1
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
2
|
Ribeiro DE, Petiz LL, Glaser T, Oliveira-Giacomelli Á, Andrejew R, Saab FDAR, Milanis MDS, Campos HC, Sampaio VFA, La Banca S, Longo BM, Lameu C, Tang Y, Resende RR, Ferreira ST, Ulrich H. Purinergic signaling in cognitive impairment and neuropsychiatric symptoms of Alzheimer's disease. Neuropharmacology 2023; 226:109371. [PMID: 36502867 DOI: 10.1016/j.neuropharm.2022.109371] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
About 10 million new cases of dementia develop worldwide each year, of which up to 70% are attributable to Alzheimer's disease (AD). In addition to the widely known symptoms of memory loss and cognitive impairment, AD patients frequently develop non-cognitive symptoms, referred to as behavioral and psychological symptoms of dementia (BPSDs). Sleep disorders are often associated with AD, but mood alterations, notably depression and apathy, comprise the most frequent class of BPSDs. BPSDs negatively affect the lives of AD patients and their caregivers, and have a significant impact on public health systems and the economy. Because treatments currently available for AD are not disease-modifying and mainly aim to ameliorate some of the cognitive symptoms, elucidating the mechanisms underlying mood alterations and other BPSDs in AD may reveal novel avenues for progress in AD therapy. Purinergic signaling is implicated in the pathophysiology of several central nervous system (CNS) disorders, such as AD, depression and sleep disorders. Here, we review recent findings indicating that purinergic receptors, mainly the A1, A2A, and P2X7 subtypes, are associated with the development/progression of AD. Current evidence suggests that targeting purinergic signaling may represent a promising therapeutic approach in AD and related conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Deidiane Elisa Ribeiro
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil.
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Talita Glaser
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Roberta Andrejew
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Milena da Silva Milanis
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Henrique Correia Campos
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Sophia La Banca
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte, MG, Brazil
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Post-weaning social isolation impairs purinergic signaling in rat brain. Neurochem Int 2021; 148:105111. [PMID: 34171414 DOI: 10.1016/j.neuint.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023]
Abstract
Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.
Collapse
|
4
|
Xia P, Logiacco F, Huang Y, Kettenmann H, Semtner M. Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia 2021; 69:2291-2304. [PMID: 34080730 DOI: 10.1002/glia.24039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Histamine is a monoaminergic neurotransmitter which is released within the entire brain from ascending axons originating in the tuberomammillary nucleus in a sleep state-dependent fashion. Besides the modulation of neuronal firing patterns, brain histamine levels are also thought to modulate functions of glial cells. Microglia are the innate immune cells and professional phagocytes of the central nervous system, and histamine was previously shown to have multiple effects on microglial functions in health and disease. Isolated microglia respond only to agonists of the Hrh2 subtype of histamine receptors (Hrh), and the expression of that isoform is confirmed by a metadata analysis of microglia transcriptomes. When we studied the effect of the histamine receptor isoforms in cortical and thalamic microglia by in situ live cell Ca2+ imaging using a novel, microglia-specific indicator mouse line, microglial cells respond to external histamine application mainly in a Hrh1-, and to a lower extent also in a Hrh2-dependent manner. The Hrh1 response was sensitive to blockers of purinergic P2ry12 receptors, and since Hrh1 expression was predominantly found in astrocytes, we suggest that the Hrh1 response in microglia is mediated by astrocyte ATP release and activation of P2ry12 receptors in microglia. Histamine also stimulates microglial phagocytic activity via Hrh1- and P2ry12-mediated signaling. Taken together, we provide evidence that histamine acts indirectly on microglial Ca2+ levels and phagocytic activity via astrocyte histamine receptor-controlled purinergic signaling.
Collapse
Affiliation(s)
- Pengfei Xia
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin, Berlin, Germany
| | - Francesca Logiacco
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Yimin Huang
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Tiwari RK, Moin A, Rizvi SMD, Shahid SMA, Bajpai P. Modulating neuroinflammation in neurodegeneration-related dementia: can microglial toll-like receptors pull the plug? Metab Brain Dis 2021; 36:829-847. [PMID: 33704660 DOI: 10.1007/s11011-021-00696-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
Neurodegeneration-associated dementia disorders (NADDs), namely Alzheimer and Parkinson diseases, are developed by a significant portion of the elderly population globally. Extensive research has provided critical insights into the molecular basis of the pathological advancements of these diseases, but an efficient curative therapy seems elusive. A common attribute of NADDs is neuroinflammation due to a chronic inflammatory response within the central nervous system (CNS), which is primarily modulated by microglia. This response within the CNS is positively regulated by cytokines, chemokines, secondary messengers or cyclic nucleotides, and free radicals. Microglia mediated immune activation is regulated by a positive feedback loop in NADDs. The present review focuses on evaluating the crosstalk between inflammatory mediators and microglia, which aggravates both the clinical progression and extent of NADDs by forming a persistent chronic inflammatory milieu within the CNS. We also discuss the role of the human gut microbiota and its effect on NADDs as well as the suitability of targeting toll-like receptors for an immunotherapeutic intervention targeting the deflation of an inflamed milieu within the CNS.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Syed Monowar Alam Shahid
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Preeti Bajpai
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
6
|
Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol 2021; 187:114419. [PMID: 33460626 DOI: 10.1016/j.bcp.2021.114419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | | | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Coutinho-Silva R, Savio LEB. Purinergic signalling in host innate immune defence against intracellular pathogens. Biochem Pharmacol 2021; 187:114405. [PMID: 33406411 DOI: 10.1016/j.bcp.2021.114405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Purinergic signalling is an evolutionarily conserved signalling pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides released from host cells during intracellular pathogen infections activate plasma membrane purinergic type 2 receptors (P2 receptors) that stimulate microbicidal mechanisms in host innate immune cells. P2X ion channels and P2Y G protein-coupled receptors are involved in activating host innate immune defence mechanisms, phagocytosis, phagolysosomal fusion, production of reactive species, acidification of parasitophorous vacuoles, inflammasome activation, and the release of cytokines, chemokines, and other inflammatory mediators. In this review, as part of a special issue in tribute to Geoffrey Burnstock, we discuss advances in understanding the importance of P2 receptors in the host antimicrobial innate mechanisms against intracellular pathogen infections.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
9
|
Targeting Streptococcus pneumoniae UDP-glucose pyrophosphorylase (UGPase): in vitro validation of a putative inhibitor. Drug Target Insights 2020; 14:26-33. [PMID: 33132696 PMCID: PMC7597228 DOI: 10.33393/dti.2020.2103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Genome plasticity of Streptococcus pneumoniae is responsible for the reduced efficacy of various antibiotics and capsular polysaccharide-based vaccines. Therefore, targets independent of capsular types are sought to control the pneumococcal pathogenicity. UDP-glucose pyrophosphorylase (UGPase) is one such desired candidate being responsible for the synthesis of UDP-glucose, a sugar precursor in capsular biosynthesis and metabolic Leloir pathway. Being crucial to pneumococcal pathobiology, the effect of UGPase inhibition on virulence was evaluated in vitro. Methods: A putative inhibitor, uridine diphosphate (UDP), was evaluated for effective inhibitory concentration in S. pneumoniae and A549 cells, its efficacy and toxicity. The effect of UDP on adherence and phagocytosis was measured in human respiratory epithelial (A549 and HEp-2) and macrophage (THP1 and J774.A.1) cell lines respectively. Results: A differential effective inhibitory concentration of UDP for UGPase inhibition was observed in S. pneumoniae and A549 cells, that is, 5 and 100 µM respectively. UDP treatments lowered percent cytotoxicity in pneumococcal-infected monolayers and didn’t exert adverse effects on viabilities. S. pneumoniae adherence to host cells decreased significantly with UDP treatments. UDP induced the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8 and increased pneumococcal phagocytosis. Conclusion: Our study shows UDP-mediated decrease in the virulence of S. pneumoniae and demonstrates UDP as an effective inhibitor of pneumococcal UGPase.
Collapse
|
10
|
Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases. Cells 2020; 9:cells9071595. [PMID: 32630251 PMCID: PMC7407337 DOI: 10.3390/cells9071595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The purinergic receptor P2Y6 is expressed in immune cells, including the microglia that are implicated in neurological disorders. Its ligand, UDP, is a signaling molecule that can serve as an “find-me” signal when released in significant quantities by damaged/dying cells. The binding of UDP by P2Y6R leads to the activation of different biochemical pathways, depending on the disease context and the pathological environment. Generally, P2Y6R stimulates phagocytosis. However, whether or not phagocytosis coincides with cell activation or the secretion of pro-inflammatory cytokines needs further investigation. The current review aims to discuss the various functions of P2Y6R in some CNS disorders. We present evidence that P2Y6R may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, radiation-induced brain injury, and neuropathic pain.
Collapse
|
11
|
Luck B, Engevik MA, Ganesh BP, Lackey EP, Lin T, Balderas M, Major A, Runge J, Luna RA, Sillitoe RV, Versalovic J. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci Rep 2020; 10:7737. [PMID: 32385412 PMCID: PMC7210968 DOI: 10.1038/s41598-020-64173-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/12/2020] [Indexed: 12/17/2022] Open
Abstract
We hypothesized that early-life gut microbiota support the functional organization of neural circuitry in the brain via regulation of synaptic gene expression and modulation of microglial functionality. Germ-free mice were colonized as neonates with either a simplified human infant microbiota consortium consisting of four Bifidobacterium species, or with a complex, conventional murine microbiota. We examined the cerebellum, cortex, and hippocampus of both groups of colonized mice in addition to germ-free control mice. At postnatal day 4 (P4), conventionalized mice and Bifidobacterium-colonized mice exhibited decreased expression of synapse-promoting genes and increased markers indicative of reactive microglia in the cerebellum, cortex and hippocampus relative to germ-free mice. By P20, both conventional and Bifidobacterium-treated mice exhibited normal synaptic density and neuronal activity as measured by density of VGLUT2+ puncta and Purkinje cell firing rate respectively, in contrast to the increased synaptic density and decreased firing rate observed in germ-free mice. The conclusions from this study further reveal how bifidobacteria participate in establishing functional neural circuits. Collectively, these data indicate that neonatal microbial colonization of the gut elicits concomitant effects on the host CNS, which promote the homeostatic developmental balance of neural connections during the postnatal time period.
Collapse
Affiliation(s)
- Berkley Luck
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences (IMBS), Baylor College of Medicine, Houston, Texas, United States of America
| | - Melinda A Engevik
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America.
| | - Bhanu Priya Ganesh
- Department of Neurology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tao Lin
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Miriam Balderas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas, United States of America
| | - Angela Major
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica Runge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roy V Sillitoe
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - James Versalovic
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas, United States of America
| |
Collapse
|
12
|
Gupta K, Vuckovic I, Zhang S, Xiong Y, Carlson BL, Jacobs J, Olson I, Petterson XM, Macura SI, Sarkaria J, Burns TC. Radiation Induced Metabolic Alterations Associate With Tumor Aggressiveness and Poor Outcome in Glioblastoma. Front Oncol 2020; 10:535. [PMID: 32432031 PMCID: PMC7214818 DOI: 10.3389/fonc.2020.00535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence are poorly understood but may increase tumor aggressiveness. Metabolic changes have been investigated in radiation-induced brain injury; however, the tumor-promoting effect following prior radiation is lacking. Since RT is vital to GBM management, we quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM xenografts and characterized metabolic alterations associated with the protumorigenic microenvironment. Human xenografts (GBM143) were implanted into nude mice 24 hrs following 20 Gy cranial radiation vs. sham animals. Tumors in pre-radiated mice were more proliferative and more infiltrative, yielding faster mortality (p < 0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs) revealed cells with a more fully activated ameboid morphology in pre-radiated animals. Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to the site of implantation were analyzed by unsupervised liquid chromatography-mass spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated with tumor progression (i.e., modified nucleotides and polyols) were identified. Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic alterations in a separate cohort of nude mice using 1H-NMR revealed a significant decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+, Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP, GTP). GSH and ASC showed highest Variable Importance on Projection prediction (VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA); Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation effects, we compared survival with implantation occurring 2 months vs. 24 hrs following radiation, finding worse survival in animals implanted at 2 months. These radiation-induced alterations are consistent with a chronic disease-like microenvironment characterized by reduced levels of antioxidants and NAD+, and elevated extracellular ATP and GTP serving as chemoattractants, promoting cell motility and vesicular secretion with decreased levels of GSH and ASC exacerbating oxidative stress. Taken together, these data suggest IR induces tumor-permissive changes in the microenvironment with metabolomic alterations that may facilitate tumor aggressiveness with important implications for recurrent glioblastoma. Harnessing these metabolomic insights may provide opportunities to attenuate RT-associated aggressiveness of recurrent GBM.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ivan Vuckovic
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Song Zhang
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Yuning Xiong
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua Jacobs
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Slobodan I Macura
- Metabolomics Core Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Oliveira-Giacomelli Á, M Albino C, de Souza HDN, Corrêa-Velloso J, de Jesus Santos AP, Baranova J, Ulrich H. P2Y6 and P2X7 Receptor Antagonism Exerts Neuroprotective/ Neuroregenerative Effects in an Animal Model of Parkinson's Disease. Front Cell Neurosci 2019; 13:476. [PMID: 31787881 PMCID: PMC6856016 DOI: 10.3389/fncel.2019.00476] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by decreased dopamine bioavailability in the substantia nigra and the striatum. Taking into account that adenosine-5’-triphosphate (ATP) and its metabolites are intensely released in the 6-hydroxydopamine (6-OHDA) animal model of PD, screening of purinergic receptor gene expression was performed. Effects of pharmacological P2Y6 or P2X7 receptor antagonism were studied in preventing or reversing hemiparkinsonian behavior and dopaminergic deficits in this animal model. P2X7 receptor antagonism with Brilliant Blue G (BBG) at a dose of 75 mg/kg re-established the dopaminergic nigrostriatal pathway in rats injured with 6-OHDA. Selective P2Y6 receptor antagonism by MRS2578 prevented dopaminergic neuron death in SH-SY5Y cells in vitro and in vivo in the substantia nigra of rats injured with 6-OHDA. Moreover, in vivo analysis showed that both treatments were accompanied by a reduction of microglial activation in the substantia nigra. Altogether, these data provide evidence that antagonism of P2X7 or P2Y6 receptors results in neuroregenerative or neuroprotective effects, respectively, possibly through modulation of neuroinflammatory responses.
Collapse
Affiliation(s)
- Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina M Albino
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Hellio Danny Nóbrega de Souza
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ana Paula de Jesus Santos
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Juliana Baranova
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
15
|
Cieślak M, Roszek K, Wujak M. Purinergic implication in amyotrophic lateral sclerosis-from pathological mechanisms to therapeutic perspectives. Purinergic Signal 2019; 15:1-15. [PMID: 30430356 PMCID: PMC6439052 DOI: 10.1007/s11302-018-9633-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a clinically heterogeneous disorder characterized by degeneration of upper motor neurons in the brainstem and lower motor neurons in the spinal cord. Multiple mechanisms of motor neuron injury have been implicated, including more than 20 different genetic factors. The pathogenesis of ALS consists of two stages: an early neuroprotective stage and a later neurotoxic. During early phases of disease progression, the immune system through glial and T cell activities provides anti-inflammatory factors that sustain motor neuron viability. As the disease progresses and motor neuron injury accelerates, a rapidly succeeding neurotoxic phase develops. A well-orchestrated purine-mediated dialog among motor neurons, surrounding glia and immune cells control the beneficial and detrimental activities occurring in the nervous system. In general, low adenosine triphosphate (ATP) concentrations protect cells against excitotoxic stimuli through purinergic P2X4 receptor, whereas high concentrations of ATP trigger toxic P2X7 receptor activation. Finally, adenosine is also involved in ALS progression since A2A receptor antagonists prevent motor neuron death. Given the complex cellular cross-talk occurring in ALS and the recognized function of extracellular nucleotides and adenosine in neuroglia communication, the comprehensive understanding of purinome dynamics might provide new research perspectives to decipher ALS and help to design more efficient and targeted drugs. This review will focus on the purinergic players involved in ALS etiology and disease progression and current therapeutic strategies to enhance neuroprotection and suppress neurotoxicity.
Collapse
Affiliation(s)
- M Cieślak
- Neurology Clinic, Marek Cieślak, Toruń, Poland
| | - K Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland
| | - M Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St, 87-100, Toruń, Poland.
| |
Collapse
|
16
|
Fu WY, Wang X, Ip NY. Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer's Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chem Neurosci 2019; 10:872-879. [PMID: 30221933 DOI: 10.1021/acschemneuro.8b00402] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase owing to the aging population worldwide. Current therapies merely provide symptomatic relief. Therefore, interventions for AD that delay the disease onset or progression are urgently required. Recent genomics and functional studies suggest that immune/inflammatory pathways are involved in the pathogenesis of AD. Although many anti-inflammatory drug candidates have undergone clinical trials, most have failed. This might be because of our limited understanding of the pathological mechanisms of neuroinflammation in AD. However, recent advances in the understanding of immune/inflammatory pathways in AD and their regulatory mechanisms could open up new avenues for drug development targeting neuroinflammation. In this Review, we discuss the mechanisms and status of different anti-inflammatory drug candidates for AD that have undergone or are undergoing clinical trials and explore new opportunities for targeting neuroinflammation in AD drug development.
Collapse
Affiliation(s)
| | | | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
18
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
19
|
Puchałowicz K, Baranowska-Bosiacka I, Dziedziejko V, Chlubek D. Purinergic signaling and the functioning of the nervous system cells. Cell Mol Biol Lett 2016; 20:867-918. [PMID: 26618572 DOI: 10.1515/cmble-2015-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Purinergic signaling in the nervous system has been the focus of a considerable number of studies since the 1970s. The P2X and P2Y receptors are involved in the initiation of purinergic signaling. They are very abundant in the central and peripheral nervous systems, where they are expressed on the surface of neurons and glial cells--microglia, astrocytes, oligodendrocytes and Schwann cells and the precursors of the latter two. Their ligands--extracellular nucleotides--are released in the physiological state by astrocytes and neurons forming synaptic connections, and are essential for the proper functioning of nervous system cells. Purinergic signaling plays a crucial role in neuromodulation, neurotransmission, myelination in the CNS and PNS, intercellular communication, the regulation of ramified microglia activity, the induction of the response to damaging agents, the modulation of synaptic activity and other glial cells by astrocytes, and the induction of astrogliosis. Understanding these mechanisms and the fact that P2 receptors and their ligands are involved in the pathogenesis of diseases of the nervous system may help in the design of drugs with different and more effective mechanisms of action.
Collapse
|
20
|
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2016; 7:1179-97. [PMID: 26139610 PMCID: PMC4568951 DOI: 10.15252/emmm.201505298] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.
Collapse
Affiliation(s)
- Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Parth Shah
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Parkhurst
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
von Bernhardi R, Heredia F, Salgado N, Muñoz P. Microglia Function in the Normal Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:67-92. [PMID: 27714685 DOI: 10.1007/978-3-319-40764-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The activation of microglia has been recognized for over a century by their morphological changes. Long slender microglia acquire a short sturdy ramified shape when activated. During the past 20 years, microglia have been accepted as an essential cellular component for understanding the pathogenic mechanism of many brain diseases, including neurodegenerative diseases. More recently, functional studies and imaging in mouse models indicate that microglia are active in the healthy central nervous system. It has become evident that microglia release several signal molecules that play key roles in the crosstalk among brain cells, i.e., astrocytes and oligodendrocytes with neurons, as well as with regulatory immune cells. Recent studies also reveal the heterogeneous nature of microglia diverse functions depending on development, previous exposure to stimulation events, brain region of residence, or pathological state. Subjects to approach by future research are still the unresolved questions regarding the conditions and mechanisms that render microglia protective, capable of preventing or reducing damage, or deleterious, capable of inducing or facilitating the progression of neuropathological diseases. This novel knowledge will certainly change our view on microglia as therapeutic target, shifting our goal from their general silencing to the generation of treatments able to change their activation pattern.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Escuela de Medicina. Departamento de Neurología, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | - Florencia Heredia
- Escuela de Medicina. Departamento de Neurología, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nicole Salgado
- Escuela de Medicina. Departamento de Neurología, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Paola Muñoz
- Escuela de Medicina. Departamento de Neurología, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
22
|
Stebbing MJ, Cottee JM, Rana I. The Role of Ion Channels in Microglial Activation and Proliferation - A Complex Interplay between Ligand-Gated Ion Channels, K(+) Channels, and Intracellular Ca(2.). Front Immunol 2015; 6:497. [PMID: 26557116 PMCID: PMC4617059 DOI: 10.3389/fimmu.2015.00497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Microglia are often referred to as the immune cells of the brain. They are most definitely involved in immune responses to invading pathogens and inflammatory responses to tissue damage. However, recent results suggest microglia are vital for normal functioning of the brain. Neuroinflammation, as well as more subtle changes, in microglial function has been implicated in the pathogenesis of many brain diseases and disorders. Upon sensing alterations in their local environment, microglia change their shape and release factors that can modify the excitability of surrounding neurons. During neuroinflammation, microglia proliferate and release NO, reactive oxygen species, cytokines and chemokines. If inflammation resolves then their numbers normalize again via apoptosis. Microglia express a wide array of ion channels and different types are implicated in all of the cellular processes listed above. Modulation of microglial ion channels has shown great promise as a therapeutic strategy in several brain disorders. In this review, we discuss recent advances in our knowledge of microglial ion channels and their roles in responses of microglia to changes in the extracellular milieu.
Collapse
Affiliation(s)
- Martin James Stebbing
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Jennifer Marie Cottee
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Indrajeetsinh Rana
- Health Innovations Research Institute and School of Medical Sciences, RMIT University , Bundoora, VIC , Australia ; School of Health Sciences, Federation University Australia , Ballarat, VIC , Australia
| |
Collapse
|
23
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
24
|
Sieber MW, Guenther M, Jaenisch N, Albrecht-Eckardt D, Kohl M, Witte OW, Frahm C. Age-specific transcriptional response to stroke. Neurobiol Aging 2014; 35:1744-54. [PMID: 24529500 DOI: 10.1016/j.neurobiolaging.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.
Collapse
Affiliation(s)
- Matthias W Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nadine Jaenisch
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Matthias Kohl
- Department of Mechanical and Process Engineering, Furtwangen University, Villingen-Schwenningen, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; CSCC, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
25
|
Blaylock RL. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. Surg Neurol Int 2013; 4:118. [PMID: 24083053 PMCID: PMC3784951 DOI: 10.4103/2152-7806.118349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/27/2022] Open
Abstract
Over the past several decades we have learned a great deal about microglia and innate brain immunity. While microglia are the principle innate immune cells, other cell types also play a role, including invading macrophages, astrocytes, neurons, and endothelial cells. The fastest reacting cell is the microglia and despite its name, resting microglia (also called ramified microglia) are in fact quite active. Motion photomicrographs demonstrate a constant movement of ramified microglial foot processes, which appear to be testing the microenvironment for dangerous alteration in extracellular fluid content. These foot processes, in particular, interact with synapses and play a role in synaptic function. In event of excitatory overactivity, these foot processes can strip selected synapses, thus reducing activation states as a neuroprotective mechanism. They can also clear extracellular glutamate so as to reduce the risk of excitotoxicity. Microglia also appear to have a number of activation phenotypes, such as: (1) phagocytic, (2) neuroprotective and growth promoting, or (3) primarily neurodestructive. These innate immune cells can migrate a great distance under pathological conditions and appear to have anatomic specificity, meaning they can accumulate in specifically selected areas of the brain. There is some evidence that there are several types of microglia. Macrophage infiltration into the embryonic brain is the source of resident microglia and in adulthood macrophages can infiltrate the brain and are for the most part pathologically indistinguishable from resident microglia, but may react differently. Activation itself does not imply a destructive phenotype and can be mostly neuroprotective via phagocytosis of debris, neuron parts and dying cells and by the release of neurotrophins such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). Evidence is accumulating that microglia undergo dynamic fluctuations in phenotype as the neuropathology evolves. For example, in the early stages of neurotrauma and stroke, microglia play a mostly neuroprotective role and only later switch to a neurodestructive mode. A great number of biological systems alter microglia function, including neurohormones, cannabinoids, other neurotransmitters, adenosine triphosphate (ATP), adenosine, and corticosteroids. One can appreciate that with aging many of these systems are altered by the aging process itself or by disease thus changing the sensitivity of the innate immune system.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences Research, LLC, Neurosurgeon (Ret), Ridgeland, MS
| |
Collapse
|
26
|
Li Z, Li W, Li Q, Tang M. Extracellular nucleotides and adenosine regulate microglial motility and their role in cerebral ischemia. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep 2012; 2:809. [PMID: 23139861 PMCID: PMC3492875 DOI: 10.1038/srep00809] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/18/2012] [Indexed: 01/17/2023] Open
Abstract
The role of microglial motility in the context of adult neurodegeneration is poorly understood. In the present work, we investigated the microanatomical details of microglia-neuron interactions in an experimental mouse model of Parkinson's disease following the intraperitoneal injection of MPTP. The specific intoxication of dopaminergic neurons induces the cellular polarization of microglia, leading to the formation of body-to-body neuron-glia contacts, called gliapses, which precede neuron elimination. Inhibiting ROCK/Cdc42-mediated microglial motility in vivo blocks the activating features of microglia, such as increased cell size and number of filopodia and diminishes their phagocyting/secreting domains, as the reduction of the Golgi apparatus and the number of microglia-neuron contacts has shown. High-resolution confocal images and three-dimensional rendering demonstrate that microglia engulf entire neurons at one-to-one ratio, and the microglial cell body participates in the formation of the phagocytic cup, engulfing and eliminating neurons in areas of dopaminergic degeneration in adult mammals.
Collapse
|
28
|
Ito G, Suekawa Y, Watanabe M, Takahashi K, Inubushi T, Murasaki K, Hirose N, Hiyama S, Uchida T, Tanne K. P2X7receptor in the trigeminal sensory nuclear complex contributes to tactile allodynia/hyperalgesia following trigeminal nerve injury. Eur J Pain 2012; 17:185-99. [DOI: 10.1002/j.1532-2149.2012.00174.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 12/29/2022]
Affiliation(s)
- G. Ito
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - Y. Suekawa
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - M. Watanabe
- Department of Oral Biology; Division of Molecular Medical Science; Hiroshima University Graduate School of Biomedical Science; Japan
| | - K. Takahashi
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - T. Inubushi
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - K. Murasaki
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - N. Hirose
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| | - S. Hiyama
- Department of Oral Biology; Division of Molecular Medical Science; Hiroshima University Graduate School of Biomedical Science; Japan
| | - T. Uchida
- Department of Oral Biology; Division of Molecular Medical Science; Hiroshima University Graduate School of Biomedical Science; Japan
| | - K. Tanne
- Department of Orthodontics and Craniofacial Developmental Biology; Hiroshima University Graduate School of Biomedical Sciences; Japan
| |
Collapse
|
29
|
Koizumi S, Ohsawa K, Inoue K, Kohsaka S. Purinergic receptors in microglia: Functional modal shifts of microglia mediated by P2 and P1 receptors. Glia 2012; 61:47-54. [DOI: 10.1002/glia.22358] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 04/30/2012] [Indexed: 11/09/2022]
|
30
|
Sweepers in the CNS: Microglial Migration and Phagocytosis in the Alzheimer Disease Pathogenesis. Int J Alzheimers Dis 2012; 2012:891087. [PMID: 22666624 PMCID: PMC3359803 DOI: 10.1155/2012/891087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/02/2012] [Indexed: 01/28/2023] Open
Abstract
Microglia are multifunctional immune cells in the central nervous system (CNS). In the neurodegenerative diseases such as Alzheimer's disease (AD), accumulation of glial cells, gliosis, occurs in the lesions. The role of accumulated microglia in the pathophysiology of AD is still controversial. When neuronal damage occurs, microglia exert diversified functions, including migration, phagocytosis, and production of various cytokines and chemokines. Among these, microglial phagocytosis of unwanted neuronal debris is critical to maintain the healthy neuronal networks. Microglia express many surface receptors implicated in phagocytosis. It has been suggested that the lack of microglial phagocytosis worsens pathology of AD and induces memory impairment. The present paper summarizes recent evidences on implication of microglial chemotaxis and phagocytosis in AD pathology and discusses the mechanisms related to chemotaxis toward injured neurons and phagocytosis of unnecessary debris.
Collapse
|
31
|
Hidetoshi TS, Makoto T, Inoue K. P2Y receptors in microglia and neuroinflammation. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
33
|
Seifert S, Pannell M, Uckert W, Färber K, Kettenmann H. Transmitter- and hormone-activated Ca(2+) responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca(2+) sensor. Cell Calcium 2011; 49:365-75. [PMID: 21536328 DOI: 10.1016/j.ceca.2011.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/15/2011] [Accepted: 03/12/2011] [Indexed: 11/18/2022]
Abstract
In vitro studies show that microglia, the resident immune cells of the brain, express neurotransmitter and neuropeptide receptors which are linked to Ca(2+) signaling. Here we describe an approach to obtain Ca(2+) recordings from microglia in situ. We injected a retrovirus encoding a calcium sensor into the cortex of mice 2 days after stimulation of microglial proliferation by a stab wound injury. Microglial cells were identified with tomato lectin in acute slices prepared 3, 6, 21 and 42 days after the injury. The membrane current profile and the ameboid morphology indicated that microglial cells were activated at day 6 while at day 42 they resembled resting microglia. We recorded transient Ca(2+) responses to application of ATP, endothelin-1, substance P, histamine and serotonin. The fluorescence amplitude of ATP was increased only at day 6 compared to other time points, while responses to all other ligands did not vary. Only half of the microglial cells that responded to ATP also responded to endothelin-1, serotonin and histamine. Substance P, in contrast, showed a complete overlap with the ATP responding microglial population at day 6, at day 42 this population was reduced to 55%. Cultured cells were less responsive to these ligands. This study shows that in situ microglia consist of heterogeneous populations with respect to their sensitivity to neuropeptides and -transmitters.
Collapse
Affiliation(s)
- Stefanie Seifert
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | | | | | | |
Collapse
|
34
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
35
|
Fang KM, Yang CS, Sun SH, Tzeng SF. Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 2009; 111:1225-37. [PMID: 19860838 DOI: 10.1111/j.1471-4159.2009.06409.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microglia, the CNS resident macrophages responsible for the clearance of degenerating cellular fragments, are essential to tissue remodeling and repair after CNS injury. ATP can be released in large amounts after CNS injury and may mediate microglial activity through the ionotropic P2X and the metabotropic P2Y receptors. This study indicates that exposure to a high concentration of ATP for 30 min rapidly induces changes of the microglial cytoskeleton, and significantly attenuates microglial phagocytosis. A pharmacological approach showed that ATP-induced inhibition of microglial phagocytotic activity was due to P2X(7)R activation, rather than that of P2YR. Activation of P2X(7)R by its agonist, 2'-3'-O-(4-benzoyl)benzoyl-ATP (BzATP), produced a Ca(2+)-independent reduction in microglial phagocytotic activity. In addition, the knockdown of P2X(7)R expression by lentiviral-mediated shRNA interference or the blockade of P2X(7)R activation by the specific antagonists, oxidized ATP (oxATP) and brilliant blue G, has efficiently restored the phagocytotic activity of ATP and BzATP-treated microglia. Our results reveal that P2X(7)R activation may induce the formation of a Ca(2+)-independent signaling complex, which results in the reduction of microglial phagocytosis. This suggests that exposure to ATP for a short-term period may cause insufficient clearance of tissue debris by microglia through P2X(7)R activation after CNS injury, and that blockade of this receptor may preserve the phagocytosis of microglia and facilitate CNS tissue repair.
Collapse
Affiliation(s)
- Kuan-Min Fang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|