1
|
Bellato F, Feola S, Dalla Verde G, Bellio G, Pirazzini M, Salmaso S, Caliceti P, Cerullo V, Mastrotto F. Mannosylated Polycations Target CD206 + Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination. Biomacromolecules 2022; 23:5148-5163. [PMID: 36394394 DOI: 10.1021/acs.biomac.2c00993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunotherapy is deemed one of the most powerful therapeutic approaches to treat cancer. However, limited response and tumor specificity are still major challenges to address. Herein, mannosylated polycations targeting mannose receptor- are developed as vectors for plasmid DNA (pDNA)-based vaccines to improve selective delivery of genetic material to antigen-presenting cells and enhance immune cell activation. Three diblock glycopolycations (M15A12, M29A25, and M58A45) and two triblock copolymers (M29A29B9 and M62A52B32) are generated by using mannose (M), agmatine (A), and butyl (B) derivatives to target CD206, complex nucleic acids, and favor the endosomal escape, respectively. All glycopolycations efficiently complex pDNA at N/P ratios <5, protecting the pDNA from degradation in a physiological milieu. M58A45 and M62A52B32 complexed with plasmid encoding for antigenic ovalbumin (pOVA) trigger the immune activation of cultured dendritic cells, which present the SIINFEKL antigenic peptide via specific major histocompatibility complex-I. Importantly, administration of M58A45/pOVA elicits SIINFEKL-specific T-cell response in C56BL/6 mice bearing the melanoma tumor model B16-OVA, well in line with a reduction in tumor growth. These results qualify mannosylation as an efficient strategy to target immune cells in cancer vaccination and emphasize the potential of these glycopolycations as effective delivery vehicles for nucleic acids.
Collapse
Affiliation(s)
- Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Sara Feola
- Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, Viikinkaari 5E, 00790Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, FI-00014Helsinki, Finland
| | - Gloria Dalla Verde
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Greta Bellio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Vincenzo Cerullo
- Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, Viikinkaari 5E, 00790Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, FI-00014Helsinki, Finland
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| |
Collapse
|
2
|
Aleith J, Brendel M, Weipert E, Müller M, Schultz D, Müller-Hilke B. Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022; 11:1320. [PMID: 36365071 PMCID: PMC9699311 DOI: 10.3390/pathogens11111320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/30/2023] Open
Abstract
Seasonal influenza epidemics pose a considerable hazard for global health. In the past decades, accumulating evidence revealed that influenza A virus (IAV) renders the host vulnerable to bacterial superinfections which in turn are a major cause for morbidity and mortality. However, whether the impact of influenza on anti-bacterial innate immunity is restricted to the vicinity of the lung or systemically extends to remote sites is underexplored. We therefore sought to investigate intranasal infection of adult C57BL/6J mice with IAV H1N1 in combination with bacteremia elicited by intravenous application of Group A Streptococcus (GAS). Co-infection in vivo was supplemented in vitro by challenging murine bone marrow derived macrophages and exploring gene expression and cytokine secretion. Our results show that viral infection of mice caused mild disease and induced the depletion of CCL2 in the periphery. Influenza preceding GAS infection promoted the occurrence of paw edemas and was accompanied by exacerbated disease scores. In vitro co-infection of macrophages led to significantly elevated expression of TLR2 and CD80 compared to bacterial mono-infection, whereas CD163 and CD206 were downregulated. The GAS-inducible upregulation of inflammatory genes, such as Nos2, as well as the secretion of TNFα and IL-1β were notably reduced or even abrogated following co-infection. Our results indicate that IAV primes an innate immune layout that is inadequately equipped for bacterial clearance.
Collapse
Affiliation(s)
- Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Brendel
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Erik Weipert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Ko-Infekt Study Group
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
3
|
Sialylation-dependent pharmacokinetics and differential complement pathway inhibition are hallmarks of CR1 activity in vivo. Biochem J 2022; 479:1007-1030. [PMID: 35470373 DOI: 10.1042/bcj20220054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood. We demonstrated a relationship between the asialo-N-glycan levels of CSL040 and its PK/PD properties in rats and non-human primates (NHPs), using recombinant CSL040 preparations with varying asialo-N-glycan levels. The clearance mechanism likely involves the asialoglycoprotein receptor (ASGR), as clearance of CSL040 with a high proportion of asialo-N-glycans was attenuated in vivo by co-administration of rats with asialofetuin, which saturates the ASGR. Biodistribution studies also showed CSL040 localisation to the liver following systemic administration. Our studies uncovered differential PD effects by CSL040 on complement pathways, with extended inhibition in both rats and NHPs of the alternative pathway compared to the classical and lectin pathways that were not correlated with its PK profile. Further studies showed that this effect was dose dependent and observed with both CSL040 and the full-length extracellular domain of HuCR1. Taken together, our data suggests that sialylation optimization is an important consideration for developing HuCR1-based therapeutic candidates such as CSL040 with improved PK properties and shows that CSL040 has superior PK/PD responses compared to full-length soluble HuCR1.
Collapse
|
4
|
Xu Y, Ma S, Zhao J, Chen H, Si X, Huang Z, Yu Z, Song W, Tang Z, Chen X. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials 2022; 284:121489. [PMID: 35364489 DOI: 10.1016/j.biomaterials.2022.121489] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Abstract
Using nanotechnology for cancer vaccine design holds great promise because of the intrinsic feature of nanoparticles in being captured by antigen-presenting cells (APCs). However, there are still obstacles in current nanovaccine systems in achieving efficient tumor therapeutic effects, which could partially be attributed to the unsatisfactory vaccine carrier design. Herein, we report a mannan-decorated pathogen-like polymeric nanoparticle as a protein vaccine carrier for eliciting robust anticancer immunity. This nanovaccine was constructed as a core-shell structure with mannan as the shell, polylactic acid-polyethylenimine (PLA-PEI) assembled nanoparticle as the core, and protein antigens and Toll-like receptor 9 (TLR9) agonist CpG absorbed onto the PLA-PEI core via electrostatic interactions. Compared to other hydrophilic materials, mannan decoration could greatly enhance the lymph node draining ability of the nanovaccine and promote the capturing by the CD8+ dendritic cells (DCs) in the lymph node, while PLA-PEI as the inner core could enhance antigen endosome escape thus promoting the antigen cross-presentation. In addition, mannan itself as a TLR4 agonist could synergize with CpG for maximally activating the DCs. Excitingly, we observed in several murine tumor models that using this nanovaccine alone could elicit robust immune response in vivo and result in superior anti-tumor effects with 50% of mice completely cured. This study strongly evidenced that mannan decoration and a rationally designed nanovaccine system could be quite robust in tumor vaccine therapy.
Collapse
Affiliation(s)
- Yudi Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100039, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Jiayu Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Hongyu Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zhentao Yu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
5
|
Wang J, Jalali Motlagh N, Wang C, Wojtkiewicz GR, Schmidt S, Chau C, Narsimhan R, Kullenberg EG, Zhu C, Linnoila J, Yao Z, Chen JW. d-mannose suppresses oxidative response and blocks phagocytosis in experimental neuroinflammation. Proc Natl Acad Sci U S A 2021; 118:e2107663118. [PMID: 34702739 PMCID: PMC8673064 DOI: 10.1073/pnas.2107663118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammation drives the pathology of many neurological diseases. d-mannose has been found to exert an antiinflammatory effect in peripheral diseases, but its effects on neuroinflammation and inflammatory cells in the central nervous system have not been studied. We aimed to determine the effects of d-mannose on key macrophage/microglial functions-oxidative stress and phagocytosis. In murine experimental autoimmune encephalomyelitis (EAE), we found d-mannose improved EAE symptoms compared to phosphate-buffered saline (PBS)-control mice, while other monosaccharides did not. Multiagent molecular MRI performed to assess oxidative stress (targeting myeloperoxidase [MPO] using MPO-bis-5-hydroxytryptamide diethylenetriaminepentaacetate gadolinium [Gd]) and phagocytosis (using cross-linked iron oxide [CLIO] nanoparticles) in vivo revealed that d-mannose-treated mice had smaller total MPO-Gd+ areas than those of PBS-control mice, consistent with decreased MPO-mediated oxidative stress. Interestingly, d-mannose-treated mice exhibited markedly smaller CLIO+ areas and much less T2 shortening effect in the CLIO+ lesions compared to PBS-control mice, revealing that d-mannose partially blocked phagocytosis. In vitro experiments with different monosaccharides further confirmed that only d-mannose treatment blocked macrophage phagocytosis in a dose-dependent manner. As phagocytosis of myelin debris has been known to increase inflammation, decreasing phagocytosis could result in decreased activation of proinflammatory macrophages. Indeed, compared to PBS-control EAE mice, d-mannose-treated EAE mice exhibited significantly fewer infiltrating macrophages/activated microglia, among which proinflammatory macrophages/microglia were greatly reduced while antiinflammatory macrophages/microglia increased. By uncovering that d-mannose diminishes the proinflammatory response and boosts the antiinflammatory response, our findings suggest that d-mannose, an over-the-counter supplement with a high safety profile, may be a low-cost treatment option for neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Negin Jalali Motlagh
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cuihua Wang
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Stephan Schmidt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cindy Chau
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Radha Narsimhan
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Enrico G Kullenberg
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cindy Zhu
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jenny Linnoila
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - John W Chen
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
6
|
Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021; 22:ijms22094801. [PMID: 33946542 PMCID: PMC8125784 DOI: 10.3390/ijms22094801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.
Collapse
|
7
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
8
|
Uhler R, Popa-Wagner R, Kröning M, Brehm A, Rennert P, Seifried A, Peschke M, Krieger M, Kohla G, Kannicht C, Wiedemann P, Hafner M, Rosenlöcher J. Glyco-engineered HEK 293-F cell lines for the production of therapeutic glycoproteins with human N-glycosylation and improved pharmacokinetics. Glycobiology 2021; 31:859-872. [PMID: 33403396 DOI: 10.1093/glycob/cwaa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4, and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.
Collapse
Affiliation(s)
- Rico Uhler
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | | | - Mario Kröning
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Paul Rennert
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | | | | | - Markus Krieger
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Guido Kohla
- Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Christoph Kannicht
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany.,Octapharma Biopharmaceuticals GmbH, 12489 Berlin, Germany
| | - Philipp Wiedemann
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.,Institute for Medical Technology, University Heidelberg and the Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | |
Collapse
|
9
|
Fiani ML, Barreca V, Sargiacomo M, Ferrantelli F, Manfredi F, Federico M. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Int J Mol Sci 2020; 21:ijms21176318. [PMID: 32878276 PMCID: PMC7503580 DOI: 10.3390/ijms21176318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30–150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.
Collapse
Affiliation(s)
- Maria Luisa Fiani
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| | | | | | | | | | - Maurizio Federico
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| |
Collapse
|
10
|
Miller JL, Hill ML, Brun J, Pountain A, Sayce AC, Zitzmann N. Iminosugars counteract the downregulation of the interferon γ receptor by dengue virus. Antiviral Res 2019; 170:104551. [PMID: 31306674 PMCID: PMC6891261 DOI: 10.1016/j.antiviral.2019.104551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 02/02/2023]
Abstract
The antiviral mechanism of action of iminosugars against many enveloped viruses is hypothesized to be a consequence of misfolding of viral N-linked glycoproteins through inhibition of host endoplasmic reticulum α-glucosidase enzymes. Iminosugar treatment of dengue virus (DENV) infection results in reduced secretion of virions and hence lower viral titres in vitro and in vivo. We investigated whether iminosugars might also affect host receptors important in DENV attachment and uptake and immune responses to DENV. Using a primary human macrophage model of DENV infection, we investigated the effects of maturation with IL-4, DENV-infection and treatment with N-butyl-1-deoxynojirimycin (NB-DNJ) or N-(9-methoxynonyl)-1-DNJ (MON-DNJ) on expression of 11 macrophage receptors. Whereas iminosugars did not affect surface expression of any of the receptors examined, DENV infection significantly reduced surface IFNγ receptor amongst other changes to total receptor expression. This effect required infectious DENV and was reversed by iminosugar treatment. Treatment also affected signalling of the IFNγ receptor and TNFα receptor. In addition, iminosugars reduced ligand binding to the carbohydrate receptor-binding domain of the mannose receptor. This work demonstrates that iminosugar treatment of primary macrophages affects expression and functionality of some key glycosylated host immune receptors important in the dengue life cycle.
Collapse
Affiliation(s)
- Joanna L Miller
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | - Michelle L Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Juliane Brun
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Andrew Pountain
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Andrew C Sayce
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Sukegawa S, Miyagi E, Bouamr F, Farkašová H, Strebel K. Mannose Receptor 1 Restricts HIV Particle Release from Infected Macrophages. Cell Rep 2019; 22:786-795. [PMID: 29346774 PMCID: PMC5792083 DOI: 10.1016/j.celrep.2017.12.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 01/18/2023] Open
Abstract
Human mannose receptor 1 (hMRC1) is expressed on the surface of most tissue macrophages, dendritic cells, and select lymphatic or liver endothelial cells. HMRC1 contributes to the binding of HIV-1 to monocyte-derived macrophages (MDMs) and is involved in the endocytic uptake of HIV-1 into these cells. Here, we identify hMRC1 as an antiviral factor that inhibits virus release through a bone marrow stromal antigen 2 (BST-2)-like mechanism. Virions produced in the presence of hMRC1 accumulated in clusters at the cell surface but were fully infectious. HIV-1 counteracted the effect by transcriptional silencing of hMRC1. The effect of hMRC1 was not virus isolate specific. Surprisingly, deletion of the Env protein, which is known to interact with hMRC1, did not relieve the hMRC1 antiviral activity, suggesting the involvement of additional cellular factor(s) in the process. Our data reveal an antiviral mechanism that is active in primary human macrophages and is counteracted by HIV-1 through downregulation of hMRC1.
Collapse
Affiliation(s)
- Sayaka Sukegawa
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, USA
| | - Eri Miyagi
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, USA
| | - Helena Farkašová
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 312, 4 Center Drive, MSC 0460, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
13
|
Nakayama H, Kurihara H, Morita YS, Kinoshita T, Mauri L, Prinetti A, Sonnino S, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci Signal 2016; 9:ra101. [PMID: 27729551 DOI: 10.1126/scisignal.aaf1585] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathogenic mycobacteria use virulence factors, including mannose-capped lipoarabinomannan (ManLAM), to survive in host phagocytic cells, such as neutrophils. We assessed the roles of lactosylceramide (LacCer, CDw17)-enriched lipid rafts in the phagocytosis of mycobacteria by human neutrophils and in the intracellular fate of phagocytosed mycobacteria. We showed that the association of the Src family kinase (SFK) Lyn with C24 fatty acid chain-containing LacCer was essential for the phagocytosis of mycobacteria by neutrophils. Assays with LacCer-containing liposomes, LacCer-coated plastic plates, and LAM-coated beads demonstrated that the phagocytosis of mycobacteria was mediated through the binding of LacCer to LAM. Both ManLAM from pathogenic species and phosphoinositol-capped LAM (PILAM) from nonpathogenic Mycobacterium smegmatis bound equivalently to LacCer to stimulate phagocytosis. However, PILAM from an M. smegmatis α1,2-mannosyltransferase deletion mutant (ΔMSMEG_4247), lacking the α1,2-monomannose side branches of the LAM mannan core, did not bind to LacCer or induce phagocytosis. An anti-LacCer antibody immunoprecipitated the SFK Hck from the phagosomes of neutrophils that internalized nonpathogenic mycobacteria but not from those that internalized pathogenic mycobacteria. Furthermore, knockdown of Hck by short inhibitory RNA abolished the fusion of lysosomes with phagosomes containing nonpathogenic mycobacteria. Further analysis showed that ManLAM, but not PILAM, inhibited the association of Hck with LacCer-enriched lipid rafts in phagosomal membranes, effectively blocking phagolysosome formation. Together, these findings suggest that pathogenic mycobacteria use ManLAM not only for binding to LacCer-enriched lipid rafts and entering neutrophils but also for disrupting signaling through Hck-coupled, LacCer-enriched lipid rafts and preventing phagolysosome formation.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan. Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9364, USA. Department of Immunoregulation, Research Institute for Microbial Diseases, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Interdisciplinary Laboratory for Advanced Technologies, University of Milan, Via Fratelli Cervi, Milano 20129, Italy
| | - Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan. Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan. Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan.
| |
Collapse
|
14
|
Park S, Baek H, Jung KH, Lee G, Lee H, Kang GH, Lee G, Bae H. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:386-97. [PMID: 26734460 PMCID: PMC4693726 DOI: 10.1002/iid3.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 01/27/2023]
Abstract
Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA‐induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA‐challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206‐dependence of bvPLA2‐treated suppression of airway inflammation was evaluated in OVA‐challenged CD206‐/‐ mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA‐challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2‐treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg‐depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2‐mediated immune tolerance in OVA‐induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2‐treated OVA‐induced mice but not in bvPLA2‐treated OVA‐induced CD206‐/‐ mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA‐induced asthma model.
Collapse
Affiliation(s)
- Soojin Park
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyunjung Baek
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Kyung-Hwa Jung
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Gihyun Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyeonhoon Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Geun-Hyung Kang
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Gyeseok Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyunsu Bae
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| |
Collapse
|
15
|
Lee CY, Thompson III GR, Hastey CJ, Hodge GC, Lunetta JM, Pappagianis D, Heinrich V. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils. PLoS One 2015; 10:e0129522. [PMID: 26070210 PMCID: PMC4466529 DOI: 10.1371/journal.pone.0129522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever) in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis) as well as upon contact (by serum-dependent adhesion and phagocytosis). This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.
Collapse
Affiliation(s)
- Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - George R. Thompson III
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Christine J. Hastey
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Gregory C. Hodge
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
| | - Jennine M. Lunetta
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
| | - Demosthenes Pappagianis
- Department of Medical Microbiology and Immunology, Coccidioidomycosis Serology Laboratory, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Dengler EC, Alberti LA, Bowman BN, Kerwin AA, Wilkerson JL, Moezzi DR, Limanovich E, Wallace JA, Milligan ED. Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain. J Neuroinflammation 2014; 11:92. [PMID: 24884664 PMCID: PMC4046049 DOI: 10.1186/1742-2094-11-92] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Peri-spinal subarachnoid (intrathecal; i.t.) injection of non-viral naked plasmid DNA encoding the anti-inflammatory cytokine, IL-10 (pDNA-IL-10) suppresses chronic neuropathic pain in animal models. However, two sequential i.t. pDNA injections are required within a discrete 5 to 72-hour period for prolonged efficacy. Previous reports identified phagocytic immune cells present in the peri-spinal milieu surrounding the i.t injection site that may play a role in transgene uptake resulting in subsequent IL-10 transgene expression. METHODS In the present study, we aimed to examine whether factors known to induce pro-phagocytic anti-inflammatory properties of immune cells improve i.t. IL-10 transgene uptake using reduced naked pDNA-IL-10 doses previously determined ineffective. Both the synthetic glucocorticoid, dexamethasone, and the hexose sugar, D-mannose, were factors examined that could optimize i.t. pDNA-IL-10 uptake leading to enduring suppression of neuropathic pain as assessed by light touch sensitivity of the rat hindpaw (allodynia). RESULTS Compared to dexamethasone, i.t. mannose pretreatment significantly and dose-dependently prolonged pDNA-IL-10 pain suppressive effects, reduced spinal IL-1β and enhanced spinal and dorsal root ganglia IL-10 immunoreactivity. Macrophages exposed to D-mannose revealed reduced proinflammatory TNF-α, IL-1β, and nitric oxide, and increased IL-10 protein release, while IL-4 revealed no improvement in transgene uptake. Separately, D-mannose dramatically increased pDNA-derived IL-10 protein release in culture supernatants. Lastly, a single i.t. co-injection of mannose with a 25-fold lower pDNA-IL-10 dose produced prolonged pain suppression in neuropathic rats. CONCLUSIONS Peri-spinal treatment with D-mannose may optimize naked pDNA-IL-10 transgene uptake for suppression of allodynia, and is a novel approach to tune spinal immune cells toward pro-phagocytic phenotype for improved non-viral gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erin D Milligan
- Department of Neurosciences, UNM School of Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
17
|
Flavivirus entry receptors: an update. Viruses 2013; 6:69-88. [PMID: 24381034 PMCID: PMC3917432 DOI: 10.3390/v6010069] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s) that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM) and TYRO3, AXL and MER (TAM). Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.
Collapse
|
18
|
Zhao H, Karman J, Jiang JL, Zhang J, Gumlaw N, Lydon J, Zhou Q, Qiu H, Jiang C, Cheng SH, Zhu Y. A bispecific protein capable of engaging CTLA-4 and MHCII protects non-obese diabetic mice from autoimmune diabetes. PLoS One 2013; 8:e63530. [PMID: 23704916 PMCID: PMC3660570 DOI: 10.1371/journal.pone.0063530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/03/2013] [Indexed: 11/20/2022] Open
Abstract
Crosslinking ligand-engaged cytotoxic T lymphocyte antigen-4 (CTLA-4) to the T cell receptor (TCR) with a bispecific fusion protein (BsB) comprised of a mutant mouse CD80 and lymphocyte activation antigen-3 (LAG-3) has been shown to attenuate TCR signaling and to direct T-cell differentiation toward Foxp3+ regulatory T cells (Tregs) in an allogenic mixed lymphocyte reaction (MLR). Here, we show that antigen-specific Tregs can also be induced in an antigen-specific setting in vitro. Treatment of non-obese diabetic (NOD) female mice between 9–12 weeks of age with a short course of BsB elicited a transient increase of Tregs in the blood and moderately delayed the onset of autoimmune type 1 diabetes (T1D). However, a longer course of treatment (10 weeks) of 4–13 weeks-old female NOD animals with BsB significantly delayed the onset of disease or protected animals from developing diabetes, with only 13% of treated animals developing diabetes by 35 weeks of age compared to 80% of the animals in the control group. Histopathological analysis of the pancreata of the BsB-treated mice that remained non-diabetic revealed the preservation of insulin-producing β-cells despite the presence of different degrees of insulitis. Thus, a bifunctional protein capable of engaging CTLA-4 and MHCII and indirectly co-ligating CTLA-4 to the TCR protected NOD mice from developing T1D.
Collapse
Affiliation(s)
- Hongmei Zhao
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Jozsef Karman
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Ji-Lei Jiang
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Jinhua Zhang
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Nathan Gumlaw
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - John Lydon
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Qun Zhou
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Huawei Qiu
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Canwen Jiang
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Seng H. Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Yunxiang Zhu
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Murillo LN, Murillo MS, Perelson AS. Towards multiscale modeling of influenza infection. J Theor Biol 2013; 332:267-90. [PMID: 23608630 DOI: 10.1016/j.jtbi.2013.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
Abstract
Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately.
Collapse
Affiliation(s)
- Lisa N Murillo
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
20
|
Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers. J Control Release 2013; 168:41-9. [PMID: 23419950 DOI: 10.1016/j.jconrel.2013.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 11/21/2022]
Abstract
Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5kgmol(-1) methoxy-terminated PEG corona. While a 5kgmol(-1) methoxy-terminated PEG corona prevents non-specific uptake, a 1.8kgmol(-1) methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associated with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This characterization of nanocarrier uptake and targeting provides promise for optimizing drug delivery to macrophages for TB treatment and establishes a general route for optimizing targeted formulations of nanocarriers for specific delivery at targeted sites.
Collapse
|
21
|
Mankovich AR, Lee CY, Heinrich V. Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils. PLoS One 2013; 8:e54735. [PMID: 23349959 PMCID: PMC3551912 DOI: 10.1371/journal.pone.0054735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, in cooperation with serum, are vital gatekeepers of a host’s microbiome and frontline defenders against invading microbes. Yet because human neutrophils are not amenable to many biological techniques, the mechanisms governing their immunological functions remain poorly understood. We here combine state-of-the-art single-cell experiments with flow cytometry to examine how temperature-dependent heat treatment of serum affects human neutrophil interactions with “target” particles of the fungal model zymosan. Assessing separately both the chemotactic as well as the phagocytic neutrophil responses to zymosan, we find that serum heat treatment modulates these responses in a differential manner. Whereas serum treatment at 52°C impairs almost all chemotactic activity and reduces cell-target adhesion, neutrophils still readily engulf target particles that are maneuvered into contact with the cell surface under the same conditions. Higher serum-treatment temperatures gradually suppress phagocytosis even after enforced cell-target contact. Using fluorescent staining, we correlate the observed cell behavior with the amounts of C3b and IgG deposited on the zymosan surface in sera treated at the respective temperatures. This comparison not only affirms the critical role of complement in chemotactic and adhesive neutrophil interactions with fungal surfaces, but also unmasks an important participation of IgGs in the phagocytosis of yeast-like fungal particles. In summary, this study presents new insight into fundamental immune mechanisms, including the chemotactic recruitment of immune cells, the adhesive capacity of cell-surface receptors, the role of IgGs in fungal recognition, and the opsonin-dependent phagocytosis morphology of human neutrophils. Moreover, we show how, by fine-tuning the heat treatment of serum, one can selectively study chemotaxis or phagocytosis under otherwise identical conditions. These results not only refine our understanding of a widely used laboratory method, they also establish a basis for new applications of this method.
Collapse
Affiliation(s)
- Alexander R. Mankovich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Vigerust DJ, Vick S, Shepherd VL. Characterization of functional mannose receptor in a continuous hybridoma cell line. BMC Immunol 2012; 13:51. [PMID: 22967244 PMCID: PMC3495026 DOI: 10.1186/1471-2172-13-51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/30/2012] [Indexed: 12/29/2022] Open
Abstract
Background The mannose receptor is the best described member of the type I transmembrane C-type lectins; however much remains unanswered about the biology of the receptor. One difficulty has been the inability to consistently express high levels of a functional full length mannose receptor cDNA in mammalian cells. Another difficulty has been the lack of a human macrophage cell line expressing a fully functional receptor. Commonly used human macrophage cell lines such as U937, THP-1, Mono-Mac and HL60 do not express the mannose receptor. We have developed a macrophage hybridoma cell line (43MR cells) created by fusion of U937 cells with primary human monocyte-derived macrophages, resulting in a non-adherent cell line expressing several properties of primary macrophages. The purpose of this study was to identify and select mannose receptor-expressing cells using fluorescence-activated cell sorting and to characterize the expression and function of the receptor. Results In the current study we show that the mannose receptor found on this novel cell has endocytic characteristics consistent with and similar to the mannose receptor found on the surface of monocyte-derived human macrophages and rat bone marrow-derived macrophages. In addition, we demonstrate that these cells engage and internalize pathogen particles such as S. aureus and C. albicans. We further establish the transfectability of these cells via the introduction of a plasmid expressing influenza A hemagglutinin. Conclusions The 43MR cell line represents the first naturally expressed MR-positive cell line derived from a human macrophage background. This cell line provides an important cell model for other researchers for the study of human MR biology and host-pathogen interactions.
Collapse
Affiliation(s)
- David J Vigerust
- Department of Veterans Affairs Medical Center, VA Medical Center/Research Service, 1310 24th Ave,, South, Nashville TN 37212, USA
| | | | | |
Collapse
|
23
|
Triguero A, Cabrera G, Rodríguez M, Soto J, Zamora Y, Pérez M, Wormald MR, Cremata JA. Differential N-glycosylation of a monoclonal antibody expressed in tobacco leaves with and without endoplasmic reticulum retention signal apparently induces similar in vivo stability in mice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1120-30. [PMID: 21819534 DOI: 10.1111/j.1467-7652.2011.00638.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant cells are able to perform most of the post-translational modifications that are required by recombinant proteins to achieve adequate bioactivity and pharmacokinetics. However, regarding N-glycosylation the processing of plant N-glycans in the Golgi apparatus displays major differences when compared with that of mammalian cells. These differences in N-glycosylation are expected to influence serum clearance rate of plant-derived monoclonal antibodies. The monoclonal antibody against the hepatitis B virus surface antigen expressed in Nicotiana tabacum leaves without KDEL endoplasmic reticulum (ER) retention signal (CB.Hep1(-)KDEL) and with a KDEL (Lys-Asp-Glu-Leu) fused to both IgG light and heavy chains (CB.Hep1(+)KDEL) were tested for in vivo stability in mice. Full characterization of N-glycosylation and aggregate formation in each monoclonal antibody batch was determined. The mouse counterpart (CB.Hep1) was used as control. Both (CB.Hep1(-)KDEL) and (CB.Hep1(+)KDEL) showed a faster initial clearance rate (first 24 h) compared with the analogous murine antibody while the terminal phase was similar in the three antibodies. Despite the differences between CB.Hep1(+)KDEL and CB.Hep1(-)KDEL N-glycans, the in vivo elimination in mice was indistinguishable from each other and higher than the murine monoclonal antibody. Molecular modelling confirmed that N-glycans linked to plantibodies were oriented away from the interdomain region, increasing the accessibility of the potential glycan epitopes by glycoprotein receptors that might be responsible for the difference in stability of these molecules.
Collapse
Affiliation(s)
- Ada Triguero
- Department of Carbohydrate Chemistry, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Londrigan SL, Tate MD, Brooks AG, Reading PC. Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J Leukoc Biol 2011; 92:97-106. [PMID: 22124137 PMCID: PMC7166464 DOI: 10.1189/jlb.1011492] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Review of interactions between influenza A virus and C‐type lectin receptors on macrophages and dendritic cells that may result in virus entry and infection. Airway MΦ and DCs are important components of innate host defense and can play a critical role in limiting the severity of influenza virus infection. Although it has been well established that cell‐surface SA acts as a primary attachment receptor for IAV, the particular receptor(s) or coreceptor(s) that mediate IAV entry into any cell, including MΦ and DC, have not been clearly defined. Identifying which receptors are involved in attachment and entry of IAV into immune cells may have important implications in regard to understanding IAV tropism and pathogenesis. Recent evidence suggests that specialized receptors on MΦ and DCs, namely CLRs, can act as capture and/or entry receptors for many viral pathogens, including IAV. Herein, we review the early stages of infection of MΦ and DC by IAV. Specifically, we examine the potential role of CLRs expressed on MΦ and DC to act as attachment and/or entry receptors for IAV.
Collapse
Affiliation(s)
- Sarah L Londrigan
- The Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
25
|
Emara M, Royer PJ, Abbas Z, Sewell HF, Mohamed GG, Singh S, Peel S, Fox J, Shakib F, Martinez-Pomares L, Ghaemmaghami AM. Recognition of the major cat allergen Fel d 1 through the cysteine-rich domain of the mannose receptor determines its allergenicity. J Biol Chem 2011; 286:13033-40. [PMID: 21335554 PMCID: PMC3075649 DOI: 10.1074/jbc.m111.220657] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/16/2011] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells that are specialized in antigen uptake and presentation. Allergy to cat has increased substantially in recent years and has been shown to be positively associated with asthma. We have recently shown that the mannose receptor (MR), a C-type lectin expressed by dendritic cells, recognizes various glycoallergens from diverse sources and is involved in promoting allergic responses to a major house dust mite allergen in vitro. Here we investigated the potential role of MR in allergic responses to Fel d 1, a major cat allergen. Fel d 1 binding to MR was confirmed by ELISA. Using blocking, gene silencing (siRNA) experiments, and MR knock-out (MR(-/-)) cells, we have demonstrated that MR plays a major role in internalization of Fel d 1 by human and mouse antigen-presenting cells. Intriguingly, unlike other glycoallergens, recognition of Fel d 1 by MR is mediated by the cysteine-rich domain, which correlates with the presence of sulfated carbohydrates in natural Fel d 1. WT and MR(-/-) mice were used to study the role of MR in allergic sensitization to Fel d 1 in vivo. MR(-/-) mice sensitized with cat dander extract and Fel d 1 produced significantly lower levels of total IgE, Fel d 1-specific-IgE and IgG1, the hallmarks of allergic response, compared with WT mice. Our data show for the first time that Fel d 1 is a novel ligand of the cysteine-rich domain of MR and that MR is likely to play a pivotal role in allergic sensitization to airborne allergens in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonali Singh
- From the School of Molecular Medical Sciences
- the Nottingham Respiratory Biomedical Research Unit, Queen’s Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Samantha Peel
- the Division of Therapeutics & Molecular Medicine, and
| | - Jane Fox
- the Division of Therapeutics & Molecular Medicine, and
- the Nottingham Respiratory Biomedical Research Unit, Queen’s Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Farouk Shakib
- From the School of Molecular Medical Sciences
- the Nottingham Respiratory Biomedical Research Unit, Queen’s Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | - Amir M. Ghaemmaghami
- From the School of Molecular Medical Sciences
- the Nottingham Respiratory Biomedical Research Unit, Queen’s Medical Centre, The University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
26
|
Nakaira-Takahagi E, Golim MA, Bannwart CF, Puccia R, Peraçoli MTS. Interactions between TLR2, TLR4, and mannose receptors with gp43 from Paracoccidioides brasiliensis induce cytokine production by human monocytes. Med Mycol 2011; 49:694-703. [PMID: 21417682 DOI: 10.3109/13693786.2011.565485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The glycoprotein gp43 is an immunodominant antigen secreted by Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. The present study evaluated whether gp43 can interact with toll-like (TLR2, TLR4) and mannose (MR) receptors on the surface of human monocytes, and how that affects their expression and cytokine production. Monocytes were incubated with or without monoclonal antibodies anti-TLR2, anti-TLR4, or anti-MR, individually or in combination, prior to the addition of gp43. The gp43 binding to monocyte surface, as well as expression of TLR2, TLR4, and MRs were analyzed by flow cytometry, while production of TNF-α and IL-10 was monitored by ELISA. The results suggested that gp43 binds to TLR2, TLR4, and MR receptors, with TLR2 and MR having the strongest effect. All three receptors influenced the production of IL-10, while TNF-α production was associated with expression of TLR4 and MR. The modulatory effect of gp43 was demonstrated by high levels of TLR4 expression associated with increased production of TNF-α after 4 h of culture. Alternatively, high levels of TLR2 expression, and elevated production of IL-10, were detected after 18 h. We showed that interaction between gp43 and monocytes may affect the innate immune response by modulating the expression of the pattern recognition receptors TLR2, TLR4 and MR, as well as production of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Erika Nakaira-Takahagi
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
27
|
Wang Y, Wang H, Piper MG, McMaken S, Mo X, Opalek J, Schmidt AM, Marsh CB. sRAGE induces human monocyte survival and differentiation. THE JOURNAL OF IMMUNOLOGY 2010; 185:1822-35. [PMID: 20574008 DOI: 10.4049/jimmunol.0903398] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is produced either as a transmembrane or soluble form (sRAGE). Substantial evidence supports a role for RAGE and its ligands in disease. sRAGE is reported to be a competitive, negative regulator of membrane RAGE activation, inhibiting ligand binding. However, some reports indicate that sRAGE is associated with inflammatory disease. We sought to define the biological function of sRAGE on inflammatory cell recruitment, survival, and differentiation in vivo and in vitro. To test the in vivo impact of sRAGE, the recombinant protein was intratracheally administered to mice, which demonstrated monocyte- and neutrophil-mediated lung inflammation. We also observed that sRAGE induced human monocyte and neutrophil migration in vitro. Human monocytes treated with sRAGE produced proinflammatory cytokines and chemokines. Our data demonstrated that sRAGE directly bound human monocytes and monocyte-derived macrophages. Binding of sRAGE to monocytes promoted their survival and differentiation to macrophages. Furthermore, sRAGE binding to cells increased during maturation, which was similar in freshly isolated mouse monocytes compared with mature tissue macrophages. Because sRAGE activated cell survival and differentiation, we examined intracellular pathways that were activated by sRAGE. In primary human monocytes and macrophages, sRAGE treatment activated Akt, Erk, and NF-kappaB, and their activation appeared to be critical for cell survival and differentiation. Our data suggest a novel role for sRAGE in monocyte- and neutrophil-mediated inflammation and mononuclear phagocyte survival and differentiation.
Collapse
Affiliation(s)
- Yijie Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol 2010; 84:7569-80. [PMID: 20504924 DOI: 10.1128/jvi.00291-10] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice.
Collapse
|
29
|
Abstract
Drug development from early discovery to late stage commercialization is a long arduous process where a number of factors are taken into consideration when deciding on a particular immunoglobulin isotype for a therapeutic purpose. There are no general rules for which isotype is selected; however, prior experiences, effector function and the specific therapy targeted, as well as extensive testing early in development help in pairing the number of candidates. Over 20 monoclonal antibodies are FDA-approved, and most are IgG1 isotype, although a number of non-IgG1 molecules have been approved recently and the number in development is on the rise. Analytical techniques that examine the physicochemical properties of a molecule provide vital information on the stability and efficacy of candidate antibody therapeutics, but most of these studies are conducted using standard buffers and under well defined storage conditions. It has recently become apparent that analysis of antibody therapeutics recovered after circulation in blood show altered physicochemical characteristics, and in many instances therapeutic molecules recovered from serum show lower potency. This review examines some of these studies, with a focus on the physicochemical changes observed in the molecules. Technologies that can facilitate rapid screening of candidate antibody therapeutics directly from blood are highlighted. The facts indicate that antibody therapeutic development programs must incorporate understanding of the basic biology of the isotype and its stability in serum, which is the intended environment of the therapeutic.
Collapse
|
30
|
Macrophage receptors for influenza A virus: role of the macrophage galactose-type lectin and mannose receptor in viral entry. J Virol 2010; 84:3730-7. [PMID: 20106926 DOI: 10.1128/jvi.02148-09] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although sialic acid has long been recognized as the primary receptor determinant for attachment of influenza virus to host cells, the specific receptor molecules that mediate viral entry are not known for any cell type. For the infection of murine macrophages by influenza virus, our earlier study indicated involvement of a C-type lectin, the macrophage mannose receptor (MMR), in this process. Here, we have used direct binding techniques to confirm and characterize the interaction of influenza virus with the MMR and to seek additional macrophage surface molecules that may have potential as receptors for viral entry. We identified the macrophage galactose-type lectin (MGL) as a second macrophage membrane C-type lectin that binds influenza virus and is known to be endocytic. Binding of influenza virus to MMR and MGL occurred independently of sialic acid through Ca(2+)-dependent recognition of viral glycans by the carbohydrate recognition domains of the two lectins; influenza virus also bound to the sialic acid on the MMR. Multivalent ligands of the MMR and MGL inhibited influenza virus infection of macrophages in a manner that correlated with expression of these receptors on different macrophage populations. Influenza virus strain A/PR/8/34, which is poorly glycosylated and infects macrophages poorly, was not recognized by the C-type lectin activity of either the MMR or the MGL. We conclude that lectin-mediated interactions of influenza virus with the MMR or the MGL are required for the endocytic uptake of the virus into macrophages, and these lectins can thus be considered secondary or coreceptors with sialic acid for infection of this cell type.
Collapse
|
31
|
Baetas-da-Cruz W, Alves L, Pessolani MCV, Barbosa HS, Régnier-Vigouroux A, Corte-Real S, Cavalcante LA. Schwann cells express the macrophage mannose receptor and MHC class II. Do they have a role in antigen presentation? J Peripher Nerv Syst 2009; 14:84-92. [DOI: 10.1111/j.1529-8027.2009.00217.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Nishiyama A, Shinohara T, Pantuso T, Tsuji S, Yamashita M, Shinohara S, Myrvik QN, Henriksen RA, Shibata Y. Depletion of cellular cholesterol enhances macrophage MAPK activation by chitin microparticles but not by heat-killed Mycobacterium bovis BCG. Am J Physiol Cell Physiol 2008; 295:C341-9. [PMID: 18524942 DOI: 10.1152/ajpcell.00446.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When macrophages phagocytose chitin (N-acetyl-d-glucosamine polymer) microparticles, mitogen-activated protein kinases (MAPK) are immediately activated, followed by the release of Th1 cytokines, but not IL-10. To determine whether phagocytosis and macrophage activation in response to chitin microparticles are dependent on membrane cholesterol, RAW264.7 macrophages were treated with methyl-beta-cytodextrin (MBCD) and stimulated with chitin. These results were compared with the corresponding effects of bacterial components including heat-killed (HK) Mycobacterium bovis bacillus Calmette-Guèrin (BCG) and an oligodeoxynucleotide (ODN) of bacterial DNA (CpG-ODN). The MBCD treatment did not alter chitin binding or the phagocytosis of chitin particles 20 min after stimulation. At the same time, however, chitin-induced phosphorylation of cellular MAPK was accelerated and enhanced in an MBCD dose-dependent manner. The increased phosphorylation was also observed for chitin phagosome-associated p38 and ERK1/2. In contrast, CpG-ODN and HK-BCG induced activation of MAPK in MBCD-treated cells at levels comparable to, or only slightly more than, those of control cells. We also found that MBCD treatment enhanced the production of tumor necrosis factor-alpha (TNF-alpha) and the expression of cyclooxygenase-2 (COX-2) in response to chitin microparticles. In neither MBCD- nor saline-treated macrophages, did chitin particles induce detectable IL-10 mRNA synthesis. CpG-ODN induced TNF-alpha production, and COX-2 expression were less sensitive to MBCD treatment. Among the agonists studied, our results indicate that macrophage activation by chitin microparticles was most sensitive to cholesterol depletion, suggesting that membrane structures integrated by cholesterol are important for physiological regulation of chitin microparticle-induced cellular activation.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Department of Biomedical Sciences, Florida Atlantic Univ., 777 Glades Rd., Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ghosh S, Pendurthi UR, Steinoe A, Esmon CT, Rao LVM. Endothelial cell protein C receptor acts as a cellular receptor for factor VIIa on endothelium. J Biol Chem 2007; 282:11849-57. [PMID: 17327234 PMCID: PMC2591933 DOI: 10.1074/jbc.m609283200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although factor VII/factor VIIa (FVII/FVIIa) is known to interact with many non-vascular cells, activated monocytes, and endothelial cells via its binding to tissue factor (TF), the interaction of FVII/FVIIa with unperturbed endothelium and the role of this interaction in clearing FVII/FVIIa from the circulation are unknown. To investigate this, in the present study we examined the binding of radiolabeled FVIIa to endothelial cells and its subsequent internalization. (125)I-FVIIa bound to non-stimulated human umbilical vein endothelial cells (HUVEC) in time- and dose-dependent manner. The binding is specific and independent of TF and negatively charged phospholipids. Protein C and monoclonal antibodies to endothelial cell protein C receptor (EPCR) blocked effectively (125)I-FVIIa binding to HUVEC. FVIIa binding to EPCR is confirmed by demonstrating a marked increase in (125)I-FVIIa binding to CHO cells that had been stably transfected with EPCR compared with the wild-type. Binding analysis revealed that FVII, FVIIa, protein C, and activated protein C (APC) bound to EPCR with similar affinity. FVIIa binding to EPCR failed to accelerate FVIIa activation of factor X or protease-activated receptors. FVIIa binding to EPCR was shown to facilitate FVIIa endocytosis. Pharmacological concentrations of FVIIa were found to impair partly the EPCR-dependent protein C activation and APC-mediated cell signaling. Overall, the present data provide convincing evidence that EPCR serves as a cellular binding site for FVII/FVIIa. Further studies are needed to evaluate the pathophysiological consequences and relevance of FVIIa binding to EPCR.
Collapse
Affiliation(s)
- Samit Ghosh
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
| | - Usha R. Pendurthi
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
| | - Anne Steinoe
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Howard Hughes Medical Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - L. Vijaya Mohan Rao
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
- To whom correspondence should be addressed: Biomedical Research, The University of Texas Health Center at Tyler, 11937 US HWY 271, Tyler, TX 75708. Tel.: 903-877-7332; Fax: 903-877-7426; E-mail:
| |
Collapse
|
34
|
Grabowski GA. Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example. Expert Opin Drug Deliv 2006; 3:771-82. [PMID: 17076599 DOI: 10.1517/17425247.3.6.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enzyme therapies for lysosomal storage diseases have developed over the past decade into the standard-of-care for affected patients. Such therapy for Gaucher disease has been the prototype, using natural source or recombinant forms of human acid beta-glucosidase (GCase). In Gaucher disease, macrophages are the repository for the pathological lipid and the target for delivery of GCase. The macrophage mannose receptor provides a Trojan horse for intracellular delivery of intravenously administered GCase (man-GCase) with mannosyl-terminated oligosaccharide chains. Passage through several hostile compartments (e.g., plasma) leads to inefficient delivery of man-GCase to macrophage lysosomes. However, regular infusions of man-GCase re-establishes health in affected patients. Similar results are being obtained in several other lysosomal storage diseases. Evolving gene and chaperone approaches provide alternative treatment strategies.
Collapse
Affiliation(s)
- Gregory A Grabowski
- The Division and Programme in Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
35
|
Abstract
Myoblast fusion is critical for the formation, growth, and maintenance of skeletal muscle. The initial formation of nascent myotubes requires myoblast-myoblast fusion, but further growth involves myoblast-myotube fusion. We demonstrate that the mannose receptor (MR), a type I transmembrane protein, is required for myoblast-myotube fusion. Mannose receptor (MR)-null myotubes were small in size and contained a decreased myonuclear number both in vitro and in vivo. We hypothesized that this defect may arise from a possible role of MR in cell migration. Time-lapse microscopy revealed that MR-null myoblasts migrated with decreased velocity during myotube growth and were unable to migrate in a directed manner up a chemoattractant gradient. Furthermore, collagen uptake was impaired in MR-null myoblasts, suggesting a role in extracellular matrix remodeling during cell motility. These data identify a novel function for MR during skeletal muscle growth and suggest that myoblast motility may be a key aspect of regulating myotube growth.
Collapse
MESH Headings
- Animals
- Cell Fusion
- Cell Movement
- Cell Nucleus/metabolism
- Collagen/metabolism
- Culture Media, Conditioned
- Female
- Gene Expression Regulation
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/deficiency
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mice
- Muscle Development/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/pathology
- Myoblasts/cytology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Regeneration
Collapse
Affiliation(s)
- Katie M Jansen
- Department of Pharmacology and Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
36
|
Vogler C, Levy B, Grubb JH, Galvin N, Tan Y, Kakkis E, Pavloff N, Sly WS. Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A 2005; 102:14777-82. [PMID: 16162667 PMCID: PMC1253584 DOI: 10.1073/pnas.0506892102] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzyme replacement therapy (ERT) effectively reverses storage in several lysosomal storage diseases. However, improvement in brain is limited by the blood-brain barrier except in the newborn period. In this study, we asked whether this barrier could be overcome by higher doses of enzyme than are used in conventional trials. We measured the distribution of recombinant human beta-glucuronidase (hGUS) and reduction in storage by weekly doses of 0.3-40 mg/kg administered i.v. over 1-13 weeks to mucopolysaccharidosis type VII mice immunotolerant to recombinant hGUS. Mice given up to 5 mg/kg enzyme weekly over 3 weeks had moderate reduction in meningeal storage but no change in neo-cortical neurons. Mice given 20-40 mg/kg three times over 1 week showed no reduction in storage in any area of the CNS except the meninges. In contrast, mice receiving 4 mg/kg per week for 13 weeks showed clearance not only in meninges but also in parietal neocortical and hippocampal neurons and glia. Mice given 20 mg/kg once weekly for 4 weeks also had decreased neuronal, glial, and meningeal storage and averaged 2.5% of wild-type hGUS activity in brain. These results indicate that therapeutic enzyme can be delivered across the blood-brain barrier in the adult mucopolysaccharidosis type VII mouse if administered at higher doses than are used in conventional ERT trials and if the larger dose of enzyme is administered over a sufficient period. These results may have important implications for ERT for lysosomal storage diseases with CNS involvement.
Collapse
Affiliation(s)
- Carole Vogler
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23:901-44. [PMID: 15771589 DOI: 10.1146/annurev.immunol.23.021704.115816] [Citation(s) in RCA: 944] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages express a broad range of plasma membrane receptors that mediate their interactions with natural and altered-self components of the host as well as a range of microorganisms. Recognition is followed by surface changes, uptake, signaling, and altered gene expression, contributing to homeostasis, host defense, innate effector mechanisms, and the induction of acquired immunity. This review covers recent studies of selected families of structurally defined molecules, studies that have improved understanding of ligand discrimination in the absence of opsonins and differential responses by macrophages and related myeloid cells.
Collapse
Affiliation(s)
- P R Taylor
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom, USA
| | | | | | | | | | | |
Collapse
|
38
|
Su Y, Bakker T, Harris J, Tsang C, Brown GD, Wormald MR, Gordon S, Dwek RA, Rudd PM, Martinez-Pomares L. Glycosylation influences the lectin activities of the macrophage mannose receptor. J Biol Chem 2005; 280:32811-20. [PMID: 15983039 DOI: 10.1074/jbc.m503457200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mannose receptor (MR) is a heavily glycosylated endocytic receptor that recognizes both mannosylated and sulfated ligands through its C-type lectin domains and cysteine-rich (CR) domain, respectively. Differential binding properties have been described for MR isolated from different sources, and we hypothesized that this could be due to altered glycosylation. Using MR transductants and purified MR, we demonstrate that glycosylation differentially affects both MR lectin activities. MR transductants generated in glycosylation mutant cell lines lacked most mannose internalization activity, but could internalize sulfated glycans. Accordingly, purified MR bearing truncated Man5-GlcNAc2 glycans (Man5 -MR) or non-sialylated complex glycans (SA0-MR) did not bind mannosylated glycans, but could recognize SO4-3-Gal in vitro. Additional studies showed that, although mannose recognition was largely independent of the oligomerization state of the protein, recognition of sulfated carbohydrates was mostly mediated by self-associated MR and that, in SA0-MR, there was a higher proportion of oligomeric MR. These results suggest that self-association could lead to multiple presentation of CR domains and enhanced avidity for sulfated sugars and that non-sialylated MR is predisposed to oligomerize. Therefore, the glycosylation of MR, terminal sialylation in particular, could influence its binding properties at two levels. (i) It is required for mannose recognition; and (ii) it modulates the tendency of MR to self-associate, effectively regulating the avidity of the CR domain for sulfated sugar ligands.
Collapse
Affiliation(s)
- Yunpeng Su
- Glycobiology Institute and the Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lehner T, Bergmeier LA. Mucosal Infection and Immune Responses to Simian Immunodeficiency Virus. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50070-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Petrovska L, Aspinall RJ, Barber L, Clare S, Simmons CP, Stratford R, Khan SA, Lemoine NR, Frankel G, Holden DW, Dougan G. Salmonella enterica serovar Typhimurium interaction with dendritic cells: impact of the sifA gene. Cell Microbiol 2004; 6:1071-84. [PMID: 15469435 DOI: 10.1111/j.1462-5822.2004.00419.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and several mutant derivatives were able to enter efficiently murine bone marrow-derived dendritic cells using mechanisms predominantly independent of the Salmonella pathogenicity island 1 type III secretion system. The levels of intracellular bacteria did not increase significantly over many hours after invasion. Using fluid endocytic tracers and other markers, S. Typhimurium-containing vacuoles (SCVs) were physically distinguishable from early endocytic compartments. Fifty to eighty per cent of SCVs harbouring wild-type S. Typhimurium or aroA, invH and ssaV mutant derivatives were associated with late endosome markers. In contrast, S. Typhimurium sifA was shown to escape the SCVs into the cytosol of infected dendritic cells. S. Typhimurium aroC sifA was more efficient than S. Typhimurium aroC in delivering a eukaryotic promoter-driven green fluorescent protein reporter gene for expression in dendritic cells. In contrast, S. Typhimurium aroC sifA did not detectably increase the efficiency of MHC class I presentation of the model antigen ovalbumin to T cells compared to a similar aroC derivative. Mice infected with the S. Typhimurium aroC sifA expressing ovalbumin did not develop detectably enhanced levels of cytotoxic T cell or interferon-gamma production compared to S. Typhimurium aroC derivatives.
Collapse
Affiliation(s)
- Liljana Petrovska
- Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, Blum J, He JJ. CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor. J Virol 2004; 78:4120-33. [PMID: 15047828 PMCID: PMC374297 DOI: 10.1128/jvi.78.8.4120-4133.2004] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection occurs in the central nervous system and causes a variety of neurobehavioral and neuropathological disorders. Both microglia, the residential macrophages in the brain, and astrocytes are susceptible to HIV-1 infection. Unlike microglia that express and utilize CD4 and chemokine coreceptors CCR5 and CCR3 for HIV-1 infection, astrocytes fail to express CD4. Astrocytes express several chemokine coreceptors; however, the involvement of these receptors in astrocyte HIV-1 infection appears to be insignificant. In the present study using an expression cloning strategy, the cDNA for the human mannose receptor (hMR) was found to be essential for CD4-independent HIV-1 infectivity. Ectopic expression of functional hMR rendered U87.MG astrocytic cells susceptible to HIV-1 infection, whereas anti-hMR serum and hMR-specific siRNA blocked HIV-1 infection in human primary astrocytes. In agreement with these findings, hMR bound to HIV-1 virions via the abundant and highly mannosylated sugar moieties of HIV-1 envelope glycoprotein gp120 in a Ca(2+)-dependent fashion. Moreover, hMR-mediated HIV-1 infection was dependent upon endocytic trafficking as assessed by transmission electron microscopy, as well as inhibition of viral entry by endosomo- and lysosomotropic drugs. Taken together, these results demonstrate the direct involvement of hMR in HIV-1 infection of astrocytes and suggest that HIV-1 interaction with hMR plays an important role in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Hao Liu
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Byung Oh Kim
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Vincent H. Gattone
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Jinliang Li
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Avindra Nath
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Janice Blum
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Johnny J. He
- Department of Microbiology and Immunology, Walther Oncology Center, Department of Anatomy and Cell Biology, Department of Medicine, Indiana University School of Medicine, Walther Cancer Institute, Indianapolis, Indiana 46202, Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China, Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
- Corresponding author. Mailing address: Department of Microbiology and Immunology, Indiana University School of Medicine, R2 302, 950 W. Walnut St., Indianapolis, IN 46202. Phone: (317) 274-7525. Fax: (317) 274-7592. E-mail:
| |
Collapse
|
42
|
Grabowski GA, Hopkin RJ. Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 2003; 4:403-36. [PMID: 14527307 DOI: 10.1146/annurev.genom.4.070802.110415] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three decades, enzyme therapy for lysosomal storage diseases has moved from an academic pursuit to direct delivery of effective clinical care for affected patients and families. This success is based on understanding the complexities of lysosomal biogenesis, lysosomal hydrolase sorting and hydrolytic requirements, and the target sites of pathology of these diseases. This article reviews these concepts and their application to the treatment of affected patients with Gaucher disease, Fabry disease, and mucopolysaccharidosis I. The principles, progress, and practice in these diseases provide prototypes for expansion of enzyme therapy to a growing set of these diseases.
Collapse
Affiliation(s)
- Gregory A Grabowski
- The Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, 45229-3039, USA.
| | | |
Collapse
|
43
|
Mukhopadhyay A, Basu SK. Intracellular delivery of drugs to macrophages. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 84:183-209. [PMID: 12934937 DOI: 10.1007/3-540-36488-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Toxic side effects which often complicate successful therapy in a number of diseases possibly arise due to the fact that at therapeutically effective concentrations the non-target cells in the body are also exposed to the cytotoxic effects of the drugs. Minimization of such adverse reactions might be feasible through drug delivery modalities that would reduce the uptake of the drugs by non-target cells and selectively deliver the drug only to the target cells (and/or intracellular sites) at relatively low extracellular concentrations. The current generic approach to site-specific drug delivery consists of attaching the therapeutic agent to a carrier recognized only by the cells where the pharmacological action is desired. Two types of recognition elements on the surface of target cells are being exploited for this purpose, viz., (i) antigens capable of generating specific, non-cross reactive antibodies, and (ii) receptors on the cell surface capable of efficient transport of the ligands. In general, incomplete specificity for the target cells and poor internalization of antibody-drug conjugates still limit the usefulness of antibodies for site-specific drug delivery applications necessitating exploration of alternatives. The alternate possibility is to exploit the exquisite cell type specificity and high efficiency of endocytosis of macromolecules mediated by specific receptors present on the surface of target cells for delivering drugs. A large number of infectious, metabolic, and neoplastic diseases are associated with macrophages leading to morbidities and mortalities to millions of people worldwide, thus an appropriate design of a drug delivery system to macrophages will be of tremendous help.
Collapse
|
44
|
Engel A, Chatterjee SK, Al-arifi A, Riemann D, Langner J, Nuhn P. Influence of spacer length on interaction of mannosylated liposomes with human phagocytic cells. Pharm Res 2003; 20:51-7. [PMID: 12608536 DOI: 10.1023/a:1022294624256] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To improve target specificity and uptake of liposomes by macrophages, one can improve high-affinity receptor binding to mannose determinants with their 175-kDa mannose receptor (MR), which is mainly influenced by the length and flexibility of the spacer between the carbohydrate head group and liposome surface. Liposomes containing alkylmannosides with hydrophilic spacers 0 to 8 ethyleneoxy units (EO) long (Man0...Man8) were used to investigate systematically the effects of spacer length on liposome-cell interactions. METHODS Concanavalin A (ConA)-induced liposome aggregation was studied by turbidity measurement and cell uptake using PMA-induced HL-60 cells or native human macrophages by determining 6-CF after cell lysis or NBD-fluorescence with flow cytometry. Detection of MR in native cell populations was carried out by an antibody assay using flow cytometry; MR-representing cells were selected analytically. RESULTS Liposomes containing mannosides with more than one EO spacer length were specifically aggregated by ConA, indicating accessibility of the carbohydrate ligands of these derivatives. Increase in EO spacer units of incorporated mannosides (two or more EO) led to suppression of cellular uptake of mannosylated liposomes by phagocytes lacking MR (HL60, U937). The extent of suppression increased with spacer length. Liposome uptake by native macrophages expressing MR was, on the contrary, improved, particularly by Man6 and Man8. CONCLUSIONS Uptake of liposomes modified with Man6 or Man8 by native cells was enhanced but did not reach an optimum. Thus, Man6, Man8, and mannosides with even longer spacer arms are of potential use in receptor-mediated targeting.
Collapse
Affiliation(s)
- Andreas Engel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Opanasopit P, Sakai M, Nishikawa M, Kawakami S, Yamashita F, Hashida M. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J Control Release 2002; 80:283-94. [PMID: 11943405 DOI: 10.1016/s0168-3659(02)00006-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mannosylated liposomes were prepared by incorporating cholesten-5-yloxy-N-(4-((1-imino-2-beta-D-thiomannosylethyl)amino)butyl)formamide (Man-C4-Chol) into small unilamellar liposomes consisting of cholesterol and distearoyl phosphatidylcholine (DSPC). The biodistribution of liposomes labeled with [3H]cholesteryl hexadecyl ether was examined in mice. The rate and extent of the hepatic uptake of those [3H]liposomes increased proportionally on increasing the mixing ratio of Man-C4-Chol. Their hepatic uptake was reduced by increasing the administered dose due to the limited number of mannose receptors. The liver uptake of [3H]Man-liposomes was preferentially mediated by liver non-parenchymal cells (NPC) and significantly inhibited by co-injection with an excess of Man-BSA, indicating the involvement of a mannose receptor-mediated mechanism in the hepatic uptake of Man-liposomes. Muramyl dipeptide (MDP), an immunomodulator, was also incorporated into the liposomes and its inhibitory effect in an experimental liver metastasis model was examined. In contrast to free MDP treatment, which showed little effect on the inhibition of metastasis, liposomal MDP significantly reduced the number of metastatic colonies in the liver. Active targeting of MDP to liver NPC by Man-liposomes resulted in more effective inhibition than delivery of MDP by liposomes without mannose. Treatment with MDP/Man-liposomes further increased the survival of the tumor-bearing mice. These results suggest that Man-liposomes are effective carriers for targeted delivery of bioactive compounds to liver NPC.
Collapse
Affiliation(s)
- Praneet Opanasopit
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Tessema MZ, Koets AP, Rutten VP, Gruys E. How does Mycobacterium avium subsp. paratuberculosis resist intracellular degradation? Vet Q 2001; 23:153-62. [PMID: 11765232 DOI: 10.1080/01652176.2001.9695105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Paratuberculosis is a chronic, progressive disease of mainly ruminants caused by the facultative intracellular bacterium, Mycobacterium avium subsp. paratuberculosis. Infection usually occurs in young animals through oral uptake of food contaminated with the organisms. The ingested bacteria are transcytosed through M-cells overlying the Peyer's patches and are released in the stroma, where they are taken up by macrophages. Inside the macrophage, the mycobacteria resist enzymatic and toxic degradation and multiply until the infected macrophage ruptures. The thick, lipid-rich cell envelope is mainly responsible for micobacterial resistance. In addition to its barrier effect, which provides protections, the mycobacterial cell wall also contains several biologically active components that down-regulate the bactericidal function of macrophages. The basic survival strategy of pathogenic mycobacteria can be viewed at three levels: selective use of relatively safe entry pathways that do not trigger oxidative attack, modification of the intracellular trafficking of mycobacteria-containing phagosomes, and modulation of the cooperation between the innate and specific immunity. In doing so, pathogenic mycobacteria are successful intracellular organisms that survive and multiply inside macrophages. Current understanding about the survival strategies of M. a. paratuberculosis and its implications in the epidemiology, diagnosis, and control of the disease are discussed.
Collapse
Affiliation(s)
- M Z Tessema
- Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
47
|
Mori K, Rosenzweig M, Desrosiers RC. Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. J Virol 2000; 74:10852-9. [PMID: 11044136 PMCID: PMC110966 DOI: 10.1128/jvi.74.22.10852-10859.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the simian immunodeficiency virus SIVmac239, which replicates poorly in rhesus monkey alveolar macrophages, a variant with nine amino acid changes in envelope (SIVmac239/316E) replicates efficiently and to high titer in these same cells. We examined levels of viral DNA, RNA, antigen, and infectious virus to identify the nature of the block to SIVmac239 replication in these cells. Low levels of viral antigen (0.1 to 1.0 ng of p27 per ml) and infectious virus (100 to 1,000 infectious units per ml) were produced in the supernatant 1 to 4 days after SIVmac239 infection, but these levels did not increase subsequently. SIVmac239 DNA was synthesized in these macrophage cultures during the initial 24 h after infection, but the levels did not increase subsequently. Quantitation of the numbers of infectious cells in cultures over time and the results of experiments in which cells were reexposed to SIVmac239 after the initial exposure indicated that only a small proportion of cells were susceptible to SIVmac239 infection in these alveolar macrophage cultures and that the vast majority (>95%) of cells were refractory to SIVmac239 infection. In contrast to the results with SIVmac239, the levels of viral antigen, infectious virus, and viral DNA increased exponentially 2 to 7 days after infection by SIVmac239/316E, reaching levels greater than 100 ng of p27 per ml and 100,000 infectious units per ml. Since SIVmac239/316E has previously been described as a virus capable of infecting cells in a relatively CD4-independent fashion, we examined the levels of CD4 expression on the surface of fresh and cultured alveolar macrophages from rhesus monkeys. The levels of CD4 expression were extremely low, below the limit of detection by flow cytometry, on greater than 99% of the macrophages. CCR5(+) cells were profoundly depleted only from alveolar macrophage cultures infected with SIVmac239/316E. High concentrations of an antibody to CD4 delayed but did not block replication of SIVmac239/316E. The results suggest that the adaptation of SIVmac316 to efficient replication in alveolar macrophages results from its ability to infect these cells in a CD4-independent fashion or in a CD4-dependent fashion even at extremely low levels of surface CD4 expression. Since resident macrophages in brains and lungs of humans also express little or no CD4, our findings predict the presence of human immunodeficiency virus type 1 that is relatively CD4 independent in the lung and brain compartments of infected people.
Collapse
Affiliation(s)
- K Mori
- AIDS Research Center, Tsukuba Primate Center, National Institute of Infectious Diseases, Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
48
|
Astarie-Dequeker C, Nigou J, Puzo G, Maridonneau-Parini I. Lipoarabinomannans activate the protein tyrosine kinase Hck in human neutrophils. Infect Immun 2000; 68:4827-30. [PMID: 10899899 PMCID: PMC98448 DOI: 10.1128/iai.68.8.4827-4830.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mycobacterial lipoarabinomannans (LAMs) are glycosylphosphatidyl-myo-inositol-anchored lipoglycans with diverse biological activities. It has been shown that purified LAMs interact directly, or indirectly, through receptors with the plasma membrane receptors of target cells located in domains rich in glycosylphosphatidylinositol-anchored proteins that contain Src family protein tyrosine kinases. To examine whether LAMs could activate Src-related kinases, human neutrophils were exposed to mannosylated LAMs (ManLAMs) purified from the vaccinal strain Mycobacterium bovis BCG and to phosphoinositol-capped LAMs (AraLAM or PILAM) obtained from the nonpathogenic species Mycobacterium smegmatis. We report first that both ManLAMs and PILAMs activate Hck in a rapid and transient manner and second that complete deacylation of ManLAM abolished its effect on Hck activity, thereby demonstrating that acylation of LAM but not mannosylation is critical for Hck activation. These data indicate that Hck is involved in the signaling pathway of LAMs, molecules known for their ability to trigger several responses in eukaryotic cells.
Collapse
Affiliation(s)
- C Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 31077 Toulouse, France
| | | | | | | |
Collapse
|
49
|
Abstract
Gaucher disease (GD) is associated with mutations at the acid beta-glucosidase (GCase) locus and the resultant defective activity of the enzyme product. GCase is a membrane-associated glycoprotein that requires detergents for extraction and phospholipid interfaces for full catalytic activity. Normal human fibroblasts and overexpressing transgenic cell lines were used to evaluate the intracellular disappearance, degradation, and secretion of human GCase, including GD fibroblasts and C2C12 cells transduced with MFG-GCase retrovirus and CHO cells stably transfected with the tetracycline transactivation conditional expression system (tet-CHO-GCase). Compared to HF, the disappearance of GCase from the transgenic cells was 12-30 times greater, and had degradative and secretory components. In tet-CHO-GCase cells the majority of GCase was secreted. Intracellular degradation occurred in compartments sensitive to monensin and brefeldin A, and the ALLN or leupeptin protease inhibitors, i.e., ER, Golgi, and lysosomes. In tet-CHO-GCase cells, GCase degradation and secretion rates were inversely related to expression level. Saponin permeabilization analyses of tet-CHO-GCase cells showed that a majority of GCase was soluble, with a rapid disappearance via secretion and degradation. A progressively increasing proportion of GCase became saponin insoluble with a t(1/2) = 2-3 h. Intracellular saponin-soluble and -insoluble GCases were degraded with t(1/2) approximately 2 and 14 h, respectively. Confocal microscopy showed colocalization of glycosylated or unglycosylated GCase with LAMP-2, an integral lysosomal membrane protein, to vesicular bodies. These studies show that GCase secretion was N-linked glycosylation dependent, whereas sorting to and membrane attachment in the lysosome were N-linked glycosylation independent.
Collapse
Affiliation(s)
- T Leonova
- The Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
50
|
Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74:5190-7. [PMID: 10799594 PMCID: PMC110872 DOI: 10.1128/jvi.74.11.5190-5197.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses A/PR/8/34 (PR8; H1N1), A/Aichi/68 X-31 (HKx31; H3N2), and A/Beijing/89 X-109 (BJx109; H3N2) show marked differences in their ability to infect murine macrophages, including resident alveolar and peritoneal macrophages as well as the macrophage-derived cell line J774. The hierarchy in infectivity of the viruses (PR8 < HKx31 < BJx109) resembles that of their reactivity with mannose-binding lectins of the collectin family. Since the macrophage mannose receptor recognizes the same spectrum of monosaccharides as the collectins do, we investigated the possible involvement of this receptor in infection of macrophages by influenza virus. In competitive binding studies, the binding of (125)I-labeled mannosylated bovine serum albumin to macrophages was inhibited by the purified hemagglutinin and neuraminidase (HANA) glycoproteins of influenza virus but not by HANA that had been treated with periodate to oxidize its oligosaccharide side chains. The inhibitory activity of HANA from the three strains of virus differed markedly and correlated with the infectivity of each virus for macrophages. Infection of macrophages, but not MDCK cells, by influenza virus was inhibited by yeast mannan. A variant line of J774 cells, J774E, which expresses elevated levels of the mannose receptor, was more readily infected than J774, and the sensitivity of J774E cells to infection was greatly reduced by culture in the presence of D-mannose, which down-modulated mannose receptor expression. Together, the data implicate the mannose receptor as a major endocytic receptor in the infectious entry of influenza virus, and perhaps other enveloped viruses, into murine macrophages.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Dogs
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A virus/metabolism
- Influenza A virus/physiology
- Lectins, C-Type
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/virology
- Mannans/metabolism
- Mannose Receptor
- Mannose-Binding Lectins
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- N-Acetylneuraminic Acid/metabolism
- Neuraminidase/metabolism
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- P C Reading
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|