1
|
Rieger K, Hoy J, Keller TJ, Maly T. Cryogenic sample eject system for electron paramagnetic resonance spectrometers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 370:107823. [PMID: 39708478 DOI: 10.1016/j.jmr.2024.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
We present a fully automated cryogenic sample insertion and ejection system for use with low-temperature EPR probes. We show how the system can be implemented on a conventional EPR spectrometer and that ejection and insertion is reliably possible at temperatures down to 10 K. Furthermore, we investigate the glass properties of a 0.1 mM sample of TEMPO in d8-glycerol/D2O (25/75, v/v) by measuring the electron phase memory time Tm in addition to determining the effective spin concentration from a PELDOR/DEER background trace. These experiments were done either using the sample eject system or samples that were manually flash frozen. We show that using the ejection system we can consistently obtain a better glass matrix as indicated by the longer Tm times and the lower effective concentrations.
Collapse
Affiliation(s)
- Karl Rieger
- Bridge12 Magnetic Resonance, 11 Michigan Drive, Natick, MA 01760, USA
| | - Joshua Hoy
- Bridge12 Magnetic Resonance, 11 Michigan Drive, Natick, MA 01760, USA
| | - Timothy J Keller
- Bridge12 Magnetic Resonance, 11 Michigan Drive, Natick, MA 01760, USA
| | - Thorsten Maly
- Bridge12 Magnetic Resonance, 11 Michigan Drive, Natick, MA 01760, USA.
| |
Collapse
|
2
|
Sanders G, Borbat PP, Georgieva ER. Conformations of influenza A M2 protein in DOPC/DOPS and E. coli native lipids and proteins. Biophys J 2024; 123:2584-2593. [PMID: 38932458 PMCID: PMC11365223 DOI: 10.1016/j.bpj.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IM2) protein reconstituted in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPC/DOPS) bilayers to those in isolated Escherichia coli (E. coli) membranes, having preserved its native proteins and lipids. IM2 is a single-pass transmembrane protein known to assemble into a homo-tetrameric proton channel. To represent this channel, we made a construct containing the IM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitution, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the electron spin resonance (ESR) study. For this particular residue, we probed the conformations of the spin-labeled IM2 reconstituted in DOPC/DOPS and isolated E. coli membranes using continuous-wave ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400. The continuous-wave ESR spectra corresponded to very slow spin-label motion in both environments. In all cases, the DEER data were reconstructed into distance distributions with well-resolved peaks at 1.68 and 2.37 nm in distance and amplitude ratios of 1.41 ± 0.2 and 2:1, respectively. This suggests four nitroxide spin labels located at the corners of a square, indicative of an axially symmetric tetramer. The distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IM2 TMD tetramer in agreement with the model. Thus, we can conclude that, under conditions of pH 7.4 used in this study, IM2 TMD has similar conformations in model lipid bilayers and membranes made of native E. coli lipids and proteins of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, ACERT, Cornell University, Ithaca, New York
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
3
|
Adams MC, Schiltz C, Sun J, Hosford C, Johnson V, Pan H, Borbat P, Freed J, Thomason L, Court C, Court D, Chappie J. The crystal structure of bacteriophage λ RexA provides novel insights into the DNA binding properties of Rex-like phage exclusion proteins. Nucleic Acids Res 2024; 52:4659-4675. [PMID: 38554102 PMCID: PMC11077077 DOI: 10.1093/nar/gkae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.
Collapse
Affiliation(s)
- Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Carl J Schiltz
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jing Sun
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Virginia M Johnson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Hao Pan
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- National Biomedical Resource for Advanced Electron Spin Resonance Spectroscopy, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- National Biomedical Resource for Advanced Electron Spin Resonance Spectroscopy, Cornell University, Ithaca, NY 14853, USA
| | - Lynn C Thomason
- Center for Cancer Research, National Cancer Institute, Frederick, MD21702, USA
| | - Carolyn Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD21702, USA
| | - Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD21702, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Sanders G, Borbat PP, Georgieva ER. A comparative study of influenza A M2 protein conformations in DOPC/DOPS liposomes and in native E. coli membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574681. [PMID: 38260371 PMCID: PMC10802500 DOI: 10.1101/2024.01.08.574681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca NY 14853
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| |
Collapse
|
5
|
Majeed S, Dang L, Islam MM, Ishola O, Borbat PP, Ludtke SJ, Georgieva ER. HIV-1 Vpu protein forms stable oligomers in aqueous solution via its transmembrane domain self-association. Sci Rep 2023; 13:14691. [PMID: 37673923 PMCID: PMC10483038 DOI: 10.1038/s41598-023-41873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key HIV-1 protein. It has been considered exclusively a single-pass membrane protein. Previous observations show that this protein forms stable oligomers in aqueous solution, but details about these oligomers still remain obscure. This is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. In this study we made use of protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy to better elucidate the nature of the soluble oligomers. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM suggests that the oligomeric state most likely is a hexamer/heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distal C-terminal region of Vpu is highly flexible. Our observations are consistent with both the concept of specific interactions among TM helices or the core of the oligomers being stabilized by hydrophobic forces. While this study does not resolve all of the questions about Vpu oligomers or their functional role in HIV-1 it provides new fundamental information about the size and nature of the oligomeric interactions.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lan Dang
- Graduate Program in Quantitative and Computational Biosciences, Graduate School of Biomedical Sciences at Baylor College of Medicine, Houston, TX, USA
| | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Olamide Ishola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY, 14853, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
- Center for Membrane Protein Research, TTU Health Science Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
6
|
Roy AS, Freed JH, Srivastava M. Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms. RESEARCH SQUARE 2023:rs.3.rs-3216615. [PMID: 37577617 PMCID: PMC10418556 DOI: 10.21203/rs.3.rs-3216615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- Cornell Atkinson Center for Sustainability, Cornell University, 340 Tower Road, Ithaca, 14853, NY, USA
| |
Collapse
|
7
|
Choi YM, Ajjaji D, Fleming KD, Borbat PP, Jenkins ML, Moeller BE, Fernando S, Bhatia SR, Freed JH, Burke JE, Thiam AR, Airola MV. Structural insights into perilipin 3 membrane association in response to diacylglycerol accumulation. Nat Commun 2023; 14:3204. [PMID: 37268630 PMCID: PMC10238389 DOI: 10.1038/s41467-023-38725-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.
Collapse
Affiliation(s)
- Yong Mi Choi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dalila Ajjaji
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8N 1A1, Canada
| | - Peter P Borbat
- National Biomedical Resource for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8N 1A1, Canada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8N 1A1, Canada
| | - Shaveen Fernando
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jack H Freed
- National Biomedical Resource for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8N 1A1, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
8
|
Ackermann K, Khazaipoul S, Wort JL, Sobczak AIS, Mkami HE, Stewart AJ, Bode BE. Investigating Native Metal Ion Binding Sites in Mammalian Histidine-Rich Glycoprotein. J Am Chem Soc 2023; 145:8064-8072. [PMID: 37001144 PMCID: PMC10103162 DOI: 10.1021/jacs.3c00587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Mammalian histidine-rich glycoprotein (HRG) is a highly versatile and abundant blood plasma glycoprotein with a diverse range of ligands that is involved in regulating many essential biological processes, including coagulation, cell adhesion, and angiogenesis. Despite its biomedical importance, structural information on the multi-domain protein is sparse, not least due to intrinsically disordered regions that elude high-resolution structural characterization. Binding of divalent metal ions, particularly ZnII, to multiple sites within the HRG protein is of critical functional importance and exerts a regulatory role. However, characterization of the ZnII binding sites of HRG is a challenge; their number and composition as well as their affinities and stoichiometries of binding are currently not fully understood. In this study, we explored modern electron paramagnetic resonance (EPR) spectroscopy methods supported by protein secondary and tertiary structure prediction to assemble a holistic picture of native HRG and its interaction with metal ions. To the best of our knowledge, this is the first time that this suite of EPR techniques has been applied to count and characterize endogenous metal ion binding sites in a native mammalian protein of unknown structure.
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
| | - Siavash Khazaipoul
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, Scotland
| | - Joshua L. Wort
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
| | - Amélie I. S. Sobczak
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, Scotland
| | - Hassane El Mkami
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland
| | - Alan J. Stewart
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, Scotland
| | - Bela E. Bode
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, Scotland
| |
Collapse
|
9
|
Majeed S, Adetuyi O, Borbat PP, Majharul Islam M, Ishola O, Zhao B, Georgieva ER. Insights into the oligomeric structure of the HIV-1 Vpu protein. J Struct Biol 2023; 215:107943. [PMID: 36796461 PMCID: PMC10257199 DOI: 10.1016/j.jsb.2023.107943] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in β-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Oluwatosin Adetuyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY 14853, United States
| | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Olamide Ishola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Bo Zhao
- College of Arts & Sciences Microscopy (CASM), Texas Tech University, Lubbock, TX 79409, United States
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
10
|
Kao TY, Hung CL, Lan YJ, Lee SW, Chiang YW. Simple Cryoprotectant-Free Method to Advance Pulsed Dipolar ESR Spectroscopy for Capturing Protein Conformational Ensembles. J Phys Chem B 2022; 126:423-429. [PMID: 35005966 DOI: 10.1021/acs.jpcb.1c08190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double electron-electron resonance (DEER) is a powerful technique for studying protein conformations. To preserve the room-temperature ensemble, proteins are usually shock-frozen in liquid nitrogen prior to DEER measurements. The use of cryoprotectant additives is, therefore, necessary to ensure the formation of a vitrified state. Here, we present a simple modification of the freezing process using a flexible fused silica microcapillary, which increases the freezing rates and thus enables DEER measurement without the use of cryoprotectants. The Bid protein, which is highly sensitive to cryoprotectant additives, is used as a model. We show that DEER with the simple modification can successfully reveal the cold denaturation of Bid, which was not possible with the conventional DEER preparations. The DEER result reveals the nature of Bid folding. Our method advances DEER for capturing the chemically and thermally induced conformational changes of a protein in a cryoprotectant-free medium.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
11
|
Thorsen MK, Lai A, Lee MW, Hoogerheide DP, Wong GCL, Freed JH, Heldwein EE. Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering. mBio 2021; 12:e0154821. [PMID: 34425706 PMCID: PMC8406295 DOI: 10.1128/mbio.01548-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 02/01/2023] Open
Abstract
During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex Lai
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Michelle W. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Chandrasekaran S, Schneps CM, Dunleavy R, Lin C, DeOliveira CC, Ganguly A, Crane BR. Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome. Commun Biol 2021; 4:249. [PMID: 33637846 PMCID: PMC7910608 DOI: 10.1038/s42003-021-01766-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Light-induction of an anionic semiquinone (SQ) flavin radical in Drosophila cryptochrome (dCRY) alters the dCRY conformation to promote binding and degradation of the circadian clock protein Timeless (TIM). Specific peptide ligation with sortase A attaches a nitroxide spin-probe to the dCRY C-terminal tail (CTT) while avoiding deleterious side reactions. Pulse dipolar electron-spin resonance spectroscopy from the CTT nitroxide to the SQ shows that flavin photoreduction shifts the CTT ~1 nm and increases its motion, without causing full displacement from the protein. dCRY engineered to form the neutral SQ serves as a dark-state proxy to reveal that the CTT remains docked when the flavin ring is reduced but uncharged. Substitutions of flavin-proximal His378 promote CTT undocking in the dark or diminish undocking in the light, consistent with molecular dynamics simulations and TIM degradation activity. The His378 variants inform on recognition motifs for dCRY cellular turnover and strategies for developing optogenetic tools. Chandrasekaran et al. engineered the Drosophila circadian clock protein Cryptochrome (dCRY) to form the neutral semiquinone, which serves as a dark-state proxy. They find that the C-terminal tail of dCRY remains docked when the flavin ring is reduced but uncharged. dCRY His378 variants provide insights into the recognition motifs for dCRY turnover and strategies for optogenetic tools.
Collapse
Affiliation(s)
| | - Connor M Schneps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Georgieva ER. Protein Conformational Dynamics upon Association with the Surfaces of Lipid Membranes and Engineered Nanoparticles: Insights from Electron Paramagnetic Resonance Spectroscopy. Molecules 2020; 25:E5393. [PMID: 33218036 PMCID: PMC7698768 DOI: 10.3390/molecules25225393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Detailed study of conformational rearrangements and dynamics of proteins is central to our understanding of their physiological functions and the loss of function. This review outlines the applications of the electron paramagnetic resonance (EPR) technique to study the structural aspects of proteins transitioning from a solution environment to the states in which they are associated with the surfaces of biological membranes or engineered nanoobjects. In the former case these structural transitions generally underlie functional protein states. The latter case is mostly relevant to the application of protein immobilization in biotechnological industries, developing methods for protein purification, etc. Therefore, evaluating the stability of the protein functional state is particularly important. EPR spectroscopy in the form of continuous-wave EPR or pulse EPR distance measurements in conjunction with protein spin labeling provides highly versatile and sensitive tools to characterize the changes in protein local dynamics as well as large conformational rearrangements. The technique can be widely utilized in studies of both protein-membrane and engineered nanoobject-protein complexes.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
14
|
Lan YJ, Yeh PS, Kao TY, Lo YC, Sue SC, Chen YW, Hwang DW, Chiang YW. Anti-apoptotic BCL-2 regulation by changes in dynamics of its long unstructured loop. Commun Biol 2020; 3:668. [PMID: 33184407 PMCID: PMC7665024 DOI: 10.1038/s42003-020-01390-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
BCL-2, a key protein in inhibiting apoptosis, has a 65-residue-long highly flexible loop domain (FLD) located on the opposite side of its ligand-binding groove. In vivo phosphorylation of the FLD enhances the affinity of BCL-2 for pro-apoptotic ligands, and consequently anti-apoptotic activity. However, it remains unknown as to how the faraway, unstructured FLD modulates the affinity. Here we investigate the protein-ligand interactions by fluorescence techniques and monitor protein dynamics by DEER and NMR spectroscopy tools. We show that phosphomimetic mutations on the FLD lead to a reduction in structural flexibility, hence promoting ligand access to the groove. The bound pro-apoptotic ligands can be displaced by the BCL-2-selective inhibitor ABT-199 efficiently, and thus released to trigger apoptosis. We show that changes in structural flexibility on an unstructured loop can activate an allosteric protein that is otherwise structurally inactive.
Collapse
Affiliation(s)
- Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Shan Yeh
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chao Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dennis W Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Ghosh S, Lawless MJ, Brubaker HJ, Singewald K, Kurpiewski MR, Jen-Jacobson L, Saxena S. Cu2+-based distance measurements by pulsed EPR provide distance constraints for DNA backbone conformations in solution. Nucleic Acids Res 2020; 48:e49. [PMID: 32095832 PMCID: PMC7229862 DOI: 10.1093/nar/gkaa133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Electron paramagnetic resonance (EPR) has become an important tool to probe conformational changes in nucleic acids. An array of EPR labels for nucleic acids are available, but they often come at the cost of long tethers, are dependent on the presence of a particular nucleotide or can be placed only at the termini. Site directed incorporation of Cu2+-chelated to a ligand, 2,2'dipicolylamine (DPA) is potentially an attractive strategy for site-specific, nucleotide independent Cu2+-labelling in DNA. To fully understand the potential of this label, we undertook a systematic and detailed analysis of the Cu2+-DPA motif using EPR and molecular dynamics (MD) simulations. We used continuous wave EPR experiments to characterize Cu2+ binding to DPA as well as optimize Cu2+ loading conditions. We performed double electron-electron resonance (DEER) experiments at two frequencies to elucidate orientational selectivity effects. Furthermore, comparison of DEER and MD simulated distance distributions reveal a remarkable agreement in the most probable distances. The results illustrate the efficacy of the Cu2+-DPA in reporting on DNA backbone conformations for sufficiently long base pair separations. This labelling strategy can serve as an important tool for probing conformational changes in DNA upon interaction with other macromolecules.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hanna J Brubaker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael R Kurpiewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Georgieva ER, Borbat PP, Fanouraki C, Freed JH. High-yield production in E. coli and characterization of full-length functional p13 II protein from human T-cell leukemia virus type 1. Protein Expr Purif 2020; 173:105659. [PMID: 32360379 DOI: 10.1016/j.pep.2020.105659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Human T-cell leukemia virus type 1 is an oncovirus that causes aggressive adult T-cell leukemia but is also responsible for severe neurodegenerative and endocrine disorders. Combatting HTLV-1 infections requires a detailed understanding of the viral mechanisms in the host. Therefore, in vitro studies of important virus-encoded proteins would be critical. Our focus herein is on the HTLV-1-encoded regulatory protein p13II, which interacts with the inner mitochondrial membrane, increasing its permeability to cations (predominantly potassium, K+). Thereby, this protein affects mitochondrial homeostasis. We report on our progress in developing specific protocols for heterologous expression of p13II in E. coli, and methods for its purification and characterization. We succeeded in producing large quantities of highly-pure full-length p13II, deemed to be its fully functional form. Importantly, our particular approach based on the fusion of ubiquitin to the p13II C-terminus was instrumental in increasing the persistently low expression of soluble p13II in its native form. We subsequently developed approaches for protein spin labeling and a conformation study using double electron-electron resonance (DEER) spectroscopy and a fluorescence-based cation uptake assay for p13II in liposomes. Our DEER results point to large protein conformation changes occurring upon transition from the soluble to the membrane-bound state. The functional assay on p13II-assisted transport of thallium (Tl+) through the membrane, wherein Tl+ substituted for K+, suggests transmembrane potential involvement in p13II function. Our study lays the foundation for expansion of in vitro functional and structural investigations on p13II and would aid in the development of structure-based protein inhibitors and markers.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA.
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA; ACERT Center for Advanced ESR Technology, Cornell University, Ithaca, NY, 14853, USA
| | - Christina Fanouraki
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA; ACERT Center for Advanced ESR Technology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Lai Y, Kuo Y, Chiang Y. Identifying Protein Conformational Dynamics Using Spin‐label ESR. Chem Asian J 2019; 14:3981-3991. [DOI: 10.1002/asia.201900855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yei‐Chen Lai
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
- Department of Chemistry&Biochemistry University of California Santa Barbara CA 93106-9510 USA
| | - Yun‐Hsuan Kuo
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yun‐Wei Chiang
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
18
|
Parish C, Niedbalski P, Wang Q, Khashami F, Hayati Z, Liu M, Song L, Lumata L. Effects of glassing matrix deuteration on the relaxation properties of hyperpolarized 13C spins and free radical electrons at cryogenic temperatures. J Chem Phys 2019; 150:234307. [PMID: 31228902 PMCID: PMC6588520 DOI: 10.1063/1.5096036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 11/14/2022] Open
Abstract
Glassing matrix deuteration could be a beneficial sample preparation method for 13C dynamic nuclear polarization (DNP) when large electron paramagnetic resonance (EPR) width free radicals are used. However, it could yield the opposite DNP effect when samples are doped with small EPR width free radicals. Herein, we have investigated the influence of solvent deuteration on the 13C nuclear and electron relaxation that go along with the effects on 13C DNP intensities at 3.35 T and 1.2 K. For 13C DNP samples doped with trityl OX063, the 13C DNP signals decreased significantly when the protons are replaced by deuterons in glycerol:water or DMSO:water solvents. Meanwhile, the corresponding solid-state 13C T1 relaxation times of trityl OX063-doped samples generally increased upon solvent deuteration. On the other hand, 13C DNP signals improved by a factor of ∼1.5 to 2 upon solvent deuteration of samples doped with 4-oxo-TEMPO. Despite this 13C DNP increase, there were no significant differences recorded in 13C T1 values of TEMPO-doped samples with nondeuterated or fully deuterated glassing matrices. While solvent deuteration appears to have a negligible effect on the electron T1 relaxation of both free radicals, the electron T2 relaxation times of these two free radicals generally increased upon solvent deuteration. These overall results suggest that while the solid-phase 13C DNP signals are dependent upon the changes in total nuclear Zeeman heat capacity, the 13C relaxation effects are related to 2H/1H nuclear spin diffusion-assisted 13C polarization leakage in addition to the dominant paramagnetic relaxation contribution of free radical centers.
Collapse
Affiliation(s)
- Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | | | - Qing Wang
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Fatemeh Khashami
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | | | | | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
19
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
20
|
Baliga C, Selmke B, Worobiew I, Borbat P, Sarma SP, Trommer WE, Varadarajan R, Aghera N. CcdB at pH 4 Forms a Partially Unfolded State with a Dry Core. Biophys J 2019; 116:807-817. [PMID: 30777307 DOI: 10.1016/j.bpj.2019.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
pH is an important factor that affects the protein structure, stability, and activity. Here, we probe the nature of the low-pH structural form of the homodimeric CcdB (controller of cell death B) protein. Characterization of CcdB protein at pH 4 and 300 K using circular dichroism spectroscopy, 8-anilino-1-naphthalene-sulphonate binding, and Trp solvation studies suggests that it forms a partially unfolded state with a dry core at equilibrium under these conditions. CcdB remains dimeric at pH 4 as shown by multiple techniques, such as size-exclusion chromatography coupled to multiangle light scattering, analytical ultracentrifugation, and electron paramagnetic resonance. Comparative analysis using two-dimensional 15N-1H heteronuclear single-quantum coherence NMR spectra of CcdB at pH 4 and 7 suggests that the pH 4 and native state have similar but nonidentical structures. Hydrogen-exchange-mass-spectrometry studies demonstrate that the pH 4 state has substantial but anisotropic changes in local stability with core regions close to the dimer interface showing lower protection but some other regions showing higher protection relative to pH 7.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Benjamin Selmke
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Irina Worobiew
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Peter Borbat
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
21
|
Li CC, Hung CL, Yeh PS, Li CE, Chiang YW. Doubly spin-labeled nanodiscs to improve structural determination of membrane proteins by ESR. RSC Adv 2019; 9:9014-9021. [PMID: 35517660 PMCID: PMC9062051 DOI: 10.1039/c9ra00896a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
Pulsed dipolar spectroscopy (PDS) is a powerful tool to explore conformational changes of membrane proteins (MPs). However, the MPs suffer from relatively weak dipolar signals due to their complex nature in membrane environments, which consequently reduces the interspin distance resolution obtainable by PDS. Here we report the use of nanodiscs (NDs) to improve the distance resolution. Two genetically engineered membrane scaffold protein mutants are introduced, each of which is shown to form double-labeled ND efficiently and with high homogeneity. The resultant interspin distance distribution is featured by a small distribution width, suggesting high resolution. When PDS is performed on a binary mixture of the double-labeled ND devoid of MPs and the un-labeled ND with incorporated double-labeled MPs, the overall amplitude of dipolar signals is increased, leading to a critical enhancement of the distance resolution. A theoretical foundation is provided to validate the analysis. With this approach, the determination of MP structures can be studied at high resolution in NDs. Spin-labeled nanodiscs improve DEER distance measurement of membrane proteins.![]()
Collapse
Affiliation(s)
- Chieh-Chin Li
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Chien-Lun Hung
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Pei-Shan Yeh
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Chi-En Li
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
22
|
Srivastava M, Freed JH. Singular Value Decomposition Method To Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance: II. Estimating Uncertainty. J Phys Chem A 2018; 123:359-370. [PMID: 30525624 DOI: 10.1021/acs.jpca.8b07673] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper is a continuation of the method introduced by Srivastava and Freed (2017) that is a new method based on truncated singular value decomposition (TSVD) for obtaining physical results from experimental signals without any need for Tikhonov regularization or other similar methods that require a regularization parameter. We show here how to estimate the uncertainty in the SVD-generated solutions. The uncertainty in the solution may be obtained by finding the minimum and maximum values over which the solution remains converged. These are obtained from the optimum range of singular value contributions, where the width of this region depends on the solution point location (e.g., distance) and the signal-to-noise ratio (SNR) of the signal. The uncertainty levels typically found are very small with substantial SNR of the (denoised) signal, emphasizing the reliability of the method. With poorer SNR, the method is still satisfactory but with greater uncertainty, as expected. Pulsed dipolar electron spin resonance spectroscopy experiments are used as an example, but this TSVD approach is general and thus applicable to any similar experimental method wherein singular matrix inversion is needed to obtain the physically relevant result. We show that the Srivastava-Freed TSVD method along with the estimate of uncertainty can be effectively applied to pulsed dipolar electron spin resonance signals with SNR > 30, and even for a weak signal (e.g., SNR ≈ 3) reliable results are obtained by this method, provided the signal is first denoised using wavelet transforms (WavPDS).
Collapse
|
23
|
Merz GE, Borbat PP, Muok AR, Srivastava M, Bunck DN, Freed JH, Crane BR. Site-Specific Incorporation of a Cu 2+ Spin Label into Proteins for Measuring Distances by Pulsed Dipolar Electron Spin Resonance Spectroscopy. J Phys Chem B 2018; 122:9443-9451. [PMID: 30222354 DOI: 10.1021/acs.jpcb.8b05619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulsed dipolar electron spin resonance spectroscopy (PDS) is a powerful tool for measuring distances in solution-state macromolecules. Paramagnetic metal ions, such as Cu2+, are used as spin probes because they can report on metalloprotein features and can be spectroscopically distinguished from traditional nitroxide (NO)-based labels. Here, we demonstrate site-specific incorporation of Cu2+ into non-metalloproteins through the use of a genetically encodable non-natural amino acid, 3-pyrazolyltyrosine (PyTyr). We first incorporate PyTyr in cyan fluorescent protein to measure Cu2+-to-NO distances and examine the effects of solvent conditions on Cu2+ binding and protein aggregation. We then apply the method to characterize the complex formed by the histidine kinase CheA and its target response regulator CheY. The X-ray structure of CheY-PyTyr confirms Cu labeling at PyTyr but also reveals a secondary Cu site. Cu2+-to-NO and Cu2+-to-Cu2+ PDS measurements of CheY-PyTyr with nitroxide-labeled CheA provide new insights into the conformational landscape of the phosphotransfer complex and have implications for kinase regulation.
Collapse
Affiliation(s)
- Gregory E Merz
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Alise R Muok
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - David N Bunck
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
24
|
Selmke B, Borbat PP, Nickolaus C, Varadarajan R, Freed JH, Trommer WE. Open and Closed Form of Maltose Binding Protein in Its Native and Molten Globule State As Studied by Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:5507-5512. [PMID: 30004675 PMCID: PMC6211580 DOI: 10.1021/acs.biochem.8b00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intensively investigated intermediate state of protein folding is the molten globule (MG) state, which contains secondary but hardly any tertiary structure. In previous work, we have determined the distances between interacting spins within maltose binding protein (MBP) in its native state using continuous wave and double electron-electron resonance (DEER) electron paramagnetic resonance (EPR) spectroscopy. Seven double mutants had been employed to investigate the structure within the two domains of MBP. DEER data nicely corroborated the previously available X-ray data. Even in its MG state, MBP is known to still bind its ligand maltose. We therefore hypothesized that there must be a defined structure around the binding pocket of MBP already in the absence of tertiary structure. Here we have investigated the functional and structural difference between native and MG state in the open and closed form with a new set of MBP mutants. In these, the spin-label positions were placed near the active site. Binding of its ligands leads to a conformational change from open to closed state, where the two domains are more closely together. The complete set of MBP mutants was analyzed at pH 3.2 (MG) and pH 7.4 (native state) using double-quantum coherence EPR. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structures of MBP in open and closed form and were found to be in excellent agreement. Measurements show a defined structure around the binding pocket of MBP in MG, which explains maltose binding. A new and important finding is that in both states ligand-free MBP can be found in open and closed form, while ligand-bound MBP appears only in closed form because of maltose binding.
Collapse
Affiliation(s)
- Benjamin Selmke
- Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853-1301, USA
| | - Chen Nickolaus
- Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| | | | - Jack H. Freed
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853-1301, USA
| | - Wolfgang E. Trommer
- Department of Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
25
|
Lai YC, Li CC, Sung TC, Chang CW, Lan YJ, Chiang YW. The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:268-280. [PMID: 29958826 DOI: 10.1016/j.bbamem.2018.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023]
Abstract
BCL-2-associated X (BAX) protein acts as a gatekeeper in regulating mitochondria-dependent apoptosis. Under cellular stress, BAX becomes activated and transforms into a lethal oligomer that causes mitochondrial outer membrane permeabilization (MOMP). Previous studies have identified several structural features of the membrane-associated BAX oligomer; they include the formation of the BH3-in-groove dimer, the collapse of the helical hairpin α5-α6, and the membrane insertion of α9 helix. However, it remains unclear as to the role of lipid environment in determining the conformation and the pore-forming activity of the BAX oligomers. Here we study molecular details of the membrane-associated BAX in various lipid environments using fluorescence and ESR techniques. We identify the inactive versus active forms of membrane-associated BAX, only the latter of which can induce stable and large membrane pores that are sufficient in size to pass apoptogenic factors. We reveal that the presence of CL is crucial to promoting the association between BAX dimers, hence the active oligomers. Without the presence of CL, BAX dimers assemble into an inactive oligomer that lacks the ability to form stable pores in the membrane. This study suggests an important role of CL in determining the formation of active BAX oligomers.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tai-Ching Sung
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Wei Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
26
|
Riederer EA, Focke PJ, Georgieva ER, Akyuz N, Matulef K, Borbat PP, Freed JH, Blanchard SC, Boudker O, Valiyaveetil FI. A facile approach for the in vitro assembly of multimeric membrane transport proteins. eLife 2018; 7:36478. [PMID: 29889023 PMCID: PMC6025958 DOI: 10.7554/elife.36478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.
Collapse
Affiliation(s)
- Erika A Riederer
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Paul J Focke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Kimberly Matulef
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Olga Boudker
- Weill Cornell Medicine, New York, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Francis I Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
27
|
Srivastava M, Freed JH. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance. J Phys Chem Lett 2017; 8:5648-5655. [PMID: 29099190 PMCID: PMC5708871 DOI: 10.1021/acs.jpclett.7b02379] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.
Collapse
Affiliation(s)
- Madhur Srivastava
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jack H. Freed
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Corresponding Author:
| |
Collapse
|
28
|
Carrington B, Myers WK, Horanyi P, Calmiano M, Lawson ADG. Natural Conformational Sampling of Human TNFα Visualized by Double Electron-Electron Resonance. Biophys J 2017; 113:371-380. [PMID: 28746848 PMCID: PMC5529296 DOI: 10.1016/j.bpj.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Double electron-electron resonance in conjunction with site-directed spin labeling has been used to probe natural conformational sampling of the human tumor necrosis factor α trimer. We suggest a previously unreported, predeoligomerization conformation of the trimer that has been shown to be sampled at low frequency. A model of this trimeric state has been constructed based on crystal structures using the double-electron-electron-resonance distances. The model shows one of the protomers to be rotated and tilted outward at the tip end, leading to a breaking of the trimerous symmetry and distortion at a receptor-binding interface. The new structure offers opportunities to modulate the biological activity of tumor necrosis factor α through stabilization of the distorted trimer with small molecules.
Collapse
Affiliation(s)
| | - William K Myers
- Department of Inorganic Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
29
|
Lawless MJ, Shimshi A, Cunningham TF, Kinde MN, Tang P, Saxena S. Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy. Chemphyschem 2017; 18:1653-1660. [PMID: 28295910 DOI: 10.1002/cphc.201700115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 11/10/2022]
Abstract
Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Amit Shimshi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.,Current address: Department of Chemistry, Hanover College, 484 Ball Dr, Hanover, IN, 47243, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA.,Current address: Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 2901 St. John's Blvd., Joplin, MO, 64804, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
30
|
Lai AL, Clerico EM, Blackburn ME, Patel NA, Robinson CV, Borbat PP, Freed JH, Gierasch LM. Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. J Biol Chem 2017; 292:8773-8785. [PMID: 28428246 PMCID: PMC5448104 DOI: 10.1074/jbc.m116.770404] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/12/2017] [Indexed: 11/06/2022] Open
Abstract
Proteins are dynamic entities that populate conformational ensembles, and most functions of proteins depend on their dynamic character. Allostery, in particular, relies on ligand-modulated shifts in these conformational ensembles. Hsp70s are allosteric molecular chaperones with conformational landscapes that involve large rearrangements of their two domains (viz. the nucleotide-binding domain and substrate-binding domain) in response to adenine nucleotides and substrates. However, it remains unclear how the Hsp70 conformational ensemble is populated at each point of the allosteric cycle and how ligands control these populations. We have mapped the conformational species present under different ligand-binding conditions throughout the allosteric cycle of the Escherichia coli Hsp70 DnaK by two complementary methods, ion-mobility mass spectrometry and double electron-electron resonance. Our results obtained under biologically relevant ligand-bound conditions confirm the current picture derived from NMR and crystallographic data of domain docking upon ATP binding and undocking in response to ADP and substrate. Additionally, we find that the helical lid of DnaK is a highly dynamic unit of the structure in all ligand-bound states. Importantly, we demonstrate that DnaK populates a partially docked state in the presence of ATP and substrate and that this state represents an energy minimum on the DnaK allosteric landscape. Because Hsp70s are emerging as potential drug targets for many diseases, fully mapping an allosteric landscape of a molecular chaperone like DnaK will facilitate the development of small molecules that modulate Hsp70 function via allosteric mechanisms.
Collapse
Affiliation(s)
- Alex L Lai
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-2703
| | | | - Mandy E Blackburn
- the School of Environmental, Physical, and Applied Sciences, University of Central Missouri, Warrensburg, Missouri 64093, and
| | - Nisha A Patel
- the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Carol V Robinson
- the Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Peter P Borbat
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-2703
| | - Jack H Freed
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-2703
| | - Lila M Gierasch
- the Departments of Biochemistry and Molecular Biology and .,Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
31
|
Srivastava M, Georgieva ER, Freed JH. A New Wavelet Denoising Method for Experimental Time-Domain Signals: Pulsed Dipolar Electron Spin Resonance. J Phys Chem A 2017; 121:2452-2465. [PMID: 28257206 DOI: 10.1021/acs.jpca.7b00183] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We adapt a new wavelet-transform-based method of denoising experimental signals to pulse-dipolar electron-spin resonance spectroscopy (PDS). We show that signal averaging times of the time-domain signals can be reduced by as much as 2 orders of magnitude, while retaining the fidelity of the underlying signals, in comparison with noiseless reference signals. We have achieved excellent signal recovery when the initial noisy signal has an SNR ≳ 3. This approach is robust and is expected to be applicable to other time-domain spectroscopies. In PDS, these time-domain signals representing the dipolar interaction between two electron spin labels are converted into their distance distribution functions P(r), usually by regularization methods such as Tikhonov regularization. The significant improvements achieved by using denoised signals for this regularization are described. We show that they yield P(r)'s with more accurate detail and yield clearer separations of respective distances, which is especially important when the P(r)'s are complex. Also, longer distance P(r)'s, requiring longer dipolar evolution times, become accessible after denoising. In comparison to standard wavelet denoising approaches, it is clearly shown that the new method (WavPDS) is superior.
Collapse
Affiliation(s)
- Madhur Srivastava
- National Biomedical Center for Advanced ESR Technology, ‡Meinig School of Biomedical Engineering, and §Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Elka R Georgieva
- National Biomedical Center for Advanced ESR Technology, ‡Meinig School of Biomedical Engineering, and §Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Jack H Freed
- National Biomedical Center for Advanced ESR Technology, ‡Meinig School of Biomedical Engineering, and §Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
32
|
Burgess SG, Grazia Concilio M, Bayliss R, Fielding AJ. Detection of Ligand-induced Conformational Changes in the Activation Loop of Aurora-A Kinase by PELDOR Spectroscopy. ChemistryOpen 2016; 5:531-534. [PMID: 28032021 PMCID: PMC5167317 DOI: 10.1002/open.201600101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
The structure of protein kinases has been extensively studied by protein crystallography. Conformational movement of the kinase activation loop is thought to be crucial for regulation of activity; however, in many cases the position of the activation loop in solution is unknown. Protein kinases are an important class of therapeutic target and kinase inhibitors are classified by their effect on the activation loop. Here, we report the use of pulsed electron double resonance (PELDOR) and site-directed spin labeling to monitor conformational changes through the insertion of MTSL [S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1 H-pyrrol-3-yl)methyl methanesulfonothioate] on the dynamic activation loop and a stable site on the outer surface of the enzyme. The action of different ligands such as microtubule-associated protein (TPX2) and inhibitors could be discriminated as well as their ability to lock the activation loop in a fixed conformation. This study provides evidence for structural adaptations that could be used for drug design and a methodological approach that has potential to characterize inhibitors in development.
Collapse
Affiliation(s)
- Selena G. Burgess
- Astbury Centre for Structural and Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - Maria Grazia Concilio
- The Photon Science Institute and School of ChemistryUniversity of ManchesterManchesterM13 9PLUnited Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural and Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - Alistair J. Fielding
- The Photon Science Institute and School of ChemistryUniversity of ManchesterManchesterM13 9PLUnited Kingdom
| |
Collapse
|
33
|
Georgieva ER, Borbat PP, Grushin K, Stoilova-McPhie S, Kulkarni NJ, Liang Z, Freed JH. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5). Front Physiol 2016; 7:317. [PMID: 27524969 PMCID: PMC4965473 DOI: 10.3389/fphys.2016.00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD21-49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Kirill Grushin
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Svetla Stoilova-McPhie
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | | | - Zhichun Liang
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| |
Collapse
|
34
|
Jhong SR, Li CY, Sung TC, Lan YJ, Chang KJ, Chiang YW. Evidence for an Induced-Fit Process Underlying the Activation of Apoptotic BAX by an Intrinsically Disordered BimBH3 Peptide. J Phys Chem B 2016; 120:2751-60. [PMID: 26913490 DOI: 10.1021/acs.jpcb.6b00909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Apoptotic BAX protein functions as a critical gateway to mitochondria-mediated apoptosis. A diversity of stimuli has been implicated in initiating BAX activation, but the triggering mechanism remains elusive. Here we study the interaction of BAX with an intrinsically disordered BH3 motif of Bim protein (BimBH3) using ESR techniques. Upon incubation with BAX, BimBH3 binds to BAX at helices 1/6 trigger site to initiate conformational changes of BAX, which in turn promotes the formation of BAX oligomers. The study strategy is twofold: while BAX oligomerization was monitored through spectral changes of spin-labeled BAX, the binding kinetics was studied by observing time-dependent changes of spin-labeled BimBH3. Meanwhile, conformational transition between the unstructured and structured BimBH3 was measured. We show that helical propensity of the BimBH3 is increased upon binding to BAX but is then reduced after being released from the activated BAX; the release is due to the BimBH3-induced conformational change of BAX that is a prerequisite for the oligomer assembling. Intermediate states are identified, offering a key snapshot of the coupled folding and binding process. Our results provide a quantitative mechanistic description of the BAX activation and reveal new insights into the mechanism underlying the interactions between BAX and BH3-mimetic peptide.
Collapse
Affiliation(s)
- Siao-Ru Jhong
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Ching-Yu Li
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Tai-Ching Sung
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Kuo-Jung Chang
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University , Hsinchu 30013, Taiwan
| |
Collapse
|
35
|
Halbmair K, Seikowski J, Tkach I, Höbartner C, Sezer D, Bennati M. High-resolution measurement of long-range distances in RNA: pulse EPR spectroscopy with TEMPO-labeled nucleotides. Chem Sci 2016; 7:3172-3180. [PMID: 29997809 PMCID: PMC6005265 DOI: 10.1039/c5sc04631a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023] Open
Abstract
Distance measurements in RNAs by pulse EPR with TEMPO-labeled nucleotides allow for model free conversion of distances into base-pair separation.
Structural information at atomic resolution of biomolecular assemblies, such as RNA and RNA protein complexes, is fundamental to comprehend biological function. Modern spectroscopic methods offer exceptional opportunities in this direction. Here we present the capability of pulse EPR to report high-resolution long-range distances in RNAs by means of a recently developed spin labeled nucleotide, which carries the TEMPO group directly attached to the nucleobase and preserves Watson–Crick base-pairing. In a representative RNA duplex with spin-label separations up to 28 base pairs (≈8 nm) we demonstrate that the label allows for a model-free conversion of inter-spin distances into base-pair separation (Δbp) if broad-band pulse excitation at Q band frequencies (34 GHz) is applied. The observed distance distribution increases from ±0.2 nm for Δbp = 10 to only ±0.5 nm for Δbp = 28, consistent with only small deviations from the “ideal” A-form RNA structure. Molecular dynamics (MD) simulations conducted at 20 °C show restricted conformational freedom of the label. MD-generated structural deviations from an “ideal” A-RNA geometry help disentangle the contributions of local flexibility of the label and its neighboring nucleobases and global deformations of the RNA double helix to the experimental distance distributions. The study demonstrates that our simple but strategic spin labeling procedure can access detailed structural information on RNAs at atomic resolution over distances that match the size of macromolecular RNA complexes.
Collapse
Affiliation(s)
- Karin Halbmair
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany .
| | - Jan Seikowski
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany .
| | - Igor Tkach
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany .
| | - Claudia Höbartner
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany . .,Department of Organic and Biomolecular Chemistry , University of Göttingen , 37077 Göttingen , Germany
| | - Deniz Sezer
- Faculty of Engineering and Natural Sciences , Sabanci University , 34956 Istanbul , Turkey .
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen , Germany . .,Department of Organic and Biomolecular Chemistry , University of Göttingen , 37077 Göttingen , Germany
| |
Collapse
|
36
|
Meyer V, Swanson MA, Clouston LJ, Boratyński PJ, Stein RA, Mchaourab HS, Rajca A, Eaton SS, Eaton GR. Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR. Biophys J 2016; 108:1213-9. [PMID: 25762332 DOI: 10.1016/j.bpj.2015.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∼80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∼4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-(methyl)methanethio-sulfonate label.
Collapse
Affiliation(s)
- Virginia Meyer
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Michael A Swanson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Laura J Clouston
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | | | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado.
| |
Collapse
|
37
|
Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH, Mao Y, Fromme JC, Emr SD. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife 2015; 4:e12548. [PMID: 26670543 PMCID: PMC4720517 DOI: 10.7554/elife.12548] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/13/2015] [Indexed: 12/14/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.
Collapse
Affiliation(s)
- Shaogeng Tang
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - W Mike Henne
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Peter P Borbat
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Nicholas J Buchkovich
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Jack H Freed
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Yuxin Mao
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Scott D Emr
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
38
|
Orlando BJ, Borbat PP, Georgieva ER, Freed JH, Malkowski MG. Pulsed Dipolar Spectroscopy Reveals That Tyrosyl Radicals Are Generated in Both Monomers of the Cyclooxygenase-2 Dimer. Biochemistry 2015; 54:7309-12. [PMID: 26636181 DOI: 10.1021/acs.biochem.5b00979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cyclooxygenases (COXs) are heme-containing sequence homodimers that utilize tyrosyl radical-based catalysis to oxygenate substrates. Tyrosyl radicals are formed from a single turnover of substrate in the peroxidase active site generating an oxy-ferryl porphyrin cation radical intermediate that subsequently gives rise to a Tyr-385 radical in the cyclooxygenase active site and a Tyr-504 radical nearby. We have utilized double-quantum coherence (DQC) spectroscopy to determine the distance distributions between Tyr-385 and Tyr-504 radicals in COX-2. The distances obtained with DQC confirm that Tyr-385 and Tyr-504 radicals were generated in each monomer and accurately match the distances measured in COX-2 crystal structures.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Structural Biology, The State University of New York at Buffalo , Buffalo, New York 14203, United States
| | - Peter P Borbat
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University , Ithaca, New York 14853, United States.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Elka R Georgieva
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University , Ithaca, New York 14853, United States.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Jack H Freed
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University , Ithaca, New York 14853, United States.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Michael G Malkowski
- Department of Structural Biology, The State University of New York at Buffalo , Buffalo, New York 14203, United States.,Hauptman-Woodward Medical Research Institute , Buffalo, New York 14203, United States
| |
Collapse
|
39
|
Sun Y, Borbat PP, Grigoryants VM, Myers WK, Freed JH, Scholes CP. Pulse dipolar ESR of doubly labeled mini TAR DNA and its annealing to mini TAR RNA. Biophys J 2015; 108:893-902. [PMID: 25692594 DOI: 10.1016/j.bpj.2014.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3'- and 5'-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26-27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ~35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, New York
| | - Vladimir M Grigoryants
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - William K Myers
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, New York
| | - Charles P Scholes
- Department of Chemistry, University at Albany, State University of New York, Albany, New York.
| |
Collapse
|
40
|
Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Comput Biol 2015; 11:e1004368. [PMID: 26505197 PMCID: PMC4624691 DOI: 10.1371/journal.pcbi.1004368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022] Open
Abstract
The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced. Knowledge of multiple conformational states of membrane transport proteins is a prerequisite to understand their function. However, the determination of atomic structures for all these states with conventional high-resolution approaches can be very challenging due to inherent difficulties in high yield purification of functional membrane transport proteins. Various complementary structural information of proteins in their native states can be obtained by a variety of biophysical and biochemical methods with site-directed mutations. Here, a novel restrained molecular dynamics structural refinement method is developed to help derive a structural model that is consistent with experimental data by incorporating all the experimental constraints simultaneously through the use of non-interacting all-atom molecular fragments. The method can be easily and effectively extended to incorporate many kinds of structural constraints from a variety of biophysical and biochemical experiments, and should be very useful in generating and refining models of proteins in specific functional states.
Collapse
|
41
|
Stein RA, Beth AH, Hustedt EJ. A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data. Methods Enzymol 2015; 563:531-67. [PMID: 26478498 PMCID: PMC5231402 DOI: 10.1016/bs.mie.2015.07.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double electron-electron resonance (DEER) is now widely utilized to measure distance distributions in the 20-70Å range. DEER is frequently applied to biological systems that have multiple conformational states leading to complex distance distributions. These complex distributions raise issues regarding the best approach to analyze DEER data. A widely used method utilizes a priori background correction followed by Tikhonov regularization. Unfortunately, the underlying assumptions of this approach can impact the analysis. In this chapter, a method of analyzing DEER data is presented that is ideally suited to obtain these complex distance distributions. The approach allows the fitting of raw experimental data without a priori background correction as well as the rigorous determination of uncertainties for all fitting parameters. This same methodological approach can be used for the simultaneous or global analysis of multiple DEER data sets using variable ratios of a common set of components, thus allowing direct correlation of distance components with functionally relevant conformational and biochemical states. Examples are given throughout to highlight this robust fitting approach.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Albert H Beth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
42
|
230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy. Methods Enzymol 2015; 563:95-118. [PMID: 26478483 DOI: 10.1016/bs.mie.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electron paramagnetic resonance (EPR) and double electron-electron resonance (DEER) spectroscopies are powerful and versatile tools for studying local structures and dynamic properties of biological molecules. Similar to nuclear magnetic resonance (NMR) spectroscopy, EPR/DEER spectroscopies become more advantageous at higher frequencies and higher magnetic fields because of better spectral resolution as well as higher spin polarization. Here, we describe development of a high-frequency (HF) EPR/DEER spectrometer operating in the frequency range of 107-120 and 215-240 GHz and in the magnetic field range of 0-12.1 T, which has unique experimental capabilities such as enabling the complete spin polarization and wide-band DEER spectroscopy. Emphasis is given on the application of HF EPR/DEER techniques, and specific examples of HF EPR spectroscopy to drastically increase spin coherence in nanodiamonds as well as HF DEER spectroscopy to extract spin concentration in a diamond crystal are presented.
Collapse
|
43
|
Ruthstein S, Ji M, Shin BK, Saxena S. A simple double quantum coherence ESR sequence that minimizes nuclear modulations in Cu(2+)-ion based distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 257:45-50. [PMID: 26057636 DOI: 10.1016/j.jmr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Double quantum coherence (DQC) ESR is a sensitive method to measure magnetic dipolar interactions between spin labels. However, the DQC experiment on Cu(2+) centers presents a challenge at X-band. The Cu(2+) centers are usually coordinated to histidine residues in proteins. The electron-nuclear interaction between the Cu(2+) ion and the remote nitrogen in the imidazole ring can interfere with the electron-electron dipolar interaction. Herein, we report on a modified DQC experiment that has the advantage of reduced contributions from electron-nuclear interactions, which enhances the resolution of the DQC signal to the electron-electron dipolar modulations. The modified pulse-sequence is verified on Cu(2+)-NO system in a polyalanine-based peptide and on a coupled Cu(2+) system in a polyproline-based peptide. The modified DQC data were compared with the DEER data and good agreement was found.
Collapse
Affiliation(s)
- Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Byong-Kyu Shin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
44
|
Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes. Sci Rep 2015; 5:11757. [PMID: 26190831 PMCID: PMC4507135 DOI: 10.1038/srep11757] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L’s, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.
Collapse
|
45
|
Chang YG, Cohen SE, Phong C, Myers WK, Kim YI, Tseng R, Lin J, Zhang L, Boyd JS, Lee Y, Kang S, Lee D, Li S, Britt RD, Rust MJ, Golden SS, LiWang A. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 2015; 349:324-8. [PMID: 26113641 PMCID: PMC4506712 DOI: 10.1126/science.1260031] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/08/2015] [Indexed: 12/26/2022]
Abstract
Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.
Collapse
Affiliation(s)
- Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Susan E Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Connie Phong
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - William K Myers
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yong-Ick Kim
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roger Tseng
- School of Natural Sciences, University of California, Merced, CA 95343, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Jenny Lin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Li Zhang
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Joseph S Boyd
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yvonne Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shannon Kang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, CA 95343, USA. Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA. Quantitative and Systems Biology, University of California, Merced, CA 95343, USA. Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA. Health Sciences Research Institute, University of California, Merced, CA 95343, USA.
| |
Collapse
|
46
|
Copper-based pulsed dipolar ESR spectroscopy as a probe of protein conformation linked to disease states. Biophys J 2015; 107:1669-74. [PMID: 25296320 DOI: 10.1016/j.bpj.2014.07.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the ability of pulsed dipolar electron spin resonance (ESR) spectroscopy (PDS) to report on the conformation of Cu-Zn superoxide dismutase (SOD1) through the sensitive measurement of dipolar interactions between inherent Cu(2+) ions. Although the extent and the anisotropy of the Cu ESR spectrum provides challenges for PDS, Ku-band (17.3 GHz) double electron-electron resonance and double-quantum coherence variants of PDS coupled with distance reconstruction methods recover Cu-Cu distances in good agreement with crystal structures. Moreover, Cu-PDS measurements expose distinct differences between the conformational properties of wild-type SOD1 and a single-residue variant (I149T) that leads to the disease amyotrophic lateral sclerosis (ALS). The I149T protein displays a broader Cu-Cu distance distribution within the SOD1 dimer compared to wild-type. In a nitroxide (NO)-labeled sample, distance distributions obtained from Cu-Cu, Cu-NO, and NO-NO separations reveal increased structural heterogeneity within the protein and a tendency for mutant dimers to associate. In contrast, perturbations caused by the ALS mutation are completely masked in the crystal structure of I149T. Thus, PDS readily detects alterations in metalloenzyme solution properties not easily deciphered by other methods and in doing so supports the notion that increased range of motion and associations of SOD1 ALS variants contribute to disease progression.
Collapse
|
47
|
Greenswag AR, Li X, Borbat PP, Samanta D, Watts K, Freed JH, Crane BR. Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Activate CheA Autophosphorylation. Biochemistry 2015; 54:3454-68. [PMID: 25967982 PMCID: PMC4772074 DOI: 10.1021/bi501570n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/12/2015] [Indexed: 12/13/2022]
Abstract
Bacterial chemoreceptors associate with the histidine kinase CheA and coupling protein CheW to form extended membrane arrays that receive and transduce environmental signals. A receptor trimers-of-dimers resides at each vertex of the hexagonal protein lattice. CheA is fully activated and regulated when it is integrated into the receptor assembly. To mimic these states in solution, we have engineered chemoreceptor cytoplasmic kinase-control modules (KCMs) based on the Escherichia coli aspartate receptor Tar that are covalently fused and trimerized by a foldon domain (Tar(FO)). Small-angle X-ray scattering, multi-angle light scattering, and pulsed-dipolar electron spin resonance spectroscopy of spin-labeled proteins indicate that the Tar(FO) modules assemble into homogeneous trimers wherein the protein interaction regions closely associate at the end opposite to the foldon domains. The Tar(FO) variants greatly increase the saturation levels of phosphorylated CheA (CheA-P), indicating that the association with a trimer of receptor dimers changes the fraction of active kinase. However, the rate constants for CheA-P formation with the Tar variants are low compared to those for autophosphorylation by free CheA, and net phosphotransfer from CheA to CheY does not increase commensurately with CheA autophosphorylation. Thus, the Tar variants facilitate slow conversion to an active form of CheA that then undergoes stable autophosphorylation and is capable of subsequent phosphotransfer to CheY. Free CheA is largely incapable of phosphorylation but contains a small active fraction. Addition of Tar(FO) to CheA promotes a planar conformation of the regulatory domains consistent with array models for the assembly state of the ternary complex and different from that observed with a single inhibitory receptor. Introduction of Tar(FO) into E. coli cells activates endogenous CheA to produce increased clockwise flagellar rotation, with the effects increasing in the presence of the chemotaxis methylation system (CheB/CheR). Overall, the Tar(FO) modules demonstrate that trimerized signaling tips self-associate, bind CheA and CheW, and facilitate conversion of CheA to an active conformation.
Collapse
Affiliation(s)
- Anna R. Greenswag
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Xiaoxiao Li
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Peter P. Borbat
- Center
for Advanced ESR Studies, Cornell University, Ithaca, New York 14853, United States
| | - Dipanjan Samanta
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Kylie
J. Watts
- Division
of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Jack H. Freed
- Center
for Advanced ESR Studies, Cornell University, Ithaca, New York 14853, United States
| | - Brian R. Crane
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| |
Collapse
|
48
|
Prisner TF, Marko A, Sigurdsson ST. Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:187-98. [PMID: 25701439 DOI: 10.1016/j.jmr.2014.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 05/22/2023]
Abstract
Nucleic acid molecules can adopt a variety of structures and exhibit a large degree of conformational flexibility to fulfill their various functions in cells. Here we describe the use of Pulsed Electron-Electron Double Resonance (PELDOR or DEER) to investigate nucleic acid molecules where two cytosine analogs have been incorporated as spin probes. Because these new types of spin labels are rigid and incorporated into double stranded DNA and RNA molecules, there is no additional flexibility of the spin label itself present. Therefore the magnetic dipole-dipole interaction between both spin labels encodes for the distance as well as for the mutual orientation between the spin labels. All of this information can be extracted by multi-frequency/multi-field PELDOR experiments, which gives very precise and valuable information about the structure and conformational flexibility of the nucleic acid molecules. We describe in detail our procedure to obtain the conformational ensembles and show the accuracy and limitations with test examples and application to double-stranded DNA.
Collapse
Affiliation(s)
- T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany.
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany
| | - S Th Sigurdsson
- Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
49
|
Georgieva ER, Xiao S, Borbat PP, Freed JH, Eliezer D. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Biophys J 2015; 107:1441-52. [PMID: 25229151 DOI: 10.1016/j.bpj.2014.07.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer's disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau's poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights into potential mechanisms for membrane-mediated tau aggregation. Furthermore, the results may have implications for the structural basis of tau-microtubule interactions and microtubule-mediated tau aggregation.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Shifeng Xiao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York; Program in Structural Biology, Weill Cornell Medical College, New York, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York.
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, New York; Program in Structural Biology, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
50
|
Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods Enzymol 2015; 558:279-331. [DOI: 10.1016/bs.mie.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|