1
|
López-Hidalgo M, Schummers J. Cortical maps: a role for astrocytes? Curr Opin Neurobiol 2014; 24:176-89. [DOI: 10.1016/j.conb.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022]
|
2
|
|
3
|
Ferguson AR, Huie JR, Crown ED, Baumbauer KM, Hook MA, Garraway SM, Lee KH, Hoy KC, Grau JW. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front Physiol 2012; 3:399. [PMID: 23087647 PMCID: PMC3468083 DOI: 10.3389/fphys.2012.00399] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI.
Collapse
Affiliation(s)
- Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 2012; 322:241-9. [PMID: 22726353 DOI: 10.1016/j.jns.2012.05.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/23/2012] [Indexed: 11/28/2022]
Abstract
Arterial hypertension is the main risk factor for stroke and plays a role in the development of vascular cognitive impairment (VCI) and vascular dementia (VaD). An association between hypertension and reduced cerebral blood flow and VCI is documented and arterial hypertension in midlife is associated with a higher probability of cognitive impairment. These findings suggest that arterial hypertension is a main cause of vascular brain disorder (VBD). Spontaneously hypertensive rat (SHR) is the rat strain most extensively investigated and used for assessing hypertensive brain damage and treatment of it. They are normotensive at birth and at 6months they have a sustained hypertension. Time-dependent rise of arterial blood pressure, the occurrence of brain atrophy, loss of nerve cells and glial reaction are phenomena shared to some extent with hypertensive brain damage in humans. SHR present changes of some neurotransmitter systems that may have functional and behavioral relevance. An impaired cholinergic neurotransmission characterizes SHR, similarly as reported in patients affected by VaD. SHR are also characterized by a dopaminergic hypofunction and noradrenergic hyperactivity similarly as occurs in attention-deficit with hyperactivity disorder (ADHD). Microanatomical, neurochemical and behavioral data on SHR are in favor of the hypothesis that this strain is a suitable model of VBD. Changes in catecholaminergic transmission put forward SHR as a possible model of ADHD as well. Hence SHR could represent a multi-faced model of two important groups of pathologies, VBD and ADHD. As for most models, researchers should always consider that SHR offer some similarities with corresponding human pathologies, but they do not suffer from the same disease. This paper reviews the main microanatomical, neurochemical and behavioral characteristics of SHR with particular reference as an animal model of brain vascular injury.
Collapse
Affiliation(s)
- Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy.
| | | | | |
Collapse
|
5
|
Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures. Cell Calcium 2010; 47:242-52. [PMID: 20053446 DOI: 10.1016/j.ceca.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/04/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
Abstract
Denervation of neurons, e.g. upon traumatic injury or neuronal degeneration, induces transneuronal degenerative events, such as spine loss, dendritic pruning, and even cell loss. We studied one possible mechanism proposed to trigger such events, i.e. excess glutamate release from severed axons conveyed transsynaptically via postsynaptic calcium influx. Using 2-photon microscopical calcium imaging in organotypic entorhino-hippocampal co-cultures, we show that acute transection of the perforant path elicits two independent effects on calcium homeostasis in the dentate gyrus: a brief, short-latency elevation of postsynaptic calcium levels in denervated granule cells, which can be blocked by preincubation with tetrodotoxin, and a long-latency astroglial calcium wave, not blocked by tetrodotoxin and propagating slowly through the hippocampus. While neuronal calcium elevations upon axonal transection placed remote from the target area were similar to those elicited by brief trains of electrical stimulation of the perforant path, large-scale calcium signals were observed upon lesions placed close to or within the dendritic field of granule cells. Concordantly, induction of c-fos in denervated neurons coincided spatially with cell populations showing prolonged calcium elevations upon concomitant dendritic damage. Since denervation of dentate granule cells by remote transection of the perforant path induces transsynaptic dendritic reorganization in the utilized organotypic cultures, a generalized breakdown of the cellular calcium homeostasis is unlikely to underlie these transneuronal changes.
Collapse
|
6
|
Abstract
Recognition that the entire central nervous system (CNS) is highly plastic, and that it changes continually throughout life, is a relatively new development. Until very recently, neuroscience has been dominated by the belief that the nervous system is hardwired and changes at only a few selected sites and by only a few mechanisms. Thus, it is particularly remarkable that Sir John Eccles, almost from the start of his long career nearly 80 years ago, focused repeatedly and productively on plasticity of many different kinds and in many different locations. He began with muscles, exploring their developmental plasticity and the functional effects of the level of motor unit activity and of cross-reinnervation. He moved into the spinal cord to study the effects of axotomy on motoneuron properties and the immediate and persistent functional effects of repetitive afferent stimulation. In work that combined these two areas, Eccles explored the influences of motoneurons and their muscle fibers on one another. He studied extensively simple spinal reflexes, especially stretch reflexes, exploring plasticity in these reflex pathways during development and in response to experimental manipulations of activity and innervation. In subsequent decades, Eccles focused on plasticity at central synapses in hippocampus, cerebellum, and neocortex. His endeavors extended from the plasticity associated with CNS lesions to the mechanisms responsible for the most complex and as yet mysterious products of neuronal plasticity, the substrates underlying learning and memory. At multiple levels, Eccles' work anticipated and helped shape present-day hypotheses and experiments. He provided novel observations that introduced new problems, and he produced insights that continue to be the foundation of ongoing basic and clinical research. This article reviews Eccles' experimental and theoretical contributions and their relationships to current endeavors and concepts. It emphasizes aspects of his contributions that are less well known at present and yet are directly relevant to contemporary issues.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, 12201, USA.
| | | |
Collapse
|
7
|
Kalinichenko SG, Dudina YV, Dyuizen IV, Motavkin PA. Induction of NO synthase and glial acidic fibrillary protein in astrocytes in the temporal cortex of the rat with audiogenic epileptiform reactions. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2005; 35:629-34. [PMID: 16342620 DOI: 10.1007/s11055-005-0103-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The localizations of NADPH-diaphorase (NADPH-d), inducible NO synthase (iNOS), and glial acid fibrillary protein (GFAP) in astrocytes of the temporal cortex were studied in Krushinskii-Molodkina rats, which are genetically predisposed to audiogenic convulsive seizures. Convulsive reactions were induced in rats by three exposures to acoustic stimuli. Controls consisted of Wistar rats and Krushinskii-Molodkina rats not subjected to acoustic stimulation, these not developing convulsive reactions. The neocortex of animals with audiogenic convulsions consistently showed foci of brain tissue damage. Foci, of diameter 300-400 microm, were located in layers III-V and were groupings of NADPH-d-positive astrocytes; these were seen in both hemispheres. Astrocytes in foci of damage expressed iNOS and had elevated GFAP levels. The numbers of GFAP-immunopositive cells were increased by 25-37% in damage foci as compared with levels in controls and undamaged areas of the cortex. The induction of NO synthase and GFAP in astrocytes seen here indicates the involvement of glia in compensatory NO-dependent mechanisms formed in damage foci in response to audiogenic convulsive seizures.
Collapse
Affiliation(s)
- S G Kalinichenko
- Department of Pharmacology, Institute of Marine Biology, Far Eastern Division, Russian Academy of Sciences, Vladivostok
| | | | | | | |
Collapse
|
8
|
Abstract
Brain capacity is dependent not so much on the number of neurons but on the number of synaptic connections with functional connections that develop over a lifetime of genetic programming and life experiences. In the uninjured human brain, cortical reorganization that occurs in response to learning and experience is referred to as brain plasticity. Motor learning and complex environments result in a greater number of synapses and an increase in dendritic branching, whereas repetitive movements alone, in the absence of motor learning, do not. Learning and experience lead to an expansion of cortical representation, while failure to maintain training results in a contraction of cortical representation. In animals, loss of sensory peripheral afferent input results in an expansion of the forelimb representation of the intact adjacent cortex. Prolonged periods of peripheral nerve stimulation in both animals and humans can lead to reorganization of related sensorimotor cortical maps.
Collapse
Affiliation(s)
- Nestor A Bayona
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care and the University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
9
|
Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359:943-64. [PMID: 15306409 PMCID: PMC1693380 DOI: 10.1098/rstb.2003.1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
10
|
Tomassoni D, Avola R, Di Tullio MA, Sabbatini M, Vitaioli L, Amenta F. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats. Clin Exp Hypertens 2004; 26:335-50. [PMID: 15195688 DOI: 10.1081/ceh-120034138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.
Collapse
Affiliation(s)
- Daniele Tomassoni
- Sezione di Anatomia Umana, Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Camerino, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004; 22:73-86. [PMID: 15036382 DOI: 10.1016/j.ijdevneu.2003.12.008] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/12/2003] [Accepted: 12/15/2003] [Indexed: 02/07/2023] Open
Abstract
Mature protoplasmic astrocytes exhibit an extremely dense ramification of fine processes, yielding a 'spongiform' morphology. This complex morphology enables protoplasmic astrocytes to maintain intimate relationships with many elements of the brain parenchyma, most notably synapses. Recently, it has been demonstrated that astrocytes establish individual cellular-level domains within the neuropil, with limited overlap occurring between the extents of neighboring astrocytes. The highly ramified nature of protoplasmic astrocytes is closely associated with their ability to create such domains. This study was an attempt to characterize the development of spongiform processes and the establishment of astrocyte domains. A combination of immunolabeling for the astrocyte-specific markers glial fibrillary acidic protein and S100beta with intracellular dye labeling in fixed tissue slices allowed for the identification of immature astrocytes and the elucidation of their complete, well-preserved morphologies. We find that during the first two postnatal weeks astrocytes extend stringy, filopodial processes. Fine, spongiform processes appear during the third week. Protoplasmic astrocytes are quite heterogeneous in morphology at 1-week postnatum, but there is a remarkable consistency in morphology by 2 weeks of age. Finally, protoplasmic astrocytes initially extend long, overlapping processes during the first two postnatal weeks. The subsequent elaboration of spongiform processes results in the development of boundaries between neighboring astrocyte domains. Stray processes that encroach on neighboring domains are eventually pruned by 1 month of age. These observations suggest that domain formation is largely the consequence of competition between astrocyte processes, similar to the well-studied competitive interactions between certain neuronal dendritic fields.
Collapse
Affiliation(s)
- Eric A Bushong
- Biomedical Sciences Program, University of California, San Diego, La Jolla 92093-0608, USA
| | | | | |
Collapse
|
12
|
Soltys Z, Janeczko K, Orzyłowska-Sliwińska O, Zaremba M, Januszewski S, Oderfeld-Nowak B. Morphological transformations of cells immunopositive for GFAP, TrkA or p75 in the CA1 hippocampal area following transient global ischemia in the rat. A quantitative study. Brain Res 2003; 987:186-93. [PMID: 14499962 DOI: 10.1016/s0006-8993(03)03327-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transient global ischemia induces intensive neuronal degeneration in the hippocampal CA1 pyramidal layer, accompanied by reactive transformation of glial cells. Previously, we have shown using the double immunostaining method that the NGF receptors (NGFR) p75 and TrkA are expressed mainly on subpopulations of GFAP+ astrocytes, and this expression increases progressively after ischemia. In the presented study, we analyzed quantitatively the morphological transformations of cells immunopositive for GFAP or NGF receptors in the stratum radiatum of the CA1 hippocampal area in different survival periods after ischemia, evoked by 10-min cardiac arrest in adult rats. In control brains, NGF receptors were expressed only on small cells with poorly ramified processes. After ischemia, the NGFR+ cells increased in size and morphological complexity (measured using fractal analysis). However, even 2 weeks after ischemia these cells did not reach the size and value of the fractal dimension typical of the largest GFAP+ astrocytes. Moreover, the reaction of NGFR+ cells was significantly delayed in comparison with the total astrocyte population. The obtained results suggest that NGF receptors are expressed mainly by immature astrocytes and ischemia induces the maturation of these cells.
Collapse
Affiliation(s)
- Z Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 6 Ingardena St., 30-060 Cracow, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Wang H, Sun H, Della Penna K, Benz RJ, Xu J, Gerhold DL, Holder DJ, Koblan KS. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 2002; 114:529-46. [PMID: 12220557 DOI: 10.1016/s0306-4522(02)00341-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuropathic pain is induced by injury or disease of the nervous system. Studies aimed at understanding the molecular pathophysiology of neuropathic pain have so far focused on a few known molecules and signaling pathways in neurons. However, the pathophysiology of neuropathic pain appears to be very complex and remains poorly understood. A global understanding of the molecular mechanisms involved in neuropathic pain is needed for a better understanding of the pathophysiology and treatment of neuropathic pain. Towards this end, we examined global gene expression changes as well as the pathobiology at the cellular level in a spinal nerve ligation neuropathic pain model using DNA microarray, quantitative real-time PCR and immunohistochemistry. We found that the behavioral hypersensitivity that is manifested in the persistent pain state is accompanied by previously undescribed changes in gene expression. In the DRG, we found regulation of: (1) immediate early genes; (2) genes such as ion channels and signaling molecules that contribute to the excitability of neurons; and (3) genes that are indicative of secondary events such as neuroinflammation. In addition, we studied gene regulation in both injured and uninjured DRG by quantitative PCR, and observed differential gene regulation in these two populations of DRGs. Furthermore, we demonstrated unexpected co-regulation of many genes, especially the activation of neuroinflammation markers in both the PNS and CNS. The results of our study provide a new picture of the molecular mechanisms that underlie the complexity of neuropathic pain and suggest that chronic pain shares common pathobiology with progressive neurodegenerative disease.
Collapse
Affiliation(s)
- H Wang
- Department of Molecular Pharmacology, Merck Research Laboratories, WP26A-2000, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Two-way communication between neurons and nonneural cells called glia is essential for axonal conduction, synaptic transmission, and information processing and thus is required for normal functioning of the nervous system during development and throughout adult life. The signals between neurons and glia include ion fluxes, neurotransmitters, cell adhesion molecules, and specialized signaling molecules released from synaptic and nonsynaptic regions of the neuron. In contrast to the serial flow of information along chains of neurons, glia communicate with other glial cells through intracellular waves of calcium and via intercellular diffusion of chemical messengers. By releasing neurotransmitters and other extracellular signaling molecules, glia can affect neuronal excitability and synaptic transmission and perhaps coordinate activity across networks of neurons.
Collapse
Affiliation(s)
- R Douglas Fields
- Neurocytology and Physiology Section, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | |
Collapse
|
15
|
Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J Cereb Blood Flow Metab 2002; 22:852-60. [PMID: 12142570 DOI: 10.1097/00004647-200207000-00010] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study aimed to elucidate the effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis. A cortical infarct was induced by a permanent ligation of the middle cerebral artery distal to the striatal branches in 6-month-old spontaneously hypertensive rats. Bromodeoxyuridine (BrdU) was administered as 7 consecutive daily injections starting 24 hours after surgery and animals were housed in standard or enriched environment. Four weeks after completed BrdU administration, BrdU incorporation and its co-localization with the neuronal markers NeuN and calbindin D28k, and the astrocytic marker glial fibrillary acidic protein in the granular cell layer and subgranular zone of the hippocampal dentate gyrus were determined with immunohistochemistry and were quantified stereologically. Compared with sham-operated rats, rats with cortical infarcts had a five-to sixfold ipsilateral increase in BrdU-labeled cells. About 80% of the new cells were neurons. Differential postischemic housing did not influence significantly the total number of surviving BrdU-labeled cells or newborn neurons. However, postischemic environmental enrichment increased the ipsilateral generation of astrocytes normalizing the astrocyte-to-neuron ratio, which was significantly reduced in rats housed in standard environment postischemically.
Collapse
Affiliation(s)
- Mila Komitova
- Institute of Clinical Neuroscience, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
16
|
Catalani A, Sabbatini M, Consoli C, Cinque C, Tomassoni D, Azmitia E, Angelucci L, Amenta F. Glial fibrillary acidic protein immunoreactive astrocytes in developing rat hippocampus. Mech Ageing Dev 2002; 123:481-90. [PMID: 11796133 DOI: 10.1016/s0047-6374(01)00356-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The developmental pattern of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes was investigated in the hippocampus (subfields CA1, CA3 and CA4) and in the dentate gyrus of male and female rats aged 11, 16, 30, 90 and 150 days by immunohistochemistry associated with image analysis. Analysis was centred on stratum radiatum, a hippocampal area rich in GFAP-immunoreactive astrocytes. The volume of different portions of hippocampus, the number and the size of astrocytes, the intensity of cell body GFAP immunostaining as well as the extension of astrocyte were assessed. A maturation pattern consisting in higher cellular expression of GFAP, an increase in overall cell size and expanding arborisation from the 11th to the 30th postnatal day, followed by stabilisation of these parameters until the 90th day of life, and a subsequent decrease in the oldest age group studied was found. A sex-related different temporal pattern of astrocytes maturation in size and GFAP content was observed in the CA1 subfield only. The increase of GFAP content during pre-weaning ages was less pronounced in females than in males as well as the decrease between the 90th and the 150th day of age. Moreover, the size of astrocytes was larger in females than in males at the 11th and 150th days of life. These findings suggest that hippocampal astrocytes undergo rapid maturation in the 1st month of postnatal life, followed by a slow consolidation of this process until the 3rd month of life. At 5 months of age, there are still dynamic changes in the mature astrocytes, which become slender and thinner probably as a response to the increased volume of hippocampus noticeable at this age.
Collapse
Affiliation(s)
- Assia Catalani
- Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza, P. le. A. Moro 5, 00185, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Shirayama Y, Muneoka KT, Takigawa M, Minabe Y. Adenosine A2A, 5-HT1A and 5-HT7 receptor in neonatally pregnenolone-treated rats. Neuroreport 2001; 12:3773-6. [PMID: 11726792 DOI: 10.1097/00001756-200112040-00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Steroid hormones synthesized in the brain, called 'neurosteroids', modulate neuronal activity. We treated neonatal rats with a main precursor of the neurosteroidogenesis, pregnenolone, and examined adenosine A2A receptor, 5- hydroxytryptamine (5-HT)1A and 5-HT7 receptor densities in the front-parietal cortex in juvenile and adult rats. In receptor binding assay using [3H]CGS21680 and [3H]8-OH-DPAT, it was shown that neonatal pregnenolone-treatment induced a significant decrease in the adenosine A2A receptor density with no significant effects on the 5-HT1A and 5-HT7 receptor densities.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/metabolism
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Aging/drug effects
- Aging/physiology
- Animals
- Animals, Newborn
- Antihypertensive Agents/metabolism
- Binding, Competitive/drug effects
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Disease Models, Animal
- Dopamine/metabolism
- Female
- Male
- Mental Disorders/metabolism
- Mental Disorders/physiopathology
- Phenethylamines/metabolism
- Pregnancy
- Pregnenolone/metabolism
- Pregnenolone/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Serotonin/metabolism
- Serotonin Receptor Agonists/metabolism
- Sex Characteristics
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Y Shirayama
- Division of Cortical Function Disorder, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Landgrebe M, Laskawi R, Wolff JR. Transient changes in cortical distribution of S100 proteins during reorganization of somatotopy in the primary motor cortex induced by facial nerve transection in adult rats. Eur J Neurosci 2000; 12:3729-40. [PMID: 11029643 DOI: 10.1046/j.1460-9568.2000.00264.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In adult rats, the primary motor cortex (MI) comprises a somatotopic map of muscle representations. This somatotopy is modified after transection of the facial nerve (N7x). Mapping with cortical stimulation revealed that the underlying cortical reorganization is biphasic. Primary changes cause a transient disinhibition of long cortico-cortical connections in both hemispheres. While the first reaction vanishes within a few hours, short intra-areal connections are disinhibited within MI contralateral to N7x. The resulting co-operation between adjacent parts of MI persists as long as peripheral reinnervation is prevented. Cellular mechanisms underlying this cortical reorganization are largely unknown. Here, we utilized changes in immunoreactivity of S100 proteins (S100-IR) known as a sensitive indicator of astroglial reactions during plastic reactions in the central nervous system. Within 1 h of N7x, zones with enhanced S100-IR appeared in both hemispheres. Between 3. 5 and 18 h, reaction patterns with changing topography were transiently prominent in many cortical areas including parts of MI which surrounded the facial muscle representation fields. After 24 h, the facial muscle representation contralateral to N7x became labelled while S100-IR enhancement disappeared in most of the cortex. S100-IR-enhancement vanished completely during the next day of survival. Data presented suggest that (i) enhancement of S100-IR labels cortical tissue during the functional reorganization that is induced by N7x, (ii) large parts of the cerebral cortex participate in the reorganization, before it is finally focused on the representation field of MI that corresponds with contralateral N7x, and (iii) temporo-spatial patterns of astrocytic reactions apparently play a role in the underlying plasticity reaction.
Collapse
Affiliation(s)
- M Landgrebe
- Department of Anatomy, Clinical Anatomy and Developmental Neurobiology Unit, Georg-August-University of Göttingen, Kreuzbergring 36, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
19
|
Bury SD, Eichhorn AC, Kotzer CM, Jones TA. Reactive astrocytic responses to denervation in the motor cortex of adult rats are sensitive to manipulations of behavioral experience. Neuropharmacology 2000; 39:743-55. [PMID: 10699441 DOI: 10.1016/s0028-3908(99)00272-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent research has suggested that mild denervation of the neocortex of adult rats may facilitate neuronal growth in response to behavioral changes. Astrocytes react to denervation, produce growth-promoting factors and are a potential mediator of this denervation-facilitated growth. The present study assessed whether astrocytic reactions to denervation vary dependent upon post-injury behavioral experience. Denervation of the transcallosal afferents to the motor cortex was induced via partial transections of the corpus callosum. Transected- or sham-operated rats were then either forced to use the opposite forelimb (via limb-restricting vests) or permitted to use both forelimbs normally for 8 days. In the motor cortex, the surface density of glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytic processes and the density of basic fibroblast growth factor (FGF-2)-IR glial cells was significantly increased as a result of transections alone and as a result of forced forelimb-use alone in comparison to controls. The combination of transections and forced-use significantly enhanced GFAP-IR in comparison to all other groups, but did not further enhance FGF-2-IR. These findings are consistent with behavior and denervation having interactive influences on astrocytic reactivity in the motor cortex. These results also raise the possibility that astrocyte-mediated support of neural restructuring after brain injury might be enhanced with appropriate post-injury behavioral manipulations.
Collapse
Affiliation(s)
- S D Bury
- Psychology Department, University of Washington, Guthrie Hall Box 351525, Seattle 98195, USA
| | | | | | | |
Collapse
|
20
|
Plasticity and rigidity in the nervous system. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1064-6000(00)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Mong JA, McCarthy MM. Steroid-induced developmental plasticity in hypothalamic astrocytes: implications for synaptic patterning. JOURNAL OF NEUROBIOLOGY 1999; 40:602-19. [PMID: 10453059 DOI: 10.1002/(sici)1097-4695(19990915)40:4<602::aid-neu14>3.0.co;2-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that astrocytes in the developing arcuate nucleus of the rat hypothalamus exhibit a sexually dimorphic morphology as a result of differential exposure to gonadal steroids. Testosterone via its aromatized byproduct, estrogen, induces arcuate astrocytes to undergo differentiation during the first few days of life. These differentiated astrocytes exhibit a stellate morphology. Coincident with the steroid-induced increase in astrocyte differentiation is a reduction of dendritic spines on arcuate neurons. As a result, the arcuate nucleus of males has fewer axodendritic spine synapses than females and this dimorphism is retained throughout life. In the immediately adjacent ventromedial nucleus, neonatal astrocytes are immature and unresponsive to steroids. Neurons in this region show no change in dendritic spines in the first few days of life but do exhibit increased dendritic branching as a result of testosterone exposure. These findings illustrate the importance of distinct populations of astrocytes in restricted brain regions and their potential importance to the establishment of regionally specific synaptic patterning. Conflicting reports leave the site of steroid-mediated astrocyte responsiveness in the arcuate nucleus unresolved: Are gonadal steroids acting directly on astrocytes or are steroid-concentrating neurons mediating astrocytic responsiveness? In this review, we discuss the current understanding of astrocyte-neuron interactions and the possible mechanisms for steroid-mediated, astrocyte-directed synaptic patterning in the developing hypothalamus.
Collapse
Affiliation(s)
- J A Mong
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, Maryland 21201, USA
| | | |
Collapse
|
22
|
Syková E, Roitbak T, Mazel T, Simonová Z, Harvey AR. Astrocytes, oligodendroglia, extracellular space volume and geometry in rat fetal brain grafts. Neuroscience 1999; 91:783-98. [PMID: 10366034 DOI: 10.1016/s0306-4522(98)00603-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fetal neocortex or tectum transplanted to the midbrain or cortex of newborn rats develops various degrees of gliosis, i.e. increased numbers of hypertrophied, glial fibrillary acidic protein-positive astrocytes. In addition, there were patches or bundles of myelinated fibres positive for the oligodendrocyte and central myelin marker Rip, and increased levels of extracellular matrix molecules. Three diffusion parameters--extracellular space volume fraction alpha (alpha = extracellular volume/total tissue volume), tortuosity lambda (lambda = square root(D/ADC), where D is the free and ADC is the apparent tetramethylammonium diffusion coefficient) and non-specific uptake k'--were determined in vivo from extracellular concentration-time profiles of tetramethylammonium. Grafts were subsequently processed immunohistochemically to compare diffusion measurements with graft morphology. Comparisons were made between the diffusion parameters of host cortex and corpus callosum, fetal cortical or tectal tissue transplanted to host midbrain ("C- and T-grafts") and fetal cortical tissue transplanted to host cortex ("cortex-to-cortex" or C-C-grafts). In host cortex, alpha ranged from 0.20 +/- 0.01 (layer V) to 0.21 +/- 0.01 (layers III, IV and VI) and lambda from 1.59 +/- 0.03 (layer VI) to 1.64 +/- 0.02 (layer III) (mean +/- S.E.M., n = 15). Much higher values were found in "young" C-grafts (81-150 days post-transplantation), where alpha = 0.34 +/- 0.01 and lambda = 1.78 +/- 0.03 (n = 13), as well as in T-grafts, where alpha = 0.29 +/- 0.02 and lambda = 1.85 +/- 0.04 (n = 7). Further analysis revealed that diffusion in grafts was anisotropic and more hindered than in host cortex. The heterogeneity of diffusion parameters correlated with the structural heterogeneity of the neuropil, with the highest values of alpha in gray matter and the highest values of lambda in white matter bundles. Compared to "young" C-grafts, in "old" C-grafts (one year post-transplantation) both alpha and lambda were significantly lower, and there was a clear decrease in glial fibrillary acidic protein immunoreactivity throughout the grafted tissue. In C-C-grafts, alpha and lambda varied with the degree of graft incorporation into host tissue, but on average they were significantly lower (alpha = 0.24 +/- 0.01 and lambda = 1.66 +/- 0.02, n = 8) than in young C- and T-grafts. Well-incorporated grafts revealed less astrogliosis, and alpha and lambda values were not significantly higher than those in normal host cortex. The observed changes in extracellular space diffusion parameters could affect the movement and accumulation of neuroactive substances and thus impact upon neuron-glia communication, synaptic and extrasynaptic transmission in the grafts. The potential relevance of these observations to human neuropathological conditions associated with acute or chronic astrogliosis is considered.
Collapse
Affiliation(s)
- E Syková
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
Edeline JM. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 1999; 57:165-224. [PMID: 9987805 DOI: 10.1016/s0301-0082(98)00042-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this review is to give a detailed description of the main results obtained in the field of learning-induced plasticity. The review is focused on receptive field and map changes observed in the auditory, somatosensory and visual thalamo-cortical system as a result of an associative training performed in waking animals. Receptive field (RF) plasticity, 2DG and map changes obtained in the auditory and somatosensory system are reviewed. In the visual system, as there is no RF and map analysis during learning per se, the evidence presented are from increased neuronal responsiveness, and from the effects of perceptual learning in human and non human primates. Across sensory modalities, the re-tuning of neurons to a significant stimulus or map reorganizations in favour of the significant stimuli were observed at the thalamic and/or cortical level. The analysis of the literature in each sensory modality indicates that relationships between learning-induced sensory plasticity and behavioural performance can, or cannot, be found depending on the tasks that were used. The involvement (i) of Hebbian synaptic plasticity in the described neuronal changes and (ii) of neuromodulators as "gating" factors of the neuronal changes, is evaluated. The weakness of the Hebbian schema to explain learning-induced changes and the need to better define what the word "learning" means are stressed. It is suggested that future research should focus on the dynamic of information processing in sensory systems, and the concept of "effective connectivity" should be useful in that matter.
Collapse
Affiliation(s)
- J M Edeline
- NAMC, URA CNRS 1491, Université Paris-Sud, Orsay, France.
| |
Collapse
|
24
|
Abstract
Astrocytes are ubiquitous in the brain and have multiple functions. It is becoming increasingly clear that they play an important role in monitoring the neuromicroenvironment in CNS and in information processing or signaling in the nervous system in normal conditions and respond to CNS injuries in a gradual and varied way. It is still debated whether such reactions are beneficial or detrimental. It was believed that reactive astrogliosis observed in most neurological disorders may regulate the removal of toxic compounds produced by damaged neurons and support neuronal growth by releasing trophic factors. However it was also suggested that astrocytes contribute to a decline of neurologic function, for example by accumulation and release of excitotoxic aminoacids after ischemia and oxidative stress, formation of epileptogenic scars in response to CNS injury and metabolism of protoxins to potent toxins. In a number of metabolic diseases astrocytes, not neurons, may be the primary target. The astrocyte's role in normal and pathological conditions will be discussed in the light of recent information about their metabolism, receptor distribution and release.
Collapse
Affiliation(s)
- M T Tacconi
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| |
Collapse
|
25
|
Yan XX, Ribak CE. Increased expression of GABA transporters, GAT-1 and GAT-3, in the deafferented superior colliculus of the rat. Brain Res 1998; 783:63-76. [PMID: 9479049 DOI: 10.1016/s0006-8993(97)01157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA transporters (GATs) play a critical role in the translemmal transport of GABA in neurons and glial cells. Two major brain GATs, GAT-1 and GAT-3, are found in astrocytes in the adult brain. Astroglia demonstrate morphological and molecular changes in response to brain injury and deafferentation. The present study was designed to determine whether the expression of GATs changes after nerve deafferentation using the rat superior colliculus (SC) as a model. The immunoreactivity for GAT-1 and GAT-3, as well as GABA and glutamic acid decarboxylase (GAD)-65 and GAD-67, was studied in the SC of control rats and rats with unilateral optic nerve transections. Immunolabeling for both GAT-1 and GAT-3 was increased in the neuropil of the denervated SC as compared to that for the SC of control rats or for the unaffected SC of experimental rats. In contrast, immunoreactivity for GABA, GAD-65 and GAD-67 was not altered. The change in the immunolabeling of GAT-1 and GAT-3 was detectable at 1 day postlesion and became more evident between 3-30 days postlesion. At the electron microscopic level, immunoreactivity for both GAT-1 and GAT-3 in the unaffected SC was localized to astrocytic processes, whereas GAT-1 immunolabeling was also present in synaptic terminals. In the deafferented SC, immunolabeling for both GATs was elevated in the somata and processes of hypertrophied astrocytes as compared to that in the unaffected SC, whereas GAT-1 labeling in neuronal profiles was largely unchanged. A substantial increase of GAT-1 and GAT-3 in astrocytes following optic nerve transection suggests that these cells play a role in modulating GABA's action in the deafferented SC.
Collapse
Affiliation(s)
- X X Yan
- Department of Anatomy and Neurobiology, University of California at Irvine, College of Medicine, Irvine, CA 92697-1275, USA.
| | | |
Collapse
|
26
|
Vazquez ME. Neurobiological problems in long-term deep space flights. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1998; 22:171-183. [PMID: 11541395 DOI: 10.1016/s0273-1177(98)80009-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Future missions in space may involve long-term travel beyond the magnetic field of the Earth, subjecting astronauts to radiation hazards posed by solar flares and galactic cosmic rays, altered gravitation fields and physiological stress. Thus, it is critical to determine if there will be any reversible or irreversible, detrimental neurological effects from this prolonged exposure to space. A question of particular importance focuses on the long-term effects of the space environment on the central nervous system (CNS) neuroplasticity, with the potential acute and/or delayed effects that such perturbations might entail. Although the short-term effects of microgravity on neural control were studied on previous low earth orbit missions, the late consequences of stress in space, microgravity and space radiation have not been addressed sufficiently at the molecular, cellular and tissue levels. The possibility that space flight factors can interact influencing the neuroplastic response in the CNS looms critical issue not only to understand the ontogeny of the CNS and its functional integrity, but also, ultimately the performance of astronauts in extended space forays. The purpose of this paper is to review the neurobiological modifications that occur in the CNS exposed to the space environment, and its potential consequences for extended deep space flight.
Collapse
Affiliation(s)
- M E Vazquez
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
27
|
Kentroti S. Neuronal plasticity in development: lessons from ethanol neurotoxicity during embryogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:19-37. [PMID: 9413563 DOI: 10.1007/978-1-4757-9551-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S Kentroti
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| |
Collapse
|
28
|
Vern BA, Leheta BJ, Juel VC, LaGuardia J, Graupe P, Schuette WH. Interhemispheric synchrony of slow oscillations of cortical blood volume and cytochrome aa3 redox state in unanesthetized rabbits. Brain Res 1997; 775:233-9. [PMID: 9439851 DOI: 10.1016/s0006-8993(97)01028-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to study spontaneous, slow oscillations of regional oxidative metabolism and blood flow in the normal, unanesthetized cortex, adult rabbits were implanted with bilateral cortical windows and electrodes for polysomnography. Relative changes in the cortical intramitochondrial redox state of cytochrome aa3 (CYT) and blood volume (CBV) were monitored by dual-wavelength reflectance spectrophotometry. Continuous, non-stationary oscillations (< 0.5 Hz) of both CYT and CBV were observed during waking and non-REM sleep. Cross-correlation analysis revealed a predominant interhemispheric synchrony of these oscillations which were unrelated to the heart rate, breathing, or electrocorticogram pattern. These findings suggest a dynamic linkage of slowly varying metabolic and vascular processes between unanesthetized cortical regions of 50 mm2 surface area.
Collapse
Affiliation(s)
- B A Vern
- Department of Neurology, School of Medicine, University of Illinois, Chicago 60612, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Fenoglio C, Scherini E, Necchi D, Soldani C, Bernocchi G. Perineuronal glial system in the cerebral ganglion of active and hibernating Helix aspersa. Tissue Cell 1997; 29:561-72. [DOI: 10.1016/s0040-8166(97)80056-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Accepted: 05/12/1997] [Indexed: 10/25/2022]
|
30
|
Castro-Moure F, Goshgarian HG. Morphological plasticity induced in the phrenic nucleus following cervical cold block of descending respiratory drive. Exp Neurol 1997; 147:299-310. [PMID: 9344555 DOI: 10.1006/exnr.1997.6615] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morphological plasticity occurs in the phrenic nucleus within hours following an ipsilateral C2 spinal cord hemisection. The plasticity has been associated with the unmasking of a latent respiratory pathway (the crossed phrenic pathway) which allows recovery of the hemidiaphragm paralyzed by the hemisection during a reflex known as the crossed phrenic phenomenon. This study tests if the plasticity is induced by the generalized effects of spinal cord trauma or the more specific effect of interrupting the main descending respiratory drive to phrenic motoneurons. Electron microscopic quantitative morphometric analysis of the phrenic nucleus neuropil was carried out on four Sprague-Dawley rats (200-250 g) sacrificed 4 h following unilateral reversible cold block of the descending bulbospinal respiratory drive at the second cervical segment of the spinal cord (C2). The data from four sham-operated control animals were compared with those of the experimental group. The following morphological alterations were documented in cold block animals compared to controls: (1) a significant increase in the number of multiple synapses (i.e., terminals with synaptic active zones contacting two or more postsynaptic profiles in the same plane of section), (2) a significant increase in the number of dendrodendritic appositions, and (3) a significant increase in the length of symmetric and asymmetric synaptic active zones. The above changes are similar to the changes induced in the phrenic nucleus following C2 hemisection. We conclude therefore, that injury to the spinal cord is not a requirement for this type of morphological plasticity in the phrenic nucleus, but rather the induced changes are activity-dependent and are likely caused by the interruption of the descending bulbospinal respiratory drive to the phrenic nucleus.
Collapse
Affiliation(s)
- F Castro-Moure
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
31
|
Hanani M, Lin Z, Louzon V, Brenner T, Boneh A. Phorbol esters alter the morphology of cultured guinea-pig myenteric glia via a protein kinase C-independent mechanism. Neurosci Lett 1997; 233:61-4. [PMID: 9350832 DOI: 10.1016/s0304-3940(97)00630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cultures of myenteric ganglia from adult guinea-pigs were used to study the influence of neuroactive substances on glial cells by monitoring changes in their morphology. The following substances had no effect on glial morphology: adenosine, ATP, carbachol, glutamate, bradykinin, isoprenaline, prostaglandin E2, sodium nitroprusside and lipopolysaccharide. The only substances found to affect glial morphology were phorbol esters, and in particular phorbol 12-myrisate 13-acetate (PMA), which acted at the nM range. Glial cells, which were normally polygonal, assumed a stellate shape within 30-60 min after the addition of PMA. Protein kinase C (PKC) inhibitors did not block this effect, and PKC activators did not mimic it. The effect of PMA was also not mediated by changes in the intracellular concentrations of either Ca2+, H+ or cyclic AMP. Dye coupling among glial cells was blocked by PMA. The phorbol ester-mediated effect on glial structure may have profound influence on neuronal organization and function.
Collapse
Affiliation(s)
- M Hanani
- Laboratory of Experimental Surgery, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
32
|
Schoop VM, Gardziella S, Müller CM. Critical period-dependent reduction of the permissiveness of cat visual cortex tissue for neuronal adhesion and neurite growth. Eur J Neurosci 1997; 9:1911-22. [PMID: 9383214 DOI: 10.1111/j.1460-9568.1997.tb00758.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During postnatal development, the visual cortex undergoes an experience-dependent refinement of its circuitry. This process includes synapse formation, as well as synapse elimination. Both mechanisms appear to be restricted to a limited 'critical period' which lasts for approximately 2 months in cats. We tested whether the termination of the critical period for cortical malleability is paralleled by changes in the growth permissiveness of the tissue. These changes may inhibit progressive reorganization of functional circuitries mediated by axon growth. Embryonic cortical neurons were cultured on unfixed cryostat sections of the visual cortex obtained from cats aged 2-50 weeks. After 2-3 days in vitro the distribution of viable cells and the percentage of neurite-bearing cells were determined and analysed with respect to the developmental age and subdivisions of the underlying tissue substrate. It was shown that cell adhesion and neurite formation are correlated with the developmental age of the substrate tissue and the time period of myelination. While embryonic neurons adhered and survived on grey and white matter tissue from 2- and 4-week-old kittens, there was a significant reduction in cell adhesion on the myelinated white matter regions of the tissue sections of older animals. Quantitative analyses showed that neurite formation by cultured neurons also became successively impaired on grey and white matter areas of tissue substrates, corresponding to the time course of the critical period for cortical malleability. On grey matter tissue this effect was most pronounced between the second and sixth postnatal weeks. The effects were not antagonized by coating the substrate sections with the growth-promoting molecule laminin. It is therefore proposed that neurite growth-inhibiting factors, most probably associated with central nervous system myelin, are gradually expressed postnatally and may contribute to the termination of the critical period in the visual cortex of cats.
Collapse
Affiliation(s)
- V M Schoop
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | |
Collapse
|
33
|
Abstract
The addition of isolated neurons to monolayers of cultured astrocytes induced a morphological change in the astrocytes that came into contact with the added neuronal cell bodies or neurites. The change, which included an increase in the complexity of cell shape, took at least 3 days to become detectable and was enhanced in proportion to the number of attached neurons. Astrocytes that did not make contact with any neurons had a less complex contour, comparable to those in control cultures with no neurons added. Treatment of neuron-astrocyte cocultures with a sodium channel blocker, tetrodotoxin, suppressed the neuron-induced morphological changes in astrocytes. A GABAA-receptor antagonist, bicuculline, mimicked the inhibitory effect of tetrodotoxin. In cultures without added neurons, morphological alteration of astrocytes was also observed when cultures were incubated for 1 or more days with exogenous GABA together with a GABA-uptake inhibitor, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol. The effect of exogenous GABA was mimicked by treatment with a GABAA-receptor agonist, muscimol, and blocked by bicuculline treatment. These results suggest that GABA released from neurons with their activity serves as a signal from neurons to astrocytes that triggers the morphological change in astrocytes through the activation of GABAA receptors.
Collapse
Affiliation(s)
- S Matsutani
- Department of Functional Morphology, Kitasato University School of Nursing, Kanagawa, Japan
| | | |
Collapse
|
34
|
Akopian G, Kuprijanova E, Kressin K, Steinh�user C. Analysis of ion channel expression by astrocytes in red nucleus brain stem slices of the rat. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199703)19:3<234::aid-glia6>3.0.co;2-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Grove J, Kentroti S, Prasad K, Vernadakis A. Catecholaminergic expression in 2N27 immortal neural cell line is enhanced by glial-derived factors. Neurochem Res 1997; 22:267-71. [PMID: 9051660 DOI: 10.1023/a:1022482520358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The goal of this study was to examine the responsiveness of an immortalized catecholaminergic neuronal line, 2N27, to various growth factors and identify those which promote catecholaminergic expression. 2N27 is a newly established neural cell line derived from fetal rat mesencephalic tissue and, thus, contains tyrosine hydroxylase (TH), a reliable marker for catecholaminergic neurons. Using TH activity as a biochemical index, we examined the responsiveness to both recognized trophic factors (NGF, TGF-beta and basic- and acidic-FGF) as well as novel, glia-derived factors present in conditioned media from several glial sources. The glial cells included MACH, a normal cell line derived from aged mouse cerebral hemispheres NBCC, normal glia derived from newborn mouse cerebral hemispheres; and C-6 glioma cells, 2B clone, passage 72, predominately astrocytes. Cells were cultured in the presence of added factors from 0 to 3 days in vitro (DIV) and were harvested on day 4. We found that 2N27 neural cells responded differentially to growth factors. No change was observed in TH activity in response to NGF, TH activity even decreased in response to b-FGF ad TGF-beta addition to the culture medium. However, a dose dependent increase in TH activity was observed following treatment with a-FGF and the increase to a-FGF was associated to an increase in cell proliferation as compared to TH increase by cAMP associated to differentiation. However, the 2N27 cells responded with a marked increase in TH when cultured in the glial cell conditioned media. We conclude that immortal cells require a variety of microenvironmental signals to maintain their phenotype.
Collapse
Affiliation(s)
- J Grove
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
36
|
Vibert N, De Waele C, Serafin M, Babalian A, Mühlethaler M, Vidal PP. The vestibular system as a model of sensorimotor transformations. A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol 1997; 51:243-86. [PMID: 9089790 DOI: 10.1016/s0301-0082(96)00057-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the cellular mechanisms underlying behaviours in mammals, the respective contributions of the individual properties characterizing each neuron, as opposed to the properties emerging from the organization of these neurons in functional networks, have to be evaluated. This requires the use, in the same species, of various in vivo and in vitro experimental preparations. The present review is meant to illustrate how such a combined in vivo in vitro approach can be used to investigate the vestibular-related neuronal networks involved in gaze and posture stabilization, together with their plasticity, in the adult guinea-pig. Following first a general introduction on the vestibular system, the second section describes various in vivo experiments aimed at characterizing gaze and posture stabilization in that species. The third and fourth parts of the review deal with the combined in vivo-in vitro investigations undertaken to unravel the physiological and pharmacological properties of vestibulo-ocular and vestibulo-spinal networks, together with their functional implications. In particular, we have tried to use the central vestibular neurons as examples to illustrate how the preparation of isolated whole brain can be used to bridge the gap between the results obtained through in vitro, intracellular recordings on slices and those collected in vivo, in the behaving animal.
Collapse
Affiliation(s)
- N Vibert
- Laboratoire de Physiologie de la Perception et de l' Action, CNRS-College de France, UMR C-9950, Paris, France
| | | | | | | | | | | |
Collapse
|
37
|
de Waele C, Campos Torres A, Josset P, Vidal PP. Evidence for reactive astrocytes in rat vestibular and cochlear nuclei following unilateral inner ear lesion. Eur J Neurosci 1996; 8:2006-18. [PMID: 8921291 DOI: 10.1111/j.1460-9568.1996.tb01344.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated whether unilateral removal of the labyrinthine and cochlear receptors induces a macroglial reaction in rat vestibular and cochlear nuclei using vimentin and glial fibrillary acidic protein (GFAP) immunochemical markers. Antibody binding was visualized using the avidin-biotin method and 3,3'-diaminobenzidine as the peroxidase substrate. In addition, double-labelling experiments were performed using specific secondary fluorescent antibodies. Potentially degenerating axon terminals were also studied using a silver impregnation method. In normal adult rats, vimentin was found only in ependymal cells, tanicytes around the fourth ventricle, endothelial cells in the blood vessels and Bergmann glia in the molecular layer of the cerebellum. In lesioned rats, all deafferented vestibular and ventral cochlear nuclei showed strong vimentin immunoreactivity. Furthermore, double-labelling experiments demonstrated that these vimentin-positive cells were also GFAP-positive. The reaction became evident on the second day after the lesion, was intense for 3-8 days and then declined until day 21. No vimentin immunoreactivity could be detected at the level of the ipsilateral dorsal cochlear nucleus. Therefore, unilateral inner ear lesion induced an astroglial reaction within the deafferented vestibular and cochlear nuclei. The decrease in the resting discharge of the primary vestibular afferents and/or in the deafferented central vestibular neurons may induce the glial reaction in the vestibular complex, whereas both degeneration and silence of the cochlear nerve and central cochlear neurons are most probably responsible for the cochlear vimentin-immunoreactive staining. The role of the reactive astrocytes in the vestibular compensation process remains to be determined.
Collapse
Affiliation(s)
- C de Waele
- Laboratoire de Physiologie de la Perception et de l'Action, CNRS-Collège de France, UMR C 9950, Paris, France
| | | | | | | |
Collapse
|
38
|
Abstract
Ionotropic glutamate (Glu) receptors of the N-methyl-D-aspartate type (NMDA) play a fundamental role in many cortical functions. Native NMDA receptors are composed of a heteromeric assembly of different subunits belonging to two classes: NMDAR1 (NR1) and NMDAR2 (NR2). To date, NMDA receptors are believed to be expressed only in neurons, although electrophysiological and in situ hybridization studies have suggested that this class of Glu receptors might be also expressed by some astrocytes. In this study, we have investigated in the cerebral cortex of adult rats the presence of astrocytes expressing NR1 and NR2A/B subunits by immunocytochemistry with specific antibodies, and we show that some distal astrocytic processes, but only rarely astrocytic cell bodies, contain immunoreaction product indicative of NR1 and NR2A/B expression. These findings suggest that at least part of the role NMDA has in cortical functions might depend on the activation of astrocytic NMDA receptors; the subcellular localization of NR1 and NR2A/B subunits in distal processes suggests that NMDA receptors contribute to monitoring Glu levels in the extracellular space.
Collapse
Affiliation(s)
- F Conti
- Institute of Human Physiology, University of Ancona, Italy
| | | | | | | |
Collapse
|
39
|
Conti F, Minelli A, Pons TP. Changes in glutamate immunoreactivity in the somatic sensory cortex of adult monkeys induced by nerve cuts. J Comp Neurol 1996; 368:503-15. [PMID: 8744439 DOI: 10.1002/(sici)1096-9861(19960513)368:4<503::aid-cne3>3.0.co;2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies to glutamate (Glu) were used to study the effects of reduced afferent input on excitatory neurons in the somatic sensory cortex of adult monkeys. In each monkey, immunocytochemical staining was compared to thionin and cytochrome oxidase (CO) staining in adjacent sections. In the cervical spinal cord, dorsal column nuclei, ventroposterior thalamus, and primary somatic sensory cortex (SI), Glu immunoreactivity (Glu-ir) was analogous to that described in normal animals; regions with reduced or absent Glu-ir were never observed and no appreciable differences were noted between the experimental and normal side. There were also no differences in CO or thionin-stained sections from the affected hemisphere. In the insuloparietal operculum, sections in the hemisphere contralateral to the nerve cut showed that most cortical fields had a normal pattern of Glu-ir (pattern a), some exhibited a reduction of Glu-ir (pattern b), and that in the central portion of the upper bank of the central sulcus, which corresponds to the general location of the hand representation of the second somatic sensory cortex (SII), Glu-ir had virtually disappeared (pattern c). Adjacent sections processed for CO or stained with thionin showed that in the regions corresponding to those characterized by pattern c, CO was slightly decreased and that glial cells had increased in number. In the regions of SII characterized by pattern c, small intensely stained glial cells displayed Glu-ir. These findings indicate that Glu-ir is regulated by afferent activity and suggest that changes in Glu levels in neurons as well as in glial cells may trigger the biochemical processes underlying the functional and structural changes occurring during a slow phase of reorganizational plasticity in the cerebral cortex of adult monkeys.
Collapse
Affiliation(s)
- F Conti
- Istituto di Fisiologia Umana, Università di Ancona, Italy
| | | | | |
Collapse
|
40
|
Jones TA, Hawrylak N, Greenough WT. Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology 1996; 21:189-201. [PMID: 8774062 DOI: 10.1016/0306-4530(95)00041-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuronal changes in the visual cortex have previously been found to occur within days of housing weanling rats in a complex environment (EC) compared to rats housed in standard laboratory cages (IC). In contrast, layer IV astrocytes immunostained for glial fibrillary acidic protein (GFAP) have been found to be slow to change. Recent quantitative analysis has shown the surface density of GFAP immunoreactive (GFAP-IR) astrocytes in young rats to be significantly lower in layer IV in comparison to layer II/III. In the present study, the analysis of experience effects on GFAP-IR astrocytes was extended to include layer II/III as well as layer IV of EC and IC rats. The surface density of GFAP-IR processes was found to be significantly increased within layer II/III after 4-10 days of EC rearing in comparison to IC rats. Consistent with previous findings, housing condition did not significantly affect GFAP-IR within layer IV during these early time points. It is possible that GFAP immunocytochemistry is not a sensitive means of detecting experience-induced early changes in astrocytes within layer IV of weanling rats. The rapid astrocytic changes detected in layer II/III are suggestive of a close relationship between astrocytic plasticity and experience-induced synaptic plasticity.
Collapse
Affiliation(s)
- T A Jones
- Department of Psychology, Beckman Institute, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
41
|
Abstract
The physiological role of nerve growth factor (NGF), the prototype member of the neurotrophin family, has been widely studied. NGF has been shown to promote survival, sprouting and differentiation of sympathetic ganglion cells and sensory neurons in the peripheral nervous system; it has also been shown to support survival and regeneration of cholinergic neurons in the central nervous system. Recent evidence indicates that NGF is also involved in the neuronal plasticity of the visual cortex. Exogenous supplies of NGF have been shown to interfere with normal processes underlying activity- and age-dependent synaptic modifications in both developing and adult visual cortex. In parallel to these physiological effects, numerous neuronal markers in the visual cortex have been found to be influenced by NGF. Several proposals have been introduced to explain the physiological role of NGF in visual cortex plasticity. Although the mechanisms underlying NGF effects in the visual cortex are still under active investigation, current evidence implies that NGF, and perhaps other neurotrophins as well, may be useful for preventing or correcting inappropriate or anomalous connections in the visual cortex, and thus for treating visual dysfunctions such as amblyopia and strabismus.
Collapse
Affiliation(s)
- Q Gu
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
Abstract
After a biologic insult has impaired function of the developing central nervous system, recovery may not become apparent for years. Probability models adopted from the carcinogenesis, developmental neurobiology, learning decay, and stochastic process literatures are presented so that assumptions about apparent delays in the recovery process can be tested with data from longitudinal studies after a temporally circumscribed adverse event/exposure. This process of evaluating multiple models is exemplified with one data set. Nonlinear models of recovery are important because some children with early deficits first show improvement months to years later.
Collapse
Affiliation(s)
- A Leviton
- Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
43
|
Srivastava N, Grove J, Vernadakis A. Astrocyte differentiation is enhanced in chick embryos treated with ethanol during early neuroembryogenesis. Neurochem Res 1995; 20:985-9. [PMID: 8570019 DOI: 10.1007/bf00995550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we examined the effects of ethanol administered to chick embryos, on the maturation of astrocytes, using glutamine synthetase (GS) activity as an astrocyte marker. Ethanol (50 mM) was administered in ovo via the air sac, embryos were sacrificed at various days of embryonic development and GS activity was determined in cerebral hemispheres and cerebellum. We found that in both cerebral hemispheres and cerebellum, GS activity was higher in the ethanol-treated embryos, as compared to controls, during the embryonic periods, E6 to E10 in the cerebral hemispheres and E10 to E14 in the cerebellum. These periods are characterized by increased neuronal differentiation in these CNS areas. The increase in GS activity in the ethanol-treated embryos is speculated to reflect either a transient reactive gliosis and/or an enhancement in the differentiation of radial glia, immature glia, to more mature astrocytes.
Collapse
Affiliation(s)
- N Srivastava
- Department of Psychiatry, University of Colorado, Health Sciences Center, Denver 80206, USA
| | | | | |
Collapse
|
44
|
Agnati LF, Cortelli P, Pettersson R, Fuxe K. The concept of trophic units in the central nervous system. Prog Neurobiol 1995; 46:561-74. [PMID: 8545544 DOI: 10.1016/0301-0082(95)00017-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present paper proposes that trophic interplay among cells may represent the final common pathway for both genetic and environmental influences, and hence new criteria for the understanding of central nervous system (CNS) connectivity can be suggested. In particular, trophic signals may make up the common "language" through which genetic and epigenetic influences mold the CNS during development and the adult life. Furthermore, it will put forward the hypothesis that the developmental trophic interplay among cells leads to the formation of trophic units in the adult brain. A trophic unit is defined as the smallest set of cells, within the CNS, which act in a complementary way to support each other's trophism. The trophic units consist of neurons, glial cells, blood vessels, extracellular matrix (ECM). In particular, ECM gives support to the thin elongated cell processes and gives rise to selective chemical bridges between cell surfaces or between cell surfaces and the extracellular milieu. The trophic unit is a plastic device that not only assures neuronal survival, but also operates to adapt neuronal networks to new tasks by controlling extension of neuronal processes, synapse turnover and ECM characteristics. These plastic responses depend on the interplay of all the elements that constitute the trophic units. The concept of trophic unit may help to understand some features of neurodegenerative diseases, for example, the clustering of tangles in the neocortex and in the entorhinal cortex of Alzheimer's patients [corrected].
Collapse
Affiliation(s)
- L F Agnati
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Jobe TH, Fichtner CG, Port JD, Gaviria MM. Neuropoiesis: proposal for a connectionistic neurobiology. Med Hypotheses 1995; 45:147-63. [PMID: 8531838 DOI: 10.1016/0306-9877(95)90064-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Given current assumptions about the biology of neural organization, some connectionists believe that it may not be possible to accurately model the brain's neural architecture. We have identified five restrictive neurobiological dogmas that we believe have limited the exploration of more fundamental correlations between computational and biological neural networks. We postulate that: 1) the dendritic tree serves as a synapse storage device rather than a simple summation device; 2) connection strength between neurons depends on the number and location of synapses of similar weight, not on synapses of variable weights; 3) axonal sprouting occurs regularly in adult organisms; 4) the postsynaptic genome directly controls the presynaptic cell via mRNA, rather than indirectly by the expression of NCAMs, reverse neurotransmitters, etc.; 5) dendritic spines serve a trophic function by controlling development of new sprouts via a process we term retroduction. We entertain an alternative formulation of a computational neural element that is fully consistent with modern neuroscience research. We then show how our model neuron can learn under Hebbian conditions, and extend the model to explain non-Hebbian, one-trial learning. This work is significant because by stretching the theoretical boundaries of modern neuroscience, we show how connectionists can potentially create new, more biologically-based neural elements which, when, interconnected into networks, exhibit not only properties of existing backpropagation networks, but other physiological properties as well.
Collapse
Affiliation(s)
- T H Jobe
- Department of Psychiatry, University of Illinois at Chicago, USA
| | | | | | | |
Collapse
|
46
|
Conradt M, Storck T, Stoffel W. Localization of N-glycosylation sites and functional role of the carbohydrate units of GLAST-1, a cloned rat brain L-glutamate/L-aspartate transporter. ACTA ACUST UNITED AC 1995. [PMID: 7758463 DOI: 10.1111/j.1432-1033.1995.0682j.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The L-glutamate transporter GLAST-1 belongs to the newly discovered family of Na(+)-dependent, high-affinity glutamate transporters, which are involved in the regulation of synaptic excitatory neurotransmitter concentration in mammalian brain. The members of this family have a similar topological organisation with at least six transmembrane helices (TMHs) and two putative N-glycosylation sites located in the extracellular loop connecting TMH 3 and TMH 4. Besides these two conserved N-glycosylation motifs at Asn206 and Asn216, GLAST-1 possesses an additional one at Asn35. The putative N-glycosylation consensus motifs (Asn-Xaa-Ser/Thr) were deleted by replacement of Asn206 and/or Asn216 by Thr using site-directed mutagenesis (mutants N206T, N216T and N206,216T). The cDNAs encoding wild-type GLAST-1 and the three glycosylation-defective transport proteins were expressed in the Xenopus laevis oocyte system. Immunoprecipitation of the [35S]methionine-labeled and glycopeptidase-F-treated transporter molecules indicates that GLAST-1 is glycosylated at Asn206 and Asn216, whereas Asn35 remains unglycosylated. To assess a possible functional role of the two glycosylation sites wild-type and glycosylation-deficient GLAST-1 were expressed in Xenopus oocytes and characterized functionally by using the whole-cell voltage-clamp technique. The results prove that N-glycosylation has no impact on the transport activity of GLAST-1.
Collapse
Affiliation(s)
- M Conradt
- Institute of Biochemistry, Medical Faculty, University of Cologne, Germany
| | | | | |
Collapse
|
47
|
Conradt M, Storck T, Stoffel W. Localization of N-glycosylation sites and functional role of the carbohydrate units of GLAST-1, a cloned rat brain L-glutamate/L-aspartate transporter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:682-7. [PMID: 7758463 DOI: 10.1111/j.1432-1033.1995.tb20514.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The L-glutamate transporter GLAST-1 belongs to the newly discovered family of Na(+)-dependent, high-affinity glutamate transporters, which are involved in the regulation of synaptic excitatory neurotransmitter concentration in mammalian brain. The members of this family have a similar topological organisation with at least six transmembrane helices (TMHs) and two putative N-glycosylation sites located in the extracellular loop connecting TMH 3 and TMH 4. Besides these two conserved N-glycosylation motifs at Asn206 and Asn216, GLAST-1 possesses an additional one at Asn35. The putative N-glycosylation consensus motifs (Asn-Xaa-Ser/Thr) were deleted by replacement of Asn206 and/or Asn216 by Thr using site-directed mutagenesis (mutants N206T, N216T and N206,216T). The cDNAs encoding wild-type GLAST-1 and the three glycosylation-defective transport proteins were expressed in the Xenopus laevis oocyte system. Immunoprecipitation of the [35S]methionine-labeled and glycopeptidase-F-treated transporter molecules indicates that GLAST-1 is glycosylated at Asn206 and Asn216, whereas Asn35 remains unglycosylated. To assess a possible functional role of the two glycosylation sites wild-type and glycosylation-deficient GLAST-1 were expressed in Xenopus oocytes and characterized functionally by using the whole-cell voltage-clamp technique. The results prove that N-glycosylation has no impact on the transport activity of GLAST-1.
Collapse
Affiliation(s)
- M Conradt
- Institute of Biochemistry, Medical Faculty, University of Cologne, Germany
| | | | | |
Collapse
|
48
|
Canady KS, Olavarria JF, Rubel EW. Reduced retinal activity increases GFAP immunoreactivity in rat lateral geniculate nucleus. Brain Res 1994; 663:206-14. [PMID: 7874503 DOI: 10.1016/0006-8993(94)91265-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynamic regulation of astrocytic processes by the electrical activity of local neurons has been previously described in chick cochlear nucleus. The present study extends this observation by showing that astrocytes in the rat lateral geniculate nucleus (LGN) also increase their immunoreactivity for glial fibrillary acidic protein (GFAP) soon after deprivation of afferent visual neuronal activity. Within 6 h of enucleation, which eliminates a major source of afferent input to the contralateral LGN, GFAP immunoreactivity increases relative to the ipsilateral LGN. A similar increase in GFAP immunoreactivity can be induced by intraocular injections of tetrodotoxin, demonstrating that a reversible manipulation of optic nerve electrical activity is sufficient to regulate LGN astrocytes. This rapid response to activity deprivation is less dramatic than the gliotic reaction observed 3 weeks following deafferentation, by which time afferent terminals have degenerated. These results support the notion that regulation of astrocytic processes by neural activity may play an important role in activity-dependent synaptic regulations in the various sensory systems of vertebrates.
Collapse
Affiliation(s)
- K S Canady
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle 98195
| | | | | |
Collapse
|
49
|
Nixdorf-Bergweiler BE, Albrecht D, Heinemann U. Developmental changes in the number, size, and orientation of GFAP-positive cells in the CA1 region of rat hippocampus. Glia 1994; 12:180-95. [PMID: 7851987 DOI: 10.1002/glia.440120304] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in extracellular potassium concentration as measured with ion-selective microelectrodes revealed abnormally large accumulations in the hippocampus during postnatal development. While rises in [K+]o during stimulation of the Schaffer collaterals were limited to about 12 mM in adult animals, identical stimulations elicited rises to levels as large as 18 mM in juveniles. Since astrocytes are believed to play an important role in K+ homeostasis, we studied the postnatal development of astrocytes in the CA1 region of rat hippocampus in four age groups using a polyclonal antibody against glial fibrillary acidic protein (GFAP). The main proliferation of GFAP-positive cells (GFAPpc) occurred in all laminae between postnatal days 8 and 16. The number of GFAP-positive astrocytes per unit area was reached in stratum lacunosum-moleculare and stratum oriens at about 2 weeks and in stratum radiatum at about 3 weeks of age. During further development--at the age of 24 days--the orientation of individual astrocytes in stratum radiatum became polar with an orientation almost perpendicular to stratum pyramidale. This was revealed by an analysis based on determination of the quotients between the angular orientation of the processes of single individual GFAP-positive cells. When the crossing points of all glial processes over vertical and horizontal grid lines were determined and respective quotients evaluated, the same development towards a perpendicular orientation of astrocytes was noted in stratum radiatum. The same approach revealed a transient orientation parallel to the fissure in stratum lacunosum-moleculare around day 24. Camera lucida drawings of GFAPpc in stratum radiatum revealed that astrocytes became larger during the first three postnatal weeks, followed by a reduction of various parameters (e.g., cell extension, branching pattern) until adulthood. The observed developmental changes of astroglial cells may contribute to the known delayed maturation of potassium regulation in rat hippocampus.
Collapse
|
50
|
Dierig S. Extending the neuron doctrine: Carl Ludwig Schleich (1859-1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. Trends Neurosci 1994; 17:449-52. [PMID: 7531884 DOI: 10.1016/0166-2236(94)90129-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the term 'neuroglia' was called into existence in 1856, the vast majority of neuroscientists dispensed with an integration of glial function into nervous system operation. In the shadow of the neuron doctrine, glial cells have been regarded as a static and functionally passive filling matter. Currently, new insights in glial physiology and glia-neuron interactions increasingly force a radical revision of this view. Meanwhile, some neurobiologists even profess a dynamic and active role for glial cells in the function of the nervous system. As early as the 1890s, Carl Ludwig Schleich (1859-1922), a surgeon and anaesthetist in Berlin, pleaded for this.
Collapse
Affiliation(s)
- S Dierig
- University of Konstanz, Dept of Biology, Germany
| |
Collapse
|