1
|
Abstract
There is a growing recognition that the coordinated timing of behavioral, physiologic, and metabolic circadian rhythms is a requirement for a healthy body and mind. In mammals, the primary circadian oscillator is the hypothalamic suprachiasmatic nucleus (SCN), which is responsible for circadian coordination throughout the organism. Temporal homeostasis is recognized as a complex interplay between rhythmic clock gene expression in brain regions outside the SCN and in peripheral organs. Abnormalities in this intricate circadian orchestration may alter sleep patterns and contribute to the pathophysiology of affective disorders.
Collapse
|
2
|
Meijer JH, Michel S. Neurophysiological Analysis of the Suprachiasmatic Nucleus. Methods Enzymol 2015; 552:75-102. [DOI: 10.1016/bs.mie.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Kiessling S, Sollars PJ, Pickard GE. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLoS One 2014; 9:e92959. [PMID: 24658072 PMCID: PMC3962469 DOI: 10.1371/journal.pone.0092959] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/27/2014] [Indexed: 01/13/2023] Open
Abstract
The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link between the retina and descending autonomic circuits to peripheral organs such as the adrenal gland, thereby entraining those organs to the day/night cycle. However, there are at least three different routes or mechanisms by which retinal signals transmitted to the hypothalamus may be conveyed to peripheral organs: 1) via retinal input to SCN clock neurons; 2) via retinal input to non-clock neurons in the SCN; or 3) via retinal input to hypothalamic regions neighboring the SCN. It is very well documented that light-induced responses of the SCN clock (i.e., clock gene expression, neural activity, and behavioral phase shifts) occur primarily during the subjective night. Thus to determine the role of the SCN clock in transmitting photic signals to descending autonomic circuits, we compared the phase dependency of light-evoked responses in the SCN and a peripheral oscillator, the adrenal gland. We observed light-evoked clock gene expression in the mouse adrenal throughout the subjective day and subjective night. Light also induced adrenal corticosterone secretion during both the subjective day and subjective night. The irradiance threshold for light-evoked adrenal responses was greater during the subjective day compared to the subjective night. These results suggest that retinohypothalamic signals may be relayed to the adrenal clock during the subjective day by a retinal pathway or cellular mechanism that is independent of an effect of light on the SCN neural clock network and thus may be important for the temporal integration of physiology and metabolism.
Collapse
Affiliation(s)
- Silke Kiessling
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Patricia J. Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gary E. Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
4
|
Muraro NI, Pírez N, Ceriani MF. The circadian system: plasticity at many levels. Neuroscience 2013; 247:280-93. [PMID: 23727010 DOI: 10.1016/j.neuroscience.2013.05.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/16/2022]
Abstract
Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles.
Collapse
Affiliation(s)
- N I Muraro
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
5
|
Nakamura TJ, Ebihara S, Shinohara K. Reduced light response of neuronal firing activity in the suprachiasmatic nucleus and optic nerve of cryptochrome-deficient mice. PLoS One 2011; 6:e28726. [PMID: 22216107 PMCID: PMC3244417 DOI: 10.1371/journal.pone.0028726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
To examine roles of the Cryptochromes (Cry1 and Cry2) in mammalian circadian photoreception, we recorded single-unit neuronal firing activity in the suprachiasmatic nucleus (SCN), a primary circadian oscillator, and optic nerve fibers in vivo after retinal illumination in anesthetized Cry1 and Cry2 double-knockout (Cry-deficient) mice. In wild-type mice, most SCN neurons increased their firing frequency in response to retinal illumination at night, whereas only 17% of SCN neurons responded during the daytime. However, 40% of SCN neurons responded to light during the daytime, and 31% of SCN neurons responded at night in Cry-deficient mice. The magnitude of the photic response in SCN neurons at night was significantly lower (1.3-fold of spontaneous firing) in Cry-deficient mice than in wild-type mice (4.0-fold of spontaneous firing). In the optic nerve near the SCN, no difference in the proportion of light-responsive fibers was observed between daytime and nighttime in both genotypes. However, the response magnitude in the light-activated fibers (ON fibers) was high during the nighttime and low during the daytime in wild-type mice, whereas this day-night difference was not observed in Cry-deficient mice. In addition, we observed day-night differences in the spontaneous firing rates in the SCN in both genotypes and in the fibers of wild-type, but not Cry-deficient mice. We conclude that the low photo response in the SCN of Cry-deficient mice is caused by a circadian gating defect in the retina, suggesting that Cryptochromes are required for appropriate temporal photoreception in mammals.
Collapse
Affiliation(s)
- Takahiro J Nakamura
- Division of Neurobiology and Behavior, Department of Translational Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | | | | |
Collapse
|
6
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
7
|
Miwa I. Regulation of Circadian Rhythms of Paramecium bursaria by Symbiotic Chlorella Species. ENDOSYMBIONTS IN PARAMECIUM 2009. [DOI: 10.1007/978-3-540-92677-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Vansteensel MJ, Michel S, Meijer JH. Organization of cell and tissue circadian pacemakers: a comparison among species. ACTA ACUST UNITED AC 2007; 58:18-47. [PMID: 18061682 DOI: 10.1016/j.brainresrev.2007.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
In most animal species, a circadian timing system has evolved as a strategy to cope with 24-hour rhythms in the environment. Circadian pacemakers are essential elements of the timing system and have been identified in anatomically discrete locations in animals ranging from insects to mammals. Rhythm generation occurs in single pacemaker neurons and is based on the interacting negative and positive molecular feedback loops. Rhythmicity in behavior and physiology is regulated by neuronal networks in which synchronization or coupling is required to produce coherent output signals. Coupling occurs among individual clock cells within an oscillating tissue, among functionally distinct subregions within the pacemaker, and between central pacemakers and the periphery. Recent evidence indicates that peripheral tissues can influence central pacemakers and contain autonomous circadian oscillators that contribute to the regulation of overt rhythmicity. The data discussed in this review describe coupling and synchronization mechanisms at the cell and tissue levels. By comparing the pacemaker systems of several multicellular animal species (Drosophila, cockroaches, crickets, snails, zebrafish and mammals), we will explore general organizational principles by which the circadian system regulates a 24-hour rhythmicity.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Block G, Geusz M, Khalsa S, Michel S, Whitmore D. Cellular analysis of a molluscan retinal biological clock. CIBA FOUNDATION SYMPOSIUM 2007; 183:51-60; discussion 60-6. [PMID: 7656693 DOI: 10.1002/9780470514597.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The eye of the opisthobranch mollusc Bulla gouldiana expresses a circadian rhythm in optic nerve impulse frequency. The circadian rhythm is generated among approximately 100 neurons at the base of the retina referred to as basal retinal neurons. These cells are electrically coupled to one another and fire spontaneous action potentials in synchrony. Basal retinal neurons recorded intracellularly exhibit a circadian rhythm in membrane potential that appears to be driven by a circadian modulation of membrane conductance. Membrane conductance is relatively high during the subjective night and decreases after subjective dawn. Recent experiments in our laboratory indicate that individual basal retinal neurons in culture can express circadian rhythms in membrane conductance. When completely isolated, these cells continue to show circadian conductance changes. These studies provide the first direct demonstration that individual neurons can act as circadian pacemakers. Although the precise details of the mechanism generating the circadian periodicity remain obscure, our research indicates that several transmembrane ionic fluxes are not involved in rhythm generation, but that a transmembrane Ca2+ flux is critical for entrainment. Both transcription and translation appear to play critical roles in generating the circadian cycle.
Collapse
Affiliation(s)
- G Block
- NSF Science and Technology Center for Biological Timing, University of Virginia, Charlottesville 22901, USA
| | | | | | | | | |
Collapse
|
10
|
BLOCK GD. Drosophila and mammalian circadian systems: Similarities on the surface, some differences at the core. Sleep Biol Rhythms 2006. [DOI: 10.1111/j.1479-8425.2006.00228.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lundkvist GB, Kwak Y, Davis EK, Tei H, Block GD. A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J Neurosci 2006; 25:7682-6. [PMID: 16107654 PMCID: PMC6725395 DOI: 10.1523/jneurosci.2211-05.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generation of mammalian circadian rhythms involves molecular transcriptional and translational feedback loops. It is not clear how membrane events interact with the intracellular molecular clock or whether membrane activities are involved in the actual generation of the circadian rhythm. We examined the role of membrane potential and calcium (Ca2+) influx in the expression of the circadian rhythm of the clock gene Period 1 (Per1) within the rat suprachiasmatic nucleus (SCN), the master pacemaker controlling circadian rhythmicity. Membrane hyperpolarization, caused by lowering the extracellular concentration of potassium or blocking Ca2+ influx in SCN cultures by lowering [Ca2+], reversibly abolished the rhythmic expression of Per1. In addition, the amplitude of Per1 expression was markedly decreased by voltage-gated Ca2+ channel antagonists. A similar result was observed for mouse Per1 and PER2. Together, these results strongly suggest that a transmembrane Ca2+ flux is necessary for sustained molecular rhythmicity in the SCN. We propose that periodic Ca2+ influx, resulting from circadian variations in membrane potential, is a critical process for circadian pacemaker function.
Collapse
Affiliation(s)
- Gabriella B Lundkvist
- Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Circadian clock systems are composed of an input or "entrainment" pathway by which synchronization to the external environment occurs, a pacemaker responsible for generating rhythmicity, and an output or "expression" pathway through which rhythmic signals act to modulate physiology and behavior. The circadian pacemaker contains molecular feedback loops of rhythmically expressed genes and their protein products, which, through interactions, generate a circa 24-h cycle of transcription and translation of clock and clock-controlled genes. Neuronal membrane events appear to play major roles in entrainment of circadian rhythms in mollusks and mammals. In mammals, the suprachiasmatic nuclei of the hypothalamus receive photic information via the retinohypothalamic tract. Retinal signals, mediated by glutamate, induce calcium release and activate a number of intracellular cascades involved in photic gating and phase shifting. Membrane events are also involved in rhythm expression. Calcium and potassium currents influence the electrical output of pacemaker neurons by altering shape and intervals of impulse prepotentials, afterhyperpolarization periods, and interspike intervals, as well as altering membrane potentials and thereby shaping the spontaneous rhythmic spiking patterns. Unlike the involvement of membrane events in circadian entrainment and expression, it is less clear whether electrical activity, postsynaptic events, and transmembrane ion fluxes also are essential elements in rhythm generation. Studies, however, suggest that neuronal membrane activity may indeed play a crucial role in circadian rhythm generation.
Collapse
Affiliation(s)
- Gabriella B Lundkvist
- Department of Biology, Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
13
|
Abstract
The neurons of the mammalian suprachiasmatic nuclei (SCN) control circadian rhythms in molecular, physiological, endocrine, and behavioral functions. In the SCN, circadian rhythms are generated at the level of individual neurons. The last decade has provided a wealth of information on the genetic basis for circadian rhythm generation. In comparison, a modest but growing number of studies have investigated how the molecular rhythm is translated into neuronal function. Neuronal attributes have been measured at the cellular and tissue level with a variety of electrophysiological techniques. We have summarized electrophysiological research on neurons that constitute the SCN in an attempt to provide a comprehensive view on the current state of the art.
Collapse
Affiliation(s)
- Jeroen Schaap
- Department of Neurophysiology, Leiden University Medical School, RC Leiden, The Netherlands
| | | | | |
Collapse
|
14
|
Constance CM, Green CB, Tei H, Block GD. Bulla gouldiana period exhibits unique regulation at the mRNA and protein levels. J Biol Rhythms 2002; 17:413-27. [PMID: 12375618 DOI: 10.1177/074873002237136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors cloned the period (per) gene from the marine mollusk Bulla gouldiana, a well-characterized circadian model system. This allowed them to examine the characteristics of the per gene in a new phylum, and to make comparisons with the conserved PER domains previously characterized in insects and vertebrates. Only one copy of the per gene is present in the Bulla genome, and it is most similar to PER in two insects: the cockroach, Periplaneta americana, and silkmoth, Antheraea pernyi. Comparison with Drosophila PER (dPER) and murine PER 1 (mPER1) sequence reveals that there is greater sequence homology between Bulla PER (bPER) and dPER in the regions of dPER shown to be important to heterodimerization between dPER and Drosophila timeless. Although the structure suggests conservation between dPER and bPER, expression patterns differ. In all cells and tissues examined that are peripheral to the clock neurons in Bulla, bPer mRNA and protein are expressed constitutively in light:dark (LD) cycles. In the identified clock neurons, the basal retinal neurons (BRNs), a rhythm in bPer expression could be detected in LD cycles with a peak at zeitgeber time (ZT) 5 and trough expression at ZT 13. This temporal profile of expression more closely resembles that of mPER1 than that of dPER. bPer rhythms in the BRNs were not detected in continuous darkness. These analyses suggest that clock genes may be uniquely regulated in different circadian systems, but lead to similar control of rhythms at the cellular, tissue, and organismal levels.
Collapse
Affiliation(s)
- Cara M Constance
- National Science Foundation Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville 22903-2477, USA
| | | | | | | |
Collapse
|
15
|
Yamazaki S, Alones V, Menaker M. Interaction of the retina with suprachiasmatic pacemakers in the control of circadian behavior. J Biol Rhythms 2002; 17:315-29. [PMID: 12164248 DOI: 10.1177/074873040201700405] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the central circadian pacemaker governing the circadian rhythm of locomotor activity in mammals. The mammalian retina also contains circadian oscillators, but their roles are unknown. To test whether the retina influences circadian rhythms of locomotor behavior, the authors compared the activity of bilaterally enucleated hamsters with the activity of intact controls held in constant darkness (DD). Enucleated hamsters showed a broader range of free-running periods (tau) than did intact hamsters held for the same length of time in DD. This effect was independent of the age at enucleation (on postnatal days 1, 7, or 28). The average tau of intact animals kept in DD from days 7 or 28 was significantly longer than that of intact animals kept in DD from day 1 or any of the enucleated groups. This indicates that early exposure to light-dark cycles lengthens the tau and that the eye is required to maintain this effect even in DD. These data suggest that hypothalamic circadian pacemakers may interact continuously with the retina to determine the tau of locomotor activity. Enucleation caused a large decrease in glial fibrillary acidic protein in the SCN but has no (or slight) effects on calbindin, neuropeptide Y, vasopressin, or vasoactive intestinal polypeptide, which suggests that enucleation does not produce major damage to the SCN, an interpretation that is supported by the fact that enucleated animals retain robust circadian rhythmicity. The presence of an intact retina appears to contribute to system-level circadian organization in mammals perhaps as a consequence of interaction between its circadian oscillators and those in the SCN.
Collapse
Affiliation(s)
- Shin Yamazaki
- Department of Biology and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville 22904-4328, USA.
| | | | | |
Collapse
|
16
|
Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG, Bedian V, Emery IF, Siwicki KK. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 2002; 447:366-80. [PMID: 11992522 DOI: 10.1002/cne.10242] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the nervous system of the hawkmoth, Manduca sexta, cells expressing the period (per)gene were mapped by in situ hybridization and immunocytochemical methods. Digoxigenin-labeled riboprobes were transcribed from a 1-kb M. sexta per cDNA. Monoclonal anti-PER antibodies were raised to peptide antigens translated from both M. sexta and Drosophila melanogaster per cDNAs. These reagents revealed a widespread distribution of per gene products in M. sexta eyes, optic lobes, brains, and retrocerebral complexes. Labeling for per mRNA was prominent in photoreceptors and in glial cells throughout the brain, and in a cluster of 100-200 neurons adjacent to the accessory medulla of the optic lobes. Daily rhythms of per mRNA levels were detected only in glial cells. PER-like immunoreactivity was observed in nuclei of most neurons and glial cells and in many photoreceptor nuclei. Four neurosecretory cells in the pars lateralis of each brain hemisphere exhibited both nuclear and cytoplasmic staining with anti-PER antibodies. These cells were positively identified as Ia(1) neurosecretory cells that express corazonin immunoreactivity. Anti-corazonin labeled their projections in the brain and their neurohemal endings in the corpora cardiaca and corpora allata. Four pairs of PER-expressing neurosecretory cells previously described in the silkmoth, Anthereae pernyi, are likely to be homologous to these PER/corazonin-expressing Ia(1) cells of M. sexta. Other findings, such as widespread nuclear localization of M. sexta PER and rhythmic expression in glial cells, are reminiscent of the period gene of D. melanogaster, suggesting that some functions of per may be conserved in this lepidopteran species.
Collapse
Affiliation(s)
- Sarah Wise
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pennartz CMA, de Jeu MTG, Bos NPA, Schaap J, Geurtsen AMS. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 2002; 416:286-90. [PMID: 11875398 DOI: 10.1038/nature728] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The central biological clock of the mammalian brain is located in the suprachiasmatic nucleus. This hypothalamic region contains neurons that generate a circadian rhythm on a single-cell basis. Clock cells transmit their circadian timing signals to other brain areas by diurnal modulation of their spontaneous firing rate. The intracellular mechanism underlying rhythm generation is thought to consist of one or more self-regulating molecular loops, but it is unknown how these loops interact with the plasma membrane to modulate the ionic conductances that regulate firing behaviour. Here we demonstrate a diurnal modulation of Ca2+ current in suprachiasmatic neurons. This current strongly contributes to the generation of spontaneous oscillations in membrane potential, which occur selectively during daytime and are tightly coupled to spike generation. Thus, day-night modulation of Ca2+ current is a central step in transducing the intracellular cycling of molecular clocks to the rhythm in spontaneous firing rate.
Collapse
Affiliation(s)
- Cyriel M A Pennartz
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research.
| | | | | | | | | |
Collapse
|
18
|
Mrosovsky N, Edelstein K, Hastings MH, Maywood ES. Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms 2001; 16:471-8. [PMID: 11669420 DOI: 10.1177/074873001129002141] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ground squirrels, Spermophilus tridecemlineatus, were kept in a 12:12 h light-dark cycle. As expected for a diurnal species, their locomotor activity occurred almost entirely in the daytime. Expression of mPer1 and mPer2 in the suprachiasmatic nucleus was studied at six time points by in situ hybridization. For both these genes, mRNA was highest in the first part of the subjective day (about zeitgeber time 5). This is close to the time when mPer1 and mPer2 expression is maximal in nocturnal rodents. These results have implications for understanding nonphotic phase response curves in diurnal species and thereby for guiding research on nonphotic phase shifting in people.
Collapse
Affiliation(s)
- N Mrosovsky
- Department of Zoology, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
19
|
Bałys M, Pyza E. Localization of the clock controlling circadian rhythms in the first neuropile of the optic lobe in the housefly. J Exp Biol 2001; 204:3303-10. [PMID: 11606604 DOI: 10.1242/jeb.204.19.3303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARYThe visual system of a fly expresses several circadian rhythms that have been detected in the photoreceptors of the compound eye and in the first neuropile, the lamina, of the underlying optic lobe. In the lamina, axons of two classes of interneuron, L1 and L2, exhibit cyclical size changes, swelling by day and shrinking by night. These rhythmic size changes may be generated by circadian oscillators located inside and/or outside the optic lobe. To localize such oscillators, we have examined changes in the axonal cross-sectional areas of L1 and L2 within the lamina of the housefly (Musca domestica) under conditions of 12 h of light and 12 h of darkness (LD12:12), constant darkness (DD) or continuous light (LL) 24 h after the medulla was severed from the rest of the brain. After the lesion, the axon size changes of L1 and L2 were maintained only in LD conditions, but were weaker than in control flies. In DD and LL conditions, they were eliminated. This indicates that circadian rhythms in the lamina of a fly are generated central to the lamina and medulla neuropiles of the optic lobe. Cyclical changes of light and darkness in LD conditions are still able, however, to induce a weak daily rhythm in the axon sizes of L1 and L2.
Collapse
Affiliation(s)
- M Bałys
- Zoological Museum, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
20
|
Abstract
Although it is generally accepted that the acid-base ratio of tissue, as represented by the pH, is strictly regulated to maintain normal function, recent studies in the mammalian nervous system have shown that neuronal activity can result in significant shifts in pH. In the mammalian retina, many cellular phenomena, including neuronal activity, are regulated by a circadian clock. We thus investigated whether a clock regulates retinal pH, using pH-sensitive microelectrodes to measure the extracellular pH (pH(o)) of the in vitro rabbit retina in the subjective day and night, that is, under conditions of constant darkness. These measurements demonstrated that a circadian clock regulates the pH(o) of the rabbit retina so that the pH(o) is lower at night than in the day. This day/night difference in retinal pH(o) was observed when the rabbits were maintained on a normal light/dark cycle and after they were maintained on a light/dark cycle that was phase-delayed by 9 hr. Continuous recordings of retinal pH(o) around subjective dusk indicated that the change from daytime to nighttime pH(o) is relatively fast and suggested that the clock that regulates pH(o) is located in the retina. The lowest pH(o) recorded in the retina in both the day and night was in the vicinity of the inner segments of photoreceptor cells, supporting the idea that photoreceptors serve as the primary source of protons. The circadian-induced shift in pH(o) was several times greater than light-induced pH(o) changes. These findings suggest that a circadian clock in the mammalian retina regulates retinal pH.
Collapse
|
21
|
Colwell CS. NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 2001; 13:1420-8. [PMID: 11298803 PMCID: PMC2577309 DOI: 10.1046/j.0953-816x.2001.01517.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variety of evidence suggests that the effects of light on the mammalian circadian system are mediated by glutamatergic mechanisms and that the N-methyl- D-aspartate (NMDA) receptor plays an important role in this regulation. One of the fundamental features of circadian oscillators is that their response to environmental stimulation varies depending on the phase of the daily cycle when the stimuli are applied. For example, the same light treatment, which can produce phase shifts of the oscillator when applied during subjective night, has no effect when applied during the subjective day in animals held in constant darkness (DD). We examined the hypothesis that the effects of NMDA on neurons in the suprachiasmatic nucleus (SCN) also vary from day to night. Optical techniques were utilized to estimate NMDA-induced calcium (Ca2+) changes in SCN cells. The resulting data indicate that there was a daily rhythm in the magnitude and duration of NMDA-induced Ca2+ transients. The phase of this rhythm was determined by the light-dark cycle to which the rats were exposed with the Ca2+ transients peaking during the night. This rhythm continued when animals were held in DD. gamma-Aminobutyric acid (GABA)ergic mechanisms modulated the NMDA response but were not responsible for the rhythm. Finally, there was a rhythm in NMDA-evoked currents in SCN neurons that also peaked during the night. This study provides the first evidence for a circadian oscillation in NMDA-evoked Ca2+ transients in SCN cells. This rhythm may play an important role in determining the periodic sensitivity of the circadian systems response to light.
Collapse
Affiliation(s)
- C S Colwell
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, 90024, USA.
| |
Collapse
|
22
|
|
23
|
|
24
|
Michel S, Schoch K, Stevenson PA. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 2000; 425:244-56. [PMID: 10954843 DOI: 10.1002/1096-9861(20000918)425:2<244::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We identified putative transmitters of the photoreceptors and circadian pacemaker neurons and found candidates for efferent control in the eye of the marine mollusc Bulla gouldiana. Established antisera against octopamine, dopamine, serotonin, histamine, glutamate, gamma-aminobutyric acid (GABA), and taurine were used, and central ganglia were processed in parallel to evaluate general staining quality. Photoreceptors and circadian pacemaker cells both expressed immunoreactivity for glutamate and taurine. The eye and its sheath were devoid of GABA-like immunoreactive material, and none of the antisera directed against biogenic amines labelled cells or processes in the nervous tissue of the eye. However, dopamine and octopamine antisera stained large spherical granules (diameter 2-3 microm) contained in granular cells that are located in the connective tissue encapsulating the eye and the optic nerve. The serotonin antiserum revealed a sparse distribution of varicose axon fibers in the optic nerve and eye sheath. No histamine-immunoreactive processes were revealed in the eye. The functional significance of these findings for the molluscan eye and its circadian clock is discussed.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
25
|
Thain SC, Hall A, Millar AJ. Functional independence of circadian clocks that regulate plant gene expression. Curr Biol 2000; 10:951-6. [PMID: 10985381 DOI: 10.1016/s0960-9822(00)00630-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Circadian clocks regulate the gene expression, metabolism and behaviour of most eukaryotes, controlling an orderly succession of physiological processes that are synchronised with the environmental day/night cycle. Central circadian pacemakers that control animal behaviour are located in the brains of insects and rodents, but the location of such a pacemaker has not been determined in plants. Peripheral plant and animal tissues also maintain circadian rhythms when isolated in culture, indicating that these tissues contain circadian clocks. The degree of autonomy that the multiple, peripheral circadian clocks have in the intact organism is unclear. RESULTS We used the bioluminescent luciferase reporter gene to monitor rhythmic expression from three promoters in transgenic Arabidopsis and tobacco plants. The rhythmic expression of a single gene could be set at up to three phases in different anatomical locations of a single plant, by applying light/dark treatments to restricted tissue areas. The initial phases were stably maintained after the entraining treatments ended, indicating that the circadian oscillators in intact plants are autonomous. This result held for all the vegetative plant organs and for promoters expressed in all major cell types. The rhythms of one organ were unaffected by entrainment of the rest of the plant, indicating that phase-resetting signals are also autonomous. CONCLUSIONS Higher plants contain a spatial array of autonomous circadian clocks that regulate gene expression without a localised pacemaker. Circadian timing in plants might be less accurate but more flexible than the vertebrate circadian system.
Collapse
Affiliation(s)
- S C Thain
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
26
|
Miranda-Anaya M, Bartell PA, Yamazaki S, Menaker M. Circadian rhythm of ERG in Iguana iguana: role of the pineal. J Biol Rhythms 2000; 15:163-71. [PMID: 10762034 DOI: 10.1177/074873040001500210] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In green iguanas, the pineal controls the circadian rhythm of body temperature but not the rhythm of locomotor activity. As part of a program to investigate the characteristics of this multioscillator circadian system, the authors studied the circadian rhythms of the electroretinographic response (ERG) and asked whether the pineal gland is necessary for the expression of this rhythm. ERGs from a total of 24 anesthetized juvenile iguanas were recorded under four different conditions: (a) complete darkness (DD), (b) dim light-dark cycles (dLD), (c) constant dim light (dLL), and (d) pinealectomized in DD. Results demonstrate that the b-wave component of the ERG shows a very clear circadian rhythm in DD and that this rhythm persists in dLL and entrains to dLD cycles. The ERG response is maximally sensitive during the subjective day. Pinealectomy does not abolish the circadian rhythm in ERG, demonstrating that the oscillator responsible for the ERG rhythm is located elsewhere.
Collapse
Affiliation(s)
- M Miranda-Anaya
- Department of Biology and National Science Foundation, Center for Biological Timing, University of Virginia, Charlottesville 22903, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The living clock that governs tide-associated organismic rhythms has previously been assumed to have a fundamental period of approximately 12.4 h, an interval that reflects the average period of the ebb and flow of the tide. But, in 1986, marine chronobiologists began to accumulate laboratory results that could not be explained by the action of such a clock. Prime among these findings was the discovery that, occasionally, one of the two daily peaks in an organism's rhythm assumed a different period from its partner. Similar results have since been observed in a host of different organisms. These data led to the circalunidian-clock hypothesis that envisions two basic 24.8 h clocks, coupled together in antiphase, as the driving force for these rhythms. There is, however, only a slight difference (50 minutes) in running times between a solar-day clock with a period of approximately 24 h and a lunar-day clock with a period of approximately 24.8 h, both of which display "circa" periods that overlap. Here, I postulate that the two clocks are fundamentally one and the same. BioEssays 22:32-37, 2000.
Collapse
Affiliation(s)
- J D Palmer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
28
|
Abstract
Although it is generally accepted that the acid/base ratio of tissue, as represented by the pH, is strictly regulated to maintain normal function, recent studies in the nervous system have shown that neuronal activity can result in significant shifts in pH. In the vertebrate retina, many cellular phenomena, including neuronal activity, are regulated by a circadian clock. We thus investigated whether a circadian clock regulates the pH of the retina. pH-sensitive microelectrodes were used to measure the extracellular pH of the in vitro goldfish retina superfused with a bicarbonate-based Ringer solution in the subjective day and night; that is, under conditions of constant darkness. These measurements demonstrated that a circadian clock regulates the pH of the vertebrate retina so that the pH is lower at night compared to the day. This day-night difference in retinal pH was observed at two different values of Ringer solution pH, indicating that the circadian phenomenon is independent of the superfusion conditions. The circadian-induced shift in pH was several times greater than light-induced pH changes and large enough to influence synaptic transmission between retinal neurons. These findings indicate that a circadian clock regulates the pH of the vertebrate retina. Thus, an intrinsic oscillator in neural tissue may modulate metabolic activity and pH as part of normal daily function.
Collapse
Affiliation(s)
- A V Dmitriev
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham, AL, USA
| | | |
Collapse
|
29
|
Abstract
Incredible progress has been made in the last few years in our understanding of the molecular mechanisms underlying circadian clocks. Many of the recent insights have been gained by the isolation and characterization of novel clock mutants and their associated gene products. As might be expected based on theoretical considerations and earlier studies that indicated the importance of temporally regulated macromolecular synthesis for the manifestation of overt rhythms, daily oscillations in the levels of "clock" RNAs and proteins are a pervasive feature of these timekeeping devices. How are these molecular rhythms generated and synchronized? Recent evidence accumulated from a wide variety of model organisms, ranging from bacteria to mammals, points toward an emerging trend; at the "heart" of circadian oscillators lies a cell autonomous transcriptional feedback loop that is composed of alternatively functioning positive and negative elements. Nonetheless, it is also clear that to bring this transcriptional feedback loop to "life" requires important contributions from posttranscriptional regulatory schemes. For one thing, there must be times in the day when the activities of negative-feedback regulators are separated from the activities of the positive regulators they act on, or else the oscillatory potential of the system will be dissipated, resulting in a collection of molecules at steady state. This review mainly summarizes the role of posttranscriptional regulation in the Drosophila melanogaster time-keeping mechanism. Accumulating evidence from Drosophila and other systems suggests that posttranscriptional regulatory mechanisms increase the dynamic range of circadian transcriptional feedback loops, overlaying them with appropriately timed biochemical constraints that not only engender these loops with precise daily periods of about 24 h, but also with the ability to integrate and respond rapidly to multiple environmental cues such that their phases are aligned optimally to the prevailing external conditions.
Collapse
Affiliation(s)
- I Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Abstract
Circadian pacemakers that drive rhythmicity in retinal function are found in both invertebrates and vertebrates. They have been localized to photoreceptors in molluscs, amphibians, and mammals. Like other circadian pacemakers, they entrain to light, oscillate based on a negative feedback between transcription and translation of clock genes, and control a variety of physiological and behavioral rhythms that often includes rhythmic melatonin production. As a highly organized and accessible tissue, the retina is particularly well suited for the study of the input-output pathways and the mechanism for rhythm generation. Impressive advances can now be expected as researchers apply new molecular techniques toward looking into the eye's clock.
Collapse
Affiliation(s)
- E D Herzog
- Department of Biology and NSF Center for Biological Timing, University of Virginia, Charlottesville 22903, USA.
| | | |
Collapse
|
31
|
Michel S, Manivannan K, Zaritsky JJ, Block GD. A delayed rectifier current is modulated by the circadian pacemaker in Bulla. J Biol Rhythms 1999; 14:141-50. [PMID: 10194651 DOI: 10.1177/074873099129000533] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.
Collapse
Affiliation(s)
- S Michel
- Department of Biology, University of Virginia, Charlottesville 22903, USA.
| | | | | | | |
Collapse
|
32
|
Schaap J, Bos NP, de Jeu MT, Geurtsen AM, Meijer JH, Pennartz CM. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res 1999; 815:154-66. [PMID: 9974136 DOI: 10.1016/s0006-8993(98)01025-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological mechanisms underlying the circadian rhythm in firing activity. Circadian rhythmicity could not be detected either in spontaneous firing rate or in other membrane properties when whole-cell measurements were made following an initial phase shortly after membrane rupture. However, this apparent lack of rhythmicity was not due to an unhealthy slice preparation or to seal formation, as a clear day/night difference in firing rate was found in cell-attached recordings. Furthermore, in a subsequent series of whole-cell recordings, membrane properties were assessed directly after membrane rupture, and in this series we did find a significant day/night difference in spontaneous firing rate, input resistance and frequency adaptation. As concerns the participation of different subpopulations of suprachiasmatic nucleus neurons expressing circadian rhythmicity, cluster I neurons exhibited strong rhythmicity, whereas no day/night differences were found in cluster II neurons. Vasopressin-containing cells form a subpopulation of cluster I neurons and showed a more pronounced circadian rhythmicity than the total population of cluster I neurons. In addition to their strong rhythm in spontaneous firing rate they also displayed a day/night difference in membrane potential.
Collapse
Affiliation(s)
- J Schaap
- Dept. of Physiology, Leiden Universitair Medisch Centrum, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci 1998. [PMID: 9787011 DOI: 10.1523/jneurosci.18-21-09078.1998] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus contain a pacemaker that generates circadian rhythms in many functions. Light is the most important stimulus that synchronizes the circadian pacemaker to the environmental cycle. In this paper we have characterized the baseline neuronal firing patterns of the SCN as well as their response to light in freely moving rats. Multiunit and single-unit recordings showed that SCN neurons increase discharge during daytime and decrease discharge at night. Discharge levels of individual neurons that were followed throughout the circadian cycle appeared in phase with the population and were characterized by low discharge rates (often below 1 Hz), with a twofold increase during the day. The effect of light on the multiunit response was dependent on the duration of light exposure and on light intensity, with light thresholds of approximately 0.1 lux. The light response level showed a strong dependency on time of day, with large responsiveness at night and low responsiveness during day. At both phases of the circadian cycle, the response level could be raised by an increase in light intensity. Single-unit measurements revealed that the time-dependent light response of SCN neurons was present also at the level of single units. The results show that the basic light response characteristics that were observed at the multiunit level result from an integrated response of similarly behaving single units. Research at the single-unit level is therefore a useful approach for investigating the basic principles of photic entrainment.
Collapse
|
34
|
Abstract
When the Japanese quail is held in constant darkness, retinal responses (ERG b-waves) increase during the animal's subjective night and decrease during its subjective day. Rod photoreceptors dominate the b-wave responses (lambdamax = 506 nm) to all stimulus intensities at night but only to those intensities below the cone threshold during the day. Above the cone threshold, cones dominate b-wave responses (lambdamax, approximately 550-600 nm) during the day regardless of the state of retinal adaptation. Apparently a circadian oscillator enables cone signals to block rod signals during the day but not at night. The ERG b-wave reflects the activity of bipolar cells that are postsynaptic to rods and cones. The ERG a-wave reflects the activity of both rods and cones. The amplitude of the isolated a-wave (PIII) changes with time of day, as does that of the b-wave, but its spectral sensitivity does not. The PIII responses are maximal at approximately 520 nm both day and night and may reflect multiple receptor mechanisms. The shift in rod-cone dominance detected with the ERG b-wave resembles the Purkinje shift of human vision but, unlike the Purkinje shift, does not require a change in ambient light intensity. The shift occurs in constant darkness, with a period of approximately 24 hr indicative of a circadian rhythm in the functional organization of the retina.
Collapse
|
35
|
Abstract
Results from experiments in different organisms have shown that elements of input pathways can themselves be under circadian control and that outputs might feed back into the oscillator. In addition, it has become clear that there might be redundancies in the generation of circadian rhythmicity, even within single cells. In view of these results, it is worth reevaluating our current working hypotheses about the pacemaker's molecular mechanisms and the involvement of single autoregulatory genes. On one hand, redundancies in the generation of circadian rhythmicity might make the approach of defining a discrete circadian oscillator with the help of single gene mutations extremely difficult. On the other hand, many examples show that components of signal transduction pathways can indeed be encoded by single genes. The authors have constructed a model placing an autoregulatory gene and its products on an input pathway feeding into a separate oscillator. The behavior of this model can explain the majority of results of molecular circadian biology published to date. In addition, it shows that different qualities of the circadian system might be associated with different cellular functions that can exist independently and, only if put together, will lead to the known circadian phenotype.
Collapse
Affiliation(s)
- T Roenneberg
- Institut für Medizinische Psychologie, Munich, Germany
| | | |
Collapse
|
36
|
Somers DE, Webb AA, Pearson M, Kay SA. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 1998; 125:485-94. [PMID: 9425143 DOI: 10.1242/dev.125.3.485] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coordination of developmental and physiological events with environmental signals is facilitated by the action of the circadian clock. Here we report a new set of circadian clock-controlled phenotypes for Arabidopsis thaliana. We use these markers together with the short-period mutant, toc1-1, and the clock-controlled cab2::luciferase reporter gene to assess the nature of the circadian clock throughout development and to suggest the position of TOC1 within the circadian clock system. In dark-grown seedlings, the toc1-1 lesion conferred a short period to the cycling of cab2::luciferase luminescence, as previously found in light-grown plants, indicating that the circadian clocks in these two divergent developmental states share at least one component. Stomatal conductance rhythms were similarly approximately 3 hours shorter than wild type in toc1-1, suggesting that a cell-autonomous clockwork may be active in guard cells in 5- to 6-week-old leaves. The effect of daylength on flowering time in the C24 ecotype was diminished by toc1-1, and was nearly eliminated in the Landsberg erecta background where the plants flowered equally early in both short and long days. Throughout a 500-fold range of red light intensities, both the wild type and the mutant showed an inverse log-linear relationship of fluence rate to period, with a 2–3 hour shorter period for the mutant at all intensities. These results indicate that TOC1 acts on or within the clock independently of light input. Temperature entrainment appears normal in toc1-1, and the period-shortening effects of the mutant remain unchanged over a 20 degrees C temperature range. Taken together our results are consistent with the likelihood that TOC1 codes for an oscillator component rather than for an element of an input signaling pathway. In addition, the pervasive effect of toc1-1 on a variety of clock-controlled processes throughout development suggests that a single circadian system is primarily responsible for controlling most, if not all, circadian rhythms in the plant.
Collapse
Affiliation(s)
- D E Somers
- NSF Center for Biological Timing, Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Pelc D, Steel CG. Rhythmic steroidogenesis by the prothoracic glands of the insect Rhodnius prolixus in the absence of rhythmic neuropeptide input: implications for the role of prothoracicotropic hormone. Gen Comp Endocrinol 1997; 108:358-65. [PMID: 9405112 DOI: 10.1006/gcen.1997.6977] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circadian rhythms have been reported both in the synthesis of the insect steroid moulting hormones (ecdysteroids) by the prothoracic glands (PGs) and in the release of the cerebral neuropeptide, prothoracicotropic hormone (PTTH). PTTH is known to activate steroidogenesis early in development, but the function of continued rhythmic release is unknown. The functional relationship between these two hormonal rhythms was examined. We report the properties of the rhythm of steroidogenesis by PGs of animals in which PTTH release was prevented by decapitation or by injection of a sublethal dose of tetrodotoxin. Rhythmic steroidogenesis by PGs was maintained in both cases; the rhythm retained entrainment to a light-dark cycle and free-ran in continuous light or darkness. It is inferred that rhythmic neuropeptide input is not required to drive rhythmic steroidogenesis and that in its absence, steroidogenesis becomes entrained by light cues. In both decapitated and paralyzed animals, the rhythm of steroidogenesis showed a reversal of phase from that of intact animals under all conditions of illumination tested. We infer that the rhythm of PTTH appears to entrain rhythmic steroidogenesis and entrainment by PTTH dominates entrainment by light in vivo. Similarities to other circadian systems are discussed, in which neurochemical agents entrain overt rhythms to a phase displaced by 12 hr from that for light. It is concluded that the function of PTTH is not confined to initial activation of steroidogenesis early in development, as previously thought, but continues throughout development as a central element in the circadian organization of the endocrine system that regulates development.
Collapse
Affiliation(s)
- D Pelc
- Department of Biology, York University, North York, Ontario, M3J 1P3, Canada
| | | |
Collapse
|
39
|
Abstract
The time structure of a biological system is at least as intricate as its spatial structure. Whereas we have detailed information about the latter, our understanding of the former is still rudimentary. As techniques for monitoring intracellular processes continuously in single cells become more refined, it becomes increasingly evident that periodic behaviour abounds in all time domains. Circadian timekeeping dominates in natural environments. Here the free-running period is about 24 h. Circadian rhythms in eukaryotes and prokaryotes allow predictive matching of intracellular states with environmental changes during the daily cycles. Unicellular organisms provide excellent systems for the study of these phenomena, which pervade all higher life forms. Intracellular timekeeping is essential. The presence of a temperature-compensated oscillator provides such a timer. The coupled outputs (epigenetic oscillations) of this ultradian clock constitute a special class of ultradian rhythm. These are undamped and endogenously driven by a device which shows biochemical properties characteristic of transcriptional and translational elements. Energy-yielding processes, protein turnover, motility and the timing of the cell-division cycle processes are all controlled by the ultradian clock. Different periods characterize different species, and this indicates a genetic determinant. Periods range from 30 min to 4 h. Mechanisms of clock control are being elucidated; it is becoming evident that many different control circuits can provide these functions.
Collapse
Affiliation(s)
- D Lloyd
- Microbiology Group (PABIO), University of Wales Cardiff, UK
| |
Collapse
|
40
|
Affiliation(s)
- T Roenneberg
- Institute for Medical Psychology, Ludwig-Maximilian University, Munich, Germany.
| | | |
Collapse
|
41
|
Krucher NA, Meijer L, Roberts MH. The cyclin-dependent kinase (cdk) inhibitors, olomoucine and roscovitine, alter the expression of a molluscan circadian pacemaker. Cell Mol Neurobiol 1997; 17:495-507. [PMID: 9353591 DOI: 10.1023/a:1026358821640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. In this study, we determined the effects of the cyclin-dependent kinase (cdk) inhibitors, olomoucine and roscovitine, on the circadian rhythm of optic nerve impulse activity recorded from the eye of the marine snail Bulla gouldiana. 2. We found that olomoucine lengthened period and altered circadian phase in a dose-dependent manner without appreciably affecting gene transcription or translation. We also found that the more specific cdk inhibitor, roscovitine, was approximately 10-fold more effective in lengthening circadian period, while the inactive analogue, iso-olomoucine, was ineffective. 3. The current results, along with previous results from our laboratory, are consistent with the hypothesis that the biochemical mechanism responsible for generating the ocular circadian rhythm in B. gouldiana is related to the biochemical mechanism that regulates the eukaryotic cell division cycle, i.e., by modulation of the activity of protein kinases belonging to the cdk family.
Collapse
Affiliation(s)
- N A Krucher
- Department of Chemistry, Clarkson University, Potsdam, New York 13699-5805, USA
| | | | | |
Collapse
|
42
|
Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 1997; 89:655-67. [PMID: 9160756 PMCID: PMC3764491 DOI: 10.1016/s0092-8674(00)80246-9] [Citation(s) in RCA: 470] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a complementary approach to positional cloning, we used in vivo complementation with bacterial artificial chromosome (BAC) clones expressed in transgenic mice to identify the circadian Clock gene. A 140 kb BAC transgene completely rescued both the long period and the loss-of-rhythm phenotypes in Clock mutant mice. Analysis with overlapping BAC transgenes demonstrates that a large transcription unit spanning approximately 100,000 base pairs is the Clock gene and encodes a novel basic-helix-loop-helix-PAS domain protein. Overexpression of the Clock transgene can shorten period length beyond the wild-type range, which provides additional evidence that Clock is an integral component of the circadian pacemaking system. Taken together, these results provide a proof of principle that "cloning by rescue" is an efficient and definitive method in mice.
Collapse
Affiliation(s)
- M P Antoch
- National Science Foundation Center for Biological Timing, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pyza E, Meinertzhagen IA. Circadian rhythms in screening pigment and invaginating organelles in photoreceptor terminals of the housefly's first optic neuropile. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(199705)32:5<517::aid-neu6>3.0.co;2-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Khalsa SB, Michel S, Block GD. The role of extracellular sodium in the mechanism of a neuronal in vitro circadian pacemaker. Chronobiol Int 1997; 14:1-8. [PMID: 9042546 DOI: 10.3109/07420529709040536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In evaluation of whether extracellular ion concentrations or fluxes are involved in the mechanism of the circadian pacemaker in Bulla retinal neurons, previous studies have ruled out obligatory requirements for extracellular calcium and chloride. In this study, it is demonstrated that extracellular sodium and magnesium are also not requirements for and do not contribute to the circadian pacemaker mechanism. Since sodium-free solutions inhibit the output rhythm of compound action potential activity, pacemaker motion during long pulse treatments was evaluated retrospectively from the phase of the circadian rhythm subsequent to the treatment. Although some pulses of sodium-free solutions were capable of affecting pacemaker phase in a manner consistent with the stopping of pacemaker motion, these effects were reversed by elevating extracellular pH, suggesting that sodium-free solutions can only affect pacemaker motion indirectly through a previously demonstrated effect of low pH on pacemaker motion.
Collapse
Affiliation(s)
- S B Khalsa
- NSF Center for Biological Timing, Department of Biology, Charlottesville, Virginia 22901, USA
| | | | | |
Collapse
|
45
|
Khalsa SB, Whitmore D, Bogart B, Block GD. Evidence for a central role of transcription in the timing mechanism of a circadian clock. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1646-51. [PMID: 8944648 DOI: 10.1152/ajpcell.1996.271.5.c1646] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The retinal circadian clock in the isolated in vitro eye of the marine mollusc Bulla gouldiana exhibits a phase-dependent requirement for transcription. The transcription-sensitive phase extends through most of the subjective day and therefore is substantially longer than the previously reported translation-sensitive phase. Lower concentrations of transcription inhibitors yield a significant dose-dependent lengthening of circadian period. Clock motion can be stopped by a high concentration of the transcription inhibitor 5,6-dichlorobenz-imidazole riboside (DRB) when applied during the sensitive phase; after withdrawal of the inhibitor, motion resumes from the phase at which it was stopped. In a double-pulse experiment, phase shifts to light pulses applied after DRB pulses, and not during the translation-sensitive phase, indicate that the inhibition of transcription has immediate effects on the phase of the clock. These data suggest that DRB-induced phase shifts are independent of translation, which implies that the rate of transcription itself plays a significant role in the mechanism underlying the generation of the circadian cycle.
Collapse
Affiliation(s)
- S B Khalsa
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | | | |
Collapse
|
46
|
Meijer JH, Watanabe K, Détàri L, de Vries MJ, Albus H, Treep JA, Schaap J, Rietveld WJ. Light entrainment of the mammalian biological clock. PROGRESS IN BRAIN RESEARCH 1996; 111:175-90. [PMID: 8990914 DOI: 10.1016/s0079-6123(08)60407-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J H Meijer
- Department of Physiology, Rijksuniversiteit Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Block GD, Geusz M, Khalsa SB, Michel S, Whitmore D. Circadian rhythm generation, expression and entrainment in a molluscan model system. PROGRESS IN BRAIN RESEARCH 1996; 111:93-102. [PMID: 8990909 DOI: 10.1016/s0079-6123(08)60402-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Bulla ocular pacemaker provides remarkable opportunities for cellular study of circadian pacemaker systems. The demonstration of circadian oscillations within individual neurons maintained in culture provides us with a first occasion to study the biophysical and biochemical properties of bona fide neuronal circadian pacemakers. The ocular clock is robust and shares formal similarity with other circadian systems. The development of molecular techniques that can be applied to single neurons should allow research on the Bulla retina to continue to progress towards a molecular analysis of circadian timekeeping.
Collapse
Affiliation(s)
- G D Block
- Department of Biology, University of Virginia, Charlottesville 22901, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
In recent years, there has been a flurry of activity directed towards identifying the molecular basis of circadian (approximately 24 h) rhythms. The past year has seen the isolation of the first clock mutations in a number of organisms (mice, Arabidopsis, cyanobacteria), the identification of a new circadian rhythm gene in Drosophila that interacts with the well known period gene, and considerable progress in the analysis of the 'clock genes', period and frequency. A combination of genetic, molecular and biochemical approaches is leading to an emerging picture of how molecular events enable organisms to keep time.
Collapse
Affiliation(s)
- A Sehgal
- Department of Neuroscience, University of Pennsylvania Medical Center, Philadelphia 19104, USA.
| |
Collapse
|
49
|
Abstract
Solving the mechanism of circadian clocks has become an important goal, in part because daily rhythms are running in such a wide variety of organisms, and contribute to many aspects of their well being. Systematic genetic approaches to studying 'the clock' were initiated in fruitflies more than 20 years ago as a novel means by which neural-pacemaking mysteries might be solved. Such chronogenetic investigations gained momentum when they spread to other species, and became molecular. However, the molecular studies were misleading, that is, until some elementary neuro-anatomical observations, involving the expression of a 'clock gene' in Drosophila, gave the experiments in this molecular-neurogenetic area of chronobiology a new direction. The initially neuro-descriptive studies led to the current investigations that involve negatively acting transcription factors and other clock molecules that are presumed to interact with them. In addition, new mutants and clones have been isolated in a timely manner. These mutations and molecules should permit chronogeneticists, working on a wide variety of organisms, to unravel further details of how the clock works, how environmental information finds its way to it, and how it sends information out into the organism's physiology, biochemistry and behavior.
Collapse
Affiliation(s)
- J C Hall
- Dept of Biology, Brandeis University, Waltham, MA 02254, USA
| |
Collapse
|
50
|
Khalsa SB, Michel S, Block GD. The anesthetic agents pentobarbital and chloralose block phase shifts of a neuronal in vitro circadian pacemaker. Neurosci Lett 1995; 187:41-4. [PMID: 7617298 DOI: 10.1016/0304-3940(95)11333-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The anesthetic pentobarbital (6 mM) is capable of blocking light or high K(+)-induced phase shifts of the circadian pacemaker in the isolated eye of Bulla. Pentobarbital alone was effective in generating phase shifts consistent with phase response curves obtained to either extracellular low Ca2+ or hyperpolarizing pulses. Patch clamp recordings from the circadian pacemaker cells indicate that pentobarbital reduces the Ca(2+)-dependent K+ current. Together, these data suggest that pentobarbital acts on the pacemaker by reducing an inward Ca2+ current. Chloralose (3 mM) was effective in blocking light, but not high K(+)-induced phase shifts, and did not generate phase shifts when applied alone, suggesting that chloralose may act as a weak Ca2+ channel inhibitor.
Collapse
Affiliation(s)
- S B Khalsa
- NSF Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|