1
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Yoo JY, Yeh M, Kaur B, Lee TJ. Targeted delivery of small noncoding RNA for glioblastoma. Cancer Lett 2020; 500:274-280. [PMID: 33176185 DOI: 10.1016/j.canlet.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Aberrant expression of certain genes and microRNAs (miRNAs) has been shown to drive cancer development and progression, thus the modification of aberrant gene and miRNA expression presents an opportunity for therapeutic targeting. Ectopic modulation of a single dysregulated miRNA has the potential to revert therapeutically unfavorable gene expression in cancer cells by targeting multiple genes simultaneously. Although the use of noncoding RNA-based cancer therapy is a promising approach, the lack of a feasible delivery platform for small noncoding RNAs has hindered the development of this therapeutic modality. Recently, however, there has been an evolution in RNA nanotechnology, in which small noncoding RNA is loaded onto nanoparticles derived from the pRNA-3WJ viral RNA motif of the bacteriophage phi29. Preclinical studies have shown the capacity of this technology to specifically target tumor cells by conjugating these nanoparticles with ligands specific for cancer cells and resulting in the endocytic delivery of siRNA and miRNA inhibitors directly into the cell. Here we provide a systematic review of the various strategies, which have been utilized for miRNA delivery with a specific focus on the preclinical evaluation of promising RNA nanoparticles for glioblastoma (GBM) targeted therapy.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaret Yeh
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
5
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
6
|
Rowland LK, Campbell PS, Mavingire N, Wooten JV, McLean L, Zylstra D, Thorne G, Daly D, Boyle K, Whang S, Unternaehrer J, Brantley EJ. Putative tumor suppressor cytoglobin promotes aryl hydrocarbon receptor ligand-mediated triple negative breast cancer cell death. J Cell Biochem 2019; 120:6004-6014. [PMID: 30450577 PMCID: PMC6382570 DOI: 10.1002/jcb.27887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
Nearly 40 000 women die annually from breast cancer in the United States. Clinically available targeted breast cancer therapy is largely ineffective in triple negative breast cancer (TNBC), characterized by tumors that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2). TNBC is associated with a poor prognosis. Previous reports show that aryl hydrocarbon receptor (AhR) partial agonist 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) selectively inhibits the growth of breast cancer cells, including those of the TNBC subtype. We previously demonstrated that 5F 203 induced the expression of putative tumor suppressor gene cytoglobin (CYGB) in breast cancer cells. In the current study, we determined that 5F 203 induces apoptosis and caspase-3 activation in MDA-MB-468 TNBC cells and in T47D ER+ PR + Her2 - breast cancer cells. We also show that caspases and CYGB promote 5F 203-mediated apoptosis in MDA-MB-468 cells. 5F 203 induced lysosomal membrane permeabilization (LMP) and cathepsin B release in MDA-MB-468 and T47D cells. In addition, silencing CYGB attenuated the ability of 5F 203 to induce caspase-3/-7 activation, proapoptotic gene expression, LMP, and cathepsin B release in MDA-MB-468 cells. Moreover, 5F 203 induced CYGB protein expression, proapoptotic protein expression, and caspase-3 cleavage in MDA-MB-468 cells and in MDA-MB-468 xenograft tumors grown orthotopically in athymic mice. These data provide a basis for the development of AhR ligands with the potential to restore CYGB expression as a novel strategy to treat TNBC.
Collapse
Affiliation(s)
- Leah K. Rowland
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Petreena S. Campbell
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Nicole Mavingire
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Jonathan V. Wooten
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Lancelot McLean
- Dental Education Services, Loma Linda University Health School of Dentistry, Loma Linda, CA
| | - Dain Zylstra
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA
| | - Gabriell Thorne
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
- Department of Pharmacy and Health Professions, Elizabeth City State University, Elizabeth City, NC, USA
| | - Devin Daly
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Kristopher Boyle
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA
| | - Sonya Whang
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Juli Unternaehrer
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
| | - Eileen J. Brantley
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA
| |
Collapse
|
7
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
8
|
Ji B, Higa K, Soontornniyomkij V, Miyanohara A, Zhou X. A novel animal model for neuroinflammation and white matter degeneration. PeerJ 2017; 5:e3905. [PMID: 29104820 PMCID: PMC5669272 DOI: 10.7717/peerj.3905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Small interference RNA has been widely used to suppress gene expression. Three different short hairpin RNAs (shRNAs) against dopamine D1 receptor (Drd1), driven by mouse U6 promoter in self-complementary AAV8 vector (scAAV8), were used to silence mouse striatal Drd1 expression. Transduction of mouse striatum with all three scAAV8-D1shRNA viruses, but not the control scAAV8 virus, causes extensive neuroinflammation, demyelination, and axon degeneration. RNA interference is known to be coupled to the innate immune system as a host cell defense against virus infection. Activation of the innate immune system may play a causal role in the development of neuroinflammation and white matter degeneration, providing a novel animal model for multiple sclerosis (MS) and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Baohu Ji
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America
| | - Kerin Higa
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America
| | - Virawudh Soontornniyomkij
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America
| | - Atsushi Miyanohara
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States of America
| | - Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
9
|
Sepulveda H, Villagra A, Montecino M. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment. Mol Cell Biol 2017; 37:e00177-17. [PMID: 28784721 PMCID: PMC5615189 DOI: 10.1128/mcb.00177-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/15/2017] [Accepted: 07/22/2017] [Indexed: 12/22/2022] Open
Abstract
Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
10
|
Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, Wei J, Carter GT, Weiss MD, Chamberlain JR. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 2015; 24:4971-83. [PMID: 26082468 DOI: 10.1093/hmg/ddv219] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023] Open
Abstract
RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG(exp)) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG(exp) mRNA in the human α-skeletal muscle actin long-repeat (HSA(LR)) mouse model of DM1. RNAi expression cassettes were delivered to HSA(LR) mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA(LR) mice, including a reduction in the CUG(exp) mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG(exp) mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA(LR) mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies.
Collapse
Affiliation(s)
| | | | | | - Jessica Wei
- Division of Medical Genetics, Department of Medicine
| | | | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
11
|
Nair RR, Bagheri M, Saini DK. Temporally distinct roles of ATM and ROS in genotoxic-stress-dependent induction and maintenance of cellular senescence. J Cell Sci 2015; 128:342-53. [DOI: 10.1242/jcs.159517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Cells exposed to genotoxic stress induce cellular senescence through a DNA damage response (DDR) pathway regulated by ATM kinase and reactive oxygen species (ROS). Here, we show that the regulatory roles for ATM kinase and ROS differ during induction and maintenance of cellular senescence. Cells treated with different genotoxic agents were analyzed using specific pathway markers and inhibitors to determine that ATM kinase activation is directly proportional to the dose of the genotoxic stress and that senescence initiation is not dependent on ROS or the p53 status of cells. Cells in which ROS was quenched still activated ATM and initiated the DDR when insulted, and progressed normally to senescence. By contrast, maintenance of a viable senescent state required the presence of ROS as well as activated ATM. Inhibition or removal of either of the components caused cell death in senescent cells, through a deregulated ATM–ROS axis. Overall, our work demonstrates existence of an intricate temporal hierarchy between genotoxic stress, DDR and ROS in cellular senescence. Our model reports the existence of different stages of cellular senescence with distinct regulatory networks.
Collapse
Affiliation(s)
- Raji R. Nair
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Meisam Bagheri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Hutson TH, Foster E, Dawes JM, Hindges R, Yáñez-Muñoz RJ, Moon LDF. Lentiviral vectors encoding short hairpin RNAs efficiently transduce and knockdown LINGO-1 but induce an interferon response and cytotoxicity in central nervous system neurones. J Gene Med 2012; 14:299-315. [PMID: 22499506 DOI: 10.1002/jgm.2626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the central nervous system (CNS). Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. METHODS CNS neurones were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using quantitative real time-polymerase chain reaction and northern blots were used to assess shRNA production. RESULTS Integration-deficient lentiviral vectors efficiently transduced CNS neurones and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon-stimulated genes (2',5'-oligoadenylate synthase 1 and protein kinase R although not myxovirus resistance 1) and a down-regulation of off-target genes (including p75(NTR) and Nogo receptor 1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Taken together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate following transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. CONCLUSIONS These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation.
Collapse
Affiliation(s)
- Thomas H Hutson
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK. thomas.hutson@kcl. ac.uk
| | | | | | | | | | | |
Collapse
|
13
|
Li BA. A novel tumor suppressor miRNA miR-520e contributes to suppression of hepatoma. Acta Pharmacol Sin 2012; 33:3-4. [PMID: 22212428 DOI: 10.1038/aps.2011.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
14
|
miRNA-mediated immune regulation and immunotherapeutic potential in glioblastoma. ACTA ACUST UNITED AC 2011; 1:1637-1650. [PMID: 22468222 DOI: 10.4155/cli.11.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GB), the most common primary neoplasm of the CNS, remains universally fatal with standard therapies and has a mean overall survival time of only 14.6 months. Even in the most favorable situations most patients do not survive longer than 2 years. Another hallmark of GBs, apart from the poor control of proliferation, is an immune suppressed tumor microenvironment. miRNAs usually bind the 3' untranslated region of target mRNAs and direct their post-transcriptional repression. Certain miRNAs are known to have altered expression levels in GB tumors, and in many immune cell subtypes. miRNAs have been found to serve important roles in gene regulation and are implicated in many processes in oncogenesis and immune deregulation. In this article we focus on the miRNAs involved in gliomagenesis and in the regulation of the immune response. We also present current challenges and miRNA immunotherapeutic strategies that should be investigated further.
Collapse
|
15
|
Boudreau RL, Rodríguez-Lebrón E, Davidson BL. RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 2011; 20:R21-7. [PMID: 21459775 DOI: 10.1093/hmg/ddr137] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNAi interference (RNAi) is a powerful gene silencing technology that has immense potential for treating a vast array of human ailments, for which suppressing disease-associated genes may provide clinical benefit. Here, we review the development of RNAi as a therapeutic modality for neurodegenerative diseases affecting the central nervous system (CNS). We overview promising preclinical data for the application of RNAi in the CNS and discuss key challenges (e.g. delivery and specificity) that remain as these approaches transition to the clinic.
Collapse
Affiliation(s)
- Ryan L Boudreau
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Demeestere J, Vandenberghe W. Experimental surgical therapies for Huntington's disease. CNS Neurosci Ther 2010; 17:705-13. [PMID: 21199443 DOI: 10.1111/j.1755-5949.2010.00209.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by abnormal movement, cognitive decline, and psychiatric disturbance. HD is caused by a trinucleotide repeat expansion in the HTT gene and a corresponding neurotoxic polyglutamine expansion in the huntingtin protein. There is currently no therapy to modify the progressive course of the disease, and symptomatic treatment options are limited. In this review we describe a diverse set of emerging experimental therapeutic strategies for HD: deep brain stimulation; delivery of neurotrophic factors; cell transplantation; HTT gene silencing using RNA interference or antisense oligonucleotides; and delivery of intrabodies. The common feature of these experimental therapies is that they all require a neurosurgical intervention, either for implantation of an electrode or for brain delivery of molecules, viruses or cells that do not cross the blood-brain barrier upon oral or intravenous administration. We summarize available data on the rationale, safety, efficacy, and intrinsic limitations of each of these approaches, focusing mainly on studies in HD patients and genetic animal models of HD. Although each of these strategies holds significant promise, their efficacy remains to be proven in HD patients.
Collapse
Affiliation(s)
- Jelle Demeestere
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Posey KL, Liu P, Wang HR, Veerisetty AC, Alcorn JL, Hecht JT. RNAi reduces expression and intracellular retention of mutant cartilage oligomeric matrix protein. PLoS One 2010; 5:e10302. [PMID: 20421976 PMCID: PMC2858657 DOI: 10.1371/journal.pone.0010302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 01/06/2023] Open
Abstract
Mutations in cartilage oligomeric matrix protein (COMP), a large extracellular glycoprotein expressed in musculoskeletal tissues, cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. These mutations lead to massive intracellular retention of COMP, chondrocyte death and loss of growth plate chondrocytes that are necessary for linear growth. In contrast, COMP null mice have only minor growth plate abnormalities, normal growth and longevity. This suggests that reducing mutant and wild-type COMP expression in chondrocytes may prevent the toxic cellular phenotype causing the skeletal dysplasias. We tested this hypothesis using RNA interference to reduce steady state levels of COMP mRNA. A panel of shRNAs directed against COMP was tested. One shRNA (3B) reduced endogenous and recombinant COMP mRNA dramatically, regardless of expression levels. The activity of the shRNA against COMP mRNA was maintained for up to 10 weeks. We also demonstrate that this treatment reduced ER stress. Moreover, we show that reducing steady state levels of COMP mRNA alleviates intracellular retention of other extracellular matrix proteins associated with the pseudoachondroplasia cellular pathology. These findings are a proof of principle and the foundation for the development of a therapeutic intervention based on reduction of COMP expression.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
RNA interference (RNAi) is a gene silencing phenomenon that is induced by ribonucleoprotein complexes containing 21-28 nucleotides (nt) of double-stranded RNA (si/miRNA). Although this phenomenon occurs in an inherent manner, it can also be induced in an artificially manipulated manner. Recently, the understanding of RNAi mechanisms has progressed from that in plants to that in mammals. As RNAi is a highly efficient and readily available procedure to knockdown specific targets, it can possibly be used as a new technique providing many researchers and clinicians with opportunities for its experimental use and prospective clinical application. Consequently, there has been a rush of elucidation of the effective sequences of siRNAs used for the knockdown of the targets in many fields, including neuroscience and experiments for neurological disorders. However, in many cases, it is difficult to effectively introduce si/miRNA into cells without causing injury to the recipient cells. Apart from the off-target effects and the pathogenic property of si/miRNA per se, which are designed and produced, the possibility and intensity of cell injury by RNAi depends on the method employed for the introduction of si/miRNA. Possible methods include si/miRNA delivery systems using liposome, polyethylenimine (PEI), electroporation, and viral infection. Currently, various methods for delivering si/miRNA into cells have been developed and challenged. Here, I review the advantages, disadvantages, and perspective of employing the RNAi procedure in the brain. Given that the disadvantages of RNAi can be overcome, the clinical application of RNAi technologies may be useful in realizing the elimination of pathogenic genes not only in the brain, but also in the other organs in the near future.
Collapse
Affiliation(s)
- Yukio Akaneya
- Division of Neurophysiology, Department of Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
RNA interference targeting the ACE gene reduced blood pressure and improved myocardial remodelling in SHRs. Clin Sci (Lond) 2009; 116:249-55. [PMID: 18605985 DOI: 10.1042/cs20080048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to investigate the effects on blood pressure and myocardial hypertrophy in SHRs (spontaneously hypertensive rats) of RNAi (RNA interference) targeting ACE (angiotensin-converting enzyme). SHRs were treated with normal saline as vehicle controls, with Ad5-EGFP as vector controls, and with recombinant adenoviral vectors Ad5-EGFP-ACE-shRNA, carrying shRNA (small hairpin RNA) for ACE as ACE-RNAi. WKY (Wistar-Kyoto) rats were used as normotensive controls treated with normal saline. The systolic blood pressure of the caudal artery was recorded. Serum levels of ACE and AngII (angiotensin II) were determined using ELISA. ACE mRNA and protein levels were determined in aorta, myocardium, kidney and lung. On day 32 of the experiment, the heart was pathologically examined. The ratios of heart weight/body weight and left ventricular weight/body weight were calculated. The serum concentration of ACE was lower in ACE-RNAi rats (16.37+/-3.90 ng/ml) compared with vehicle controls and vector controls (48.26+/-1.50 ng/ml and 46.67+/-2.82 ng/ml respectively; both P<0.05), but comparable between ACE-RNAi rats and WKY rats (14.88+/-3.15 ng/ml; P>0.05). The serum concentration of AngII was also significantly lower in ACE-RNAi rats (18.24+/-3.69 pg/ml) compared with vehicle controls and vector controls (46.21+/-5.06 pg/ml and 44.93+/-4.12 pg/ml respectively; both P<0.05), but comparable between ACE-RNAi rats and WKY rats (16.06+/-3.11 pg/ml; P>0.05). The expression of ACE mRNA and ACE protein were significantly reduced in the myocardium, aorta, kidney and lung in ACE-RNAi rats compared with that in vehicle controls and in vector controls (all P<0.05). ACE-RNAi treatment resulted in a reduction in systolic blood pressure by 22+/-3 mmHg and the ACE-RNAi-induced reduction lasted for more than 14 days. In contrast, blood pressure was continuously increased in the vehicle controls as well as in the vector controls. The ratios of heart weight/body weight and left ventricular weight/body weight were significantly lower in ACE-RNAi rats (3.12+/-0.23 mg/g and 2.24+/-0.19 mg/g) compared with the vehicle controls (4.29+/-0.24 mg/g and 3.21+/-0.13 mg/g; P<0.05) and the vector controls (4.43+/-0.19 mg/g and 3.13+/-0.12 mg/g; P<0.05). The conclusion of the present study is that ACE-silencing had significant antihypertensive effects and reversed hypertensive-induced cardiac hypertrophy in SHRs, and therefore RNAi might be a new strategy in controlling hypertension.
Collapse
|
21
|
Efficient In Vivo Delivery of siRNA to the Liver by Conjugation of α-Tocopherol. Mol Ther 2008. [DOI: 10.1038/sj.mt.6300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 2008; 16:734-740. [PMID: 18362929 DOI: 10.1038/mt.2008.14] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 01/07/2008] [Indexed: 11/08/2022] Open
Abstract
RNA interference is a powerful tool for target-specific knockdown of gene expression. However, efficient and safe in vivo delivery of short interfering RNA (siRNA) to the target organ, which is essential for therapeutic applications, has not been established. In this study we used alpha-tocopherol (vitamin E), which has its own physiological transport pathway to most of the organs, as a carrier molecule of siRNA in vivo. The alpha-tocopherol was covalently bound to the antisense strand of 27/29-mer siRNA at the 5'-end (Toc-siRNA). The 27/29-mer Toc-siRNA was designed to be cleaved by Dicer, producing a mature form of 21/21-mer siRNA after releasing alpha-tocopherol. The C6 hydroxyl group of alpha-tocopherol, associated with antioxidant activity, was abolished. Using this new vector, intravenous injection of 2 mg/kg of Toc-siRNA, targeting apolipoprotein B (apoB), achieved efficient reduction of endogenous apoB messenger RNA (mRNA) in the liver. The downregulation of apoB mRNA was confirmed by the accumulation of lipid droplets in the liver as a phenotype. Neither induction of interferons (IFNs) nor other overt side effects were revealed by biochemical and pathological analyses. These findings indicate that Toc-siRNA is effective and safe for RNA interference-mediated gene silencing in vivo.
Collapse
|
23
|
Abstract
The ability to manipulate RNAi in cultured mammalian cells has provided scientists with a very powerful tool to influence gene expression. Neurons represent a cell type that initially displayed resistance to transduction by siRNAs or shRNA, when attempting to silence expression of endogenous genes. However, the development of lentiviral systems with that goal has facilitated the exogenous manipulation of RNAi in these postmitotic cells. Lentiviral-mediated RNAi experiments in cultured mammalian neurons can be designed to address a wide variety of biological questions or to test potential therapeutic hairpins before moving to treatment trials in vivo. We provide a practical approach to accomplish siRNA-mediated silencing of the disease-linked protein torsinA in primary neuronal cultures through the generation of lentiviral vectors expressing shRNAs.
Collapse
Affiliation(s)
- Scott Q Harper
- Department of Pediatrics, Ohio State University, Center for Gene Therapy, Columbus, OH, USA
| | | |
Collapse
|
24
|
Li YL, Quarles LD, Zhou HH, Xiao ZS. RNA interference and its application in bone-related diseases. Biochem Biophys Res Commun 2007; 361:817-21. [PMID: 17686458 DOI: 10.1016/j.bbrc.2007.07.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/24/2007] [Indexed: 01/17/2023]
Abstract
RNA interference (RNAi) is the most exciting insight in biology in past decades, which provided new perspectives into the genome-wide surveys of gene function by targeted degradation of mRNA with the introduction of small interfering RNAs (siRNAs) or small hairpin RNAs (shRNAs) in a large variety of organisms, and turned out to be a more efficient and convenient method compared with the traditional knockout pathway. What's more, as the enhancement of its stability and improvement of its delivery vehicles, RNAi is bound to be a practical tool in determine gene function first in vitro and then in vivo. In this paper, we will focus on the recent achievements of RNAi and also depict the development of RNAi as a potentially powerful tool in studying bone-related diseases.
Collapse
Affiliation(s)
- Ya Lin Li
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | | | | | | |
Collapse
|
25
|
Gonzalez-Alegre P. Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacol Ther 2007; 114:34-55. [PMID: 17316816 DOI: 10.1016/j.pharmthera.2007.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 12/28/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) has emerged as a powerful tool to manipulate gene expression in the laboratory. Due to its remarkable discriminating properties, individual genes, or even alleles can be targeted with exquisite specificity in cultured cells or living animals. Among its many potential biomedical applications, silencing of disease-linked genes stands out as a promising therapeutic strategy for many incurable disorders. Neurodegenerative diseases represent one of the more attractive targets for the development of therapeutic RNAi. In this group of diseases, the progressive loss of neurons leads to the gradual appearance of disabling neurological symptoms and premature death. Currently available therapies aim to improve the symptoms but not to halt the process of neurodegeneration. The increasing prevalence and economic burden of some of these diseases, such as Alzheimer's disease (AD) or Parkinson's disease (PD), has boosted the efforts invested in the development of interventions, such as RNAi, aimed at altering their natural course. This review will summarize where we stand in the therapeutic application of RNAi for neurodegenerative diseases. The basic principles of RNAi will be reviewed, focusing on features important for its therapeutic manipulation. Subsequently, a stepwise strategy for the development of therapeutic RNAi will be presented. Finally, the different preclinical trials of therapeutic RNAi completed in disease models will be summarized, stressing the experimental questions that need to be addressed before planning application in human disease.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, 2-RCP, Carver College of Medicine at The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
26
|
Federici T, Boulis NM. Ribonucleic acid interference for neurological disorders: candidate diseases, potential targets, and current approaches. Neurosurgery 2007; 60:3-15; discussion 15-6. [PMID: 17228249 DOI: 10.1227/01.neu.0000249214.42461.a5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Ribonucleic acid (RNA) interference (RNAi) is a conserved evolutionary defense mechanism that is gaining utility for therapeutic application by modulating gene expression or silencing disease-causing genes. METHODS This strategy has recently achieved success in mammalian cells via synthetic small interfering RNA or short hairpin RNA expressed in vectors for gene delivery. The vector-based RNAi strategy has particular potential because of the possibility of targeted gene delivery, long-term gene expression, and the potential means of penetrating the blood-brain barrier. RESULTS RNAi-based approaches have been proposed for a variety of neurological disorders, including dominant genetic diseases, neurodegenerative diseases, malignant brain tumors, pain, and viral-induced encephalopathies. CONCLUSION This review summarizes the current approaches of the RNAi strategy for neurological disorders, focusing on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neuroscience The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
27
|
Osten P, Grinevich V, Cetin A. Viral vectors: a wide range of choices and high levels of service. Handb Exp Pharmacol 2007:177-202. [PMID: 17203656 DOI: 10.1007/978-3-540-35109-2_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are intracellular parasites with simple DNA or RNA genomes. Virus life revolves around three steps: infection of a host cell, replication of its genome within the host cell environment, and formation of new virions; this process is often but not always associated with pathogenic effects against the host organism. Since the mid-1980s, the main goal of viral vectorology has been to develop recombinant viral vectors for long-term gene delivery to mammalian cells, with minimal associated toxicity. Today, several viral vector systems are close to achieving this aim, providing stable transgenic expression in many different cell types and tissues. Here we review application characteristics of four vector systems, derived from adeno-associated viruses, adenoviruses, retroviruses and herpes simplex virus-1, for in vivo gene delivery. We discuss the transfer capacity of the expression vectors, the stability of their transgenic expression, the tropism of the recombinant viruses, the likelihood of induction of immunotoxicity, and the ease (or difficulty) of the virus production. In the end, we discuss applications of these vectors for delivery of three molecular systems for conditional mutagenesis, two for inducible transcriptional control of transgenic expression (the tet and the dimerizer systems), and the third one for inducible control of endogenous gene expression based on RNA interference.
Collapse
Affiliation(s)
- P Osten
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
28
|
Thakker DR, Hoyer D, Cryan JF. Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther 2005; 109:413-38. [PMID: 16183135 DOI: 10.1016/j.pharmthera.2005.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 12/31/2022]
Abstract
Psychiatric and neurological disorders are among the most complex, poorly understood, and debilitating diseases in medicine. The burgeoning advances in functional genomic technologies have led to the identification of a vast number of novel genes that are potentially implicated in the pathophysiology of such disorders. However, many of these candidate genes have not yet been functionalized and require validation in vivo. Traditionally, abrogating gene function is one of the primary means of examining the physiological significance of a given gene product. Several methods have been developed for gene ablation or knockdown, however, with limited levels of success. The recent discovery of RNA interference (RNAi), as a highly efficient method for gene knockdown, has been one of the major breakthroughs in molecular medicine. In vivo application of RNAi is further demonstrating the promise of this technology. Recent efforts have focused on applying RNAi-based knockdown to understand the genes implicated in neuropsychiatric disorders. However, the greatest challenge with this approach is translating the success of RNAi from mammalian cell cultures to the brain in animal models of disease and, subsequently, in patients. In this review, we describe the various methods that are being developed to deliver RNAi into the brain for down-regulating gene expression and subsequent phenotyping of genes in vivo. We illustrate the utility of various approaches with a few successful examples and also discuss the potential benefits and pitfalls associated with the use of each delivery approach. Appropriate tailoring of tools that deliver RNAi in the brain may not only aid our understanding of the complex pathophysiology of neuropsychiatric disorders, but may also serve as a valuable therapy for disorders, where there is an immense unmet medical need.
Collapse
Affiliation(s)
- Deepak R Thakker
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
29
|
Watson JM, Fusaro AF, Wang M, Waterhouse PM. RNA silencing platforms in plants. FEBS Lett 2005; 579:5982-7. [PMID: 16139270 DOI: 10.1016/j.febslet.2005.08.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 08/12/2005] [Accepted: 08/13/2005] [Indexed: 11/17/2022]
Abstract
Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop.
Collapse
Affiliation(s)
- John M Watson
- CSIRO Plant Industry, P.O. Box 1600, Canberra ACT 2602, Australia
| | | | | | | |
Collapse
|