1
|
Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B, Akbari M, Hassanzadeh G. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 2020; 35:809-818. [PMID: 32185593 DOI: 10.1007/s11011-020-00563-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ijaz
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Abstract
BACKGROUND Parkinson disease (PD) is a neurodegenerative disorder affecting the basal nuclei, causing motor and cognitive disorders. Bearing in mind that standard treatments are ineffective in delaying the disease progression, alternative treatments capable of eliminating symptoms and reversing the clinical condition have been sought. Possible alternative treatments include cell therapy, especially with the use of mesenchymal stem cells (MSC). REVIEW SUMMARY MSC are adult stem cells which have demonstrated remarkable therapeutic power in parkinsonian animals due to their differentiation competence, migratory capacity and the production of bioactive molecules. This review aims to analyze the main studies involving MSC and PD in more than a decade of studies, addressing their different methodologies and common characteristics, as well as suggesting perspectives on the application of MSC in PD. CONCLUSIONS The results of MSC therapy in animal models and some clinical trials suggest that such cellular therapy may slow the progression of PD and promote neuroregeneration. However, further research is needed to address the limitations of an eventual clinical application.
Collapse
|
3
|
Sandhu MS, Ross HH, Lee KZ, Ormerod BK, Reier PJ, Fuller DD. Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Exp Neurol 2017; 287:205-215. [PMID: 27302679 PMCID: PMC6154390 DOI: 10.1016/j.expneurol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Following spinal cord injury (SCI), intraspinal transplantation of neural progenitor cells (NPCs) harvested from the forebrain sub-ventricular zone (SVZ) can improve locomotor outcomes. Cervical SCI often results in respiratory-related impairments, and here we used an established model cervical SCI (C2 hemisection, C2Hx) to confirm the feasibility of mid-cervical transplantation of SVZ-derived NPCs and the hypothesis that that this procedure would improve spontaneous respiratory motor recovery. NPCs were isolated from the SVZ of enhanced green fluorescent protein (GFP) expressing neonatal rats, and then intraspinally delivered immediately caudal to an acute C2Hx lesion in adult non-GFP rats. Whole body plethysmography conducted at 4 and 8wks post-transplant demonstrated increased inspiratory tidal volume in SVZ vs. sham transplants during hypoxic (P=0.003) or hypercapnic respiratory challenge (P=0.019). Phrenic nerve output was assessed at 8wks post-transplant; burst amplitude recorded ipsilateral to C2Hx was greater in SVZ vs. sham rats across a wide range of conditions (e.g., quiet breathing through maximal chemoreceptor stimulation; P<0.001). Stereological analyses at 8wks post-injury indicated survival of ~50% of transplanted NPCs with ~90% of cells distributed in ipsilateral white matter at or near the injection site. Peak inspiratory phrenic bursting after NPC transplant was positively correlated with the total number of surviving cells (P<0.001). Immunohistochemistry confirmed an astrocytic phenotype in a subset of the transplanted cells with no evidence for neuronal differentiation. We conclude that intraspinal transplantation of SVZ-derived NPCs can improve respiratory recovery following high cervical SCI.
Collapse
Affiliation(s)
- M S Sandhu
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - H H Ross
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - K Z Lee
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - B K Ormerod
- University of Florida, Department of Biomedical Engineering, P.O. Box 116131, Gainesville, FL 32611-6131, United States
| | - P J Reier
- University of Florida, Department of Neuroscience, P.O. Box 100244, Gainesville, FL 32610-0244, United States
| | - D D Fuller
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States.
| |
Collapse
|
4
|
Srivastava AK, Gross SK, Almad AA, Bulte CA, Maragakis NJ, Bulte JWM. Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2016; 289:96-102. [PMID: 28038988 DOI: 10.1016/j.expneurol.2016.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/27/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are being investigated as a possible treatment for amyotrophic lateral sclerosis (ALS) through intraspinal transplantation, but no longitudinal imaging studies exist that describe the survival of engrafted cells over time. Allogeneic firefly luciferase-expressing murine NSCs (Luc+-NSCs) were transplanted bilaterally (100,000 cells/2μl) into the cervical spinal cord (C5) parenchyma of pre-symptomatic (63day-old) SOD1G93A ALS mice (n=14) and wild-type age-matched littermates (n=14). Six control SOD1G93A ALS mice were injected with saline. Mice were immunosuppressed using a combination of tacrolimus+sirolimus (1mg/kg each, i.p.) daily. Compared to saline-injected SOD1G93A ALS control mice, a transient improvement (p<0.05) in motor performance (rotarod test) was observed after NSC transplantation only at the early disease stage (weeks 2 and 3 post-transplantation). Compared to day one post-transplantation, there was a significant decline in bioluminescent imaging (BLI) signal in SOD1G93A ALS mice at the time of disease onset (71.7±17.9% at 4weeks post-transplantation, p<0.05), with a complete loss of BLI signal at endpoint (120day-old mice). In contrast, BLI signal intensity was observed in wild-type littermates throughout the entire study period, with only a 41.4±8.7% decline at the endpoint. In SOD1G93A ALS mice, poor cell survival was accompanied by accumulation of mature macrophages and the presence of astrogliosis and microgliosis. We conclude that the disease progression adversely affects the survival of engrafted murine Luc+-NSCs in SOD1G93A ALS mice as a result of the hostile ALS spinal cord microenvironment, further emphasizing the challenges that face successful cell therapy of ALS.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah K Gross
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akshata A Almad
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camille A Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Yao Y, Huang C, Gu P, Wen T. Combined MSC-Secreted Factors and Neural Stem Cell Transplantation Promote Functional Recovery of PD Rats. Cell Transplant 2016; 25:1101-13. [DOI: 10.3727/096368915x689938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell transplantation has enormous potential for the treatment of neurodegenerative disorders like Parkinson's disease (PD). Mesenchymal stem cells (MSCs) have attracted much attention because they can secrete a wide variety of cellular factors that promote cell growth. In this study, we prepared a conditioned medium (CM) using lyophilized MSC culture medium that contained the secretome of MSCs and applied this CM to the culture of neural stem cells (CM-NSCs) for the transplantation of PD model rats. Quantitative realtime PCR, Western blot, and immunocytochemistry were used to identify cell differentiation and expression of dopaminergic neuron-specific genes in vitro. Behavioral tests including rotational behavior and MWM training tests were also performed to assess the recovery. Our results indicated that combined treatment of CM and neural stem cell transplantation can significantly reduce apomorphine-induced rotational asymmetry and improve spatial learning ability. The CM-NSCs were able to differentiate into dopaminergic neurons in the ventral tegmental area (VTA) and medial forebrain bundle (MFB), and migrated around the lesion site. They showed a higher activity than untreated NSCs in cell survival, migration, and behavior improvement in the dopa-deficit rat model. These findings suggest that the neural stem cells treated with conditioned medium possess a great potential as a graft candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yuan Yao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chen Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol 2013; 260:19-32. [PMID: 23507035 DOI: 10.1016/j.expneurol.2013.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuro-immune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines.
Collapse
|
7
|
LEPORE ANGELOC, HAN STEVENS, TYLER-POLSZ CARLAJ, CAI JINGLI, RAO MAHENDRAS, FISCHER ITZHAK. Differential fate of multipotent and lineage-restricted neural precursors following transplantation into the adult CNS. ACTA ACUST UNITED AC 2012; 1:113-26. [PMID: 16520830 PMCID: PMC1389711 DOI: 10.1017/s1740925x04000213] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple classes of precursor cells have been isolated and characterized from the developing spinal cord including multipotent neuroepithelial (NEP) stem cells and lineage-restricted precursors for neurons (NRPs) and glia (GRPs). We have compared the survival, differentiation and integration of multipotent NEP cells with lineage-restricted NRPs and GRPs using cells isolated from transgenic rats that express the human placental alkaline phosphatase gene. Our results demonstrate that grafted NEP cells survive poorly, with no cells observed 3 days after transplant in the adult hippocampus, striatum and spinal cord, indicating that most CNS regions are not compatible with transplants of multipotent cells derived from fetal CNS. By contrast, at 3 weeks and 5 weeks post-engraftment, lineage-restricted precursors showed selective migration along white-matter tracts and robust survival in all three CNS regions. The grafted precursors expressed the mature neuronal markers NeuN and MAP2, the astrocytic marker GFAP, the oligodendrocytic markers RIP, NG2 and Sox-10, and the synaptic marker synaptophysin. Similar behavior was observed when these precursors were transplanted into the injured spinal cord. Predifferentiated, multipotent NEP cells also survive and integrate, which indicates that lineage-restricted CNS precursors are well suited for transplantation into the adult CNS and provide a promising cellular replacement candidate.
Collapse
Affiliation(s)
- ANGELO C. LEPORE
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - STEVEN S.W. HAN
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - CARLA J. TYLER-POLSZ
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - JINGLI CAI
- Laboratory of Neuroscience, NIA, Baltimore, MD, USA
| | | | - ITZHAK FISCHER
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- *Address for correspondence:
| |
Collapse
|
8
|
Xu L, Xu CJ, Lü HZ, Wang YX, Li Y, Lu PH. Long-term fate of allogeneic neural stem cells following transplantation into injured spinal cord. Stem Cell Rev Rep 2010; 6:121-36. [PMID: 20012713 DOI: 10.1007/s12015-009-9104-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To characterize the fate of allogeneic neural stem cells (NSCs) following transplantation into injured spinal cord, green fluorescent protein (GFP)-NSCs isolated from GFP transgenic Sprague-Dawley rat embryos were transplanted into contused spinal cords of Wistar rats. The GFP-NSCs survived for at least 6 months in injured spinal cord; most of them differentiated rapidly into astrocytes, and a few were able to undergo proliferation. After transplantation, the GFP-NSCs remained in the transplantation site at the early stage, and then migrated along white-matter, and gathered around the injured cavity. At 6 months post-transplantation, CD8 T-lymphocytes infiltrated the spinal cord, and mixed lymphocyte culture from host and donor showed that lymphocytes from the host spleen were primed by allogeneic GFP-NSCs. At 12 months post-transplantation, most GFP cells in the spinal cord lost their morphology and disintegrated. The Basso, Beattie and Bresnahan score and footprint analysis indicated that the improvement of locomotor function in transplanted rats appeared only at the early stage, and was not seen even at 6 months after transplantation All these results suggest that the allogeneic NSCs, after transplantation into injured spinal cord, activate the host immune system. Therefore, if immunosuppressive agents are not used, the grafted allogeneic NSCs, although they can survive for a long time, are subjected to host immune rejection, and the effect of NSCs on functional recovery is limited.
Collapse
Affiliation(s)
- Liang Xu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Su H, Zhang W, Guo J, Guo A, Yuan Q, Wu W. Neural progenitor cells enhance the survival and axonal regeneration of injured motoneurons after transplantation into the avulsed ventral horn of adult rats. J Neurotrauma 2009; 26:67-80. [PMID: 19196181 DOI: 10.1089/neu.2008.0656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the present study, we transplanted E13.5 spinal cord-derived neural progenitor cells (NPCs) into the acutely avulsed ventral horn of adult rats. The results showed that NPCs survived and integrated nicely within the host ventral horn at 6 weeks post-grafting. Although the majority of grafted NPCs differentiated into astrocytes and only a small proportion into neuronal cells, interestingly, grafted NPCs in the avulsed ventral horn significantly enhanced the survival of injured motoneurons and promoted their regeneration into a peripheral nerve (PN) graft, as revealed by retrograde FluoroGold (FG) labeling. Specific ELISAs, Western blotting, and quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) demonstrated that NPCs produced nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neutrophilic factor (GDNF), both in vitro and after transplantation in vivo. These results indicate that NPCs have beneficial effects on the survival and axonal regeneration of avulsion-injured motoneurons after transplantation. Such beneficial effects are possibly due to their inherent ability to secrete various trophic factors after transplantation in vivo.
Collapse
Affiliation(s)
- Huanxing Su
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
10
|
Yu D, Neeley WL, Pritchard CD, Slotkin JR, Woodard EJ, Langer R, Teng YD. Blockade of peroxynitrite-induced neural stem cell death in the acutely injured spinal cord by drug-releasing polymer. Stem Cells 2009; 27:1212-22. [PMID: 19418456 DOI: 10.1002/stem.26] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Therapeutic impact of neural stem cells (NSCs) for acute spinal cord injury (SCI) has been limited by the rapid loss of donor cells. Neuroinflammation is likely the cause. As there are close temporal-spatial correlations between the inducible nitric oxide (NO) synthase expression and the donor NSC death after neurotrauma, we reasoned that NO-associated radical species might be the inflammatory effectors which eliminate NSC grafts and kill host neurons. To test this hypothesis, human NSCs (hNSCs: 5 x 10(4) to 2 x 10(6) per milliliter) were treated in vitro with "plain" medium, 20 microM glutamate, or donors of NO and peroxynitrite (ONOO(-); 100 and 400 microM of spermine or DETA NONOate, and SIN-1, respectively). hNSC apoptosis primarily resulted from SIN-1 treatment, showing ONOO(-)-triggered protein nitration and the activation of p38 MAPK, cytochrome c release, and caspases. Therefore, cell death following post-SCI (p.i.) NO surge may be mediated through conversion of NO into ONOO(-). We subsequently examined such causal relationship in a rat model of dual penetrating SCI using a retrievable design of poly-lactic-co-glycolic acid (PLGA) scaffold seeded with hNSCs that was shielded by drug-releasing polymer. Besides confirming the ONOO(-)-induced cell death signaling, we demonstrated that cotransplantation of PLGA film embedded with ONOO(-) scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin, or uric acid (1 micromol per film), markedly protected hNSCs 24 hours p.i. (total: n = 10). Our findings may provide a bioengineering approach for investigating mechanisms underlying the host microenvironment and donor NSC interaction and help formulate strategies for enhancing graft and host cell survival after SCI.
Collapse
Affiliation(s)
- Dou Yu
- Department of Neurosurgery, Harvard Medical School, The Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Du C, Yang D, Zhang P, Jiang B. Single Neural Progenitor Cells Derived from EGFP Expressing Mice is Useful After Spinal Cord Injury in Mice. ACTA ACUST UNITED AC 2009; 35:405-14. [PMID: 17701486 DOI: 10.1080/10731190701460275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neural stem cells (NSCs) were widely used for studying the cell's replacement after transplantation in nervous system because of its specific characteristics. However, Stracing the cells after transplantation was still a problem. In the present study, we isolated and cultured the neural stem cells from the C57BL/6J EGFP transgenic mouse (EGFP mice), and identified the capacity for self-renewal and differentiation into the three CNS lineages (neurons, astrocytes, and oligodendrocytes). Then we transplanted the single neural stem cell into the lesion spinal cord. Expression of GFP and differentiation was evaluated at two weeks post-transplantation. The data showed that these neural stem cells derived from the EGFP mice could maintain transgene expression and could differentiate into the MAP2 positive cells after transplantation into the injured spinal cord. The results suggested that NSC expressing EGFP was a useful marker for tracing the cells after transplantation in vivo and functional in the treatment to spinal cord injury.
Collapse
Affiliation(s)
- Chan Du
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, China
| | | | | | | |
Collapse
|
12
|
Comolli N, Neuhuber B, Fischer I, Lowman A. In vitro analysis of PNIPAAm-PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater 2009; 5:1046-55. [PMID: 19054721 PMCID: PMC2844850 DOI: 10.1016/j.actbio.2008.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/30/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
Nervous tissue engineering in combination with other therapeutic strategies is an emerging trend for the treatment of different CNS disorders and injuries. We propose to use poly(N-isopropylacrylamide)-co-poly(ethylene glycol) (PNIPAAm-PEG) as a minimally invasive, injectable scaffold platform for the repair of spinal cord injury (SCI). The scaffold allows cell attachment, and provides mechanical support and a sustained release of neurotrophins. In order to use PNIPAAm-PEG as an injectable scaffold for treatment of SCI, it must maintain its mass and volume over time in physiological conditions. To provide mechanical support at the injury site, it is also critical that the engineered scaffold matches the compressive modulus of the native neuronal tissue. This study focused on studying the ability of the scaffold to release bioactive neurotrophins and matching the material properties to those of the native neuronal tissue. We found that the release of both BDNF and NT-3 was sustained for up to 4 weeks, with a minimal burst exhibited for both neurotrophins. The bioactivity of the released NT-3 and BDNF was confirmed after 4 weeks. In addition, our results show that the PNIPAAm-PEG scaffold can be designed to match the desired mechanical properties of the native neuronal tissue, with a compressive modulus in the 3-5 kPa range. The scaffold was also compatible with bone marrow stromal cells, allowing their survival and attachment for up to 31 days. These results indicate that PNIPAAm-PEG is a promising multifunctional scaffold for the treatment of SCI.
Collapse
Affiliation(s)
- Noelle Comolli
- Department of Chemical & Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
13
|
Temeltas G, Dagci T, Kurt F, Evren V, Tuglu I. Bladder function recovery in rats with traumatic spinal cord injury after transplantation of neuronal-glial restricted precursors or bone marrow stromal cells. J Urol 2009; 181:2774-9. [PMID: 19375728 DOI: 10.1016/j.juro.2009.01.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Indexed: 10/20/2022]
Abstract
PURPOSE We investigated functional recovery of the lower urinary system in rats with spinal cord injury after transplanting neuronal restricted precursors/glial restricted precursors or neural cells derived from bone marrow stromal cells into the injured area of the spinal cord. MATERIALS AND METHODS A total of 30 rats underwent experimentation in 4 groups, including group 1--sham operation, group 2--spinal cord injury plus neuronal restricted precursor/glial restricted precursor transplantation, group 3--spinal cord injury plus bone marrow stromal cell transplantation and group 4--spinal cord injury control. All rats in the 4 groups were investigated urodynamically and sacrificed on day 28 after transplantation. The cells transplanted into the injured spinal cord underwent histological investigation. RESULTS Transplanted cells (neuronal and glial restricted precursors, and bone marrow stromal cells) were found to maintain a presence in the injured spinal cord area. Baseline pressure, maximum capacity, mean uninhibited contraction amplitude, mean voiding pressure, voided volume and post-void residual volume were significantly better in groups 2 and 3 than in group 4, while baseline pressure in group 2 was better than that in group 3. We found no significant difference among the groups according to mean uninhibited contraction frequency. CONCLUSIONS Although neuronal/glial restricted precursor transplanted rats seemed to have more improvement, all rats in groups 2 and 3 showed some significant improvement in lower urinary system function. On the other hand, the level of this improvement was far from complete functional recovery.
Collapse
Affiliation(s)
- Gökhan Temeltas
- Department of Urology, School of Medicine, Celal Bayar University, Faculty of Life Sciences, Manisa, Turkey
| | | | | | | | | |
Collapse
|
14
|
Zhokhov SS, Desfeux A, Aubert N, Falluel-Morel A, Fournier A, Laudenbach V, Vaudry H, Gonzalez BJ. Bax siRNA promotes survival of cultured and allografted granule cell precursors through blockade of caspase-3 cleavage. Cell Death Differ 2008; 15:1042-53. [DOI: 10.1038/cdd.2008.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Su H, Chu TH, Wu W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neurol 2007; 206:296-307. [PMID: 17599835 DOI: 10.1016/j.expneurol.2007.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 01/15/2023]
Abstract
Transplantation of neural progenitor cells (NPCs) holds great potential for the treatment of spinal cord injuries. The survival and differential fates of transplanted NPCs in the cord are key factors contributing to the success of the therapy. In this study, we investigate the effects of lithium, a widely used antidepressant drug, on the survival, proliferation and differentiation of spinal cord-derived NPCs in cultures and after transplantation into the spinal cord. Our results show that clinically relevant doses of lithium increase the proliferation of grafted NPCs at 2 weeks post-grafting and neuronal generation by grafted NPCs at 2 weeks and 4 weeks post-grafting. However, lithium does not cause preferential differentiation of NPCs into astrocytes or oligodendrocytes both in vitro and after transplantation. Our results also show that chronic treatment with lithium (up to 4 weeks) reduces microglia and macrophage activation, indicating that lithium treatment can affect the host immune response. The results of the present study provide evidence that lithium may have therapeutic potential in cell replacement strategies for CNS injury due to its ability to promote proliferation and neuronal generation of grafted NPCs and reduce the host immune reaction.
Collapse
Affiliation(s)
- Huanxing Su
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
16
|
Lepore AC, Neuhuber B, Connors TM, Han SSW, Liu Y, Daniels MP, Rao MS, Fischer I. Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience 2006; 142:287-304. [PMID: 17120358 DOI: 10.1016/j.neuroscience.2005.12.067] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can serve as an effective and safe replacement therapy for CNS injury and degeneration.
Collapse
Affiliation(s)
- A C Lepore
- Department of Neurobiology and Anatomy, 2900 Queen Lane, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lepore AC, Walczak P, Rao MS, Fischer I, Bulte JWM. MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol 2006; 201:49-59. [PMID: 16764862 DOI: 10.1016/j.expneurol.2006.03.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 12/23/2022]
Abstract
Neural precursor cell (NPC) transplantation is a promising strategy for treatment of CNS injuries and neurodegenerative disorders because of potential for cell replacement. An important element of future clinical applications is development of a non-invasive procedure to follow NPC fate. We show that neuronal-restricted precursors (NRPs) and glial-restricted precursors (GRPs), NPCs with lineage restrictions for neurons and glia, respectively, can be labeled in vitro with the superparamagnetic iron oxide contrast agent Feridex. Following engraftment into intact adult spinal cord, labeled cells robustly survived in white and gray matter and migrated selectively along white matter tracts up to 5 mm. Localization of cells was reliably established using ex vivo magnetic resonance imaging of spinal cords. Imaging coincided with histological detection of iron and the human alkaline phosphatase transgene in most grafting sites, including the stream of migrating cells. Following transplantation, magnetically labeled cells exhibited mature morphologies and differentiated into neurons, astrocytes, and oligodendrocytes, similar to grafts of unlabeled NRPs and GRPs. Interestingly, Feridex-labeled cells, but not unlabeled cells, induced influx of ED1-positive macrophages/microglia. Small numbers of these phagocytic cells took up iron from grafted cells, while the majority of Feridex label was found in transplanted cells. We conclude that Feridex labeling does not inhibit NPC differentiation and can be used to reliably localize NPCs by MRI following engraftment into adult CNS, with the possible exception of areas of rapidly proliferating cells. The present results are relevant for MR-guided clinical application of transplantation strategies in treatment of spinal cord injury and other CNS pathologies.
Collapse
Affiliation(s)
- A C Lepore
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
18
|
Lepore AC, Neuhuber B, Connors TM, Han SSW, Liu Y, Daniels MP, Rao MS, Fischer I. Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience 2006; 139:513-30. [PMID: 16458439 DOI: 10.1016/j.neuroscience.2005.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can serve as an effective and safe replacement therapy for CNS injury and degeneration.
Collapse
Affiliation(s)
- A C Lepore
- Department of Neurobiology and Anatomy, 2900 Queen Lane, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barakat DJ, Gaglani SM, Neravetla SR, Sanchez AR, Andrade CM, Pressman Y, Puzis R, Garg MS, Bunge MB, Pearse DD. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant 2005; 14:225-40. [PMID: 15929557 DOI: 10.3727/000000005783983106] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to an ever-growing population of individuals with chronic spinal cord injury, there is a need for experimental models to translate efficacious regenerative and reparative acute therapies to chronic injury application. The present study assessed the ability of fluid grafts of either Schwann cells (SCs) or olfactory ensheathing glia (OEG) to facilitate the growth of supraspinal and afferent axons and promote restitution of hind limb function after transplantation into a 2-month-old, moderate, thoracic (T8) contusion in the rat. The use of cultured glial cells, transduced with lentiviral vectors encoding enhanced green fluorescent protein (EGFP), permitted long-term tracking of the cells following spinal cord transplantation to examine their survival, migration, and axonal association. At 3 months following grafting of 2 million SCs or OEG in 6 microl of DMEM/F12 medium into the injury site, stereological quantification of the three-dimensional reconstructed spinal cords revealed that an average of 17.1 +/- 6.8% of the SCs and 2.3 +/- 1.4% of the OEG survived from the number transplanted. In the OEG grafted spinal cord, a limited number of glia were unable to prevent central cavitation and were found in patches around the cavity rim. The transplanted SCs, however, formed a substantive graft within the injury site capable of supporting the ingrowth of numerous, densely packed neurofilament-positive axons. The SC grafts were able to support growth of both ascending calcitonin gene-related peptide (CGRP)-positive and supraspinal serotonergic axons and, although no biotinylated dextran amine (BDA)-traced corticospinal axons were present within the center of the grafts, the SC transplants significantly increased corticospinal axon numbers immediately rostral to the injury-graft site compared with injury-only controls. Moreover, SC grafted animals demonstrated modest, though significant, improvements in open field locomotion and exhibited less foot position errors (base of support and foot rotation). Whereas these results demonstrate that SC grafts survive, support axon growth, and can improve functional outcome after chronic contusive spinal cord injury, further development of OEG grafting procedures in this model and putative combination strategies with SC grafts need to be further explored to produce substantial improvements in axon growth and function.
Collapse
Affiliation(s)
- D J Barakat
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lepore AC, Bakshi A, Swanger SA, Rao MS, Fischer I. Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Res 2005; 1045:206-16. [PMID: 15910779 DOI: 10.1016/j.brainres.2005.03.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/23/2005] [Accepted: 03/29/2005] [Indexed: 11/23/2022]
Abstract
Neural precursor cells (NPCs) are promising grafts for treatment of traumatic CNS injury and neurodegenerative disorders because of their potential to differentiate into neurons and glial cells. When designing clinical protocols for NPC transplantation, it is important to develop alternatives to direct parenchymal injection, particularly at the injury site. We reasoned that since it is minimally invasive, intrathecal delivery of NPCs at lumbar spinal cord (lumbar puncture) represents an important and clinically applicable strategy. We tested this proposition by examining whether NPCs can be delivered to the injured cervical spinal cord via lumbar puncture using a mixed population of neuronal-restricted precursors (NRPs) and glial-restricted precursors (GRPs). For reliable tracking, the NPCs were derived from the embryonic spinal cord of transgenic donor rats that express the marker gene, human placental alkaline phosphatase, under the control of the ubiquitous Rosa 26 promoter. We found that mixed NRP/GRP grafts can be efficiently delivered to a cervical hemisection injury site by intrathecal delivery at the lumbar cord. Similar to direct parenchymal injections, transplanted NRP/GRP cells survive at the injury cavity for at least 5 weeks post-engraftment, migrate into intact spinal cord along white matter tracts and differentiate into all three mature CNS cell types, neurons, astrocytes, and oligodendrocytes. Furthermore, very few graft-derived cells localize to areas outside the injury site, including intact spinal cord and brain. These results demonstrate the potential of delivering lineage-restricted NPCs using the minimally invasive lumbar puncture method for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Angelo C Lepore
- Department of Neurobiology and Anatomy, 2900 Queen Lane, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
21
|
Hill CE, Proschel C, Noble M, Mayer-Proschel M, Gensel JC, Beattie MS, Bresnahan JC. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Exp Neurol 2004; 190:289-310. [PMID: 15530870 DOI: 10.1016/j.expneurol.2004.05.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 04/20/2004] [Accepted: 05/25/2004] [Indexed: 12/23/2022]
Abstract
Transplantation of stem cells and immature cells has been reported to ameliorate tissue damage, induce axonal regeneration, and improve locomotion following spinal cord injury. However, unless these cells are pushed down a neuronal lineage, the majority of cells become glia, suggesting that the alterations observed may be potentially glially mediated. Transplantation of glial-restricted precursor (GRP) cells--a precursor cell population restricted to oligodendrocyte and astrocyte lineages--offers a novel way to examine the effects of glial cells on injury processes and repair. This study examines the survival and differentiation of GRP cells, and their ability to modulate the development of the lesion when transplanted immediately after a moderate contusion injury of the rat spinal cord. GRP cells isolated from a transgenic rat that ubiquitously expresses heat-stable human placental alkaline phosphatase (PLAP) were used to unambiguously detect transplanted GRP cells. Following transplantation, some GRP cells differentiated into oligodendrocytes and astrocytes, retaining their differentiation potential after injury. Transplanted GRP cells altered the lesion environment, reducing astrocytic scarring and the expression of inhibitory proteoglycans. Transplanted GRP cells did not induce long-distance regeneration from corticospinal tract (CST) and raphe-spinal axons when compared to control animals. However, GRP cell transplants did alter the morphology of CST axons toward that of growth cones, and CST fibers were found within GRP cell transplants, suggesting that GRP cells may be able to support axonal growth in vivo after injury.
Collapse
Affiliation(s)
- Caitlin E Hill
- STAR Laboratories, The Laboratory for Neural Repair, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Han SSW, Liu Y, Tyler-Polsz C, Rao MS, Fischer I. Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter. Glia 2004; 45:1-16. [PMID: 14648541 DOI: 10.1002/glia.10282] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glial-restricted precursor (GRP) cells are among a number of candidate cells for transplantation repair of CNS injury. The isolation and characterization of these cells in vitro have been described previously, but their in vivo properties are not well understood. We examined the fate and migration of grafted fetal GRP cells harvested from alkaline phosphatase-expressing transgenic rats into intact and injured spinal cord. Transplanted GRP cells survived for at least 6 weeks and differentiated along astrocytic and oligodendrocytic but not neuronal lineages. Cells grafted into the intact spinal cord exhibited robust migration along longitudinal white matter tracts and by 6 weeks migrated more than 15 mm. In contrast, migration of GRP cells in the gray matter was very limited. We then examined the phenotypic properties of proliferating endogenous precursors in response to injury by BrdU labeling. The predominant proliferating population seen after injury consisted of GRP-like cells with Nkx2.2/olig2 phenotype. Incorporation of BrdU by endogenous cells suggests that the environment provides proliferation signals and is permissive to glial precursor survival. To test if exogenous GRP cells would respond similarly, we transplanted GRP cells into a lateral funiculus injury. GRP cells survived and differentiated along glial lineages and migrated along white matter tracts in the injured spinal cord. Directed homing toward the lesion was not seen and there was no significant bias in differentiation between cells transplanted into injured and uninjured spinal cord. GRP cell transplants may therefore provide a cellular transplant that can respond to appropriate endogenous cues to produce therapeutic molecules and new glial cells after injury.
Collapse
Affiliation(s)
- Steve S W Han
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
23
|
Kim JA, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Mossy fiber pathfinding in multilayer organotypic cultures of rat hippocampal slices. Cell Mol Neurobiol 2003; 23:115-9. [PMID: 12701887 DOI: 10.1023/a:1022501302972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Using a novel technique of organotypic cultures, in which two hippocampal slices were cocultured in a bilayer style, we found that the mossy fibers arising from the dentate gyrus grafted onto another dentate tissue grew along the CA3 stratum lucidum of the host hippocampal slice. The same transplantation of a CA1 microslice failed to form a network with the host hippocampus. 2. Thus the type of grafted neurons is important to determine whether they can form an appropriate network after transplantation.
Collapse
Affiliation(s)
- Jeong-Ah Kim
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|