1
|
Schutter DJLG, Doherty D, Phillips JO, Weiss AH, Maas RPPWM. Neuropsychiatric Symptoms in Rhombencephalosynapsis: A Clinical Report. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2671-2678. [PMID: 39230845 PMCID: PMC11585500 DOI: 10.1007/s12311-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Rhombencephalosynapsis (RES) is a hindbrain malformation characterized by a missing cerebellar vermis with apposition or fusion of the cerebellar hemispheres. The present clinical case report provides a comprehensive, longitudinal overview of cognitive and affective manifestations in a 22-year-old patient with RES. The patient shows clinical signs of emotional reactivity and dysregulation, impulsivity, and impairments in executive functioning since early childhood. These features fit the constellation of neuropsychiatric symptoms observed in patients with congenital and acquired abnormalities of the posterior vermis. It is proposed that patients with RES may show affective and cognitive difficulties which increase their vulnerability to psychological stress and risk of developing mental health issues.
Collapse
Affiliation(s)
- Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht, 3584 CS, the Netherlands.
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, USA
| | - James O Phillips
- Department of Otolaryngology, University of Washington School of Medicine, Seattle, USA
| | - Avery H Weiss
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, USA
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
3
|
Patel R, Jain NS. Stimulation of central histaminergic transmission attenuates diazepam-induced motor disturbance on rota-rod and beam walking tests in mice. Behav Pharmacol 2024; 35:351-365. [PMID: 39051902 DOI: 10.1097/fbp.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Diazepam administration has been shown to influence the release of histamine in various brain areas involved in motor behavior. Therefore, the present study explored the plausible regulatory role of the central histaminergic system in diazepam-induced deficits in motor performance in mice using the rota-rod and beam walking tests. In this study, several doses of diazepam (0.5, 1, 2, and 3 mg/kg, i.p.) were assessed in mice for changes in motor performance on the rota-rod and beam walking test. In addition, the brain histamine levels were determined after diazepam administration, and the diazepam-induced motor deficits were assessed in mice, pretreated centrally (intracerebroventricular) with histaminergic agents such as histamine (0.1, 10 µg), histamine precursor (L-histidine: 0.1, 2.5 µg), histamine neuronal releaser/H 3 receptor antagonist (thioperamide: 0.5, 10 µg), H 1 and H 2 receptor agonist [2-(3-trifluoromethylphenyl) histamine (FMPH: 0.1, 6.5 µg; amthamine: 0.1, 5 µg)/antagonist (H 1 : cetirizine 0.1 µg) and (H 2 : ranitidine: 50 µg)]. Results indicate that mice treated with diazepam at doses 1, 2 mg/kg, i.p. significantly increased the brain histamine levels. Moreover, in mice pretreated with histaminergic transmission-enhancing agents, the diazepam (2 mg/kg, i.p.)-induced motor incoordination was significantly reversed. Contrastingly, diazepam (1 mg/kg, i.p.) in its subeffective dose produced significant motor deficits in mice preintracerebroventricular injected with histamine H 1 and H 2 receptor antagonists on both the employed tests. Therefore, it is postulated that endogenous histamine operates via H 1 and H 2 receptor activation to alleviate the motor-impairing effects of diazepam.
Collapse
Affiliation(s)
- Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, Chhattisgarh, India
| | | |
Collapse
|
4
|
Sudo Y, Ota J, Takamura T, Kamashita R, Hamatani S, Numata N, Chhatkuli RB, Yoshida T, Takahashi J, Kitagawa H, Matsumoto K, Masuda Y, Nakazato M, Sato Y, Hamamoto Y, Shoji T, Muratsubaki T, Sugiura M, Fukudo S, Kawabata M, Sunada M, Noda T, Tose K, Isobe M, Kodama N, Kakeda S, Takahashi M, Takakura S, Gondo M, Yoshihara K, Moriguchi Y, Shimizu E, Sekiguchi A, Hirano Y. Comprehensive elucidation of resting-state functional connectivity in anorexia nervosa by a multicenter cross-sectional study. Psychol Med 2024; 54:2347-2360. [PMID: 38500410 DOI: 10.1017/s0033291724000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
BACKGROUND Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.
Collapse
Affiliation(s)
- Yusuke Sudo
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Chiba University, Chiba, Japan
- Department of Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Junko Ota
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tsunehiko Takamura
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Rio Kamashita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Sayo Hamatani
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Research Center for Child Mental Development, Fukui University, Eiheizi, Japan
| | - Noriko Numata
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Ritu Bhusal Chhatkuli
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Jumpei Takahashi
- Department of Psychiatry, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Hitomi Kitagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Michiko Nakazato
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Yasuhiro Sato
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yumi Hamamoto
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, UK
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tomotaka Shoji
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Internal Medicine, Nagamachi Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomohiko Muratsubaki
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoaki Sugiura
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Cognitive Sciences Lab, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shin Fukudo
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Momo Sunada
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Noda
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keima Tose
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Isobe
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Kodama
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masatoshi Takahashi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Motoharu Gondo
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Sleep-Wake Disorders, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Center for Eating Disorder Research and Information, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| |
Collapse
|
5
|
Urbini N, Siciliano L, Olivito G, Leggio M. Unveiling the role of cerebellar alterations in the autonomic nervous system: a systematic review of autonomic dysfunction in spinocerebellar ataxias. J Neurol 2023; 270:5756-5772. [PMID: 37749264 PMCID: PMC10632228 DOI: 10.1007/s00415-023-11993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Autonomic dysfunctions are prevalent in several cerebellar disorders, but they have not been systematically investigated in spinocerebellar ataxias (SCAs). Studies investigating autonomic deficits in SCAs are fragmented, with each one focusing on different autonomic dysfunctions and different SCA subtypes. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, we conducted a systematic review of the literature to assess the presence of autonomic dysfunctions in various SCAs. PubMed served as the primary database, and the Rayyan web application was employed for study screening. RESULTS We identified 46 articles investigating at least one autonomic function in patients with SCA. The results were analyzed and categorized based on the genetic subtype of SCA, thereby characterizing the specific autonomic deficits associated with each subtype. CONCLUSION This review confirms the presence of autonomic dysfunctions in various genetic subtypes of SCA, underscoring the cerebellum's role in the autonomic nervous system (ANS). It also emphasizes the importance of investigating these functions in clinical practice.
Collapse
Affiliation(s)
- Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy.
| | - Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| |
Collapse
|
6
|
Schmahmann JD. Ferdinando Rossi Lecture: the Cerebellar Cognitive Affective Syndrome-Implications and Future Directions. CEREBELLUM (LONDON, ENGLAND) 2023; 22:947-953. [PMID: 35948744 DOI: 10.1007/s12311-022-01456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies demonstrate the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of the cerebellar incorporation into circuits that subserve cognition and emotion enables deeper understanding and improved care of our patients with cerebellar ataxias and novel cerebellar-based approaches to therapy in neuropsychiatry.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Suite 2000, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Zheng J, Yang Q, Makris N, Huang K, Liang J, Ye C, Yu X, Tian M, Ma T, Mou T, Guo W, Kikinis R, Gao Y. Three-Dimensional Digital Reconstruction of the Cerebellar Cortex: Lobule Thickness, Surface Area Measurements, and Layer Architecture. CEREBELLUM (LONDON, ENGLAND) 2023; 22:249-260. [PMID: 35286708 PMCID: PMC9470778 DOI: 10.1007/s12311-022-01390-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
The cerebellum is ontogenetically one of the first structures to develop in the central nervous system; nevertheless, it has been only recently reconsidered for its significant neurobiological, functional, and clinical relevance in humans. Thus, it has been a relatively under-studied compared to the cerebrum. Currently, non-invasive imaging modalities can barely reach the necessary resolution to unfold its entire, convoluted surface, while only histological analyses can reveal local information at the micrometer scale. Herein, we used the BigBrain dataset to generate area and point-wise thickness measurements for all layers of the cerebellar cortex and for each lobule in particular. We found that the overall surface area of the cerebellar granular layer (including Purkinje cells) was 1,732 cm2 and the molecular layer was 1,945 cm2. The average thickness of the granular layer is 0.88 mm (± 0.83) and that of the molecular layer is 0.32 mm (± 0.08). The cerebellum (both granular and molecular layers) is thicker at the depth of the sulci and thinner at the crowns of the gyri. Globally, the granular layer is thicker in the lateral-posterior-inferior region than the medial-superior regions. The characterization of individual layers in the cerebellum achieved herein represents a stepping-stone for investigations interrelating structural and functional connectivity with cerebellar architectonics using neuroimaging, which is a matter of considerable relevance in basic and clinical neuroscience. Furthermore, these data provide templates for the construction of cerebellar topographic maps and the precise localization of structural and functional alterations in diseases affecting the cerebellum.
Collapse
Affiliation(s)
- Junxiao Zheng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qinzhu Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry, Neurology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, USA
| | - Kaibin Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jianwen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Chenfei Ye
- Pengcheng Lab, Shenzhen, Guangdong, China
| | - Xiaxia Yu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Mu Tian
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Ting Ma
- Pengcheng Lab, Shenzhen, Guangdong, China
- Department of Electronic and Information Engineering, Harbin Institute of Technology Campus, Shenzhen, Guangdong, China
| | - Tian Mou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenlong Guo
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Yi Gao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
- Pengcheng Lab, Shenzhen, Guangdong, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
da Silva GN, Seiffert N, Tovote P. Cerebellar contribution to the regulation of defensive states. Front Syst Neurosci 2023; 17:1160083. [PMID: 37064160 PMCID: PMC10102664 DOI: 10.3389/fnsys.2023.1160083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Despite fine tuning voluntary movement as the most prominently studied function of the cerebellum, early human studies suggested cerebellar involvement emotion regulation. Since, the cerebellum has been associated with various mood and anxiety-related conditions. Research in animals provided evidence for cerebellar contributions to fear memory formation and extinction. Fear and anxiety can broadly be referred to as defensive states triggered by threat and characterized by multimodal adaptations such as behavioral and cardiac responses integrated into an intricately orchestrated defense reaction. This is mediated by an evolutionary conserved, highly interconnected network of defense-related structures with functional connections to the cerebellum. Projections from the deep cerebellar nucleus interpositus to the central amygdala interfere with retention of fear memory. Several studies uncovered tight functional connections between cerebellar deep nuclei and pyramis and the midbrain periaqueductal grey. Specifically, the fastigial nucleus sends direct projections to the ventrolateral PAG to mediate fear-evoked innate and learned freezing behavior. The cerebellum also regulates cardiovascular responses such as blood pressure and heart rate-effects dependent on connections with medullary cardiac regulatory structures. Because of the integrated, multimodal nature of defensive states, their adaptive regulation has to be highly dynamic to enable responding to a moving threatening stimulus. In this, predicting threat occurrence are crucial functions of calculating adequate responses. Based on its role in prediction error generation, its connectivity to limbic regions, and previous results on a role in fear learning, this review presents the cerebellum as a regulator of integrated cardio-behavioral defensive states.
Collapse
Affiliation(s)
- Gabriela Neubert da Silva
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Nina Seiffert
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Philip Tovote
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Philip Tovote,
| |
Collapse
|
9
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
10
|
Sahib AK, Loureiro JR, Vasavada M, Anderson C, Kubicki A, Wade B, Joshi SH, Woods RP, Congdon E, Espinoza R, Narr KL. Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychol Med 2022; 52:2596-2605. [PMID: 33267926 PMCID: PMC9647551 DOI: 10.1017/s0033291720004560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized. METHODS Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status. RESULTS Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern. CONCLUSION Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.
Collapse
Affiliation(s)
- Ashish K. Sahib
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R. Loureiro
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Megha Vasavada
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Anderson
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoni Kubicki
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin Wade
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Shantanu H. Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P. Woods
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Wu J, Li T, Mao G, Cha X, Fei S, Miao B. The involvement of Pellino-1 downregulation in the modulation of visceral hypersensitivity via the TLR4/NF-κB pathway in the rat fastigial nucleus. Neurosci Lett 2022; 787:136815. [PMID: 35901910 DOI: 10.1016/j.neulet.2022.136815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Irritable bowel syndrome (IBS) is a common functional bowel disorder whose key characteristics include chronic visceral hypersensitivity (CVH) and abnormal brain-gut interactions. Pellino-1 is an E3 ubiquitin ligase, mediating the degradation or modification of targeted proteins. Some brain regions, such as the fastigial nucleus (FN), may play important roles in CVH; however, the molecular mechanism underlying this phenomenon is not clear. In this study, we assessed the roles of Pellino-1 within the FN in modulating VH by generating a colorectal distention (CRD) model in male Sprague-Dawley rats. Our results showed that the downregulation of Pellino-1 in the fastigial nucleus (FN) was involved in the modulation of visceral hypersensitivity. The expression of Pellino-1 was downregulated in the FN of adult CRD rats compared with control rats, whereas TLR4 and NF-κB were upregulated in the CRD model. To overexpress Pellino-1, a lentivirus specifically expressing Pellino-1 and green fluorescent protein was administered into the FN. The overexpression of Pellino-1 increased the visceral sensitivity of CRD rats, and the expression of TLR4 and NF-κB increased further. After administration of TAK-242 (a specific TLR4 inhibitor), the visceral response to overexpression of Pellino-1 was reversed. Overall, the findings indicated the involvement of the FN in the development of CVH; the downregulation of Pellino-1 in the FN acted through the TLR4/NF-κB pathway to protect against CVH in a CRD rat model.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Tao Li
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Xiuli Cha
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Sujuan Fei
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Bei Miao
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
12
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
13
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
14
|
Adamaszek M, Cattaneo Z, Ciricugno A, Chatterjee A. The Cerebellum and Beauty: The Impact of the Cerebellum in Art Experience and Creativity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:213-233. [DOI: 10.1007/978-3-030-99550-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Senapati LK, Patnaik S, Samanta P, Kar SP, Dash S, Mishra J. Comparison of Cardiac Autonomic Function in Type 2 Spinocerebellar Ataxia With Normal Control Using Heart Rate Variability as a Tool: A Cross-Sectional Study in Eastern India. Cureus 2021; 13:e20058. [PMID: 34873557 PMCID: PMC8632594 DOI: 10.7759/cureus.20058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) is a disease that refers to a category of inherited ataxias that are characterized by degenerative alterations in the cerebellum, pons, and spinocerebellar tracts. There are several different varieties of SCA and they are classified based on the mutant (altered) gene that causes the disease. OBJECTIVE To analyze the cardiovascular autonomic regulation in patients with type-2 spinocerebellar ataxia (SCA-2) from the heart rate variability (HRV) of 20 minutes resting electrocardiogram (ECG) and compare with the age and gender-matched controls. MATERIALS AND METHODS HRV of 27 type-2 spinocerebellar ataxia patients was calculated offline from the resting ECG recording and compared with 23 age and gender-matched controls. The HRV was analyzed by HRV software module MLS 310. The frequency and time domain parameters were computed and compared. RESULT Type-2 spinocerebellar ataxia patients have significantly low HRV and parasympathetic activity at rest compared to normal control. The total power in SCA-2 is 13491.63 ± 7660.77 ms2 and the normal control is 21784.76 ± 11008.67 ms2. High-frequency power (HF) which is a marker of parasympathetic activity in SCA-2 is 3823.1 ± 364 ms2 and in normal control is 9006.1 ± 920.64 ms2. The standard deviation of all NN intervals (SDNN), the square root of the mean-squared differences of successive intervals (RMSSD), spectral interval, and delta NN is significantly low in SCA-2. CONCLUSION There is decreased parasympathetic tone and low HRV in SCA-2 as compared to normal controls.
Collapse
Affiliation(s)
- Laxman K Senapati
- Department of Anesthesia, Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT, deemed to be University), Bhubaneswar, IND
| | - Sudipta Patnaik
- Department of Physiology, Sriram Chandra Bhanja Medical College, Utkal University, Bhubaneswar, IND
| | - Priyadarsini Samanta
- Department of Physiology, Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT, deemed to be University), Bhubaneswar, IND
| | - Sambit P Kar
- Research, School of Electronics Engineering, Kalinga Institute of Industrial Technology (KIIT, deemed to be University), Bhubaneswar, IND
| | - Santosh Dash
- Department of Neurology, Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT, deemed to be University), Bhubaneswar, IND
| | - Jayanti Mishra
- Department of Physiology, Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT, deemed to be University), Bhubaneswar, IND
| |
Collapse
|
16
|
García-Flores LA, Green CL. Of Mice and Men: Impacts of Calorie Restriction on Metabolomics of the Cerebellum. J Gerontol A Biol Sci Med Sci 2021; 76:547-551. [PMID: 33560408 PMCID: PMC8427710 DOI: 10.1093/gerona/glab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/14/2022] Open
Abstract
The main purpose of research in mice is to explore metabolic changes in animal models and then predict or propose potential translational benefits in humans. Although some researchers in the brain research field have mentioned that the mouse experiments results still lack the complex neuroanatomy of humans, caution is required to interpret the findings. In mice, we observed in article seventeenth of the series of the effects of graded levels of calorie restriction, metabolomic changes in the cerebellum indicated activation of hypothalamocerebellar connections driven by hunger responses. Therefore, the purpose of the current perspective is to set this latest paper into a wider context of the physiological, behavioral, and molecular changes seen in these mice and to compare and contrast them with previous human studies.
Collapse
Affiliation(s)
- Libia Alejandra García-Flores
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, USA
| |
Collapse
|
17
|
Browning KN, Carson KE. Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence. Nutrients 2021; 13:nu13030908. [PMID: 33799575 PMCID: PMC7998662 DOI: 10.3390/nu13030908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function with specific reference to the regulation of food intake.
Collapse
|
18
|
Schmahmann JD. Emotional disorders and the cerebellum: Neurobiological substrates, neuropsychiatry, and therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:109-154. [PMID: 34389114 DOI: 10.1016/b978-0-12-822290-4.00016-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative, and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher-order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies have demonstrated the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of cerebellar incorporation into circuits that subserve cognition and emotion mandates a deeper understanding of the cerebellum by practitioners in behavioral neurology and neuropsychiatry because it impacts the understanding and diagnosis of disorders of emotion and intellect and has potential for novel cerebellar-based approaches to therapy.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Selective Cerebellar Atrophy Associates with Depression and Fatigue in the Early Phases of Relapse-Onset Multiple Sclerosis. THE CEREBELLUM 2020; 19:192-200. [PMID: 31898280 DOI: 10.1007/s12311-019-01096-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebellar dysfunctions have been associated to depressive disorders and cognitive impairment in neurodegenerative diseases. The objective is to analyze the associations between cerebellar atrophy, depression, and fatigue in the early phases of relapse-onset multiple sclerosis (RRMS). Sixty-one RRMS patients and 50 healthy controls (HC) were enrolled and clinically evaluated by means of expanded disability status scale (EDSS), Rao's brief repeatable battery of neuropsychological tests (BRB-NT), Delis-Kaplan executive function system sorting test, beck depression inventory II (BDI-II), and fatigue severity scale (FSS). The relationships between MRI variables and clinical scores were assessed. Depressed RRMS (dRRMS) had significantly lower Vermis Crus I volume compared with not depressed RRMS (ndRRMS) (p = 0.009). Vermis Crus I volume was lower in dRRMS suffering from fatigue than in ndRRMS without fatigue (p = 0.01). The hierarchical regression models which included demographic and clinical data (age, sex, and disease duration, FSS or BDI-II) and cerebellar volumes disclosed that cerebellar lobule right V atrophy explained an increase of 4% of the variability in FSS (p = 0.25) and Vermis Crus I atrophy explained an increase of 6% of variability in BDI-II (p = 0.049). Since clinical onset, atrophy of specific cerebellar lobules associates with important clinical aspects of RRMS. Cerebellar pathology may be one of the determinants of fatigue and depression that contribute to worsen disability in RRMS.
Collapse
|
20
|
Chen EY, Zeffiro TA. Hunger and BMI modulate neural responses to sweet stimuli: fMRI meta-analysis. Int J Obes (Lond) 2020; 44:1636-1652. [PMID: 32555497 PMCID: PMC8023765 DOI: 10.1038/s41366-020-0608-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Consuming sweet foods, even when sated, can lead to unwanted weight gain. Contextual factors, such as longer time fasting, subjective hunger, and body mass index (BMI), may increase the likelihood of overeating. Nevertheless, the neural mechanisms underlying these moderating influences on energy intake are poorly understood. METHODS We conducted both categorical meta-analysis and meta-regression of factors modulating neural responses to sweet stimuli, using data from 30 functional magnetic resonance imaging (fMRI) articles incorporating 39 experiments (N = 995) carried out between 2006 and 2019. RESULTS Responses to sweet stimuli were associated with increased activity in regions associated with taste, sensory integration, and reward processing. These taste-evoked responses were modulated by context. Longer fasts were associated with higher posterior cerebellar, thalamic, and striatal activity. Greater self-reported hunger was associated with higher medial orbitofrontal cortex (OFC), dorsal striatum, and amygdala activity and lower posterior cerebellar activity. Higher BMI was associated with higher posterior cerebellar and insular activity. CONCLUSIONS Variations in fasting time, self-reported hunger, and BMI are contexts associated with differential sweet stimulus responses in regions associated with reward processing and homeostatic regulation. These results are broadly consistent with a hierarchical model of taste processing. Hunger, but not fasting or BMI, was associated with sweet stimulus-related OFC activity. Our findings extend existing models of taste processing to include posterior cerebellar regions that are associated with moderating effects of both state (fast length and self-reported hunger) and trait (BMI) variables.
Collapse
Affiliation(s)
- Eunice Y Chen
- TEDP (Temple Eating Disorders Program), Department of Psychology, Temple University, 1701 N 13th Street, Philadelphia, PA, 19122, USA.
| | | |
Collapse
|
21
|
Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26:3182-3200. [PMID: 32684734 PMCID: PMC7336328 DOI: 10.3748/wjg.v26.i23.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used in China for thousands of years and has become more widely accepted by doctors and patients around the world. A large number of clinical studies and animal experiments have confirmed that acupuncture has a benign adjustment effect on gastrointestinal (GI) movement; however, the mechanism of this effect is unclear, especially in terms of neural mechanisms, and there are still many areas that require further exploration. This article reviews the recent data on the neural mechanism of acupuncture on GI movements. We summarize the neural mechanism of acupuncture on GI movement from four aspects: acupuncture signal transmission, the sympathetic and parasympathetic nervous system, the enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
22
|
Jackman SL, Chen CH, Offermann HL, Drew IR, Harrison BM, Bowman AM, Flick KM, Flaquer I, Regehr WG. Cerebellar Purkinje cell activity modulates aggressive behavior. eLife 2020; 9:e53229. [PMID: 32343225 PMCID: PMC7202893 DOI: 10.7554/elife.53229] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Although the cerebellum is traditionally associated with balance and motor function, it also plays wider roles in affective and cognitive behaviors. Evidence suggests that the cerebellar vermis may regulate aggressive behavior, though the cerebellar circuits and patterns of activity that influence aggression remain unclear. We used optogenetic methods to bidirectionally modulate the activity of spatially-delineated cerebellar Purkinje cells to evaluate the impact on aggression in mice. Increasing Purkinje cell activity in the vermis significantly reduced the frequency of attacks in a resident-intruder assay. Reduced aggression was not a consequence of impaired motor function, because optogenetic stimulation did not alter motor performance. In complementary experiments, optogenetic inhibition of Purkinje cells in the vermis increased the frequency of attacks. These results suggest Purkinje cell activity in the cerebellar vermis regulates aggression, and further support the importance of the cerebellum in driving affective behaviors that could contribute to neurological disorders.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | | | | | - Iain R Drew
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Bailey M Harrison
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Anna M Bowman
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Katelyn M Flick
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
23
|
Çavdar S, Esen Aydın A, Algin O, Aydoğmuş E. Fiber dissection and 3-tesla diffusion tensor tractography of the superior cerebellar peduncle in the human brain: emphasize on the cerebello-hypthalamic fibers. Brain Struct Funct 2019; 225:121-128. [PMID: 31776651 DOI: 10.1007/s00429-019-01985-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
Experimental studies in various species using tract-tracing techniques showed clear evidence of the presence of cerebello-hypothalamic projections. However, these connections were not clearly described in humans. In the present study we aimed to describe the direct cerebello-hypothalamic connections within the superior cerebellar peduncle (SCP) using fiber dissection techniques on cadaveric brains and diffusion tensor tractography (DTI) in healthy adults. Fiber dissection was performed in a stepwise manner from lateral to medial on 6 cerebral hemispheres. The gray matter was decorticate and fiber tracts were revealed. The SCP was exposed and the fibers were traced distally using wooden spatulas. The MRI examinations were performed in seven cases using 3-tesla 3T unit. The direct cerebello-hyothalamic pathways were exposed using high-spatial-resolution DTI. The present study using both fiber dissection and DTI in adult human showed direct cerebello-hypothalamic fibers within the SCP. The SCP fibers course anterolateral to the cerebral aqueduct reaching the level of the red nucleus of the midbrain. The majority of the fibers crosses over and reached the contralateral diencephalic structures and some of these fibers terminated at the contralateral anterior hypothalamic area. Some of the uncrossed SCP fibers reached the ipsilateral diencephalic structures and terminated at the ipsilateral posterior hypothalamic area. We further reported the close relationship of the SCP with the MCP, lateral lemniscus, red nucleus and substantia nigra. In the DTI evaluations of the SCP we exposed unilateral left cerebello-hypothalamic fibers in five cases and bilateral cerebello-hypothalamic fibers in two cases. The present study demonstrates the direct cerebello-hypothalamic connections within the SCP for the first time using fiber dissection and DTI technique in the human brain. The detailed knowledge of the cerebello-hypothalamic fibers can outline the unexplained deficit that may occur during regional surgery.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Sarıyer, 34450, Istanbul, Turkey.
| | - Ayşegül Esen Aydın
- Department of Neurosurgery, Bakırköy Ruh ve Sinir Hastanesi, Istanbul, Turkey
| | - Oktay Algin
- Radiology Department, City Hospital, Yıldırım Beyazıt University, Ankara, Turkey.,National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Evren Aydoğmuş
- Department of Neurosurgery, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
24
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
25
|
Li Y, Zhang X, Chen L, Yang B, Sui R. Cerebellar fastigial nucleus is involved in post-stroke depression through direct cerebellar-hypothalamic GABAergic and glutamatergic projections. Exp Ther Med 2019; 18:2885-2892. [PMID: 31555378 PMCID: PMC6755376 DOI: 10.3892/etm.2019.7913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate whether the cerebellar fastigial nucleus (FN) is involved in post-stroke depression (PSD), and to observe the effect of direct cerebellar-hypothalamic γ-aminobutyric acid (GABA)ergic and glutamatergic projections on PSD, in order to understand the mechanisms underlying the cerebellar modulation of mood and emotion. Healthy Sprague-Dawley rats were randomly divided into five groups: Sham-operated, Stroke, PSD, FN lesion, and decussation of superior cerebellar peduncle (XSCP) lesion groups. Sham surgery was performed in animals of the Sham group (n=6). The rats in the other four groups (n=6 for each group) underwent middle cerebral artery occlusion. The rats were examined twice a week in an open field test. In addition, the expression of cytokines in hippocampal tissues, and the content of glutamate and GABA in the lateral hypothalamic area (LHA) were measured. The results showed that scores corresponding to the behavioral signs of depression were decreased in the PSD, FN lesion and XSCP lesion groups. In addition, the mRNA levels of tumor necrosis factor-α, interleukin (IL)-6, and IL-1β in the hippocampus of the PSD, FN lesion and XSCP lesion groups were significantly increased. The GABA and glutamate content in the LHA were also decreased significantly in the PSD, FN lesion and XSCP lesion groups. Taken together, the findings of the present study indicated that the cerebellar FN may be involved in PSD through the direct cerebellar-hypothalamic glutamatergic and GABAergic projections.
Collapse
Affiliation(s)
- Yuan Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xin Zhang
- Department of Pharmacy, General Hospital of Fushun Mining Bureau, Fushun, Liaoning 113008, P.R. China
| | - Lixin Chen
- Nursing College of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Bo Yang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
26
|
Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019; 132:104589. [PMID: 31454549 DOI: 10.1016/j.nbd.2019.104589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-β, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRβ, αSMA). Amyloid-β expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRβ and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRβ/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.
Collapse
|
27
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
28
|
Abstract
Cerebellar neuroscience has undergone a paradigm shift. The theories of the universal cerebellar transform and dysmetria of thought and the principles of organization of cerebral cortical connections, together with neuroanatomical, brain imaging, and clinical observations, have recontextualized the cerebellum as a critical node in the distributed neural circuits subserving behavior. The framework for cerebellar cognition stems from the identification of three cognitive representations in the posterior lobe, which are interconnected with cerebral association areas and distinct from the primary and secondary cerebellar sensorimotor representations linked with the spinal cord and cerebral motor areas. Lesions of the anterior lobe primary sensorimotor representations produce dysmetria of movement, the cerebellar motor syndrome. Lesions of the posterior lobe cognitive-emotional cerebellum produce dysmetria of thought and emotion, the cerebellar cognitive affective/Schmahmann syndrome. The notion that the cerebellum modulates thought and emotion in the same way that it modulates motor control advances the understanding of the mechanisms of cognition and opens new therapeutic opportunities in behavioral neurology and neuropsychiatry.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA;
| | - Xavier Guell
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; .,Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA
| | - Mark A Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
29
|
English LK, Masterson TD, Fearnbach SN, Tanofsky-Kraff M, Fisher J, Wilson SJ, Rolls BJ, Keller KL. Increased brain and behavioural susceptibility to portion size in children with loss of control eating. Pediatr Obes 2019; 14:e12436. [PMID: 30019382 PMCID: PMC7086471 DOI: 10.1111/ijpo.12436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Portion size influences intake (i.e. the portion size effect [PSE]), yet determinants of susceptibility to the PSE are unclear. OBJECTIVE We tested whether children who reported an episode of loss of control (LOC) eating over the last 3 months would be more susceptible to the PSE and would show differential brain responses to food cues compared with children with no-LOC. METHODS Across five sessions, children (n = 47; 7-10 years) consumed four test meals at 100%, 133%, 167% and 200% conditions for portion size and completed a functional magnetic resonance imaging scan while viewing pictures of foods varied by portion size and energy density (ED). Incidence of LOC over the past 3 months was self-reported. Random coefficient models were tested for differences in the shape of the PSE curve by LOC status. A whole-brain analysis was conducted to determine response to food cues during the functional magnetic resonance imaging. RESULTS Reported LOC (n = 13) compared with no-LOC (n = 34) was associated with increased susceptibility to the PSE, as evidenced by a positive association with the linear slope (P < 0.005), and negative association with the quadratic slope (P < 0.05) of the intake curve. Children who reported LOC compared with no-LOC showed increased activation in the left cerebellum to small relative to large portions (P < 0.01) and right cerebellum to High-ED relative to Low-ED food cues (P < 0.01). CONCLUSION Children who reported LOC were more susceptible to the PSE and showed alterations in food-cue processing in the cerebellum, a hindbrain region implicated in satiety signalling.
Collapse
Affiliation(s)
- L. K. English
- Department of Nutritional Science, The Pennsylvania State University, State College, PA, USA
| | - T. D. Masterson
- Department of Nutritional Science, The Pennsylvania State University, State College, PA, USA
| | - S. N. Fearnbach
- Brain and Metabolism Imaging in Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - M. Tanofsky-Kraff
- Department of Medical and Clinical Psychology, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - J. Fisher
- Department of Social and Behavioral Sciences, Temple University, Philadelphia, PA, USA
| | - S. J. Wilson
- Department of Psychology, The Pennsylvania State University, State College, PA, USA
| | - B. J. Rolls
- Department of Nutritional Science, The Pennsylvania State University, State College, PA, USA
| | - K. L. Keller
- Department of Nutritional Science, The Pennsylvania State University, State College, PA, USA,Department of Food Science, The Pennsylvania State University, State College, PA, USA
| |
Collapse
|
30
|
Çavdar S, Özgür M, Kuvvet Y, Bay H, Aydogmus E. Cortical, subcortical and brain stem connections of the cerebellum via the superior and middle cerebellar peduncle in the rat. J Integr Neurosci 2018; 17:609-618. [PMID: 30056432 DOI: 10.3233/jin-180090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of cerebellum in coordination of somatic motor activity has been studied in detailed in various species. However, experimental and clinical studies have shown the involvement of the cerebellum with various visceral and cognitive functions via its vast connections with the central nervous system. The present study aims to define the cortical and subcortical and brain stem connections of the cerebellum via the superior (SCP) and middle (MCP) cerebellar peduncle using biotinylated dextran amine (BDA) and Fluoro-Gold (FG) tracer in Wistar albino rats. 14 male albino rats received 20-50-nl pressure injections of either FG or BDA tracer into the SCP and MCP. Following 7-10 days of survival period, the animals were processed according to the related protocol for two tracers. Labelled cells and axons were documented using light and fluorescence microscope. The SCP connects cerebellum to the insular and infralimbic cortices whereas, MCP addition to the insular cortex, it also connects cerebellum to the rhinal, primary sensory, piriform and auditory cortices. Both SCP and MCP connected the cerebellum to the ventral, lateral, posterior and central, thalamic nuclei. Additionally, SCP also connects parafasicular thalamic nucleus to the cerebellum. The SCP connects cerebellum to basal ganglia (ventral pallidum and clastrum) and limbic structures (amygdaloidal nuclei and bed nucleus of stria terminalis), however, the MCP have no connections with basal ganglia or limbic structures. Both the SCP and MCP densely connects cerebellum to various brainstem structures. Attaining the knowledge of the connections of the SCP and MCP is important for the diagnosis of lesions in the MCP and SCP and would deepen current understanding of the neuronal circuit of various diseases or lesions involving the SCP and MCP.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Merve Özgür
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Kuvvet
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Hüsniye Bay
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Evren Aydogmus
- Department of Neurosurgery, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
31
|
Çavdar S, Özgur M, Kuvvet Y, Bay HH. The Cerebello-Hypothalamic and Hypothalamo-Cerebellar Pathways via Superior and Middle Cerebellar Peduncle in the Rat. THE CEREBELLUM 2018; 17:517-524. [PMID: 29637507 DOI: 10.1007/s12311-018-0938-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The connections between the cerebellum and the hypothalamus have been well documented. However, the specific cerebellar peduncle through which the hypothalamo-cerebellar and cerebello-hypothalamic connections pass has not been demonstrated. The present study aims to define the specific cerebellar peduncle through which connects the cerebellum to specific hypothalamic nuclei. Seventeen male albino rats received 20-50-nl pressure injections of either Fluoro-Gold (FG) or biotinylated dextran amine (BDA) tracer into the superior (SCP), middle (MCP), and inferior (ICP) cerebellar peduncle. Following 7-10 days of survival period, the animals were processed according to the appropriate protocol for the two tracers used. Labeled cells and axons were documented using light or fluorescence microscopy. The present study showed connections between the hypothalamus and the cerebellum via both the SCP and the MCP but not the ICP. The hypothalamo-cerebellar connections via the SCP were from the lateral, dorsomedial, paraventricular, and posterior hypothalamic nuclei, and cerebello-hypothalamic connections were to the preoptic and lateral hypothalamic nuclei. The hypothalamo-cerebellar connections via the MCP were from the lateral, dorsomedial, ventromedial, and mammillary hypothalamic nuclei; and cerebello-hypothalamic connections were to the posterior, arcuate, and ventromedial hypothalamic nuclei. The hypothlamo-cerebellar connections were denser compared to the cerebello-hypothlamic connections via both the SCP and the MCP. The connection between the cerebellum and the hypothalamus was more prominent via the SCP than MCP. Both the hypothlamo-cerebellar and cerebello-hypothalamic connections were bilateral, with ipsilateral preponderance. Reciprocal connections were with the lateral hypothalamic nucleus via the SCP and the ventromedial nucleus via the MCP were observed. Cerebellum takes part in the higher order brain functions via its extensive connections. The knowledge of hypothalamo-cerebellar and cerebello-hypothalamic connections conveyed within the SCP and MCP can be important for the lesions involving the MCP and SCP. These connections can also change the conceptual architecture of the cerebellar circuitry and deepen current understanding.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey.
| | - Merve Özgur
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey
| | - Yasemin Kuvvet
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey
| | | |
Collapse
|
32
|
Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant SGN. Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes 2018; 6:proteomes6030031. [PMID: 30071621 PMCID: PMC6161190 DOI: 10.3390/proteomes6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.
Collapse
Affiliation(s)
- Marcia Roy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Colin McLean
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Silvia Tapia-González
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
33
|
Cacciola A, Milardi D, Calamuneri A, Bonanno L, Marino S, Ciolli P, Russo M, Bruschetta D, Duca A, Trimarchi F, Quartarone A, Anastasi G. Constrained Spherical Deconvolution Tractography Reveals Cerebello-Mammillary Connections in Humans. THE CEREBELLUM 2017; 16:483-495. [PMID: 27774574 DOI: 10.1007/s12311-016-0830-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to the classical view, the cerebellum has long been confined to motor control physiology; however, it has now become evident that it exerts several non-somatic features other than the coordination of movement and is engaged also in the regulation of cognition and emotion. In a previous diffusion-weighted imaging-constrained spherical deconvolution (CSD) tractography study, we demonstrated the existence of a direct cerebellum-hippocampal pathway, thus reinforcing the hypothesis of the cerebellar role in non-motor domains. However, our understanding of limbic-cerebellar interconnectivity in humans is rather sparse, primarily due to the intrinsic limitation in the acquisition of in vivo tracing. Here, we provided tractographic evidences of connectivity patterns between the cerebellum and mammillary bodies by using whole-brain CSD tractography in 13 healthy subjects. We found both ipsilateral and contralateral connections between the mammillary bodies, cerebellar cortex, and dentate nucleus, in line with previous studies performed in rodents and primates. These pathways could improve our understanding of cerebellar role in several autonomic functions, visuospatial orientation, and memory and may shed new light on neurodegenerative diseases in which clinically relevant impairments in navigational skills or memory may become manifest at early stages.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy.
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", S.S. 113, Via Palermo, C.da Casazza, 98124, Messina, Italy
| | - Alessandro Calamuneri
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", S.S. 113, Via Palermo, C.da Casazza, 98124, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", S.S. 113, Via Palermo, C.da Casazza, 98124, Messina, Italy
| | - Pietro Ciolli
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - Margherita Russo
- IRCCS Centro Neurolesi "Bonino Pulejo", S.S. 113, Via Palermo, C.da Casazza, 98124, Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - Antonio Duca
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - Fabio Trimarchi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", S.S. 113, Via Palermo, C.da Casazza, 98124, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| |
Collapse
|
34
|
Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Mariën P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus Paper: Cerebellum and Emotion. THE CEREBELLUM 2017; 16:552-576. [PMID: 27485952 DOI: 10.1007/s12311-016-0815-8] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.
Collapse
Affiliation(s)
- M Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht, 01731, Kreischa, Germany.
| | - F D'Agata
- Department of Neuroscience, University of Turin, Turin, Italy
| | - R Ferrucci
- Fondazione IRCCS Ca' Granda, Granada, Italy
- Università degli Studi di Milano, Milan, Italy
| | - C Habas
- Service de NeuroImagerie (NeuroImaging department) Centre Hospitalier national D'Ophtalmologie des 15/20, Paris, France
| | - S Keulen
- Department of Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Language and Cognition Groningen, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - K C Kirkby
- Psychiatry, School of Medicine, University of Tasmania, Hobart, Australia
| | - M Leggio
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - P Mariën
- Department of Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Antwerp, Belgium
| | - M Molinari
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - E Moulton
- P.A.I.N. Group, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Orsi
- Neurologic Division 1, Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Turin, Italy
| | - F Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Center, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Priori
- Fondazione IRCCS Ca' Granda, Granada, Italy
- Università degli Studi di Milano, Milan, Italy
- III Clinica Neurologica, Polo Ospedaliero San Paolo, San Paolo, Italy
| | - B Sacchetti
- Department of Neuroscience, Section of Physiology, University of Turin, Torino, Italy
| | - D J Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - C Styliadis
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - J Verhoeven
- Department of Language and Communication Science, City University, London, UK
- Computational Linguistics and Psycholinguistics Research Center (CLIPS), Universiteit Antwerpen, Antwerp, Belgium
| |
Collapse
|
35
|
Flace P, Quartarone A, Colangelo G, Milardi D, Cacciola A, Rizzo G, Livrea P, Anastasi G. The Neglected Cerebello-Limbic Pathways and Neuropsychological Features of the Cerebellum in Emotion. THE CEREBELLUM 2017; 17:243-246. [PMID: 28921485 DOI: 10.1007/s12311-017-0884-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Paolo Flace
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy.,IRCCS Centro Neurolesi 'Bonino Pulejo', 98124, Messina, Italy
| | | | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy.,IRCCS Centro Neurolesi 'Bonino Pulejo', 98124, Messina, Italy
| | | | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| | - Paolo Livrea
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125, Messina, Italy
| |
Collapse
|
36
|
Neurobiological correlates of post-traumatic stress disorder: A focus on cerebellum role. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2017. [DOI: 10.1016/j.ejtd.2017.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
The Role of the Cerebellum in Unconscious and Conscious Processing of Emotions: A Review. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Impaired spatial performance in cerebellar-deficient Lurcher mice is not associated with their abnormal stress response. Neurobiol Learn Mem 2017; 140:62-70. [DOI: 10.1016/j.nlm.2017.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/19/2016] [Accepted: 02/12/2017] [Indexed: 11/17/2022]
|
39
|
Schutter DJLG, Meuwese R, Bos MGN, Crone EA, Peper JS. Exploring the role of testosterone in the cerebellum link to neuroticism: From adolescence to early adulthood. Psychoneuroendocrinology 2017; 78:203-212. [PMID: 28214680 DOI: 10.1016/j.psyneuen.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Previous research has found an association between a smaller cerebellar volume and higher levels of neuroticism. The steroid hormone testosterone reduces stress responses and the susceptibility to negative mood. Together with in vitro studies showing a positive effect of testosterone on cerebellar gray matter volumes, we set out to explore the role of testosterone in the relation between cerebellar gray matter and neuroticism. Structural magnetic resonance imaging scans were acquired, and indices of neurotic personality traits were assessed by administering the depression and anxiety scale of the revised NEO personality inventory and Gray's behavioural avoidance in one hundred and forty-nine healthy volunteers between 12 and 27 years of age. Results demonstrated an inverse relation between total brain corrected cerebellar volumes and neurotic personality traits in adolescents and young adults. In males, higher endogenous testosterone levels were associated with lower scores on neurotic personality traits and larger cerebellar gray matter volumes. No such relations were observed in the female participants. Analyses showed that testosterone significantly mediated the relation between male cerebellar gray matter and measures of neuroticism. Our findings on the interrelations between endogenous testosterone, neuroticism and cerebellar morphology provide a cerebellum-oriented framework for the susceptibility to experience negative emotions and mood in adolescence and early adulthood.
Collapse
Affiliation(s)
- Dennis J L G Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| | - Rosa Meuwese
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands
| | - Marieke G N Bos
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands
| | - Eveline A Crone
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands
| | - Jiska S Peper
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, The Netherlands
| |
Collapse
|
40
|
Cha M, Chae Y, Bai SJ, Lee BH. Spatiotemporal changes of optical signals in the somatosensory cortex of neuropathic rats after electroacupuncture stimulation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:33. [PMID: 28068994 PMCID: PMC5223459 DOI: 10.1186/s12906-016-1510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Background Peripheral nerve injury causes physiological changes in primary afferent neurons. Neuropathic pain associated with peripheral nerve injuries may reflect changes in the excitability of the nervous system, including the spinothalamic tract. Current alternative medical research indicates that acupuncture stimulation has analgesic effects in various pain symptoms. However, activation changes in the somatosensory cortex of the brain by acupuncture stimulation remain poorly understood. The present study was conducted to monitor the changes in cortical excitability, using optical imaging with voltage-sensitive dye (VSD) in neuropathic rats after electroacupuncture (EA) stimulation. Methods Male Sprague–Dawley rats were divided into three groups: control (intact), sham injury, and neuropathic pain rats. Under pentobarbital anesthesia, rats were subjected to nerve injury with tight ligation and incision of the tibial and sural nerves in the left hind paw. For optical imaging, the rats were re-anesthetized with urethane, and followed by craniotomy. The exposed primary somatosensory cortex (S1) was stained with VSD for one hour. Optical signals were recorded from the S1 cortex, before and after EA stimulation on Zusanli (ST36) and Yinlingquan (SP9). Results After peripheral stimulation, control and sham injury rats did not show significant signal changes in the S1 cortex. However, inflamed and amplified neural activities were observed in the S1 cortex of nerve-injured rats. Furthermore, the optical signals and region of activation in the S1 cortex were reduced substantially after EA stimulation, and recovered in a time-dependent manner. The peak fluorescence intensity was significantly reduced until 90 min after EA stimulation (Pre-EA: 0.25 ± 0.04 and Post-EA 0 min: 0.01 ± 0.01), and maximum activated area was also significantly attenuated until 60 min after EA stimulation (Pre-EA: 37.2 ± 1.79 and Post-EA 0 min: 0.01 ± 0.10). Conclusion Our results indicate that EA stimulation has inhibitory effects on excitatory neuronal signaling in the S1 cortex, caused by noxious stimulation in neuropathic pain. These findings suggest that EA stimulation warrants further study as a potential adjuvant modulation of neuropathic pain.
Collapse
|
41
|
Abstract
Jan. Evangelista Purkyně, the most famous among Czech physiologists, was the first who identified and described the largest nerve cells in the cerebellum. The most distinguished researchers of the nervous system then recommended naming these neurons Purkinje cells in his honor. Through experiments by Purkinje and his followers, the function of the cerebellum was properly attributed to the precision of motor movements and skills. This traditional concept was valid until early 1990s, when it was readjusted and replenished with new and important findings. It was discovered that the cerebellar cortex contains more neurons than the cerebral cortex and shortly thereafter was gradually revealed that such enormous numbers of neural cells are not without impact on brain functions. It was shown that the cerebellum, in addition to its traditional role, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described in this work.
Collapse
Affiliation(s)
- František Vožeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Pilsen, Czech Republic. .,Laboratory of Neurodegenerative Disorders, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
42
|
Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats. Brain Struct Funct 2016; 222:957-971. [DOI: 10.1007/s00429-016-1257-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
|
43
|
Zhang XY, Wang JJ, Zhu JN. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. CEREBELLUM & ATAXIAS 2016; 3:9. [PMID: 27144010 PMCID: PMC4853849 DOI: 10.1186/s40673-016-0047-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Fastigial nucleus (FN) is the phylogenetically oldest nucleus in the cerebellum, a classical subcortical motor coordinator. As one of the ultimate integration stations and outputs of the spinocerebellum, the FN holds a key position in the axial, proximal and ocular motor control by projecting to the medial descending systems and eye movement related nuclei. Furthermore, through topographic connections with extensive nonmotor systems, including visceral related nuclei in the brainstem, hypothalamus, as well as the limbic system, FN has also been implicated in regulation of various nonsomatic functions, such as feeding, cardiovascular and respiratory, defecation and micturition, immune, as well as emotional activities. In clinic, FN lesion or dysfunction results in motor deficits including spinocerebellar ataxias, and nonmotor symptoms. In this review, we summarize the cytoarchitecture, anatomic afferent and efferent connections, as well as the motor and nonmotor functions of the FN and the related diseases and disorders. We suggest that by bridging the motor and nonmotor systems, the cerebellar FN may help to integrate somatic motor and nonsomatic functions and consequently contribute to generate a coordinated response to internal and external environments.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
44
|
Ng HBT, Kao KLC, Chan YC, Chew E, Chuang KH, Chen SHA. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory. Behav Brain Res 2016; 305:164-73. [PMID: 26930173 DOI: 10.1016/j.bbr.2016.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies.
Collapse
Affiliation(s)
- H B Tommy Ng
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore
| | - K-L Cathy Kao
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore
| | - Y C Chan
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Effie Chew
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - K H Chuang
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - S H Annabel Chen
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 637332, Singapore; Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
45
|
Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia. Brain 2016; 139:1527-38. [PMID: 26912642 DOI: 10.1093/brain/aww003] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/06/2015] [Indexed: 12/12/2022] Open
Abstract
SEE SCHMAHMANN DOI101093/BRAIN/AWW064 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Neurodegenerative diseases are associated with distinct and distributed patterns of atrophy in the cerebral cortex. Emerging evidence suggests that these atrophy patterns resemble intrinsic connectivity networks in the healthy brain, supporting the network-based degeneration framework where neuropathology spreads across connectivity networks. An intriguing yet untested possibility is that the cerebellar circuits, which share extensive connections with the cerebral cortex, could be selectively targeted by major neurodegenerative diseases. Here we examined the structural atrophy in the cerebellum across common types of neurodegenerative diseases, and characterized the functional connectivity patterns of these cerebellar atrophy regions. Our results showed that Alzheimer's disease and frontotemporal dementia are associated with distinct and circumscribed atrophy in the cerebellum. These cerebellar atrophied regions share robust and selective intrinsic connectivity with the atrophied regions in the cerebral cortex. These findings for the first time demonstrated the selective vulnerability of the cerebellum to common neurodegenerative disease, extending the network-based degeneration framework to the cerebellum. Our work also has direct implications on the cerebellar contribution to the cognitive and affective processes that are compromised in neurodegeneration as well as the practice of using the cerebellum as reference region for ligand neuroimaging studies.
Collapse
Affiliation(s)
- Christine C Guo
- 1 QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rachel Tan
- 2 Neuroscience Research Australia, Sydney, Australia 3 School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - John R Hodges
- 2 Neuroscience Research Australia, Sydney, Australia 3 School of Medical Sciences, University of New South Wales, Sydney, Australia 4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| | - Xintao Hu
- 5 School of Automation, Northwestern Polytechnical University, Xian, China
| | - Saber Sami
- 6 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Hornberger
- 2 Neuroscience Research Australia, Sydney, Australia 4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia 7 Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
46
|
Park JH, Ovbiagele B, Feng W. Stroke and sexual dysfunction - a narrative review. J Neurol Sci 2015; 350:7-13. [PMID: 25682327 DOI: 10.1016/j.jns.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/09/2015] [Accepted: 02/01/2015] [Indexed: 11/30/2022]
Abstract
Sexual function is an essential part of quality of life in adults. However, sexual dysfunction (SD) in stroke survivors is a common but under-recognized complication after stroke. It is frequently neglected by patients and clinicians. The etiology of post-stroke SD, which is multifactorial includes anatomical, physical and psychological factors. Complete return of sexual function is an important target for functional recovery after stroke, so clinicians need to be aware of this issue and take a lead role in addressing this challenge in stroke survivors. Accurate diagnosis and prompt treatment of post-stroke SD should be routinely incorporated into comprehensive stroke rehabilitation. This narrative review article, outlines the anatomy and physiology of sexual function, discusses various factors contributing to post-stroke SD, and proposes directions for future research.
Collapse
Affiliation(s)
- Jong-Ho Park
- Department of Neurology, Myongji Hospital, Goyang, South Korea; Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC, United States
| | - Bruce Ovbiagele
- Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
47
|
Cao BB, Huang Y, Jiang YY, Qiu YH, Peng YP. Cerebellar fastigial nuclear glutamatergic neurons regulate immune function via hypothalamic and sympathetic pathways. J Neuroimmune Pharmacol 2015; 10:162-78. [PMID: 25649846 DOI: 10.1007/s11481-014-9572-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
We previously have shown that cerebellar fastigial nucleus (FN) modulates immune function, but pathways or mechanisms underlying this immunomodulation require clarification. Herein, an anterograde and retrograde tracing of nerve tracts between the cerebellar FN and hypothalamus/thalamus was performed in rats. After demonstrating a direct cerebellar FN-hypothalamic/thalamic glutamatergic projection, 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of glutaminase that catalyzes glutamate synthesis, was injected bilaterally in the cerebellar FN and simultaneously, D,L-threo-β-hydroxyaspartic acid (THA), an inhibitor of glutamate transporters on cell membrane, was bilaterally injected in the lateral hypothalamic area (LHA) or the ventrolateral (VL) thalamic nucleus. DON treatment in the FN alone decreased number of glutamatergic neurons that projected axons to the LHA and also diminished glutamate content in both the hypothalamus and the thalamus. These effects of DON were reduced by combined treatment with THA in the LHA or in the VL. Importantly, DON treatment in the FN alone attenuated percentage and cytotoxicity of natural killer (NK) cells and also lowered percentage and cytokine production of T lymphocytes. These DON-caused immune effects were reduced or abolished by combined treatment with THA in the LHA, but not in the VL. Simultaneously, DON treatment elevated level of norepinephrine (NE) in the spleen and mesenteric lymphoid nodes, and THA treatment in the LHA, rather than in the VL, antagonized the DON-caused NE elevation. These findings suggest that glutamatergic neurons in the cerebellar FN regulate innate and adaptive immune functions and the immunomodulation is conveyed by FN-hypothalamic glutamatergic projections and sympathetic nerves that innervate lymphoid tissues.
Collapse
Affiliation(s)
- Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | | | | | | | | |
Collapse
|
48
|
Zhang J, Zhuang QX, Li B, Wu GY, Yung WH, Zhu JN, Wang JJ. Selective Modulation of Histaminergic Inputs on Projection Neurons of Cerebellum Rapidly Promotes Motor Coordination via HCN Channels. Mol Neurobiol 2015; 53:1386-1401. [PMID: 25633097 DOI: 10.1007/s12035-015-9096-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 12/24/2022]
Abstract
Insights into function of central histaminergic system, a general modulator originating from the hypothalamus for whole brain activity, in motor control are critical for understanding the mechanism underlying somatic-nonsomatic integration. Here, we show a novel selective role of histamine in the cerebellar nuclei, the final integrative center and output of the cerebellum. Histamine depolarizes projection neurons but not interneurons in the cerebellar nuclei via the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to histamine H2 receptors, which are exclusively expressed on glutamatergic and glycinergic projection neurons. Furthermore, blockage of HCN channels to block endogenous histaminergic afferent inputs in the cerebellar nuclei significantly attenuates motor balance and coordination. Therefore, through directly and quickly modulation on projection neurons but not interneurons in the cerebellar nuclei, central histaminergic system may act as a critical biasing force to not only promptly regulate ongoing movement but also realize a rapid integration of somatic and nonsomatic response.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.,Department of Physiology, Third Military Medical University, Chongqing, 400038, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Guan-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
49
|
Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2014; 49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Nian Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Qi-Cheng Qiao
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jun Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
50
|
|