cortisol levels, could distinguish between responses to single versus repeated stress axis stimulation. However, the blubber proteome response to stress was limited and mainly involved extra-cellular matrix proteins. In this study, we examined the plasma proteome response of four of the same animals to the repeated stress experiment, since multiple organs secrete proteins into the circulation, providing a readout of their activity and integration. We isolated plasma proteins, identified and quantified them using liquid chromatography and tandem mass spectrometry (LC-MS/MS) and compared their abundance between sampling times. We identified >200 proteins in plasma, of which 42 were altered in abundance, revealing complex protein dynamics in response to repeated stress challenges. These changes were delayed but sustained, suggesting that the plasma proteome may reflect longer term integration of multi-organ responses to recent, rather than immediate, challenges. Differentially abundant proteins included components of the osmoregulatory system, acute phase and complement proteins, organokines, apolipoproteins and hormone transport proteins, which coordinate physiological processes with significant implications for marine mammal health and may explain several aspects of marine mammal stress physiology, such as insulin resistance and high aldosterone levels. We identified several potentially novel biomarkers, such as AGT, HPX, TTR and APOA4, that may be useful for detecting recent and repeated stress exposure in marine mammals.
Collapse
Affiliation(s)
- Jessica G Avalos
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA
| | - Cory D Champagne
- National Marine Mammal Foundation, 2240 Shelter Island Dr., Ste. 200, San Diego, CA 92106, USA
| | - Dan E Crocker
- Biology Department, Sonoma State University, 1801 East Cotati Ave., Rohnert Park, CA 94928, USA
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Ave., Stockton, CA 95211, USA
| |
Collapse
|
3
|
Eytcheson SA, Zosel AD, Olker JH, Hornung MW, Degitz SJ. Screening the ToxCast Chemical Libraries for Binding to Transthyretin. Chem Res Toxicol 2024; 37:1670-1681. [PMID: 39258767 DOI: 10.1021/acs.chemrestox.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Transthyretin (TTR) is one of the serum binding proteins responsible for transport of thyroid hormones (TH) to target tissue and for maintaining the balance of available TH. Chemical binding to TTR and subsequent displacement of TH has been identified as an end point in screening chemicals for potential disruption of the thyroid system. To address the lack of data regarding chemicals binding to TTR, we optimized an in vitro assay utilizing the fluorescent probe 8-anilino-1-napthalenesulfonic acid (ANSA) and the human protein TTR to screen over 1500 chemicals from the U.S. EPA's ToxCast ph1_v2, ph2, and e1k libraries utilizing a tiered approach. Testing of a single high concentration (target 100 μM) resulted in 888 chemicals with 20% or greater activity based on displacement of ANSA from TTR. Of these, 282 chemicals had activity of 85% or greater and were further tested in 12-point concentration-response with target concentrations ranging from 0.015 to 100 μM. An EC50 was obtained for 276 of these 301 chemicals. To date, this is the largest set of chemicals screened for binding to TTR. Utilization of this assay is a significant contribution toward expanding the suite of in vitro assays used to identify chemicals with the potential to disrupt thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Stephanie A Eytcheson
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| | - Alexander D Zosel
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
- Oak Ridge Associated Universities Student Services Contractor, Oak Ridge, Tennessee 37830, United States
| | - Jennifer H Olker
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| | - Michael W Hornung
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| | - Sigmund J Degitz
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| |
Collapse
|
4
|
Tetko IV. Tox24 Challenge. Chem Res Toxicol 2024; 37:825-826. [PMID: 38769907 DOI: 10.1021/acs.chemrestox.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Igor V Tetko
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich-Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), DE-85764 Neuherberg, Germany
- BIGCHEM GmbH, Valerystr. 49, DE-85716 Unterschleißheim, Germany
| |
Collapse
|
5
|
Bagga AD, Johnson BP, Zhang Q. Spatially Dependent Tissue Distribution of Thyroid Hormones by Plasma Thyroid Hormone Binding Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572629. [PMID: 38187691 PMCID: PMC10769377 DOI: 10.1101/2023.12.20.572629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA 30322, USA
| |
Collapse
|
6
|
Langberg HA, Choyke S, Hale SE, Koekkoek J, Cenijn PH, Lamoree MH, Rundberget T, Jartun M, Breedveld GD, Jenssen BM, Higgins CP, Hamers T. Effect-Directed Analysis Based on Transthyretin Binding Activity of Per- and Polyfluoroalkyl Substances in a Contaminated Sediment Extract. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:245-258. [PMID: 37888867 DOI: 10.1002/etc.5777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Only a fraction of the total number of per- and polyfluoroalkyl substances (PFAS) are monitored on a routine basis using targeted chemical analyses. We report on an approach toward identifying bioactive substances in environmental samples using effect-directed analysis by combining toxicity testing, targeted chemical analyses, and suspect screening. PFAS compete with the thyroid hormone thyroxin (T4 ) for binding to its distributor protein transthyretin (TTR). Therefore, a TTR-binding bioassay was used to prioritize unknown features for chemical identification in a PFAS-contaminated sediment sample collected downstream of a factory producing PFAS-coated paper. First, the TTR-binding potencies of 31 analytical PFAS standards were determined. Potencies varied between PFAS depending on carbon chain length, functional group, and, for precursors to perfluoroalkyl sulfonic acids (PFSA), the size or number of atoms in the group(s) attached to the nitrogen. The most potent PFAS were the seven- and eight-carbon PFSA, perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS), and the eight-carbon perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), which showed approximately four- and five-times weaker potencies, respectively, compared with the native ligand T4 . For some of the other PFAS tested, TTR-binding potencies were weak or not observed at all. For the environmental sediment sample, not all of the bioactivity observed in the TTR-binding assay could be assigned to the PFAS quantified using targeted chemical analyses. Therefore, suspect screening was applied to the retention times corresponding to observed TTR binding, and five candidates were identified. Targeted analyses showed that the sediment was dominated by the di-substituted phosphate ester of N-ethyl perfluorooctane sulfonamido ethanol (SAmPAP diester), whereas it was not bioactive in the assay. SAmPAP diester has the potential for (bio)transformation into smaller PFAS, including PFOS. Therefore, when it comes to TTR binding, the hazard associated with this substance is likely through (bio)transformation into more potent transformation products. Environ Toxicol Chem 2024;43:245-258. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Håkon A Langberg
- Environment and Geotechnics, Norwegian Geotechnical Institute, Oslo, Norway
| | - Sarah Choyke
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Eurofins Environment Testing, Tacoma, Washington, USA
| | - Sarah E Hale
- Environment and Geotechnics, Norwegian Geotechnical Institute, Oslo, Norway
- DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Peter H Cenijn
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Morten Jartun
- Norwegian Institute for Water Research, Oslo, Norway
| | - Gijs D Breedveld
- Environment and Geotechnics, Norwegian Geotechnical Institute, Oslo, Norway
- Department of Arctic Technology, University Centre in Svalbard, Longyearbyen, Norway
| | - Bjørn M Jenssen
- Department of Arctic Technology, University Centre in Svalbard, Longyearbyen, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Timo Hamers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Yi S, Wang J, Wang R, Liu M, Zhong W, Zhu L, Jiang G. Structure-Related Thyroid Disrupting Effect of Perfluorooctanesulfonate-like Substances in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:182-193. [PMID: 38156633 DOI: 10.1021/acs.est.3c07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA), hydrogenated polyfluorooctane ether sulfonate (6:2 H-PFESA), and chlorinated polyfluorooctanesulfonate (Cl-PFOS) share structural similarities with the regulated perfluorooctanesulfonate (PFOS), but their toxic potential is rarely known. Here, the thyroid disrupting potential of these four compounds in zebrafish larvae has been comparably investigated. PFOS, Cl-PFOS, and 6:2 Cl-PFESA were accumulated in the larvae at similar levels, approximately 1.3-1.6 times higher than 6:2 H-PFESA. Additionally, PFOS, Cl-PFOS, and 6:2 Cl-PFESA exhibited stronger disruption than 6:2 H-PFESA on genetic regulation, particularly concerning thyroid hormone (TH) activation and action and on TH homeostasis in both free and total forms of thyroxine (T4) and 3,5,3'-triiodothyronine (T3). These results indicate that chlorination or oxygen insertion does not substantially alter the thyrotoxicity of PFOS, but hydrogenation mitigates it. Molecular docking analysis and the luciferase reporter gene assay provided mechanistic perspectives that the PFOS-like substances could competitively replace THs to bind with TH plasma and membrane transporters, thereby disrupting TH transport and action, respectively. Moreover, they are also potent to disrupt TH synthesis and activation through Na+/K+-dependent transport of I- or competitive binding to the sites of deiodinases.
Collapse
Affiliation(s)
- Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingwen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rouyi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Bagga AD, Johnson BP, Zhang Q. A minimal human physiologically based kinetic model of thyroid hormones and chemical disruption of plasma thyroid hormone binding proteins. Front Endocrinol (Lausanne) 2023; 14:1168663. [PMID: 37305053 PMCID: PMC10248451 DOI: 10.3389/fendo.2023.1168663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
The thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), are under homeostatic control by the hypothalamic-pituitary-thyroid axis and plasma TH binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB). THBPs buffer free THs against transient perturbations and distribute THs to tissues. TH binding to THBPs can be perturbed by structurally similar endocrine-disrupting chemicals (EDCs), yet their impact on circulating THs and health risks are unclear. In the present study, we constructed a human physiologically based kinetic (PBK) model of THs and explored the potential effects of THBP-binding EDCs. The model describes the production, distribution, and metabolism of T4 and T3 in the Body Blood, Thyroid, Liver, and Rest-of-Body (RB) compartments, with explicit consideration of the reversible binding between plasma THs and THBPs. Rigorously parameterized based on literature data, the model recapitulates key quantitative TH kinetic characteristics, including free, THBP-bound, and total T4 and T3 concentrations, TH productions, distributions, metabolisms, clearance, and half-lives. Moreover, the model produces several novel findings. (1) The blood-tissue TH exchanges are fast and nearly at equilibrium especially for T4, providing intrinsic robustness against local metabolic perturbations. (2) Tissue influx is limiting for transient tissue uptake of THs when THBPs are present. (3) Continuous exposure to THBP-binding EDCs does not alter the steady-state levels of THs, while intermittent daily exposure to rapidly metabolized TBG-binding EDCs can cause much greater disruptions to plasma and tissue THs. In summary, the PBK model provides novel insights into TH kinetics and the homeostatic roles of THBPs against thyroid disrupting chemicals.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, Atlanta, United States
| |
Collapse
|
10
|
Maceroni M, Falsini B, Luigetti M, Romano A, Guglielmino V, Fasciani R, Placidi G, D’Agostino E, Sasso P, Rizzo S, Minnella AM. Ocular Morpho-Functional Evaluation in ATTRv Pre-Symptomatic Carriers: A Case Series. Diagnostics (Basel) 2023; 13:diagnostics13030359. [PMID: 36766465 PMCID: PMC9914588 DOI: 10.3390/diagnostics13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to investigate ocular findings in hereditary transthyretin amyloidosis (ATTRv) pre-symptomatic carriers. Fourteen ATTRv pre-symptomatic carriers, who are patients with positive genetic testing but without signs or symptoms of the disease, were retrospectively evaluated. Retinal morphology was assessed using optical coherence tomography (OCT) and OCT-angiography. Retinal function was evaluated using cone b-wave and photopic negative response (PhNR). Pupillometry and in vivo corneal confocal microscopy (IVCM) were performed. ATTRv pre-symptomatic carriers presented a significantly reduced central macular thickness (CMT) (p = 0.01) and outer nuclear layer (ONL) thickness (p = 0.01) in comparison to normal controls. No differences were found when analyzing sub-foveal choroidal thickness, retinal nerve fiber layer and ganglion cell complex. In comparison to healthy controls, pre-symptomatic carriers presented an attenuated superficial retinal vascular network and a significantly augmented PhNR amplitude (p = 0.01). However, PhNR implicit times, B-wave amplitude and B-wave peak time did not show significant differences in comparison to controls. No differences were found for pupillometric values. All the examined eyes presented alterations in the IVCM. Preclinical ocular structural and functional abnormalities can be found in ATTRv pre-symptomatic carriers. Thus, an extensive ophthalmological evaluation should be included at the baseline visit and during follow-up. Considering the availability of new drugs potentially able to prevent or delay disease progression, the identification of new disease biomarkers appears to be particularly promising.
Collapse
Affiliation(s)
- Martina Maceroni
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
- Correspondence: ; Tel.: +39-0630154928
| | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| | - Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
| | - Angela Romano
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
| | - Valeria Guglielmino
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
| | - Romina Fasciani
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| | - Giorgio Placidi
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| | - Elena D’Agostino
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| | - Paola Sasso
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| | - Stanislao Rizzo
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| | - Angelo Maria Minnella
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00135 Rome, Italy
| |
Collapse
|
11
|
Vélez-Santamaría V, Nedkova-Hristova V, Morales de la Prida M, Casasnovas C. Hereditary Transthyretin Amyloidosis with Polyneuropathy: Monitoring and Management. Int J Gen Med 2022; 15:8677-8684. [PMID: 36573111 PMCID: PMC9789700 DOI: 10.2147/ijgm.s338430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Our aim in this review is to discuss current treatments and investigational products and their effect on patients with hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) and provide suggestions for monitoring disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Valentina Vélez-Santamaría
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain,Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain,Correspondence: Valentina Vélez-Santamaría, Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908 L’Hospitalet de Llobregat, Barcelona, Spain, Tel +34 932607343, Fax +34 932607414, Email
| | | | | | - Carlos Casasnovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain,Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
13
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Plasma Transthyretin Levels and Risk of Type 2 Diabetes Mellitus and Impaired Glucose Regulation in a Chinese Population. Nutrients 2022; 14:nu14142953. [PMID: 35889910 PMCID: PMC9321865 DOI: 10.3390/nu14142953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Plasma transthyretin may be engaged in glucose regulation. We aimed to investigate the association between plasma transthyretin levels and the risk of newly diagnosed T2DM and impaired glucose regulation (IGR) in a Chinese population. We conducted a case-control study including 1244 newly diagnosed T2DM patients, 837 newly diagnosed IGR patients, and 1244 individuals with normal glucose tolerance (NGT) matched by sex and age. Multivariate logistic regression analysis was utilized to estimate the independent association of plasma transthyretin concentrations with the risk of T2DM and IGR. Plasma transthyretin concentrations were significantly higher in T2DM and IGR patients compared with control subjects (p < 0.005). After multiple adjustment and comparison with the lowest quartile of plasma transthyretin concentrations, the odds ratios (95% confidence intervals) of T2DM and IGR in the highest quartile were 2.22 (1.66, 2.98) and 2.29 (1.72, 3.05), respectively. Plasma transthyretin concentrations also showed a great performance in predicting the risk of T2DM (AUC: 0.76). Moreover, a potential nonlinear trend was observed. Our results demonstrated that higher plasma transthyretin concentrations, especially more than 290 mg/L, were associated with an increased risk of T2DM and IGR. Further studies are warranted to confirm our findings and elucidate the potential mechanisms.
Collapse
|
15
|
Magalhães J, Eira J, Liz MA. The role of transthyretin in cell biology: impact on human pathophysiology. Cell Mol Life Sci 2021; 78:6105-6117. [PMID: 34297165 PMCID: PMC11073172 DOI: 10.1007/s00018-021-03899-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/08/2021] [Accepted: 07/09/2021] [Indexed: 01/29/2023]
Abstract
Transthyretin (TTR) is an extracellular protein mainly produced in the liver and choroid plexus, with a well-stablished role in the transport of thyroxin and retinol throughout the body and brain. TTR is prone to aggregation, as both wild-type and mutated forms of the protein can lead to the accumulation of amyloid deposits, resulting in a disease called TTR amyloidosis. Recently, novel activities for TTR in cell biology have emerged, ranging from neuronal health preservation in both central and peripheral nervous systems, to cellular fate determination, regulation of proliferation and metabolism. Here, we review the novel literature regarding TTR new cellular effects. We pinpoint TTR as major player on brain health and nerve biology, activities that might impact on nervous systems pathologies, and assign a new link between TTR and angiogenesis and cancer. We also explore the molecular mechanisms underlying TTR activities at the cellular level, and suggest that these might go beyond its most acknowledged carrier functions and include interaction with receptors and activation of intracellular signaling pathways.
Collapse
Affiliation(s)
- Joana Magalhães
- Neurodegeneration Team, Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jessica Eira
- Neurodegeneration Team, Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - Márcia Almeida Liz
- Neurodegeneration Team, Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
16
|
Minnella AM, Rissotto R, Maceroni M, Romano A, Fasciani R, Luigetti M, Sabatelli M, Rizzo S, Falsini B. Ocular Involvement in Hereditary Transthyretin Amyloidosis: A Case Series Describing Novel Potential Biomarkers. Genes (Basel) 2021; 12:genes12060927. [PMID: 34207092 PMCID: PMC8234990 DOI: 10.3390/genes12060927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/15/2023] Open
Abstract
Hereditary transthyretin amyloidosis (hATTR) is a rare disease caused by a point mutation in the transthyretin (TTR) gene and inherited in an autosomal dominant fashion. TTR is a plasma protein that functions as a carrier for thyroxine (T4) and retinol (vitamin A). Ophthalmological manifestations are due to both the hepatic and ocular production of mutated TTR. In this case series, we report the ocular manifestations of hATTR in eighteen eyes of nine consecutive patients. Corneal nerve abnormalities as well as morphological and functional changes in the retina were investigated. The study was a single-center, retrospective, observational, clinical case series. In all patients, corneal confocal microscopy (CCM), multimodal imaging of the retina, including fundus photography and Optical Coherence Tomography (OCT), as well as rod and cone electroretinography (ERG) were performed. Eight patients had active disease and one was an unaffected carrier. In all study eyes, corneal nerve plexa examined with CCM were poorly represented or absent. Mixed rod-cone and cone ERG b-wave amplitudes were reduced, and photopic b-wave responses were significantly delayed. Photopic Negative Response (PhNR) amplitude was significantly reduced, while PhNR latency was significantly augmented. In 13/18 eyes, vitreous opacities and abnormalities of vitreo-retinal interface were found. The current results highlight the presence of corneal nerve damage. Functional retinal abnormalities, detected by ERG, can be found even in the presence of minimal or absent structural retinal damage. These findings support the use of CCM and ERGs to detect early biomarkers for primary hATTR.
Collapse
Affiliation(s)
- Angelo Maria Minnella
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (R.R.); (S.R.); (B.F.)
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (R.F.); (M.L.)
| | - Roberta Rissotto
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (R.R.); (S.R.); (B.F.)
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (R.F.); (M.L.)
| | - Martina Maceroni
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (R.R.); (S.R.); (B.F.)
- Correspondence: ; Tel.: +06-301-549-2
| | - Angela Romano
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.S.)
| | - Romina Fasciani
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (R.F.); (M.L.)
| | - Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (R.F.); (M.L.)
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.S.)
| | - Mario Sabatelli
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.R.); (M.S.)
- Centro Clinico NEMO Adulti, Sede di Roma, 00168 Rome, Italy
| | - Stanislao Rizzo
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (R.R.); (S.R.); (B.F.)
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (R.F.); (M.L.)
| | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (R.R.); (S.R.); (B.F.)
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (R.F.); (M.L.)
| |
Collapse
|
17
|
Diana Neely M, Xie S, Prince LM, Kim H, Tukker AM, Aschner M, Thimmapuram J, Bowman AB. Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Food Chem Toxicol 2021; 154:112288. [PMID: 34089799 DOI: 10.1016/j.fct.2021.112288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 μM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.
Collapse
Affiliation(s)
- M Diana Neely
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Anke M Tukker
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Dept of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Aaron B Bowman
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Yamauchi K. Evolution of thyroid hormone distributor proteins in fish. Gen Comp Endocrinol 2021; 305:113735. [PMID: 33549607 DOI: 10.1016/j.ygcen.2021.113735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
In plasma, thyroid hormone (TH) is bound to several TH distributor proteins (THDPs), constituting a TH delivery/distribution network. Extensive studies of THDPs from tetrapods has proposed an evolutionary scenario concerning structural and functional changes in THDPs, especially for transthyretin (TTR). When assessing, in an evolutionary context, the roles of THDPs as a component constituting part of the vertebrate thyroid system, the data from fish THDPs are critical. In this review the phylogenetic distributions, spatiotemporal expression patterns and binding properties of THDPs in fish are described, and the question of whether the evolutionary hypotheses proposed in tetrapod THDPs can be applied to fish THDPs is assessed. The phylogenetic distributions of THDPs are highly variable among fish groups. Analysis in this review reveals that the evolutionary hypotheses proposed in tetrapod THDPs cannot be applied to fish THDPs, and that the role of plasma lipoproteins as THDPs grows in importance in fish groups. In primitive fish, zinc is an import factor in TH binding to TTR, and high zinc content may facilitate the acquisition of high TH binding activity during the early evolution of TTR. Finally, the possible roles of THDPs in the vertebrate thyroid system are discussed.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
19
|
Yamauchi K. The interaction of zinc with the multi-functional plasma thyroid hormone distributor protein, transthyretin: evolutionary and cross-species comparative aspects. Biometals 2021; 34:423-437. [PMID: 33686575 DOI: 10.1007/s10534-021-00294-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022]
Abstract
A considerable body of evidence has been accumulated showing the interrelationship between zinc and the plasma thyroid hormone (TH) distributor protein, transthyretin (TTR). TTR is a multi-functional protein, which emerged from 5-hydroxyisourate hydrolase (HIUHase) by neo-functionalization after gene duplication during early chordate evolution. HIUHase is also a zinc-binding protein. Most biochemical and molecular biological findings have been obtained from mammalian studies. However, in the past two decades, it has become clear that fish TTR displays zinc-dependent TH binding. After a brief introduction on plasma zinc, THs and their binding proteins, this review will focus on the role of zinc in TTR functions of various vertebrates. In particular primitive fish TTR has an extremely high zinc content, with an increased number of histidine residues which are involved in TH binding. However, zinc-dependent TH binding may have been gradually lost from TTRs during higher vertebrate evolution. Although human TTR has a low zinc content, zinc plays an essential role in TTR functions other than TH binding: the stability of TTR-holo retinol binding protein 4 (holoRBP4) complex, TTR amyloidogenesis, the sequestration of amyloid β (Aβ) fibrils and cryptic proteolytic activity. The interaction of TTR with metallothioneins may be a critical step in the exertion of some of these functions. Evolutionary and physiological insights on zinc-dependent functions of TTRs are also discussed.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
20
|
A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 2021; 95:807-836. [PMID: 33398420 DOI: 10.1007/s00204-020-02961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
This review summarises the current state of knowledge regarding the physiology and control of production of thyroid hormones, the effects of chemicals in perturbing their synthesis and release that result in thyroid cancer. It does not consider the potential neurodevelopmental consequences of low thyroid hormones. There are a number of known molecular initiating events (MIEs) that affect thyroid hormone synthesis in mammals and many chemicals are able to activate multiple MIEs simultaneously. AOP analysis of chemical-induced thyroid cancer in rodents has defined the key events that predispose to the development of rodent cancer and many of these will operate in humans under appropriate conditions, if they were exposed to high enough concentrations of the affecting chemicals. There are conditions however that, at the very least, would indicate significant quantitative differences in the sensitivity of humans to these effects, with rodents being considerably more sensitive to thyroid effects by virtue of differences in the biology, transport and control of thyroid hormones in these species as opposed to humans where turnover is appreciably lower and where serum transport of T4/T3 is different to that operating in rodents. There is heated debate around claimed qualitative differences between the rodent and human thyroid physiology, and significant reservations, both scientific and regulatory, still exist in terms of the potential neurodevelopmental consequences of low thyroid hormone levels at critical windows of time. In contrast, the situation for the chemical induction of thyroid cancer, through effects on thyroid hormone production and release, is less ambiguous with both theoretical, and actual data, showing clear dose-related thresholds for the key events predisposing to chemically induced thyroid cancer in rodents. In addition, qualitative differences in transport, and quantitative differences in half life, catabolism and turnover of thyroid hormones, exist that would not operate under normal situations in humans.
Collapse
|
21
|
Di Munno C, Busiello RA, Calonne J, Salzano AM, Miles-Chan J, Scaloni A, Ceccarelli M, de Lange P, Lombardi A, Senese R, Cioffi F, Visser TJ, Peeters RP, Dulloo AG, Silvestri E. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front Endocrinol (Lausanne) 2021; 12:631176. [PMID: 33746903 PMCID: PMC7971177 DOI: 10.3389/fendo.2021.631176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.
Collapse
Affiliation(s)
- Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Julie Calonne
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Anna Maria Salzano
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Jennifer Miles-Chan
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Theo J. Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Robin P. Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Abdul G. Dulloo
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Elena Silvestri,
| |
Collapse
|
22
|
Luigetti M, Servidei S. Patisiran in hereditary transthyretin-mediated amyloidosis. Lancet Neurol 2020; 20:21-23. [PMID: 33212064 DOI: 10.1016/s1474-4422(20)30397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Marco Luigetti
- Fondazione Policlinico Universitario A Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00168 Rome, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00168 Rome, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
23
|
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Bahal R. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med 2020; 9:jcm9062004. [PMID: 32604776 PMCID: PMC7355792 DOI: 10.3390/jcm9062004] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Antisense oligonucleotides (ASOs) bind sequence specifically to the target RNA and modulate protein expression through several different mechanisms. The ASO field is an emerging area of drug development that targets the disease source at the RNA level and offers a promising alternative to therapies targeting downstream processes. To translate ASO-based therapies into a clinical success, it is crucial to overcome the challenges associated with off-target side effects and insufficient biological activity. In this regard, several chemical modifications and diverse delivery strategies have been explored. In this review, we systematically discuss the chemical modifications, mechanism of action, and optimized delivery strategies of several different classes of ASOs. Further, we highlight the recent advances made in development of ASO-based drugs with a focus on drugs that are approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for clinical applications. We also discuss various promising ASO-based drug candidates in the clinical trials, and the outstanding opportunity of emerging microRNA as a viable therapeutic target for future ASO-based therapies.
Collapse
Affiliation(s)
- Karishma Dhuri
- Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; (K.D.); (C.B.)
| | - Clara Bechtold
- Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; (K.D.); (C.B.)
| | - Elias Quijano
- Department of Genetics, Yale University, New Haven, CT 06520, USA;
| | - Ha Pham
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232-5671, USA;
| | - Anisha Gupta
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA;
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| | - Raman Bahal
- Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; (K.D.); (C.B.)
- Correspondence:
| |
Collapse
|
24
|
Chi Q, Zhang W, Wang L, Huang J, Yuan M, Xiao H, Wang X. Evaluation of structurally different brominated flame retardants interacting with the transthyretin and their toxicity on HepG2 cells. CHEMOSPHERE 2020; 246:125749. [PMID: 31927367 DOI: 10.1016/j.chemosphere.2019.125749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 05/03/2023]
Abstract
Brominated flame retardants (BFRs) are found at quantifiable levels in both humans and wildlife and may potentially cause a health risk. For BFRs and their derivatives, limited information regarding the relationship among the structure, binding affinity to the target protein and toxicity is currently available. In the present work, representative BFRs with different hydroxyl- or bromo-substituents, namely 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), 3-hydroxy-2, 2', 4, 4'-tetrabromodiphenyl ether (3-OH-BDE-47) and tetrabromobisphenol A (TBBPA), were selected to investigate the interactions with transthyretin (TTR) by electrospray ionization mass spectrometry (ESI-MS) and cytotoxicity on HepG2 cells. It was noted that BDE-47 had a weak binding affinity to TTR, while 3-OH-BDE-47 and TBBPA had a stronger binding affinity than BDE-47 and thyroxine (T4). Hence, 3-OH-BDE-47 and TBBPA could affect the binding of TTR with its native ligand T4 by competitive binding to TTR, even at equal concentrations, which might be associated with BFR toxicity of endocrine disruption. Negative cooperativity was found for 3-OH-BDE-47 and TBBPA binding to TTR, similar to T4 with a well-established negatively cooperative binding mechanism. The tendency of toxic effects on HepG2 cells for these three BFRs was, 3-OH-BDE-47 > TBBPA > BDE-47, and this order was in good agreement with the binding ability explored by ESI-MS experiments and molecular docking simulation. The observations obtained by this study demonstrate that the binding properties of these BFRs to TTR and their cytotoxicity are correlated with structure differentials and functional substituents.
Collapse
Affiliation(s)
- Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Wenxiang Zhang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Lang Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Juan Huang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Ming Yuan
- College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Huaming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, China.
| |
Collapse
|
25
|
Luigetti M, Romano A, Di Paolantonio A, Bisogni G, Sabatelli M. Diagnosis and Treatment of Hereditary Transthyretin Amyloidosis (hATTR) Polyneuropathy: Current Perspectives on Improving Patient Care. Ther Clin Risk Manag 2020; 16:109-123. [PMID: 32110029 PMCID: PMC7041433 DOI: 10.2147/tcrm.s219979] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Hereditary transthyretin amyloidosis (hATTR) with polyneuropathy (formerly known as Familial Amyloid Polyneuropathy) is a rare disease due to mutations in the gene encoding transthyretin (TTR) and characterized by multisystem extracellular deposition of amyloid, leading to dysfunction of different organs and tissues. hATTR amyloidosis represents a diagnostic challenge for neurologists considering the great variability in clinical presentation and multiorgan involvement. Generally, patients present with polyneuropathy, but clinicians should consider the frequent cardiac, ocular and renal impairment. Especially a hypertrophic cardiomyopathy, even if usually latent, is identifiable in at least 50% of the patients. Therapeutically, current available options act at different stages of TTR production, including synthesis inhibition (liver transplantation and/or gene-silencing drugs) or tetramer TTR stabilization (TTR stabilizers), increasing survival at different disease stages. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/n8sg_YlGJiA
Collapse
Affiliation(s)
- Marco Luigetti
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico NEMO Adulti, Rome, Italy
| |
Collapse
|
26
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
27
|
Hamers T, Kortenkamp A, Scholze M, Molenaar D, Cenijn PH, Weiss JM. Transthyretin-Binding Activity of Complex Mixtures Representing the Composition of Thyroid-Hormone Disrupting Contaminants in House Dust and Human Serum. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17015. [PMID: 32003587 PMCID: PMC7015555 DOI: 10.1289/ehp5911] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND House dust contains many organic contaminants that can compete with the thyroid hormone (TH) thyroxine (T 4 ) for binding to transthyretin (TTR). How these contaminants work together at levels found in humans and how displacement from TTR in vitro relates to in vivo T 4 -TTR binding is unknown. OBJECTIVES Our aims were to determine the TTR-binding potency for contaminant mixtures as found in house dust, maternal serum, and infant serum; to study whether the TTR-binding potency of the mixtures follows the principle of concentration addition; and to extrapolate the in vitro TTR-binding potency to in vivo inhibition levels of T 4 -TTR binding in maternal and infant serum. METHODS Twenty-five contaminants were tested for their in vitro capacity to compete for TTR-binding with a fluorescent FITC-T 4 probe. Three mixtures were reconstituted proportionally to median concentrations for these chemicals in house dust, maternal serum, or infant serum from Nordic countries. Measured concentration-response curves were compared with concentration-response curves predicted by concentration addition. For each reconstituted serum mixture, its inhibitor-TTR dissociation constant (K i ) was used to estimate inhibition levels of T 4 -TTR binding in human blood. RESULTS The TTR-binding potency of the mixtures was well predicted by concentration addition. The ∼ 20 % inhibition in FITC-T 4 binding observed for the mixtures reflecting median concentrations in maternal and infant serum was extrapolated to 1.3% inhibition of T 4 -TTR binding in maternal and 1.5% in infant blood. For nontested mixtures reflecting high-end serum concentrations, these estimates were 6.2% and 4.9%, respectively. DISCUSSION The relatively low estimated inhibition levels at median exposure levels may explain why no relationship between exposure to TTR-binding compounds and circulating T 4 levels in humans has been reported, so far. We hypothesize, however, that 1.3% inhibition of T 4 -TTR binding may ultimately be decisive for reaching a status of maternal hypothyroidism or hypothyroxinemia associated with impaired neurodevelopment in children. https://doi.org/10.1289/EHP5911.
Collapse
Affiliation(s)
- Timo Hamers
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University, London, UK
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University, London, UK
| | - Douwe Molenaar
- Department of Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Peter H. Cenijn
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jana M. Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Transthyretin Maintains Muscle Homeostasis Through the Novel Shuttle Pathway of Thyroid Hormones During Myoblast Differentiation. Cells 2019; 8:cells8121565. [PMID: 31817149 PMCID: PMC6952784 DOI: 10.3390/cells8121565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle, the largest part of the total body mass, influences energy and protein metabolism as well as maintaining homeostasis. Herein, we demonstrate that during murine muscle satellite cell and myoblast differentiation, transthyretin (TTR) can exocytose via exosomes and enter cells as TTR- thyroxine (T4) complex, which consecutively induces the intracellular triiodothyronine (T3) level, followed by T3 secretion out of the cell through the exosomes. The decrease in T3 with the TTR level in 26-week-old mouse muscle, compared to that in 16-week-old muscle, suggests an association of TTR with old muscle. Subsequent studies, including microarray analysis, demonstrated that T3-regulated genes, such as FNDC5 (Fibronectin type III domain containing 5, irisin) and RXRγ (Retinoid X receptor gamma), are influenced by TTR knockdown, implying that thyroid hormones and TTR coordinate with each other with respect to muscle growth and development. These results suggest that, in addition to utilizing T4, skeletal muscle also distributes generated T3 to other tissues and has a vital role in sensing the intracellular T4 level. Furthermore, the results of TTR function with T4 in differentiation will be highly useful in the strategic development of novel therapeutics related to muscle homeostasis and regeneration.
Collapse
|
29
|
Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol 2019; 15:387-404. [PMID: 31209302 DOI: 10.1038/s41582-019-0210-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Hereditary amyloidogenic transthyretin (ATTRv) amyloidosis with polyneuropathy (also known as familial amyloid polyneuropathy) is a condition with adult onset caused by mutation of transthyretin (TTR) and characterized by extracellular deposition of amyloid and destruction of the somatic and autonomic PNS, leading to loss of autonomy and death. This disease represents a model of the scientific and medical progress of the past 30 years. ATTRv amyloidosis is a worldwide disease with broad genetic and phenotypic heterogeneity that presents a diagnostic challenge for neurologists. The pathophysiology of the neuropathy is increasingly understood and includes instability and proteolysis of mutant TTR leading to deposition of amyloid with variable lengths of fibrils, microangiopathy and involvement of Schwann cells. Wild-type TTR is amyloidogenic in older individuals. The main symptoms are neuropathic, but the disease is systemic; neurologists should be aware of cardiac, eye and kidney involvement that justify a multidisciplinary approach to management. Infiltrative cardiomyopathy is usually latent but present in half of patients. Disease-modifying therapeutics that have been developed include liver transplantation and TTR stabilizers, both of which can slow progression of the disease and increase survival in the early stages. Most recently, gene-silencing drugs have been used to control disease in the more advanced stages and produce some degree of improvement.
Collapse
|
30
|
Uncovering the Neuroprotective Mechanisms of Curcumin on Transthyretin Amyloidosis. Int J Mol Sci 2019; 20:ijms20061287. [PMID: 30875761 PMCID: PMC6471102 DOI: 10.3390/ijms20061287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Transthyretin (TTR) amyloidoses (ATTR amyloidosis) are diseases associated with transthyretin (TTR) misfolding, aggregation and extracellular deposition in tissues as amyloid. Clinical manifestations of the disease are variable and include mainly polyneuropathy and/or cardiomyopathy. The reasons why TTR forms aggregates and amyloid are related with amino acid substitutions in the protein due to mutations, or with environmental alterations associated with aging, that make the protein more unstable and prone to aggregation. According to this model, several therapeutic approaches have been proposed for the diseases that range from stabilization of TTR, using chemical chaperones, to clearance of the aggregated protein deposited in tissues in the form of oligomers or small aggregates, by the action of disruptors or by activation of the immune system. Interestingly, different studies revealed that curcumin presents anti-amyloid properties, targeting multiple steps in the ATTR amyloidogenic cascade. The effects of curcumin on ATTR amyloidosis will be reviewed and discussed in the current work in order to contribute to knowledge of the molecular mechanisms involved in TTR amyloidosis and propose more efficient drugs for therapy.
Collapse
|
31
|
Rabah SA, Gowan IL, Pagnin M, Osman N, Richardson SJ. Thyroid Hormone Distributor Proteins During Development in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:506. [PMID: 31440205 PMCID: PMC6694296 DOI: 10.3389/fendo.2019.00506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormones (THs) are ancient hormones that not only influence the growth, development and metabolism of vertebrates but also affect the metabolism of (at least some) bacteria. Synthesized in the thyroid gland (or follicular cells in fish not having a discrete thyroid gland), THs can act on target cells by genomic or non-genomic mechanisms. Either way, THs need to get from their site of synthesis to their target cells throughout the body. Despite being amphipathic in structure, THs are lipophilic and hence do not freely diffuse in the aqueous environments of blood or cerebrospinal fluid (in contrast to hydrophilic hormones). TH Distributor Proteins (THDPs) have evolved to enable the efficient distribution of THs in the blood and cerebrospinal fluid. In humans, the THDPs are albumin, transthyretin (TTR), and thyroxine-binding globulin (TBG). These three proteins have distinct patterns of regulation in both ontogeny and phylogeny. During development, an additional THDP with higher affinity than those in the adult, is present during the stage of peak TH concentrations in blood. Although TTR is the only THDP synthesized in the central nervous system (CNS), all THDPs from blood are present in the CSF (for each species). However, the ratio of albumin to TTR differs in the CSF compared to the blood. Humans lacking albumin or TBG have been reported and can be asymptomatic, however a human lacking TTR has not been documented. Conversely, there are many diseases either caused by TTR or that have altered levels of TTR in the blood or CSF associated with them. The first world-wide RNAi therapy has just been approved for TTR amyloidosis.
Collapse
|
32
|
Counihan KL, Hollmén TE. Immune parameters in different age classes of captive male Steller's eiders (Polysticta stelleri). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:41-46. [PMID: 29709493 DOI: 10.1016/j.dci.2018.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The immune system is important for host defense against antigens, but little is known about Steller's eider (Polysticta stelleri) immunology. This study compared hematological parameters, serum protein levels, lymphocyte proliferation, heat shock protein levels and oxidative damage in four different age classes of captive male Steller's eiders. The hatch year cohort had significantly higher total white blood cell and lymphocyte counts. The second year cohort had significantly higher albumin, alpha globulins and lymphocyte proliferation, and significantly lower beta globulin levels. The 9 year old males had a significantly higher IgY:IgY(ΔFc) ratio. The oldest eiders in the study, 14 + year old males, had significantly higher serum IgY, pre-albumin and glutathione reductase activity, and the lowest lymphocyte proliferation. This study provided a baseline of immune parameters in captive male Steller's eiders, and the results suggested the parameters were influenced by age-related changes.
Collapse
Affiliation(s)
| | - Tuula E Hollmén
- Alaska SeaLife Center and University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, PO Box 1329, Seward, AK, 99664, USA.
| |
Collapse
|
33
|
Mangrolia P, Murphy RM. Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry 2018; 57:5029-5040. [PMID: 30024734 PMCID: PMC6530574 DOI: 10.1021/acs.biochem.8b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to Alzheimer's disease. On the basis of in vitro and transgenic animal studies, transthyretin (TTR) is hypothesized to provide neuroprotection against Aβ toxicity by binding to Aβ and inhibiting its aggregation. TTR is a homotetrameric protein that circulates in blood and cerebrospinal fluid; its normal physiological role is as a carrier for thyroxine and retinol-binding protein (RBP). RBP forms a complex with retinol, and the holoprotein (hRBP) binds with high affinity to TTR. In this study, the role of TTR ligands in TTR-mediated inhibition of Aβ aggregation was investigated. hRBP strongly reduced the ability of TTR to inhibit Aβ aggregation. The effect was not due to competition between Aβ and hRBP for binding to TTR, as Aβ bound equally well to TTR-hRBP complexes and TTR. hRBP is known to stabilize the TTR tetrameric structure. We show that Aβ partially destabilizes TTR and that hRBP counteracts this destabilization. Taken together, our results support a mechanism wherein TTR-mediated inhibition of Aβ aggregation requires not only TTR-Aβ binding but also destabilization of TTR quaternary structure.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Johnson BA, Coutts M, Vo HM, Hao X, Fatima N, Rivera MJ, Sims RJ, Neel MJ, Kang YJ, Monuki ES. Accurate, strong, and stable reporting of choroid plexus epithelial cells in transgenic mice using a human transthyretin BAC. Fluids Barriers CNS 2018; 15:22. [PMID: 30111340 PMCID: PMC6094443 DOI: 10.1186/s12987-018-0107-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Choroid plexus epithelial cells express high levels of transthyretin, produce cerebrospinal fluid and many of its proteins, and make up the blood-cerebrospinal fluid barrier. Choroid plexus epithelial cells are vital to brain health and may be involved in neurological diseases. Transgenic mice containing fluorescent and luminescent reporters of these cells would facilitate their study in health and disease, but prior transgenic reporters lost expression over the early postnatal period. METHODS Human bacterial artificial chromosomes in which the transthyretin coding sequence was replaced with DNA for tdTomato or luciferase 2 were used in pronuclear injections to produce transgenic mice. These mice were characterized by visualizing red fluorescence, immunostaining, real-time reverse transcription polymerase chain reaction, and luciferase enzyme assay. RESULTS Reporters were faithfully expressed in cells that express transthyretin constitutively, including choroid plexus epithelial cells, retinal pigment epithelium, pancreatic islets, and liver. Expression of tdTomato in choroid plexus began at the appropriate embryonic age, being detectable by E11.5. Relative levels of tdTomato transcript in the liver and choroid plexus paralleled relative levels of transcripts for transthyretin. Expression remained robust over the first postnatal year, although choroid plexus transcripts of tdTomato declined slightly with age whereas transthyretin remained constant. TdTomato expression patterns were consistent across three founder lines, displayed no sex differences, and were stable across several generations. Two of the tdTomato lines were bred to homozygosity, and homozygous mice are healthy and fertile. The usefulness of tdTomato reporters in visualizing and analyzing live Transwell cultures was demonstrated. Luciferase activity was very high in homogenates of choroid plexus and continued to be expressed through adulthood. Luciferase also was detectable in eye and pancreas. CONCLUSIONS Transgenic mice bearing fluorescent and luminescent reporters of transthyretin should prove useful for tracking transplanted choroid plexus epithelial cells, for purifying the cells, and for reporting their derivation from stem cells. They also should prove useful for studying transthyretin synthesis by other cell types, as transthyretin has been implicated in many functions and conditions, including clearance of β-amyloid peptides associated with Alzheimer's disease, heat shock in neurons, processing of neuropeptides, nerve regeneration, astrocyte metabolism, and transthyretin amyloidosis.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Margaret Coutts
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Hillary M Vo
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Xinya Hao
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Nida Fatima
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Maria J Rivera
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Robert J Sims
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Michael J Neel
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Young-Jin Kang
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA. .,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA. .,Department of Developmental and Cell Biology, UC Irvine, Irvine, USA.
| |
Collapse
|
35
|
Richardson SJ, Van Herck S, Delbaere J, McAllan BM, Darras VM. The affinity of transthyretin for T 3 or T 4 does not determine which form of the hormone accumulates in the choroid plexus. Gen Comp Endocrinol 2018; 264:131-137. [PMID: 28919452 DOI: 10.1016/j.ygcen.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
Normal development of the brain is dependent on the required amounts of thyroid hormones (THs) reaching specific regions of the brain during each stage of ontogeny. Many proteins are involved with regulation of TH bioavailability in the brain: the TH distributor protein transthyretin (TTR), TH transmembrane transporters (e.g. MCT8, MCT10, LAT1, OATP1C1) and deiodinases (D1, D2 and D3) which either activate or inactivate THs. Previous studies revealed that in mammals, T4, but not T3, accumulated in the choroid plexus and then entered the cerebrospinal fluid. In all mammalian species studied so far, TTR binds T4 with higher affinity than T3, whereas TTR in non-mammalian vertebrates binds T3 with higher affinity than T4. We investigated if the form of TH preferentially bound by TTR influenced the form of the TH that accumulated in the choroid plexus and consequently other areas of the brain. We measured the mRNA levels corresponding to TTR, MCT8, MCT10, LAT1, OATP1C1, D1, D2 and D3 in the brains of chickens at 11days post-hatching. TTR, D3 and OATP1C1 expression were found to be highly concentrated in the choroid plexus. D1, MCT8 and MCT10 mRNA levels were slightly greater in the choroid plexus than in other areas of the brain while D2 mRNA levels were lower. LAT1 mRNA was evenly expressed throughout the brain. Therefore, the choroid plexus appears to be a structure which exhibits sophisticated control of TH levels within the brain. We also measured the uptake of intravenously injected 125I-T3 and 125I-T4 into brains of chickens of the same age. 125I-T4 but not 125I-T3 accumulated in the choroid plexus and optic lobes. Therefore, the form of TH preferentially bound by TTR does not determine the form of TH that accumulates in the choroid plexus and other areas of the brain. As for mammals, T3 present in the avian brain therefore seems mainly produced locally by conversion of T4 into T3 by D2.
Collapse
Affiliation(s)
- Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
| | - Stijn Van Herck
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Joke Delbaere
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Bronwyn M McAllan
- Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, 2006 New South Wales, Australia.
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
36
|
St-Cyr S, Abuaish S, Welch KC, McGowan PO. Maternal predator odour exposure programs metabolic responses in adult offspring. Sci Rep 2018; 8:8077. [PMID: 29799024 PMCID: PMC5967341 DOI: 10.1038/s41598-018-26462-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
A cardinal feature of the reaction to stress is the promotion of energy mobilization, enabling appropriate behavioural responses. Predator odours are naturalistic and ecologically relevant stressors present over evolutionary timescales. In this study, we asked whether maternal predator odour exposure could program long-term energy mobilization in C57BL/6 mice offspring. To test this hypothesis, we measured rates of oxygen consumption in prenatally predator odour exposed mice in adulthood while controlling for levels of locomotor activity at baseline and under stress. Circulating thyroid hormone levels and the transcript abundance of key regulators of the hypothalamic-pituitary-thyroid axis within the periventricular nucleus (PVN) of the hypothalamus and in the liver, including carriers and receptors and thyrotropin-releasing hormone, were measured as endocrine mediators facilitating energy availability. Prenatally predator odour exposed mice of both sexes mobilized more energy during lower energy demand periods of the day and under stressful conditions. Further, prenatally predator odour exposed mice displayed modifications of their hypothalamic-pituitary-thyroid axis through increased circulating thyroxine and thyroid hormone receptor α within the PVN and decreased transthyretin in the liver. Overall, these results suggest that maternal exposure to predator odour is sufficient to increase long-term energy mobilization in adult offspring.
Collapse
Affiliation(s)
- Sophie St-Cyr
- Department of Biological Sciences, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada.,Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,The Children's Hospital of Philadelphia, Colcket Translational Research Building, Department of Pathology and Laboratory Medicine, 3501 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sameera Abuaish
- Department of Biological Sciences, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada.,Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kenneth C Welch
- Department of Biological Sciences, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada. .,Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
McLean TR, Rank MM, Smooker PM, Richardson SJ. Evolution of thyroid hormone distributor proteins. Mol Cell Endocrinol 2017; 459:43-52. [PMID: 28249735 DOI: 10.1016/j.mce.2017.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (THs) are evolutionarily old hormones, having effects on metabolism in bacteria, invertebrates and vertebrates. THs bind specific distributor proteins (THDPs) to ensure their efficient distribution through the blood and cerebrospinal fluid in vertebrates. Albumin is a THDP in the blood of all studied species of vertebrates, so may be the original vertebrate THDP. However, albumin has weak affinity for THs. Transthyretin (TTR) has been identified in the blood across different lineages in adults vs juveniles. TTR has intermediate affinity for THs. Thyroxine-binding globulin has only been identified in mammals and has high affinity for THs. Of these THDPs, TTR is the only one known to be synthesised in the brain and is involved in moving THs from the blood into the cerebrospinal fluid. We analysed the rates of evolution of these three THDPs: TTR has been most highly conserved and albumin has had the highest rate of divergence.
Collapse
Affiliation(s)
- Thomas R McLean
- School of Science, RMIT University, Bundoora, 3083 Victoria, Australia.
| | - Michelle M Rank
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083 Victoria, Australia.
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, 3083 Victoria, Australia.
| | - Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083 Victoria, Australia.
| |
Collapse
|
38
|
Opitz R, Köhrle J. Editorial: Get inspired - Lessons learned from evolution of thyroid hormone signaling in developmental processes. Mol Cell Endocrinol 2017; 459:1-4. [PMID: 29241682 DOI: 10.1016/j.mce.2017.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Smith TP, Windsor IW, Forest KT, Raines RT. Stilbene Boronic Acids Form a Covalent Bond with Human Transthyretin and Inhibit Its Aggregation. J Med Chem 2017; 60:7820-7834. [PMID: 28920684 DOI: 10.1021/acs.jmedchem.7b00952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR) is a homotetrameric protein. Its dissociation into monomers leads to the formation of fibrils that underlie human amyloidogenic diseases. The binding of small molecules to the thyroxin-binding sites in TTR stabilizes the homotetramer and attenuates TTR amyloidosis. Herein, we report on boronic acid-substituted stilbenes that limit TTR amyloidosis in vitro. Assays of affinity for TTR and inhibition of its tendency to form fibrils were coupled with X-ray crystallographic analysis of nine TTR·ligand complexes. The ensuing structure-function data led to a symmetrical diboronic acid that forms a boronic ester reversibly with serine 117. This diboronic acid inhibits fibril formation by both wild-type TTR and a common disease-related variant, V30M TTR, as effectively as does tafamidis, a small-molecule drug used to treat TTR-related amyloidosis in the clinic. These findings establish a new modality for covalent inhibition of fibril formation and illuminate a path for future optimization.
Collapse
Affiliation(s)
- Thomas P Smith
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ian W Windsor
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Katrina T Forest
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Suzuki S, Kasai K, Nishiyama N, Ishihara A, Yamauchi K. Characteristics of the brown hagfish Paramyxine atami transthyretin: Metal ion-dependent thyroid hormone binding. Gen Comp Endocrinol 2017; 249:1-14. [PMID: 28242306 DOI: 10.1016/j.ygcen.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
Transthyretin (TTR) is a vertebrate-specific protein involved in thyroid hormone distribution in plasma, and its gene is thought to have emerged by gene duplication from the gene for the ancient TTR-related protein, 5-hydroxyisourate hydrolase, at some early stage of chordate evolution. We investigated the molecular and hormone-binding properties of the brown hagfish Paramyxine atami TTR. The amino acid sequence deduced from the cloned hagfish TTR cDNA shared 33-50% identities with those of other vertebrate TTRs but less than 24% identities with those of vertebrate and deuterostome invertebrate 5-hydroxyisourate hydrolases. Hagfish TTR, as well as lamprey and little skate TTRs, had an N-terminal histidine-rich segment, allowing purification by metal-affinity chromatography. The affinity of hagfish TTR for 3,3',5-triiodo-L-thyronine (T3) was 190 times higher than that for L-thyroxine, with a dissociation constant of 1.5-3.9nM at 4°C. The high-affinity binding sites were strongly sensitive to metal ions. Zn2+ and Cu2+ decreased the dissociation constant to one-order of magnitude, whereas a chelator, o-phenanthroline, increased it four times. The number of metal ions (mainly Zn2+ and Cu2+) was approximately 12/TTR (mol/mol). TTR was also a major T3-binding protein in adult hagfish sera and its serum concentration was approximately 8μM. These results suggest that metal ions and the acquisition of N-terminal histidine-rich segment may cooperatively contribute to the evolution toward an ancient TTR with high T3 binding activity from either 5-hydroxyisourate hydrolase after gene duplication.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kentaro Kasai
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Norihito Nishiyama
- Department of Biology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akinori Ishihara
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kiyoshi Yamauchi
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
41
|
Nemashkalova EL, Permyakov EA, Permyakov SE, Litus EA. Modulation of linoleic acid-binding properties of human serum albumin by divalent metal cations. Biometals 2017; 30:341-353. [PMID: 28303360 DOI: 10.1007/s10534-017-0010-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
Human serum albumin (HSA) is an abundant multiligand carrier protein, linked to progression of Alzheimer's disease (AD). Blood HSA serves as a depot of amyloid β (Aβ) peptide. Aβ peptide-buffering properties of HSA depend on interaction with its ligands. Some of the ligands, namely, linoleic acid (LA), zinc and copper ions are involved into AD progression. To clarify the interplay between LA and metal ion binding to HSA, the dependence of LA binding to HSA on Zn2+, Cu2+, Mg2+ and Ca2+ levels and structural consequences of these interactions have been explored. Seven LA molecules are bound per HSA molecule in the absence of the metal ions. Zn2+ binding to HSA causes a loss of one bound LA molecule, while the other metals studied exert an opposite effect (1-2 extra LA molecules are bound). In most cases, the observed effects are not related to the metal-induced changes in HSA quaternary structure. However, the Zn2+-induced decline in LA capacity of HSA could be due to accumulation of multimeric HSA forms. Opposite to Ca2+/Mg2+-binding, Zn2+ or Cu2+ association with HSA induces marked changes in its hydrophobic surface. Overall, the divalent metal ions modulate LA capacity and affinity of HSA to a different extent. LA- and Ca2+-binding to HSA synergistically support each other. Zn2+ and Cu2+ induce more pronounced changes in hydrophobic surface and quaternary structure of HSA and its LA capacity. A misbalanced metabolism of these ions in AD could modify interactions of HSA with LA, other fatty acids and hydrophobic substances, associated with AD.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region, Russia, 142290
| | - Eugene A Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region, Russia, 142290.,Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Science av., 3, Pushchino, Moscow region, Russia, 142290
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region, Russia, 142290.,Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Science av., 3, Pushchino, Moscow region, Russia, 142290
| | - Ekaterina A Litus
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region, Russia, 142290.
| |
Collapse
|
42
|
Gao X, Tyagi R, Magrini V, Ly A, Jasmer DP, Mitreva M. Compartmentalization of functions and predicted miRNA regulation among contiguous regions of the nematode intestine. RNA Biol 2016; 14:1335-1352. [PMID: 27002534 DOI: 10.1080/15476286.2016.1166333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intestine of parasitic nematodes has proven an important target for therapies aimed at prevention and treatment of diseases caused by these pathogens in humans, animals and plants. We have developed a unique research model with the intestine of Ascaris suum, the large round worm of swine and humans, that will enhance biological research on this tissue. To expand utility of this model, we quantitatively compared expression of 15,382 coding RNAs and 277 noncoding, micro RNAs (miRNAs) among 3 contiguous regions of the adult A. suum intestine. Differentially expressed transcripts were identified among regions, with the largest number expressed at significantly higher levels in the anterior region, identifying this region as the most functionally unique compared to middle and posterior regions. We further identified 64 exon splice variants (from 47 genes) that are differentially expressed among these regions. A total of 2,063 intestinal mRNA transcripts were predicted to be targeted by intestinal miRNA, and negative correlation coefficients for miRNA:mRNA abundances predicted 22 likely influential miRNAs and 503 likely associated miRNA:mRNA pairs. A. suum intestinal miRNAs were identified that are conserved with intestinal miRNAs from C. elegans (10 mature sequences and 13 seed sequences conserved), and prospective intestinal miRNAs from the murine gastrointestinal nematode, Heligmosomoides polygyrus (5 mature and 11 seeds). Most of the conserved intestinal miRNAs were also high abundance miRNAs. The data provide the most comprehensive compilation of constitutively and differentially expressed genes along the length of the intestine for any nematode species. The information will guide prospective development of many hypotheses on nematode intestinal functions encoded by mRNAs, miRNAs and interactions between these RNA populations.
Collapse
Affiliation(s)
- Xin Gao
- a McDonnell Genome Institute, Washington University in St. Louis , St. Louis , MO , USA
| | - Rahul Tyagi
- a McDonnell Genome Institute, Washington University in St. Louis , St. Louis , MO , USA
| | - Vincent Magrini
- a McDonnell Genome Institute, Washington University in St. Louis , St. Louis , MO , USA
| | - Amy Ly
- a McDonnell Genome Institute, Washington University in St. Louis , St. Louis , MO , USA
| | - Douglas P Jasmer
- b Department of Veterinary Microbiology and Pathology , Washington State University , Pullman , WA , USA
| | - Makedonka Mitreva
- a McDonnell Genome Institute, Washington University in St. Louis , St. Louis , MO , USA.,c Department of Internal Medicine , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
43
|
Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism. J Thyroid Res 2016; 2016:8765049. [PMID: 26989557 PMCID: PMC4773558 DOI: 10.1155/2016/8765049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/28/2023] Open
Abstract
Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers.
Collapse
|
44
|
Wang F, Zhang P, Liu H, Fan M, Chen X. Proteomic analysis of mouse soleus muscles affected by hindlimb unloading and reloading. Muscle Nerve 2015; 52:803-11. [PMID: 25656502 DOI: 10.1002/mus.24590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Disuse muscle atrophy, induced by prolonged space flight, bed rest, or denervation, is a common process with obvious changes in slow-twitch soleus muscles. METHODS Proteomic analysis was performed on mouse soleus subjected to hindlimb unloading (HU) and hindlimb reloading (HR) to identify new dysregulated proteins. RESULTS Following HU, the mass and cross-sectional area of muscle fibers decreased, but they recovered after HR. Proteomic analyses revealed 9 down-regulated and 7 up-regulated proteins in HU, and 2 down-regulated and 5 up-regulated proteins in HR. The dysregulated proteins were mainly involved in energy metabolism, protein degradation, and cytoskeleton stability. Among the dysregulated proteins were fatty acid binding protein 3, α-B crystalline, and transthyretin. CONCLUSIONS These results indicate that muscle atrophy induced by unloading is related to activation of proteolysis, metabolic alterations toward glycolysis, destruction of myofibrillar integrity, and dysregulation of heat shock proteins (HSPs). The dysregulated proteins may play a role in muscle atrophy and the recovery process.
Collapse
Affiliation(s)
- Fei Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, No. 26 Beiqing Road, Beijing, 100094, P.R. Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongju Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ming Fan
- Department of Cognitive Science, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, No. 26 Beiqing Road, Beijing, 100094, P.R. Beijing, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
45
|
Suzuki S, Kasai K, Yamauchi K. Characterization of little skate (Leucoraja erinacea) recombinant transthyretin: Zinc-dependent 3,3',5-triiodo-l-thyronine binding. Gen Comp Endocrinol 2015; 217-218:43-53. [PMID: 25863347 DOI: 10.1016/j.ygcen.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 12/13/2022]
Abstract
Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kentaro Kasai
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
46
|
Alshehri B, D'Souza DG, Lee JY, Petratos S, Richardson SJ. The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 2015; 27:303-23. [PMID: 25737004 DOI: 10.1111/jne.12271] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs). TTR synthesised in the liver is secreted into the bloodstream and distributes THs around the body, whereas TTR synthesised in the choroid plexus is involved in movement of thyroxine from the blood into the cerebrospinal fluid and the distribution of THs in the brain. This is important because an adequate amount of TH is required for normal development of the brain. Nevertheless, there has been heated debate on the role of TTR synthesised by the choroid plexus during the past 20 years. We present both sides of the debate and how they can be reconciled by the discovery of TH transporters. New roles for TTR have been suggested, including the promotion of neuroregeneration, protection against neurodegeneration, and involvement in schizophrenia, behaviour, memory and learning. Recently, TTR synthesis was revealed in neurones and peripheral Schwann cells. Thus, the synthesis of TTR in the central nervous system (CNS) is more extensive than previously considered and bolsters the hypothesis that TTR may play wide roles in neurobiological function. Given the high conservation of TTR structure, function and tissue specificity and timing of gene expression, this implies that TTR has a fundamental role, during development and in the adult, across vertebrates. An alarming number of 'unnatural' chemicals can bind to TTR, thus potentially interfering with its functions in the brain. One role of TTR is delivery of THs throughout the CNS. Reduced TH availability during brain development results in a reduced IQ. The combination of the newly discovered sites of TTR synthesis in the CNS, the increasing number of neurological diseases being associated with TTR, the newly discovered functions of TTR and the awareness of the chemicals that can interfere with TTR biology render this a timely review on TTR in neurobiology.
Collapse
Affiliation(s)
- B Alshehri
- School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | | | | | | |
Collapse
|
47
|
Van Herck SLJ, Delbaere J, Bourgeois NMA, McAllan BM, Richardson SJ, Darras VM. Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: Insights into the regulation of thyroid hormone availability during neurodevelopment. Gen Comp Endocrinol 2015; 214:30-9. [PMID: 25745816 DOI: 10.1016/j.ygcen.2015.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 02/02/2023]
Abstract
Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the general circulation. We conclude that the tight regulation of TH exchange at the brain barriers from early embryonic stages is one of the factors needed to allow the brain to develop within a relative microenvironment.
Collapse
Affiliation(s)
- Stijn L J Van Herck
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Joke Delbaere
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Nele M A Bourgeois
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Bronwyn M McAllan
- The University of Sydney, Physiology, School of Medical Sciences, and Bosch Institute, Sydney, Australia
| | | | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium.
| |
Collapse
|
48
|
Richardson SJ, Wijayagunaratne RC, D'Souza DG, Darras VM, Van Herck SLJ. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Front Neurosci 2015; 9:66. [PMID: 25784853 PMCID: PMC4347424 DOI: 10.3389/fnins.2015.00066] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/16/2015] [Indexed: 01/14/2023] Open
Abstract
Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor protein: transthyretin. This transthyretin is secreted into the cerebrospinal fluid and moves thyroid hormones from the blood into the cerebrospinal fluid. Maximal transthyretin synthesis in the choroid plexus occurs just prior to the period of rapid brain growth, suggesting that choroid plexus-derived transthyretin moves thyroid hormones from blood into cerebrospinal fluid just prior to when thyroid hormones are required for rapid brain growth. The structure of transthyretin has been highly conserved, implying strong selection pressure and an important function. In mammals, transthyretin binds T4 (precursor form of thyroid hormone) with higher affinity than T3 (active form of thyroid hormone). In all other vertebrates, transthyretin binds T3 with higher affinity than T4. As mammals are the exception, we should not base our thinking about the role of transthyretin in the choroid plexus solely on mammalian data. Thyroid hormone transmembrane transporters are involved in moving thyroid hormones into and out of cells and have been identified in many tissues, including the choroid plexus. Thyroid hormones enter the choroid plexus via thyroid hormone transmembrane transporters and leave the choroid plexus to enter the cerebrospinal fluid via either thyroid hormone transmembrane transporters or via choroid plexus-derived transthyretin secreted into the cerebrospinal fluid. The quantitative contribution of each route during development remains to be elucidated. This is part of a review series on ontogeny and phylogeny of brain barrier mechanisms.
Collapse
Affiliation(s)
| | | | - Damian G D'Souza
- School of Medical Sciences, RMIT University Bundoora, VIC, Australia
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven Leuven, Belgium
| |
Collapse
|
49
|
Expression of Transthyretin during bovine myogenic satellite cell differentiation. In Vitro Cell Dev Biol Anim 2014; 50:756-65. [PMID: 24903999 DOI: 10.1007/s11626-014-9757-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.
Collapse
|
50
|
Richardson SJ. Tweaking the structure to radically change the function: the evolution of transthyretin from 5-hydroxyisourate hydrolase to triiodothyronine distributor to thyroxine distributor. Front Endocrinol (Lausanne) 2014; 5:245. [PMID: 25717318 PMCID: PMC4324301 DOI: 10.3389/fendo.2014.00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022] Open
Abstract
Often, we elucidate evolutionary processes backwards, starting with eutherian mammals and gradually climbing down the evolutionary tree to those species who have survived since long before mammals evolved. This is also true for elucidating the evolution of specific proteins, in this case, the protein currently known as "transthyretin" (TTR). TTR was first described in eutherian mammals and was known as a thyroxine (T4) binding protein. However, mammals are the exception among vertebrates in respect to the function of TTR, as in teleost fish, amphibians, reptiles and birds TTR preferentially binds triiodothyronine (T3), which is the active form of thyroid hormone (TH). The TTR gene possibly arose as a duplication of the transthyretin-like protein (TLP) gene, around the stage of the agnathans. Some vertebrate species have both the TTR and TLP genes, while others have "lost" the TLP gene. TLP genes have been found in all kingdoms. The TLPs analyzed to date do not bind THs or their analogs, but are enzymes involved in uric acid metabolism; specifically, they are 5-hydroxyisourate hydrolases. A Salmonella TLP knock-out strain demonstrated that TLP was essential for the bacteria's survival in the high uric acid environment of the chicken alimentary tract. Many other TLPs are yet to be characterized for their function although several have been confirmed as 5-hydroxyisourate hydrolases. This review describes the evolution of TLP/TTR and how subtle changes in gene structure or amino acid substitution can drastically change the function of this protein, without altering its overall 3D conformation.
Collapse
Affiliation(s)
- Samantha J. Richardson
- School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
- *Correspondence: Samantha J. Richardson, School of Medical Sciences, RMIT University, PO Box 71 Bundoora, VIC 3083, Australia e-mail:
| |
Collapse
|