1
|
Šola I, Gmižić D, Miškec K, Ludwig-Müller J. Impact of Water Stress on Metabolic Intermediates and Regulators in Broccoli Sprouts, and Cellular Defense Potential of Their Extracts. Int J Mol Sci 2025; 26:632. [PMID: 39859346 PMCID: PMC11765553 DOI: 10.3390/ijms26020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) sprouts. Drought and flood differently influenced chlorophylls, carotenoids, and porphyrins, with drought having a stronger inhibitory effect on chlorophyll a, total chlorophyll, and porphyrins. Carotenoids and glucosinolates increased under drought but decreased with flooding, suggesting that these compounds play a crucial role in drought tolerance. Nitrate increased with drought from 13.11 ± 1.05 mg/g dw to 22.41 ± 1.20 mg/g dw but decreased under flooding to 5.17 ± 1.03 mg/g dw, and oxalic acid was reduced by drought only (from 48.94 ± 1.30 mg/g dw to 46.43 ± 0.64 mg/g dw). Flood reduced proteins by 29%, phenolics by 15%, flavonoids by 10%, flavonols by 11%, tannins by 36%, and proanthocyanidins by 19%, while drought decreased flavonoids by 23%. Total phenolics and proanthocyanidins were increased by drought by 29% and 7%, respectively, while flooding decreased hydroxycinnamic acids by 13%. Both stress types influenced individual polyphenols differently: drought diminished ferulic acid by 17% and increased sinapic acid by 30%, while flooding reversed these effects and enhanced kaempferol by 22%. These compounds, along with proline (which increased by 139% under drought), emerged as biomarkers of water stress. Flood impacted antioxidant capacity more significantly, while drought-stressed broccoli extracts better protected plasmid DNA against oxidative damage. These findings underline the metabolic plasticity of broccoli sprouts and their potential in targeted crop management for water stress resilience.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Karlo Miškec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Jutta Ludwig-Müller
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
2
|
Physiological, Biochemical and Transcriptomic Analysis of the Aerial Parts (Leaf-Blade and Petiole) of Asarum sieboldii Responding to Drought Stress. Int J Mol Sci 2021; 22:ijms222413402. [PMID: 34948197 PMCID: PMC8708997 DOI: 10.3390/ijms222413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Asarum sieboldii Miq. is a leading economic crop and a traditional medicinal herb in China. Leaf-blade and petiole are the only aerial tissues of A. sieboldii during the vegetative growth, playing a vital role in the accumulation and transportation of biomass energy. They also act as critical indicators of drought in agricultural management, especially for crops having underground stems. During drought, variations in the morphology and gene expression of the leaves and petioles are used to control agricultural irrigation and production. Besides, such stress can also alter the differential gene expression in these tissues. However, little is known about the drought-tolerant character of the aerial parts of A. sieboldii. In this study, we examined the physiological, biochemical and transcriptomic responses to the drought stress in the leaf blades and petioles of A. sieboldii. The molecular mechanism, involving in drought stress response, was elucidated by constructing the cDNA libraries and performing transcriptomic sequencing. Under drought stress, a total of 2912 and 2887 unigenes were differentially expressed in the leaf blade and petiole, respectively. The detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in drought tolerance. In response to drought, the leaf blade and petiole displayed a general physiological character, a higher SOD and POD activity, a higher MDA content and lower chlorophyll content. Three unigenes encoding POD were up-regulated, which can improve POD activity. Essential oil in petiole was extracted. The relative contents of methyleugenol and safrole in essential oil were increased from 0.01% to 0.05%, and 3.89% to 16.97%, respectively, while myristicin slightly reduced from 24.87% to 21.52%. Additionally, an IGS unigene, involved in eugenol biobiosynthesis, was found up-regulated under drought stress, which was predicated to be responsible for the accumulation of methyleugenol and safrole. Simple sequence repeats (SSRs) were characterized in of A. sieboldii, and a total of 5466 SSRs were identified. Among them, mono-nucleotides were the most abundant repeat units, accounting for 44.09% followed by tri-, tetra-, penta and hexa-nucleotide repeats. Overall, the present work provides a valuable resource for the population genetics studies of A. sieboldii. Besides, it provides much genomic information for the functional dissection of the drought-resistance in A. sieboldii, which will be useful to understand the bio-regulatory mechanisms linked with drought-tolerance to enhance its yield.
Collapse
|
3
|
Chen G, Liu Z, Li S, Qanmber G, Liu L, Guo M, Lu L, Ma S, Li F, Yang Z. Genome-wide analysis of ZAT gene family revealed GhZAT6 regulates salt stress tolerance in G. hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111055. [PMID: 34620449 DOI: 10.1016/j.plantsci.2021.111055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
High salt environments can induce stress in different plants. The genes containing the ZAT domain constitute a family that belongs to a branch of the C2H2 family, which plays a vital role in responding to abiotic stresses. In this study, we identified 169 ZAT genes from seven plant species, including 44 ZAT genes from G. hirsutum. Phylogenetic tree analysis divided ZAT genes in six groups with conserved gene structure, protein motifs. Two C2H2 domains and an EAR domain and even chromosomal distribution on At and Dt sub-genome chromosomes of G. hirsutum was observed. GhZAT6 was primarily expressed in the root tissue and responded to NaCl and ABA treatments. Subcellular localization found that GhZAT6 was located in the nucleus and demonstrated transactivation activity during a transactivation activity assay. Arabidopsis transgenic lines overexpressing the GhZAT6 gene showed salt tolerance and grew more vigorously than WT on MS medium supplemented with 100 mmol NaCl. Additionally, the silencing of the GhZAT6 gene in cotton plants showed more obvious leaf wilting than the control plants, which were subjected to 400 mmol NaCl treatment. Next, the expressions of GhAPX1, GhFSD1, GhFSD2, and GhSOS3 were significantly lower in the GhZAT6-silenced plants treated with NaCl than the control. Based on these findings, GhZAT6 may be involved in the ABA pathway and mediate salt stress tolerance by regulating ROS-related gene expression.
Collapse
Affiliation(s)
- Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
4
|
Haas JC, Vergara A, Serrano AR, Mishra S, Hurry V, Street NR. Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. TREE PHYSIOLOGY 2021; 41:1230-1246. [PMID: 33416078 PMCID: PMC8271197 DOI: 10.1093/treephys/tpaa178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/27/2020] [Indexed: 05/12/2023]
Abstract
Drought stress impacts seedling establishment, survival and whole-plant productivity. Molecular responses to drought stress have been most extensively studied in herbaceous species, mostly considering only aboveground tissues. Coniferous tree species dominate boreal forests, which are predicted to be exposed to more frequent and acute drought as a result of ongoing climate change. The associated impact at all stages of the forest tree life cycle is expected to have large-scale ecological and economic impacts. However, the molecular response to drought has not been comprehensively profiled for coniferous species. We assayed the physiological and transcriptional response of Picea abies (L.) H. Karst seedling needles and roots after exposure to mild and severe drought. Shoots and needles showed an extensive reversible plasticity for physiological measures indicative of drought-response mechanisms, including changes in stomatal conductance (gs), shoot water potential and abscisic acid (ABA). In both tissues, the most commonly observed expression profiles in response to drought were highly correlated with the ABA levels. Still, root and needle transcriptional responses contrasted, with extensive root-specific down-regulation of growth. Comparison between previously characterized Arabidopsis thaliana L. drought-response genes and P. abies revealed both conservation and divergence of transcriptional response to drought. In P. abies, transcription factors belonging to the ABA responsive element(ABRE) binding/ABRE binding factors ABA-dependent pathway had a more limited role. These results highlight the importance of profiling both above- and belowground tissues, and provide a comprehensive framework to advance the understanding of the drought response of P. abies. The results demonstrate that a short-term, severe drought induces severe physiological responses coupled to extensive transcriptome modulation and highlight the susceptibility of Norway spruce seedlings to such drought events.
Collapse
Affiliation(s)
- Julia C Haas
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Alexander Vergara
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Alonso R Serrano
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Sanatkumar Mishra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
5
|
Li P, Zhu Y, Song X, Song F. Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid Pennisetum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:93-104. [PMID: 32745934 DOI: 10.1016/j.plaphy.2020.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/24/2023]
Abstract
Plants are always suffering periods of soil water deficit and sustained soil salinity during their life cycle. Unraveling the mechanisms underpinning the responses of plants, especially the photosynthesis, to drought, salinity, and co-occurring stresses is critical for both the protection of natural vegetation and the stabilization of crop production. To better understand the downregulation of photosynthetic capability induced by soil salinity and drought, gas exchange parameters, leaf pigment contents, and chlorophyll (Chl) a fluorescence transients were analyzed in leaves of Hybrid Pennisetum. Our results showed that long-term moderate salinity, short-term drought, and the combination of these stressors decreased leaf pigment content by 11.4-31.5% and net photosynthetic rate (Pn) by 14.6-67.6% compared to those in untreated plants. The reduction of Pn in Hybrid Pennisetum under long-term salinity stress mainly occurred by stomatal limitation, whereas non-stomatal limitation played a dominant role under short-term drought stress. The changes in Chl a fluorescence kinetics (especially the appearance of the L-band and K-band) in both stress treatments showed that salinity and drought stress damaged the structural stability of photosystem II (PSII) and disturbed the equilibrium between the electrons at the acceptor and donor sides of PSII. Furthermore, although the negative effect of drought stress on leaf photosynthesis was much greater than that of salinity stress, moderate salt stress alleviated the negative effect of drought stress on the photosynthetic performance of Hybrid Pennisetum after long acclimation times.
Collapse
Affiliation(s)
- Peidong Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yufei Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Fupeng Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
6
|
Hewage KAH, Yang J, Wang D, Hao G, Yang G, Zhu J. Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001265. [PMID: 32999840 PMCID: PMC7509701 DOI: 10.1002/advs.202001265] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is the best-known stress signaling molecule in plants. ABA protects sessile land plants from biotic and abiotic stresses. The conserved pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) perceives ABA and triggers a cascade of signaling events. A thorough knowledge of the sequential steps of ABA signaling will be necessary for the development of chemicals that control plant stress responses. The core components of the ABA signaling pathway have been identified with adequate characterization. The information available concerning ABA biosynthesis, transport, perception, and metabolism has enabled detailed functional studies on how the protective ability of ABA in plants might be modified to increase plant resistance to stress. Some of the significant contributions to chemical manipulation include ABA biosynthesis inhibitors, and ABA receptor agonists and antagonists. Chemical manipulation of key control points in ABA signaling is important for abiotic and biotic stress management in agriculture. However, a comprehensive review of the current knowledge of chemical manipulation of ABA signaling is lacking. Here, a thorough analysis of recent reports on small-molecule modulation of ABA signaling is provided. The challenges and prospects in the chemical manipulation of ABA signaling for the development of ABA-based agrochemicals are also discussed.
Collapse
Affiliation(s)
- Kamalani Achala H. Hewage
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Jing‐Fang Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Ge‐Fei Hao
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072P. R. China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biologyand CAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai20032P. R. China
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
7
|
Zhang Y, Gao X, Li J, Gong X, Yang P, Gao J, Wang P, Feng B. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC PLANT BIOLOGY 2019; 19:397. [PMID: 31510928 PMCID: PMC6737659 DOI: 10.1186/s12870-019-2001-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Drought stress is a major abiotic stress that causes huge losses in agricultural production. Proso millet (Panicum miliaceum L.) can efficiently adapt to drought stress and provides important information and gene resources to improve drought tolerance. However, its complex drought-responsive mechanisms remain unclear. RESULTS Among 37 core Chinese proso millet cultivars, Jinshu 6 (JS6) was selected as the drought-sensitive test material, whereas Neimi 5 (NM5) was selected as the drought-tolerant test material under PEG-induced water stress. After sequencing, 1695 differentially expressed genes (DEGs) were observed in JS6 and NM5 without PEG-induced water stress (JS6CK and NM5CK). A total of 833 and 2166 DEGs were found in the two cultivars under simulated drought by using 20% PEG-6000 for 6 (JS6T6 and NM5T6) and 24 h (JS6T24 and NM5T24), respectively. The DEGs in JS6T6 and JS6T24 treatments were approximately 0.298- and 0.754-fold higher than those in NM5T6 and NM5T24, respectively. Compared with the respective controls, more DEGs were found in T6 treatments than in T24 treatments. A delay in the transcriptional responses of the ROS scavenging system to simulated drought treatment and relatively easy recovery of the expression of photosynthesis-associated genes were observed in NM5. Compared with JS6, different regulation strategies were observed in the jasmonic acid (JA) signal transduction pathway of NM5. CONCLUSION Under PEG-induced water stress, NM5 maintained highly stable gene expression levels. Compared with drought-sensitive cultivars, the different regulation strategies in the JA signal transduction pathway in drought-tolerant cultivars may be one of the driving forces underlying drought stress tolerance.
Collapse
Affiliation(s)
- Yuyu Zhang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Xiaoli Gao
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Jing Li
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Xiangwei Gong
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Pu Yang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Jinfeng Gao
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Pengke Wang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Baili Feng
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| |
Collapse
|
8
|
Chen W, Yao Q, Patil GB, Agarwal G, Deshmukh RK, Lin L, Wang B, Wang Y, Prince SJ, Song L, Xu D, An YC, Valliyodan B, Varshney RK, Nguyen HT. Identification and Comparative Analysis of Differential Gene Expression in Soybean Leaf Tissue under Drought and Flooding Stress Revealed by RNA-Seq. FRONTIERS IN PLANT SCIENCE 2016; 7:1044. [PMID: 27486466 PMCID: PMC4950259 DOI: 10.3389/fpls.2016.01044] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/04/2016] [Indexed: 05/18/2023]
Abstract
Drought and flooding are two major causes of severe yield loss in soybean worldwide. A lack of knowledge of the molecular mechanisms involved in drought and flood stress has been a limiting factor for the effective management of soybeans; therefore, it is imperative to assess the expression of genes involved in response to flood and drought stress. In this study, differentially expressed genes (DEGs) under drought and flooding conditions were investigated using Illumina RNA-Seq transcriptome profiling. A total of 2724 and 3498 DEGs were identified under drought and flooding treatments, respectively. These genes comprise 289 Transcription Factors (TFs) representing Basic Helix-loop Helix (bHLH), Ethylene Response Factors (ERFs), myeloblastosis (MYB), No apical meristem (NAC), and WRKY amino acid motif (WRKY) type major families known to be involved in the mechanism of stress tolerance. The expression of photosynthesis and chlorophyll synthesis related genes were significantly reduced under both types of stresses, which limit the metabolic processes and thus help prolong survival under extreme conditions. However, cell wall synthesis related genes were up-regulated under drought stress and down-regulated under flooding stress. Transcript profiles involved in the starch and sugar metabolism pathways were also affected under both stress conditions. The changes in expression of genes involved in regulating the flux of cell wall precursors and starch/sugar content can serve as an adaptive mechanism for soybean survival under stress conditions. This study has revealed the involvement of TFs, transporters, and photosynthetic genes, and has also given a glimpse of hormonal cross talk under the extreme water regimes, which will aid as an important resource for soybean crop improvement.
Collapse
Affiliation(s)
- Wei Chen
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Qiuming Yao
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Gunvant B. Patil
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Gaurav Agarwal
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | | - Li Lin
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Biao Wang
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- Legume Biotechnology Laboratory, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Yongqin Wang
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Silvas J. Prince
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Li Song
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Dong Xu
- Department of Computer Science and Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Yongqiang C. An
- Plant Genetics Research Unit, Donald Danforth Plant Science Center, US Department of Agriculture, Agricultural Research Service, Midwest AreaSt. Louis, MO, USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Henry T. Nguyen
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
- *Correspondence: Henry T. Nguyen
| |
Collapse
|
9
|
Garcia PMA, Hayashi AH, Silva EA, Figueiredo-Ribeiro RDCL, Carvalho MAM. Structural and metabolic changes in rhizophores of the Cerrado species Chrysolaena obovata (Less.) Dematt. as influenced by drought and re-watering. FRONTIERS IN PLANT SCIENCE 2015; 6:721. [PMID: 26442035 PMCID: PMC4585265 DOI: 10.3389/fpls.2015.00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 05/30/2023]
Abstract
The high fructan contents in underground organs of Cerrado species, high water solubility, and fast metabolism of these compounds highlight their role as carbon storage and as an adaptive feature in plants under drought. In this study, we showed that anatomical structure, in association with soluble compounds and metabolism of inulin-type fructans were modified in rhizophores of Crysolaena obovata submitted to water suppression and recovery after re-watering. Plants were subjected to daily watering (control), suppression of watering for 22 days (water suppression) and suppression of watering followed by re-watering after 10 days (re-watered). Plants were collected at time 0 and after 3, 7, 10, 12, 17, and 22 days of treatment. In addition to changes in fructan metabolism, high proline content was detected in drought stressed plants, contributing to osmoregulation and recovery after water status reestablishment. Under water suppression, total inulin was reduced from approx. 60 to 40%, mainly due to exohydrolase activity. Concurrently, the activity of fructosyltransferases promoted the production of short chain inulin, which could contribute to the increase in osmotic potential. After re-watering, most parameters analyzed were similar to those of control plants, indicating the resumption of regular metabolism, after water absorption. Inulin sphero-crystals accumulated in parenchymatic cells of the cortex, vascular tissues and pith were reduced under drought and accompanied anatomical changes, starting from day 10. At 22 days of drought, the cortical and vascular tissues were collapsed, and inulin sphero-crystals and inulin content were reduced. The localization of inulin sphero-crystals in vascular tissues of C. obovata, as well as the decrease of total inulin and the increase in oligo:polysaccharide ratio in water stressed plants is consistent with the role of fructans in protecting plants against drought.
Collapse
Affiliation(s)
- Paola M. A. Garcia
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de BotânicaSão Paulo, Brazil
| | | | - Emerson A. Silva
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| | | | - Maria A. M. Carvalho
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| |
Collapse
|
10
|
Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit. Protein J 2014; 33:221-30. [PMID: 24652039 DOI: 10.1007/s10930-014-9554-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rice is the most important crop consumed all over the world. In Brazil, irrigated rice covers 50 % of the rice producing area and is responsible for 75 % of the national production. Upland rice covers most of the remaining area, and is therefore, a very important production system in the country. In the present study, we have used the drought tolerant upland rice variety Três Meses Antigo to investigate the proteomic changes that occur during drought stress. Plants were submitted to drought by the reposition of 50 % of the water lost daily. Twenty days after the beginning of the drought stress period, leaves were harvested and used for protein extraction. The 2D maps obtained from treated and control plants revealed 408 reproducible spots, 44 of which were identified by mass spectrometry, including 15 differential proteins. Several unaltered proteins were also identified (39 spots) and were mainly involved in photosynthesis. Taken together, the results obtained suggest that the tolerant upland rice up-regulates anti-oxidant and energy production related proteins in order to cope with water deficit.
Collapse
|
11
|
Yoon SK, Park EJ, Choi YI, Bae EK, Kim JH, Park SY, Kang KS, Lee H. Response to drought and salt stress in leaves of poplar (Populus alba × Populus glandulosa): expression profiling by oligonucleotide microarray analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:158-168. [PMID: 25285889 DOI: 10.1016/j.plaphy.2014.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/21/2014] [Indexed: 05/24/2023]
Abstract
Drought and salt stresses are major environmental constraints on forest productivity. To identify genes responsible for stress tolerance, we conducted a genome-wide analysis in poplar (Populus alba × Populus glandulosa) leaves exposed to drought and salt (NaCl) stresses. We investigated gene expression at the mRNA level using oligonucleotide microarrays containing 44,718 genes from Populus trichocarpa. A total of 1604 and 1042 genes were up-regulated (≥2-fold; P value < 0.05) by drought and salt stresses, respectively, and 765 genes were up-regulated by both stresses. In addition, 2742 and 1685 genes were down-regulated by drought and salt stresses, respectively, and 1564 genes were down-regulated by both stresses. The large number of genes regulated by both stresses suggests that crosstalk occurs between the drought and salt stress responses. Most up-regulated genes were involved in functions such as subcellular localization, signal transduction, metabolism, and transcription. Among the up-regulated genes, we identified 47 signaling proteins, 65 transcription factors, and 43 abiotic stress-related genes. Several genes were modulated by only one of the two stresses. About 25% of the genes significantly regulated by these stresses are of unknown function, suggesting that poplar may provide an opportunity to discover novel stress-related genes.
Collapse
Affiliation(s)
- Seo-Kyung Yoon
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea; Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Republic of Korea
| | - Eung-Jun Park
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - Young-Im Choi
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - Eun-Kyung Bae
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - Joon-Hyeok Kim
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, 52 Naesudong-ro, Cheongju 361-763, Republic of Korea
| | - Kyu-Suk Kang
- Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Republic of Korea
| | - Hyoshin Lee
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea.
| |
Collapse
|
12
|
Pintó-Marijuan M, Munné-Bosch S. Ecophysiology of invasive plants: osmotic adjustment and antioxidants. TRENDS IN PLANT SCIENCE 2013; 18:660-6. [PMID: 24001766 DOI: 10.1016/j.tplants.2013.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/16/2013] [Accepted: 08/11/2013] [Indexed: 05/06/2023]
Abstract
Current research into plant invasiveness often attempts to predict the effect of invasions under future climate change, but most studies only focus on ecological aspects. Understanding ecophysiological responses by characterizing physiological markers such as osmotic adjustment or antioxidant protection indicators will help us to project future invasiveness patterns. In this opinion article, we highlight how the information from physiological measurements can be incorporated into effective management strategies. Furthermore, we propose how combining research strategies of physiologists and ecologists could speed up our understanding of the advantageous mechanisms adopted by invasive species. We suggest that a combined approach would also be of considerable benefit for the development of effective governmental biodiversity conservation policies.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|
13
|
Debnath M, Pandey M, Bisen PS. An omics approach to understand the plant abiotic stress. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:739-62. [PMID: 22122668 DOI: 10.1089/omi.2010.0146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abiotic stress can lead to changes in development, productivity, and severe stress and may even threaten survival of plants. Several environmental stresses cause drastic changes in the growth, physiology, and metabolism of plants leading to the increased accumulation of secondary metabolites. As medicinal plants are important sources of drugs, steps are taken to understand the effect of stress on the physiology, biochemistry, genomic, proteomic, and metabolic levels. The molecular responses of plants to abiotic stress are often considered as a complex process. They are mainly based on the modulation of transcriptional activity of stress-related genes. Many genes have been induced under stress conditions. The products of stress-inducible genes protecting against these stresses includes the enzymes responsible for the synthesis of various osmoprotectants. Genetic engineering of tolerance to abiotic stresses help in molecular understanding of pathways induced in response to one or more of the abiotic stresses. Systems biology and virtual experiments allow visualizing and understanding how plants work to overcome abiotic stress. This review discusses the omic approach to understand the plant response to abiotic stress with special emphasis on medicinal plant.
Collapse
Affiliation(s)
- Mousumi Debnath
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, India.
| | | | | |
Collapse
|
14
|
Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:336-44. [PMID: 22137606 DOI: 10.1016/j.jplph.2011.10.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 05/20/2023]
Abstract
Water status is the main factor affecting rice production. In order to understand rice strategies in response to drought condition in the field, the drought-responsive mechanisms at the physiological and molecular levels were studied in two rice genotypes with contrasting susceptibility to drought stress at reproductive stage. After 20 d of drought treatment, the osmotic potential of leaves reduced 78% and 8% in drought susceptible rice cultivar Zhenshan97B and tolerant rice cultivar IRAT109, respectively. The panicle lengths had no obvious changes in drought stressed Zhenshan97B and IRAT109, suggesting that drought stress impose less effect on assimilate translocation from leaf to vegetative growth of panicles. IRAT109 showed more extensive deeper root growth that could be considered a second line of defense against drought stress. The C(i)/C(a) ratio exhibited enhancement over reduction of g(s) in both cultivars, reflecting the non-stomatal limitation to photosynthesis occurred during drought stress. Orthophosphate dikinase, glycine dehydrogenase, ribulose bisphosphate carboxylase (Rubisco), glycine hydroxymethyltransferase and ATP synthase were down-regulated for Zhenshan97B in response to drought stress, suggesting the reduction of capacity of carbon assimilation in this rice cultivar. In drought-stressed IRAT109, transketolase, Rubisco were down-regulated, however, Rubisco activase and peptidyl-prolyl cis-trans isomerase, which might alleviate the damage on Rubisco by drought stress, were up-regulated. The increased abundances of chloroplastic superoxide dismutase [Cu-Zn] and dehydroascorbate reductase might provide antioxidant protection for IRAT109 against damage by dehydration.
Collapse
Affiliation(s)
- Kuixian Ji
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Symonds VV, Hatlestad G, Lloyd AM. Natural allelic variation defines a role for ATMYC1: trichome cell fate determination. PLoS Genet 2011; 7:e1002069. [PMID: 21695236 PMCID: PMC3111535 DOI: 10.1371/journal.pgen.1002069] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
The molecular nature of biological variation is not well understood. Indeed, many questions persist regarding the types of molecular changes and the classes of genes that underlie morphological variation within and among species. Here we have taken a candidate gene approach based on previous mapping results to identify the gene and ultimately a polymorphism that underlies a trichome density QTL in Arabidopsis thaliana. Our results show that natural allelic variation in the transcription factor ATMYC1 alters trichome density in A. thaliana; this is the first reported function for ATMYC1. Using site-directed mutagenesis and yeast two-hybrid experiments, we demonstrate that a single amino acid replacement in ATMYC1, discovered in four ecotypes, eliminates known protein–protein interactions in the trichome initiation pathway. Additionally, in a broad screen for molecular variation at ATMYC1, including 72 A. thaliana ecotypes, a high-frequency block of variation was detected that results in >10% amino acid replacement within one of the eight exons of the gene. This sequence variation harbors a strong signal of divergent selection but has no measurable effect on trichome density. Homologs of ATMYC1 are pleiotropic, however, so this block of variation may be the result of natural selection having acted on another trait, while maintaining the trichome density role of the gene. These results show that ATMYC1 is an important source of variation for epidermal traits in A. thaliana and indicate that the transcription factors that make up the TTG1 genetic pathway generally may be important sources of epidermal variation in plants. Among the goals of modern evolutionary biology is to identify the molecular genetic sources of natural variation. Although genetic mapping has led to an increased understanding of the genetic architecture of natural variation, there are surprisingly few cases where the molecular source of the variation has been identified. Here, we utilize previous mapping results to identify the gene and ultimately a polymorphism that underlies natural variation for a dynamic trait in Arabidopsis thaliana: trichome density. We show that plants carrying a knock-out of the bHLH transcription factor ATMYC1 have a reduced trichome density phenotype; this is the first reported function for ATMYC1. Using traditional and molecular genetic approaches, we identify a single base change in natural alleles of ATMYC1, which leads to an amino acid replacement that qualitatively alters protein–protein interactions with known partners, presumably altering the trichome cell fate pathway. In a broad screen for molecular variation in ATMYC1, we identify a dense block of amino acid replacements that differentiates two high-frequency allele types. Although this block of variation does not appear to affect trichome density, based on paralogs of ATMYC1, we propose that this variation has arisen due to directional selection on another epidermal trait.
Collapse
Affiliation(s)
- V Vaughan Symonds
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America.
| | | | | |
Collapse
|
16
|
Zang QW, Wang CX, Li XY, Guo ZA, Jing RL, Zhao J, Chang XP. Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 2011; 35:379-88. [PMID: 20826947 DOI: 10.1007/s12038-010-0043-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant cysteine protease (CP) genes are induced by abiotic stresses such as drought, yet their functions remain largely unknown. We isolated the full-length cDNA encoding a Triticum aestivum CP gene, designated TaCP, from wheat by the rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that TaCP contains an open reading frame encoding a protein of 362 amino acids, which is 96% identical to barley cysteine protease HvSF42. The TaCP transcript level in wheat seedlings was upregulated during polyethylene glycol (PEG) stress, with a peak appearing around 12 h after treatment. TaCP expression level increased rapidly with NaCl treatment at 48 h. TaCP responded strongly to low temperature (4 degree C) treatment from 1 h post-treatment and reached a peak of about 40-fold at 72 h. However, it showed only a very slight response to abscisic acid (ABA). More than one copy of TaCP was present in each of the three genomes of hexaploid wheat and its diploid donors. TaCP fused with green fluorescent protein (GFP) was located in the plasma membrane of onion epidermis cells. Transgenic Arabidopsis plants overexpressing TaCP showed stronger drought tolerance and higher CP activity under water-stressed conditions than wild-type Arabidopsis plants. The results suggest that TaCP plays a role in tolerance to water deficit.
Collapse
Affiliation(s)
- Qing-Wei Zang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:189-95. [PMID: 16483835 DOI: 10.1016/j.pbi.2006.01.019] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/25/2006] [Indexed: 05/06/2023]
Abstract
Drought stress is one of the major limitations to crop productivity. To develop crop plants with enhanced tolerance of drought stress, a basic understanding of physiological, biochemical and gene regulatory networks is essential. Various functional genomics tools have helped to advance our understanding of stress signal perception and transduction, and of the associated molecular regulatory network. These tools have revealed several stress-inducible genes and various transcription factors that regulate the drought-stress-inducible systems. Translational genomics of these candidate genes using model plants provided encouraging results, but the field testing of transgenic crop plants for better performance and yield is still minimal. Better understanding of the specific roles of various metabolites in crop stress tolerance will give rise to a strategy for the metabolic engineering of crop tolerance of drought.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri - Columbia, Missouri 65211, USA
| | | |
Collapse
|
20
|
Rodriguez-Uribe L, O'Connell MA. A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1391-8. [PMID: 16531461 DOI: 10.1093/jxb/erj118] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Root cDNA libraries were differentially screened to isolate water deficit-responsive transcripts in the relatively drought-resistant plant tepary bean (Phaseolus acutifolius). A novel root-specific, water deficit-responsive transcript was identified and predicted to encode a bZIP transcription factor. The orthologous form of this gene was isolated from the drought-sensitive P. vulgaris and the patterns of expression of these genes compared. These genes have predicted amino acid sequences in the bZIP domain that are 64% similar to a soybean bZIP protein. There were three amino acid differences between the P. acutifolius bZIP and the P. vulgaris gene product. Both species transcribed this gene in a root-specific and water deficit-responsive manner. The cell-specific pattern of expression for the gene was determined using in situ hybridization and immunolocalization. Two tissues in the root accumulated the protein: epidermis and phloem. The nuclear localization of this protein was determined by electron microscopy. The bZIP protein accumulated in the nuclei of both the epidermal cell and the vascular cell in response to water deficit stress in both species in a similar manner.
Collapse
Affiliation(s)
- Laura Rodriguez-Uribe
- Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003, USA
| | | |
Collapse
|
21
|
Takahara K, Akashi K, Yokota A. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon. FEBS J 2005; 272:5353-64. [PMID: 16218965 DOI: 10.1111/j.1742-4658.2005.04933.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Citrulline is an efficient hydroxyl radical scavenger that can accumulate at concentrations of up to 30 mm in the leaves of wild watermelon during drought in the presence of strong light; however, the mechanism of this accumulation remains unclear. In this study, we characterized wild watermelon glutamate N-acetyltransferase (CLGAT) that catalyses the transacetylation reaction between acetylornithine and glutamate to form acetylglutamate and ornithine, thereby functioning in the first and fifth steps in citrulline biosynthesis. CLGAT enzyme purified 7000-fold from leaves was composed of two subunits with different N-terminal amino acid sequences. Analysis of the corresponding cDNA revealed that these two subunits have molecular masses of 21.3 and 23.5 kDa and are derived from a single precursor polypeptide, suggesting that the CLGAT precursor is cleaved autocatalytically at the conserved ATML motif, as in other glutamate N-acetyltransferases of microorganisms. A green fluorescence protein assay revealed that the first 26-amino acid sequence at the N-terminus of the precursor functions as a chloroplast transit peptide. The CLGAT exhibited thermostability up to 70 degrees C, suggesting an increase in enzyme activity under high leaf temperature conditions during drought/strong-light stresses. Moreover, CLGAT was not inhibited by citrulline or arginine at physiologically relevant high concentrations. These findings suggest that CLGAT can effectively participate in the biosynthesis of citrulline in wild watermelon leaves during drought/strong-light stress.
Collapse
Affiliation(s)
- Kentaro Takahara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | | | | |
Collapse
|
22
|
Pinheiro C, Passarinho JA, Ricardo CP. Effect of drought and rewatering on the metabolism of Lupinus albus organs. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1203-1210. [PMID: 15602812 DOI: 10.1016/j.jplph.2004.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alterations in the metabolism of Lupinus albus organs that result from and subsequently follow a period of severe water deficit (WD) are described. By means of 13C-nuclear magnetic resonance (NMR), changes in the major metabolites were monitored in several plant organs (leaflets and petiole, roots, stem stele and cortex). During the stress, most of the leaves were lost and the stem functioned as a storage repository of sugars (glucose and sucrose) and amino acids (asparagine and proline). Upon rewatering, lupin plants rapidly re-established the relative water content (RWC) and produced new leaves. However, at the metabolic level, the events seem to be more complex, since proline (a stress related metabolite) disappeared rapidly while sugars and asparagine reached the initial pattern more slowly, particularly in the stem.
Collapse
|
23
|
Villalobos MA, Bartels D, Iturriaga G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. PLANT PHYSIOLOGY 2004; 135:309-24. [PMID: 15122027 PMCID: PMC429382 DOI: 10.1104/pp.103.034199] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 01/16/2004] [Accepted: 02/06/2004] [Indexed: 05/18/2023]
Abstract
The resurrection plant Craterostigma plantagineum has the ability to survive complete dehydration. In an attempt to further understand desiccation tolerance in this plant, the CpMYB10 transcription factor gene was functionally characterized. CpMYB10 is rapidly induced by dehydration and abscisic acid (ABA) treatments in leaves and roots, but no expression was detected in fully hydrated tissues. Electrophoretic mobility shift assay experiments showed binding of rCpMYB10 to specific mybRE elements within the LEA Cp11-24 and CpMYB10 promoters. Localization of CpMYB10 transcript by in situ reverse transcription-PCR reactions showed expression in vascular tissues, parenchyma, and epidermis both in leaves and roots in response to ABA. Transgenic Arabidopsis plants transformed with CpMYB10 promoter fused to GUS gene showed reporter expression under ABA and stress conditions in several organs. Overexpression of CpMYB10 cDNA in Arabidopsis led to desiccation and salt tolerance of transgenics lines. Interestingly, it was found that plants overexpressing CpMYB10 exhibited Glc-insensitive and ABA hypersensitive phenotypes. Therefore, our results indicate that CpMYB10 in Arabidopsis is mediating stress tolerance and altering ABA and Glc signaling responses.
Collapse
|
24
|
Liu X, Vance Baird W. Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. AMERICAN JOURNAL OF BOTANY 2004; 91:184-191. [PMID: 21653374 DOI: 10.3732/ajb.91.2.184] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Using differential display of mRNA transcripts, we obtained a partial cDNA clone, RSC5-U, that is upregulated by exposure to high salinity. A longer cDNA of 812 nucleotides, designated HaABRC5, was then cloned by rapid amplification of cDNA ends. This full-length cDNA contains an open reading frame of 423 nucleotides encoding 141 amino acids, including a "bipartite nuclear targeting sequence." The deduced amino acid sequence had no similarity to known genes in the database. The expression of HaABRC5 was investigated in more detail using quantitative reverse transcriptase-polymerase chain reaction. HaABRC5 is upregulated by drought, high salinity, and exogenous application of abscisic acid (ABA). The promoter sequence of 229 nucleotides, upstream of HaABRC5, was cloned using rapid amplification of genomic ends. Three ABA-responsive elements were found within the HaABRC5 promoter region. Therefore, HaABRC5 is probably an ABA-responsive nuclear protein playing a role in plant stress response.
Collapse
Affiliation(s)
- Xianan Liu
- Horticulture Department and Genetics Graduate Program, Clemson University
| | | |
Collapse
|
25
|
Altinkut A, Gozukirmizi N. Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. Mol Biotechnol 2003; 23:97-106. [PMID: 12632694 DOI: 10.1385/mb:23:2:97] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We used bulked segregant analysis (BSA) to identify microsatellite markers associated with water-stress tolerance in wheat. Two DNA pools (tolerant and sensitive) were established from the selected F2 individuals of crosses between water-stress-tolerant and -sensitive wheat parental genotypes on the basis of the paraquat (PQ) tolerance, leaf size, and relative water content. All three traits were previously shown to be associated with water-stress tolerance on segregating F2 progeny of the wheat crosses used in this study. Microsatellite analysis was then performed on the established DNA pools, using 35 primer pairs that included all of the chromosome group 5 (5A, 5B, 5D) markers, to detect microsatellite fragments that were present, absent, or both in the DNA pools and their parental lines. We identified one microsatellite fragment that was present in tolerant parent wheat and the tolerant bulk but absent in the sensitive parent wheat and sensitive bulk. We then followed the segregation of this marker in the tolerant F2 individuals. Use of this marker may significantly enhance the success of selection for PQ- and water-stress-tolerant genotypes in wheat breeding programs.
Collapse
Affiliation(s)
- Ahu Altinkut
- TUBITAK, Research Institute for Genetic Engineering and Biotechnology, P.O. Box 21, 41470, Gebze-Kocaeli, Turkey.
| | | |
Collapse
|
26
|
Altinkut A, Kazan K, Gozukirmizi N. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.). Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000100013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- A. Altinkut
- Research Institute for Genetic Engineering and Biotechnology, Turkey
| | - K. Kazan
- The University of Queensland, Australia
| | - N. Gozukirmizi
- Research Institute for Genetic Engineering and Biotechnology, Turkey; Istanbul University, Turkey
| |
Collapse
|
27
|
Harrak H, Azelmat S, Baker EN, Tabaeizadeh Z. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome 2001; 44:368-74. [PMID: 11444695 DOI: 10.1139/g01-007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study, a 65 kDa protein, TDI-65, was found to be accumulated in the leaves of drought-stressed tomato (Lycopersicon esculentum cv. Starfire) plants. The protein level returns to control level when the drought-stressed plants are rewatered. Antibodies raised against the purified protein were used to elucidate the subcellular localization of the protein. The protein was found to be mainly localized in the nuclei and chloroplasts of drought-stressed leaf cells. To identify the nature of the protein, a cDNA library was constructed and screened by the purified anti-TDI-65 antibody. A cDNA clone designated tdi-65 was isolated and characterized. The deduced amino acid sequences of tdi-65 protein has extensive homology with known cysteine proteases such as actinidin and papain. Northern blot analysis revealed that tdi-65 mRNA is 10-fold higher in drought-stressed plants as compared to control and rewatered plants. Similar results were observed in the tomato cultivar Ailsa and its near isogenic abscisic acid (ABA)-deficient mutant line, flacca, suggesting that the gene does not require ABA for its expression under drought conditions. Based on the previous immunolocalization findings we suggest that tdi-65 encoded cysteine protease functions in relation to drought-induced senescence and programmed cell death.
Collapse
Affiliation(s)
- H Harrak
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | | | | | | |
Collapse
|
28
|
Pinheiro C, Chaves MM, Ricardo CP. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1063-70. [PMID: 11432922 DOI: 10.1093/jexbot/52.358.1063] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit (WD) in Lupinus albus L. brings about tissue-specific responses that are dependent on stress intensity. Carbohydrate metabolism is very sensitive to changes in plant water status. Six days from withholding water (DAW), sucrose, glucose and fructose levels of the leaf blade had already increased over 5-fold, and the activities of SS and INV(A) had increased c. 1.5-2 times. From 9 DAW on, when stress intensity was more pronounced, these effects were reversed with fructose and glucose concentrations as well as INV(A) activity dropping in parallel. The stem (specifically the stele) responded to the stress intensification with striking increases in the concentration of sugars, N and S, and in the induction of thaumatin-like-protein and an increase in chitinase and peroxidase. At 13 DAW, the plants lost most of the leaves but on rewatering they fully recovered. Thus, the observed changes appear to contribute to a general mechanism of survival under drought, the stem playing a key role in that process.
Collapse
Affiliation(s)
- C Pinheiro
- Plant Biochemistry, Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
29
|
Oberschall A, Deák M, Török K, Sass L, Vass I, Kovács I, Fehér A, Dudits D, Horváth GV. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000. [PMID: 11115125 DOI: 10.1111/j.1365-313x.2000.00885.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rapid accumulation of toxic products from reactions of reactive oxygen species (ROS) with lipids and proteins significantly contributes to the damage of crop plants under biotic and abiotic stresses. Here we have identified a stress-activated alfalfa gene encoding a novel plant NADPH-dependent aldose/aldehyde reductase that also exhibited characteristics of the homologous human enzyme. The recombinant alfalfa enzyme is active on 4-hydroxynon-2-enal, a known cytotoxic lipid peroxide degradation product. Ectopic synthesis of this enzyme in transgenic tobacco plants provided considerable tolerance against oxidative damage caused by paraquat and heavy metal treatment. These transformants could also resist a long period of water deficiency and exhibited improved recovery after rehydration. We found a reduced production of lipid peroxidation-derived reactive aldehydes in these transformed plants under different stresses. These studies reveal a new and efficient detoxification pathway in plants.
Collapse
Affiliation(s)
- A Oberschall
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A. Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. PLANT & CELL PHYSIOLOGY 2000; 41:864-73. [PMID: 10965943 DOI: 10.1093/pcp/pcd005] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Wild watermelon from the Botswana desert had an ability to survive under severe drought conditions by maintaining its water status (water content and water potential). In the analysis by two-dimensional electrophoresis of leaf proteins, seven spots were newly induced after watering stopped. One with the molecular mass of 40 kilodaltons of the spots was accumulated abundantly. The cDNA encoding for the protein was cloned based on its amino-terminal sequence and the amino acid sequence deduced from the determined nucleotide sequences of the cDNA exhibited homology to the enzymes belong to the ArgE/DapE/Acy1/Cpg2/YscS protein family (including acetylornithine deacetylase, carboxypeptidase and aminoacylase-1). This suggests that the protein is involved in the release of free amino acid by hydrolyzing a peptidic bond. As the drought stress progressed, citrulline became one of the major components in the total free amino acids. Eight days after withholding watering, although the lower leaves wilted significantly, the upper leaves still maintained their water status and the content of citrulline reached about 50% in the total free amino acids. The accumulation of citrulline during the drought stress in wild watermelon is an unique phenomenon in C3-plants. These results suggest that the drought tolerance of wild watermelon is related to (1) the maintenance of the water status and (2) a metabolic change to accumulate citrulline.
Collapse
Affiliation(s)
- S Kawasaki
- Graduate School of Biological Sciences, Nara Institute of Science Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Harrak H, Chamberland H, Plante M, Bellemare G, Lafontaine JG, Tabaeizadeh Z. A proline-, threonine-, and glycine-rich protein down-regulated by drought is localized in the cell wall of xylem elements. PLANT PHYSIOLOGY 1999; 121:557-64. [PMID: 10517847 PMCID: PMC59418 DOI: 10.1104/pp.121.2.557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A cDNA clone encoding a proline-, threonine-, and glycine-rich protein (PTGRP) was isolated from a wild tomato species (Lycopersicon chilense) (L.X. Yu, H. Chamberland, J.G. Lafontain, Z. Tabaeizadeh [1996] Genome 39: 1185-1193). Northern-blot analysis and in situ hybridization studies revealed that PTGRP is down-regulated by drought stress. The level of the mRNA in leaves and stems of 8-d drought-stressed plants decreased 5- to 10-fold compared with that in regularly watered plants. The mRNA re-accumulated when drought-stressed plants were rewatered. Antibodies raised against a glutathione S-transferase/PTGRP fusion protein were used to elucidate the subcellular localization of the protein by immunogold labeling. In regularly watered L. chilense plants, PTGRP protein was found to be localized in xylem pit membranes and disintegrated primary walls. Examination of sections from drought-stressed plants revealed a significant decrease in the levels of labeling. In these samples, only a few scattered gold particles were detected in the same areas. In the leaf tissues of plants that had been rewatered for 3 d following an 8-d drought stress, the labeling pattern was similar to that of the regularly watered plants. To our knowledge, PTGRP is the first drought-regulated protein that has been precisely localized in the cell wall.
Collapse
Affiliation(s)
- H Harrak
- Department of Biological Sciences, University of Quebec, P.O. Box 8888, Station Centre Ville, Montreal, Quebec, Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|