1
|
Huson V, Regehr WG. Realistic mossy fiber input patterns to unipolar brush cells evoke a continuum of temporal responses comprised of components mediated by different glutamate receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613480. [PMID: 39345419 PMCID: PMC11429827 DOI: 10.1101/2024.09.17.613480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wade G. Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Beau M, Herzfeld DJ, Naveros F, Hemelt ME, D’Agostino F, Oostland M, Sánchez-López A, Chung YY, Michael Maibach, Kyranakis S, Stabb HN, Martínez Lopera MG, Lajko A, Zedler M, Ohmae S, Hall NJ, Clark BA, Cohen D, Lisberger SG, Kostadinov D, Hull C, Häusser M, Medina JF. A deep-learning strategy to identify cell types across species from high-density extracellular recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577845. [PMID: 38352514 PMCID: PMC10862837 DOI: 10.1101/2024.01.30.577845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but don't reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals, revealing the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetic activation and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep-learning classifier that predicts cell types with greater than 95% accuracy based on waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across animal species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously-recorded cell types during behavior.
Collapse
Affiliation(s)
- Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David J. Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Francisco Naveros
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Engineering, Automation and Robotics, Research Centre for Information and Communication Technologies, University of Granada, Granada, Spain
| | - Marie E. Hemelt
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Federico D’Agostino
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Marlies Oostland
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Young Yoon Chung
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Michael Maibach
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Stephen Kyranakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Hannah N. Stabb
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | - Agoston Lajko
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Marie Zedler
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Shogo Ohmae
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nathan J. Hall
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Beverley A. Clark
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Javier F. Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Hariani HN, Algstam AB, Candler CT, Witteveen IF, Sidhu JK, Balmer TS. A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. eLife 2024; 12:RP88321. [PMID: 38270517 PMCID: PMC10945699 DOI: 10.7554/elife.88321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Sensory signals are processed by the cerebellum to coordinate movements. Numerous cerebellar functions are thought to require the maintenance of a sensory representation that extends beyond the input signal. Granule cells receive sensory input, but they do not prolong the signal and are thus unlikely to maintain a sensory representation for much longer than the inputs themselves. Unipolar brush cells (UBCs) are excitatory interneurons that project to granule cells and transform sensory input into prolonged increases or decreases in firing, depending on their ON or OFF UBC subtype. Further extension and diversification of the input signal could be produced by UBCs that project to one another, but whether this circuitry exists is unclear. Here we test whether UBCs innervate one another and explore how these small networks of UBCs could transform spiking patterns. We characterized two transgenic mouse lines electrophysiologically and immunohistochemically to confirm that they label ON and OFF UBC subtypes and crossed them together, revealing that ON and OFF UBCs innervate one another. A Brainbow reporter was used to label UBCs of the same ON or OFF subtype with different fluorescent proteins, which showed that UBCs innervate their own subtypes as well. Computational models predict that these feed-forward networks of UBCs extend the length of bursts or pauses and introduce delays-transformations that may be necessary for cerebellar functions from modulation of eye movements to adaptive learning across time scales.
Collapse
Affiliation(s)
- Harsh N Hariani
- Interdisciplinary Graduate Program in Neuroscience, Arizona State UniversityTempeUnited States
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - A Brynn Algstam
- School of Life Sciences, Arizona State UniversityTempeUnited States
- Barrett Honors College, Arizona State UniversityTempeUnited States
| | - Christian T Candler
- Interdisciplinary Graduate Program in Neuroscience, Arizona State UniversityTempeUnited States
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | | | - Jasmeen K Sidhu
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Timothy S Balmer
- School of Life Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
4
|
Hariani HN, Algstam AB, Candler CT, Witteveen IF, Sidhu JK, Balmer TS. A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536335. [PMID: 37090638 PMCID: PMC10120650 DOI: 10.1101/2023.04.11.536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sensory signals are processed by the cerebellum to coordinate movements. Numerous cerebellar functions are thought to require the maintenance of a sensory representation that extends beyond the input signal. Granule cells receive sensory input, but they do not prolong the signal and are thus unlikely to maintain a sensory representation for much longer than the inputs themselves. Unipolar brush cells (UBCs) are excitatory interneurons that project to granule cells and transform sensory input into prolonged increases or decreases in firing, depending on their ON or OFF UBC subtype. Further extension and diversification of the input signal could be produced by UBCs that project to one another, but whether this circuitry exists is unclear. Here we test whether UBCs innervate one another and explore how these small networks of UBCs could transform spiking patterns. We characterized two transgenic mouse lines electrophysiologically and immunohistochemically to confirm that they label ON and OFF UBC subtypes and crossed them together, revealing that ON and OFF UBCs innervate one another. A Brainbow reporter was used to label UBCs of the same ON or OFF subtype with different fluorescent proteins, which showed that UBCs innervate their own subtypes as well. Computational models predict that these feed-forward networks of UBCs extend the length of bursts or pauses and introduce delays-transformations that may be necessary for cerebellar functions from modulation of eye movements to adaptive learning across time scales.
Collapse
Affiliation(s)
- Harsh N. Hariani
- Interdisciplinary Graduate Program in Neuroscience
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | - A. Brynn Algstam
- Barrett Honors College
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | - Christian T. Candler
- Interdisciplinary Graduate Program in Neuroscience
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | | | - Jasmeen K. Sidhu
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287
| | | |
Collapse
|
5
|
Dumontier D, Mailhes-Hamon C, Supplisson S, Dieudonné S. Neurotransmitter content heterogeneity within an interneuron class shapes inhibitory transmission at a central synapse. Front Cell Neurosci 2023; 16:1060189. [PMID: 36687523 PMCID: PMC9846633 DOI: 10.3389/fncel.2022.1060189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Neurotransmitter content is deemed the most basic defining criterion for neuronal classes, contrasting with the intercellular heterogeneity of many other molecular and functional features. Here we show, in the adult mouse brain, that neurotransmitter content variegation within a neuronal class is a component of its functional heterogeneity. Golgi cells (GoCs), the well-defined class of cerebellar interneurons inhibiting granule cells (GrCs), contain cytosolic glycine, accumulated by the neuronal transporter GlyT2, and GABA in various proportions. By performing acute manipulations of cytosolic GABA and glycine supply, we find that competition of glycine with GABA reduces the charge of IPSC evoked in GrCs and, more specifically, the amplitude of a slow component of the IPSC decay. We then pair GrCs recordings with optogenetic stimulations of single GoCs, which preserve the intracellular transmitter mixed content. We show that the strength and decay kinetics of GrCs IPSCs, which are entirely mediated by GABAA receptors, are negatively correlated to the presynaptic expression of GlyT2 by GoCs. We isolate a slow spillover component of GrCs inhibition that is also affected by the expression of GlyT2, leading to a 56% decrease in relative charge. Our results support the hypothesis that presynaptic loading of glycine negatively impacts the GABAergic transmission in mixed interneurons, most likely through a competition for vesicular filling. We discuss how the heterogeneity of neurotransmitter supply within mixed interneurons like the GoC class may provide a presynaptic mechanism to tune the gain of microcircuits such as the granular layer, thereby expanding the realm of their possible dynamic behaviors.
Collapse
|
6
|
Guarque-Chabrera J, Gil-Miravet I, Olucha-Bordonau F, Melchor-Eixea I, Miquel M. When the front fails, the rear wins. Cerebellar correlates of prefrontal dysfunction in cocaine-induced memory in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110429. [PMID: 34416354 DOI: 10.1016/j.pnpbp.2021.110429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological and functional substrate to modulate cognitive functions. Dysfunction of both medial prefrontal cortex (mPFC) and cerebellum underlie the phenotypes of several neuropsychiatric disorders that exhibit comorbidity with substance use disorder (SUD). In people with SUD, cue-action-reward associations appears to be particularly strong and salient, acting as powerful motivational triggers for craving and relapse. Studies of cue reactivity in human with SUD have shown cerebellar activations when drug-related cues are presented. Our preclinical research showed that cocaine-induced conditioned preference increases neural activity and upregulates perineuronal nets (PNNs) around Golgi interneurons in the posterior cerebellar cortex. In the present investigation, we aimed at evaluating cerebellar signatures of conditioned preference for cocaine when drug learning is established under mPFC impairment. We used lidocaine to temporarily inactivate in male rats either the Prelimbic (PL) or the Infralimbic (IL) cortices during cocaine-induced conditioning. The inactivation of the IL, but not the PL, encouraged the acquisition of preference for cocaine-related cues, increased posterior cerebellar cortex activity, and upregulated the expression of PNNs around Golgi interneurons. Moreover, IL impairment not only increased vGluT2- and vGAT-related activity around Golgi cells but also regulated PNNs differently on subpopulations of Golgi cells, increasing the number of neurogranin+ PNN-expressing Golgi cells. Our findings suggest that IL dysfunction may facilitate the acquisition of cocaine-induced memory and cerebellar drug-related learning hallmarks. Overall, IL perturbation during cocaine-induced Pavlovian learning increased cerebellar activity and drug effects. Importantly, cerebellum involvement requires a contingent experience with the drug, and it is not the effect of a mere inactivation of IL cortex.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | | | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| |
Collapse
|
7
|
Halverson HE, Kim J, Khilkevich A, Mauk MD, Augustine GJ. Feedback inhibition underlies new computational functions of cerebellar interneurons. eLife 2022; 11:77603. [PMID: 36480240 PMCID: PMC9771357 DOI: 10.7554/elife.77603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The function of a feedback inhibitory circuit between cerebellar Purkinje cells and molecular layer interneurons (MLIs) was defined by combining optogenetics, neuronal activity recordings both in cerebellar slices and in vivo, and computational modeling. Purkinje cells inhibit a subset of MLIs in the inner third of the molecular layer. This inhibition is non-reciprocal, short-range (less than 200 μm) and is based on convergence of one to two Purkinje cells onto MLIs. During learning-related eyelid movements in vivo, the activity of a subset of MLIs progressively increases as Purkinje cell activity decreases, with Purkinje cells usually leading the MLIs. Computer simulations indicate that these relationships are best explained by the feedback circuit from Purkinje cells to MLIs and that this feedback circuit plays a central role in making cerebellar learning efficient.
Collapse
Affiliation(s)
- Hunter E Halverson
- Center for Learning and Memory, The University of TexasAustinUnited States
| | - Jinsook Kim
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore,Institute of Molecular and Cell BiologySingaporeSingapore
| | - Andrei Khilkevich
- Center for Learning and Memory, The University of TexasAustinUnited States
| | - Michael D Mauk
- Center for Learning and Memory, The University of TexasAustinUnited States,Department of Neuroscience, The University of TexasAustinUnited States
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore,Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
8
|
Balmer TS, Borges-Merjane C, Trussell LO. Incomplete removal of extracellular glutamate controls synaptic transmission and integration at a cerebellar synapse. eLife 2021; 10:e63819. [PMID: 33616036 PMCID: PMC7935485 DOI: 10.7554/elife.63819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/19/2021] [Indexed: 11/27/2022] Open
Abstract
Synapses of glutamatergic mossy fibers (MFs) onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC's large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the MF terminal, and its level was dependent on activity of glutamate transporters EAAT1-2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.
Collapse
Affiliation(s)
- Timothy S Balmer
- Vollum Institute and Oregon Hearing Research Center, Oregon Health & Science UniversityPortlandUnited States
| | - Carolina Borges-Merjane
- Vollum Institute and Oregon Hearing Research Center, Oregon Health & Science UniversityPortlandUnited States
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Laurence O Trussell
- Vollum Institute and Oregon Hearing Research Center, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
9
|
de Zeeuw CI, Hensbroek RA, Maruta J, Voogd J. In memory of Jerry Simpson 1939–2020. CEREBELLUM & ATAXIAS 2020. [PMCID: PMC7199335 DOI: 10.1186/s40673-020-00113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Pathway-Specific Drive of Cerebellar Golgi Cells Reveals Integrative Rules of Cortical Inhibition. J Neurosci 2018; 39:1169-1181. [PMID: 30587539 DOI: 10.1523/jneurosci.1448-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Cerebellar granule cells (GrCs) constitute over half of all neurons in the vertebrate brain and are proposed to decorrelate convergent mossy fiber (MF) inputs in service of learning. Interneurons within the GrC layer, Golgi cells (GoCs), are the primary inhibitors of this vast population and therefore play a major role in influencing the computations performed within the layer. Despite this central function for GoCs, few studies have directly examined how GoCs integrate inputs from specific afferents, which vary in density to regulate GrC population activity. We used a variety of methods in mice of either sex to study feedforward inhibition recruited by identified MFs, focusing on features that would influence integration by GrCs. Comprehensive 3D reconstruction and quantification of GoC axonal boutons revealed tightly clustered boutons that focus feedforward inhibition in the neighborhood of GoC somata. Acute whole-cell patch-clamp recordings from GrCs in brain slices showed that, despite high GoC bouton density, fast phasic inhibition was very sparse relative to slow spillover mediated inhibition. Dynamic-clamp simulating inhibition combined with optogenetic MF activation at moderate rates supported a predominant role of slow spillover mediated inhibition in reducing GrC activity. Whole-cell recordings from GoCs revealed a role for the density of active MFs in preferentially driving them. Thus, our data provide empirical confirmation of predicted rules by which MFs activate GoCs to regulate GrC activity levels.SIGNIFICANCE STATEMENT A unifying framework in neural circuit analysis is identifying circuit motifs that subserve common computations. Wide-field inhibitory interneurons globally inhibit neighbors and have been studied extensively in the insect olfactory system and proposed to serve pattern separation functions. Cerebellar Golgi cells (GoCs), a type of mammalian wide-field inhibitory interneuron observed in the granule cell layer, are well suited to perform normalization or pattern separation functions, but the relationship between spatial characteristics of input patterns to GoC-mediated inhibition has received limited attention. This study provides unprecedented quantitative structural details of GoCs and identifies a role for population input activity levels in recruiting inhibition using in vitro electrophysiology and optogenetics.
Collapse
|
11
|
Abstract
The cerebellum is a central brain structure deeply integrated into major loops with the cerebral cortex, brainstem, and spinal cord. The cerebellum shows a complex regional organization consisting of modules with sagittal orientation. The cerebellum takes part in motor control and its lesions cause a movement incoordination syndrome called ataxia. Recent observations also imply involvement of the cerebellum in cognition and executive control, with an impact on pathologies like dyslexia and autism. The cerebellum operates as a forward controller learning to predict the precise timing of correlated events. The physiologic mechanisms of cerebellar functioning are still the object of intense research. The signals entering the cerebellum through the mossy fibers are processed in the granular layer and transmitted to Purkinje cells, while a collateral pathway activates the deep cerebellar nuclei (DCN). Purkinje cells in turn inhibit DCN, so that the cerebellar cortex operates as a side loop controlling the DCN. Learning is now known to occur through synaptic plasticity at multiple synapses in the granular layer, molecular layer, and DCN, extending the original concept of the Motor Learning Theory that predicted a single form of plasticity at the synapse between parallel fibers and Purkinje cells under the supervision of climbing fibers deriving from the inferior olive. Coordination derives from the precise regulation of timing and gain in the different cerebellar modules. The investigation of cerebellar dynamics using advanced physiologic recordings and computational models is now providing new clues on how the cerebellar network performs its internal computations.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
12
|
Zampini V, Liu JK, Diana MA, Maldonado PP, Brunel N, Dieudonné S. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit. eLife 2016; 5. [PMID: 27642013 PMCID: PMC5074806 DOI: 10.7554/elife.15872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/17/2016] [Indexed: 02/04/2023] Open
Abstract
Synaptic currents display a large degree of heterogeneity of their temporal characteristics, but the functional role of such heterogeneities remains unknown. We investigated in rat cerebellar slices synaptic currents in Unipolar Brush Cells (UBCs), which generate intrinsic mossy fibers relaying vestibular inputs to the cerebellar cortex. We show that UBCs respond to sinusoidal modulations of their sensory input with heterogeneous amplitudes and phase shifts. Experiments and modeling indicate that this variability results both from the kinetics of synaptic glutamate transients and from the diversity of postsynaptic receptors. While phase inversion is produced by an mGluR2-activated outward conductance in OFF-UBCs, the phase delay of ON UBCs is caused by a late rebound current resulting from AMPAR recovery from desensitization. Granular layer network modeling indicates that phase dispersion of UBC responses generates diverse phase coding in the granule cell population, allowing climbing-fiber-driven Purkinje cell learning at arbitrary phases of the vestibular input. DOI:http://dx.doi.org/10.7554/eLife.15872.001 Whether walking, riding a bicycle or simply standing still, we continually adjust our posture in small ways to prevent ourselves from falling. Our sense of balance depends on a set of structures inside the inner ear called the vestibular system. These structures detect movements of the head and relay this information to the brain in the form of electrical signals. A brain area called the vestibulo-cerebellum then combines these signals with sensory input from the eyes and muscles, before sending out further signals to trigger any adjustments necessary for balance. One of the main cell types within the vestibulo-cerebellum is the unipolar brush cell (or UBC for short). UBCs pass on signals to another type of neuron called Purkinje cells, which support the learning of motor skills such as adjusting posture. Zampini, Liu et al. set out to test the idea that UBCs transform inputs from the vestibular system into a format that makes it easier for cerebellar Purkinje cells to drive this kind of learning. First, recordings from slices of rodent brain revealed that UBCs respond in highly variable ways to vestibular input, with both the size and timing of responses varying between cells. This is because vestibular signals trigger the release of a chemical messenger called glutamate onto UBCs, but UBCs possess a variety of different types of glutamate receptors. Vestibular input therefore activates distinct signaling cascades from one UBC to the next. According to a computer model, this variability in UBC responses ensures that a subset of UBCs will always be active at any point during vestibular input. This in turn means that Purkinje cells can fire at any stage of a movement, which boosts the learning of motor skills. The next steps will be to test this hypothesis using mutant mice that lack specific receptor subtypes in UBCs or UBCs completely. A further challenge for the future will be to build a computer model of the vestibulo-cerebellar system that includes all of its component cell types. DOI:http://dx.doi.org/10.7554/eLife.15872.002
Collapse
Affiliation(s)
- Valeria Zampini
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Jian K Liu
- Neurosciences Federation, Université Paris Descartes, Paris, France.,Department of Ophthalmology, University Medical Center Goettingen, Goettingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Marco A Diana
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Paloma P Maldonado
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Nicolas Brunel
- Neurosciences Federation, Université Paris Descartes, Paris, France.,Department of Statistics and Neurobiology, University of Chicago, Chicago, United States
| | - Stéphane Dieudonné
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| |
Collapse
|
13
|
Hensbroek RA, Ruigrok TJH, van Beugen BJ, Maruta J, Simpson JI. Visuo-vestibular information processing by unipolar brush cells in the rabbit flocculus. THE CEREBELLUM 2016; 14:578-83. [PMID: 26280650 PMCID: PMC4612327 DOI: 10.1007/s12311-015-0710-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The unipolar brush cell (UBC) is a glutamatergic granular layer interneuron that is predominantly located in the vestibulocerebellum and parts of the vermis. In rat and rabbit, we previously found using juxtacellular labeling combined with spontaneous activity recording that cells with highly regular spontaneous activity belong to the UBC category. Making use of this signature, we recorded from floccular UBCs in both anesthetized and awake rabbits while delivering visuo-vestibular stimulation by using sigmoidal rotation of the whole animal. In the anesthetized rabbit, the activity of the presumed UBC units displayed a wide variety of modulation profiles that could be related to aspects of head velocity or acceleration. These modulation profiles could also be found in the awake rabbit where, in addition, they could also carry an eye position signal. Furthermore, units in the awake rabbit could demonstrate rather long response latencies of up to 0.5 s. We suggest that the UBCs recorded in this study mostly belong to the type I UBC category (calretinin-positive) and that they can play diverse roles in floccular visuo-vestibular information processing, such as transformation of velocity-related signals to acceleration-related signals.
Collapse
Affiliation(s)
- Robert A Hensbroek
- Department of Neuroscience & Physiology, New York University Medical School, New York, NY, 10016, USA
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, 3000 CA, Rotterdam, Netherlands.
| | | | - Jun Maruta
- Brain Trauma Foundation, 1 Broadway, New York, NY, 10004, USA
| | - John I Simpson
- Department of Neuroscience & Physiology, New York University Medical School, New York, NY, 10016, USA
| |
Collapse
|
14
|
Barmack NH, Yakhnitsa V. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells. THE CEREBELLUM 2016; 14:597-612. [PMID: 26424151 DOI: 10.1007/s12311-015-0725-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.
Collapse
Affiliation(s)
- N H Barmack
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - V Yakhnitsa
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
15
|
Abstract
Unipolar brush cells (UBCs) are glutamatergic interneurons prominently present in the granular layer of the vestibulocerebellum. UBCs engage in extensive synaptic contact with a single presynaptic mossy fiber and signal to downstream granule cells through an elaborate network of mossy fiber-like axons. Ultrastructural examinations and electrophysiological recordings in organotypic slice cultures have indicated that UBCs target not only granule cells but also other UBCs, thus forming chains of two or perhaps more interconnected UBCs. In this report, we show recordings of spontaneous and evoked (di)synaptic events in granule cells and UBCs in fresh cerebellar slices from juvenile mice (5–7 weeks). The patterns of arrival of synaptic events were consistent with the presence of a presynaptic UBC, and recordings from UBCs displayed spontaneous protracted synaptic events characteristic of UBC excitatory synaptic transmission. These results highlight that chains of UBCs could further extend the temporal range of delayed and protracted signaling in the cerebellar cortical network.
Collapse
Affiliation(s)
- Stijn van Dorp
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, P.O. Box 2040, NL-3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Givon-Mayo R, Haar S, Aminov Y, Simons E, Donchin O. Long Pauses in Cerebellar Interneurons in Anesthetized Animals. THE CEREBELLUM 2016; 16:293-305. [PMID: 27255704 DOI: 10.1007/s12311-016-0792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Are long pauses in the firing of cerebellar interneurons (CINs) related to Purkinje cell (PC) pauses? If PC pauses affect the larger network, then we should find a close relationship between CIN pauses and those in PCs. We recorded activity of 241 cerebellar cortical neurons (206 CINs and 35 PCs) in three anesthetized cats. One fifth of the CINs and more than half of the PCs were identified as pausing. Pauses in CINs and PCs showed some differences: CIN mean pause length was shorter, and, after pauses, only CINs had sustained reduction in their firing rate (FR). Almost all pausing CINs fell into same cluster when we used different methods of clustering CINs by their spontaneous activity. The mean spontaneous firing rate of that cluster was approximately 53 Hz. We also examined cross-correlations in simultaneously recorded neurons. Of 39 cell pairs examined, 14 (35 %) had cross-correlations significantly different from those expected by chance. Almost half of the pairs with two CINs showed statistically significant negative correlations. In contrast, PC/CIN pairs did not often show significant effects in the cross-correlation (12/15 pairs). However, for both CIN/CIN and PC/CIN pairs, pauses in one unit tended to correspond to a reduction in the firing rate of the adjacent unit. In our view, our results support the possibility that previously reported PC bistability is part of a larger network response and not merely a biophysical property of PCs. Any functional role for PC bistability should probably be sought in the context of the broader network.
Collapse
Affiliation(s)
- Ronit Givon-Mayo
- The Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Physical Therapy Department, Ono Academic College, Kiryat Ono, Israel
| | - Shlomi Haar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 8410501, Israel
| | - Yoav Aminov
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 8410501, Israel
| | - Esther Simons
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Opher Donchin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 8410501, Israel.
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Tomatsu S, Ishikawa T, Tsunoda Y, Lee J, Hoffman DS, Kakei S. Information processing in the hemisphere of the cerebellar cortex for control of wrist movement. J Neurophysiol 2015; 115:255-70. [PMID: 26467515 DOI: 10.1152/jn.00530.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus.
Collapse
Affiliation(s)
- Saeka Tomatsu
- Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takahiro Ishikawa
- Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiaki Tsunoda
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jongho Lee
- Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Donna S Hoffman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shinji Kakei
- Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan;
| |
Collapse
|
18
|
Borges-Merjane C, Trussell LO. ON and OFF unipolar brush cells transform multisensory inputs to the auditory system. Neuron 2015; 85:1029-42. [PMID: 25741727 DOI: 10.1016/j.neuron.2015.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/27/2014] [Accepted: 01/22/2015] [Indexed: 12/15/2022]
Abstract
Unipolar brush cells (UBCs) of the dorsal cochlear nucleus (DCN) and vestibular cerebellar cortex receive glutamatergic mossy fiber input on an elaborate brush-like dendrite. Two subtypes of UBC have been established based on immunohistochemical markers and physiological profiles, but the relation of these subtypes to the response to mossy fiber input is not clear. We examined the synaptic physiology of auditory UBCs in mouse brain slices, identifying two response profiles, and correlated each with a specific UBC subtype. One subtype had a striking biphasic excitatory response mediated by AMPAR and mGluR1α. The second was mGluR1α negative and was dominated by a strongly inhibitory outward K(+) current. These two subtypes upregulated or downregulated spontaneous firing, respectively. By analogy to the retina, we propose that UBCs comprise ON and OFF cells with respect to their response to glutamatergic input and may therefore provide distinct parallel processing of multisensory input to their targets.
Collapse
Affiliation(s)
- Carolina Borges-Merjane
- Neuroscience Graduate Program, Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Laurence O Trussell
- Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Abstract
The effort to determine morphological and anatomically defined neuronal characteristics from extracellularly recorded physiological signatures has been attempted with varying success in different brain areas. Recent studies have attempted such classification of cerebellar interneurons (CINs) based on statistical measures of spontaneous activity. Previously, such efforts in different brain areas have used supervised clustering methods based on standard parameterizations of spontaneous interspike interval (ISI) histograms. We worried that this might bias researchers toward positive identification results and decided to take a different approach. We recorded CINs from anesthetized cats. We used unsupervised clustering methods applied to a nonparametric representation of the ISI histograms to identify groups of CINs with similar spontaneous activity and then asked how these groups map onto different cell types. Our approach was a fuzzy C-means clustering algorithm applied to the Kullbach-Leibler distances between ISI histograms. We found that there is, in fact, a natural clustering of the spontaneous activity of CINs into six groups but that there was no relationship between this clustering and the standard morphologically defined cell types. These results proved robust when generalization was tested to completely new datasets, including datasets recorded under different anesthesia conditions and in different laboratories and different species (rats). Our results suggest the importance of an unsupervised approach in categorizing neurons according to their extracellular activity. Indeed, a reexamination of such categorization efforts throughout the brain may be necessary. One important open question is that of functional differences of our six spontaneously defined clusters during actual behavior.
Collapse
|
20
|
Meng H, Laurens J, Blázquez PM, Angelaki DE. In vivo properties of cerebellar interneurons in the macaque caudal vestibular vermis. J Physiol 2014; 593:321-30. [PMID: 25556803 DOI: 10.1113/jphysiol.2014.278523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/13/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We quantify both spontaneous and stimulus-driven responses of interneurons in lobules X (nodulus) and IXc,d (ventral uvula) of the caudal vermis during vestibular stimulation. Based on baseline firing, at least three types of neuronal populations could be distinguished. First, there was a group of very regular firing neurons with high mean discharge rates. Second, there was a group of low firing neurons with a range of discharge regularity. Third, we also encountered putative interneurons with discharge regularity and mean firing rates that were indistinguishable from those of physiologically identified Purkinje cells. The vestibular responses of putative interneurons were generally similar to those of Purkinje cells, thus encoding tilt, translation or mixtures of these signals. Mossy fibres showed unprocessed, otolith afferent-like properties. The cerebellar cortex is among the brain's most well-studied circuits and includes distinct classes of excitatory and inhibitory interneurons. Several studies have attempted to characterize the in vivo properties of cerebellar interneurons, yet little is currently known about their stimulus-driven properties. Here we quantify both spontaneous and stimulus-driven responses of interneurons in lobules X (nodulus) and IXc,d (ventral uvula) of the macaque caudal vermis during vestibular stimulation. Interneurons were identified as cells located >100 μm from the Purkinje cell layer that did not exhibit complex spikes. Based on baseline firing, three types of interneurons could be distinguished. First, there was a group of very regular firing interneurons with high mean discharge rates, which consistently encoded tilt, rather than translational head movements. Second, there was a group of low firing interneurons with a range of discharge regularity. This group had more diverse vestibular properties, where most were translation-selective and a few tilt- or gravitoinertial acceleration-selective. Third, we also encountered interneurons that were similar to Purkinje cells in terms of discharge regularity and mean firing rate. This group also encoded mixtures of tilt and translation signals. A few mossy fibres showed unprocessed, otolith afferent-like properties, encoding the gravitoinertial acceleration. We conclude that tilt- and translation-selective signals, which reflect neural computations transforming vestibular afferent information, are not only encountered in Purkinje cell responses. Instead, upstream interneurons within the cerebellar cortex are also characterized by similar properties, thus implying a widespread network computation.
Collapse
Affiliation(s)
- Hui Meng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
21
|
Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J. Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front Cell Neurosci 2014; 8:304. [PMID: 25352777 PMCID: PMC4195316 DOI: 10.3389/fncel.2014.00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 12/02/2022] Open
Abstract
A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit.
Collapse
Affiliation(s)
| | - Sergio Solinas
- Brain Connectivity Center, Istituto Neurologico Istituto di Ricovero e Cura a Carattere Scientifico C. Mondino Pavia, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, Istituto Neurologico Istituto di Ricovero e Cura a Carattere Scientifico C. Mondino Pavia, Italy ; Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia Pavia, Italy
| | - Paul Dean
- Department of Psychology, University of Sheffield Sheffield, UK
| | - John Porrill
- Department of Psychology, University of Sheffield Sheffield, UK
| |
Collapse
|
22
|
Hensbroek RA, Belton T, van Beugen BJ, Maruta J, Ruigrok TJH, Simpson JI. Identifying Purkinje cells using only their spontaneous simple spike activity. J Neurosci Methods 2014; 232:173-80. [PMID: 24880047 DOI: 10.1016/j.jneumeth.2014.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/04/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND We have extended our cerebellar cortical interneuron classification algorithm that uses statistics of spontaneous activity (Ruigrok et al., 2011) to include Purkinje cells. Purkinje cells were added because they do not always show a detectable complex spike, which is the accepted identification. The statistical measures used in the present study were obtained from morphologically identified interneurons and complex spike identified Purkinje cells, recorded from ketamine-xylazine anesthetized rats and rabbits, and from awake rabbits. NEW METHOD The new algorithm has an added decision step that classifies Purkinje cells using a combination of the median absolute difference from the median interspike interval (MAD) and the mean of the relative differences of successive interspike intervals (CV2). These measures reflect the high firing rate and intermediate regularity of Purkinje cell simple spike activity. RESULTS Of 86 juxtacellularly labeled interneurons and 110 complex spike-identified Purkinje cells, 61 interneurons and 95 Purkinje cells were correctly classified, 22 interneurons and 13 Purkinje cells were deemed unclassifiable, and 3 interneurons and 2 Purkinje cells were incorrectly classified. COMPARISON WITH EXISTING METHODS The new algorithm improves on our previous algorithm because it includes Purkinje cells. This algorithm is the only one for the cerebellum that does not presume anatomical knowledge of whether the cells are in the molecular layer or the granular layer. CONCLUSIONS These results strengthen the view that the new decision algorithm is useful for identifying neurons recorded at all cerebellar depths, particularly those neurons recorded in the rabbit vestibulocerebellum.
Collapse
Affiliation(s)
- Robert A Hensbroek
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Tim Belton
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Boeke J van Beugen
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jun Maruta
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - John I Simpson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Barmack NH, Yakhnitsa V. Modulated discharge of Purkinje and stellate cells persists after unilateral loss of vestibular primary afferent mossy fibers in mice. J Neurophysiol 2013; 110:2257-74. [PMID: 23966673 DOI: 10.1152/jn.00352.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large "complex spikes" (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of "simple spikes" (SSs). Both afferent systems convey vestibular information to folia 9c-10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8-10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c-10, to which vestibular primary afferents project, and in folia 8-9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers.
Collapse
Affiliation(s)
- N H Barmack
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
24
|
Kim JA, Sekerková G, Mugnaini E, Martina M. Electrophysiological, morphological, and topological properties of two histochemically distinct subpopulations of cerebellar unipolar brush cells. THE CEREBELLUM 2013; 11:1012-25. [PMID: 22528965 DOI: 10.1007/s12311-012-0380-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unipolar brush cells (UBCs) are excitatory cerebellar granular layer interneurons whose brush-like dendrites receive one-to-one mossy fiber inputs. Subclasses of UBCs differ primarily by expressing metabotropic glutamate receptor (mGluR) 1α or calretinin. We used GENSAT Tg(Grp-EGFP) BAC transgenic mice, which selectively express enhanced green fluorescent protein (EGFP) in mGluR1α-positive UBCs to compare the functional properties of the two subclasses. Compared to EGFP-negative UBCs, which include the calretinin-positive cells, EGFP-positive UBCs had smaller somata (area 48 vs 63 μm(2)), lower specific membrane resistance (6.4 vs. 13.7 KΩ cm(2)), were less prone to intrinsic firing, and showed more irregular firing (in cell-attached ~49 % were firing vs. ~88 %, and the CV was 0.53 vs. 0.32 for EGFP-negative cells). Some of these differences are attributable to higher density of background K(+) currents in EGFP-positive cells (at -120 mV, the barium-sensitive current was 94 vs. 37 pA in EGFP-negative cells); Ih, on the contrary, was more abundantly expressed in EGFP-negative cells (at -140 mV, it was -122 vs. -54 pA in EGFP-positive neurons); furthermore, while group II mGluR modulation of the background potassium current in EGFP-negative UBCs was maintained after intracellular dialysis, mGluR modulation in EGFP-positive UBCs was lost in whole-cell recordings. Finally, cell-attached firing was reversibly abolished by the GABA(B) activation in EGFP-positive, but not in EGFP-negative UBCs. Immunohistochemistry showed that EGFP-negative UBCs express GIRK2 at high density, while mGluR1α UBCs are GIRK2 negative, suggesting that GIRK2 mediates the mGluR-sensitive current in EGFP-negative UBCs. These data suggest that the two subclasses perform different functions in the cerebellar microcircuits.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL, 60611, USA
| | | | | | | |
Collapse
|
25
|
Van Dijck G, Van Hulle MM, Heiney SA, Blazquez PM, Meng H, Angelaki DE, Arenz A, Margrie TW, Mostofi A, Edgley S, Bengtsson F, Ekerot CF, Jörntell H, Dalley JW, Holtzman T. Probabilistic identification of cerebellar cortical neurones across species. PLoS One 2013; 8:e57669. [PMID: 23469215 PMCID: PMC3587648 DOI: 10.1371/journal.pone.0057669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/24/2013] [Indexed: 02/02/2023] Open
Abstract
Despite our fine-grain anatomical knowledge of the cerebellar cortex, electrophysiological studies of circuit information processing over the last fifty years have been hampered by the difficulty of reliably assigning signals to identified cell types. We approached this problem by assessing the spontaneous activity signatures of identified cerebellar cortical neurones. A range of statistics describing firing frequency and irregularity were then used, individually and in combination, to build Gaussian Process Classifiers (GPC) leading to a probabilistic classification of each neurone type and the computation of equi-probable decision boundaries between cell classes. Firing frequency statistics were useful for separating Purkinje cells from granular layer units, whilst firing irregularity measures proved most useful for distinguishing cells within granular layer cell classes. Considered as single statistics, we achieved classification accuracies of 72.5% and 92.7% for granular layer and molecular layer units respectively. Combining statistics to form twin-variate GPC models substantially improved classification accuracies with the combination of mean spike frequency and log-interval entropy offering classification accuracies of 92.7% and 99.2% for our molecular and granular layer models, respectively. A cross-species comparison was performed, using data drawn from anaesthetised mice and decerebrate cats, where our models offered 80% and 100% classification accuracy. We then used our models to assess non-identified data from awake monkeys and rabbits in order to highlight subsets of neurones with the greatest degree of similarity to identified cell classes. In this way, our GPC-based approach for tentatively identifying neurones from their spontaneous activity signatures, in the absence of an established ground-truth, nonetheless affords the experimenter a statistically robust means of grouping cells with properties matching known cell classes. Our approach therefore may have broad application to a variety of future cerebellar cortical investigations, particularly in awake animals where opportunities for definitive cell identification are limited.
Collapse
Affiliation(s)
- Gert Van Dijck
- Computational Neuroscience Research Group, Laboratory for Neuro- en Psychophysiology, K.U. Leuven School of Medicine, Leuven, Belgium
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Marc M. Van Hulle
- Computational Neuroscience Research Group, Laboratory for Neuro- en Psychophysiology, K.U. Leuven School of Medicine, Leuven, Belgium
| | - Shane A. Heiney
- Department of Otolaryngology, Washington University, St. Louis, Missouri, United States of America
| | - Pablo M. Blazquez
- Department of Otolaryngology, Washington University, St. Louis, Missouri, United States of America
| | - Hui Meng
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dora E. Angelaki
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alexander Arenz
- The Division of Neurophysiology, The National Institute for Medical Research, London, United Kingdom
| | - Troy W. Margrie
- The Division of Neurophysiology, The National Institute for Medical Research, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Abteen Mostofi
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steve Edgley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fredrik Bengtsson
- Department of Experimental Medical Science, Section for Neuroscience, Lund University, Lund, Sweden
| | - Carl-Fredrik Ekerot
- Department of Experimental Medical Science, Section for Neuroscience, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Department of Experimental Medical Science, Section for Neuroscience, Lund University, Lund, Sweden
- NeuroNano Research Center, Lund, Sweden
| | - Jeffrey W. Dalley
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Tahl Holtzman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Locatelli F, Bottà L, Prestori F, Masetto S, D'Angelo E. Late-onset bursts evoked by mossy fibre bundle stimulation in unipolar brush cells: evidence for the involvement of H- and TRP-currents. J Physiol 2012; 591:899-918. [PMID: 23129798 DOI: 10.1113/jphysiol.2012.242180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic transmission at central synapses has usually short latency and graded amplitude, thereby regulating threshold crossing and the probability of action potential generation. In the granular layer of the vestibulo-cerebellum, unipolar brush cells (UBCs) receive a giant synapse generating a stereotyped excitatory postsynaptic potential (EPSP)-burst complex with early-onset (∼2 ms) and high reliability. By using patch-clamp recordings in cerebellar slices of the rat vestibulo-cerebellum, we found that mossy fibre bundle stimulation also evoked (in ∼80% of cases) a late-onset burst (after tens to hundreds of milliseconds) independent of EPSP generation. Different from the early-onset, the late-onset burst delay decreased and its duration increased by raising stimulation intensity or the number of impulses. Although depending on synaptic activity, the late-onset response was insensitive to perfusion of APV ((2R)-5-amino-phosphonopentanoate), NBQX (2,3-dioxo-6-nitro-tetrahydrobenzo(f)quinoxaline-7-sulfonamide) and MCPG ((RS)-α-methyl-4-carboxyphenylglycine) and did not therefore depend on conventional glutamatergic transmission mechanisms. The late-onset response was initiated by a slow depolarizing ramp driven by activation of an H-current (sensitive to ZD7288 and Cs(+)) and of a TRP- (transient receptor potential) current (sensitive to SKF96365), while the high voltage-activated and high voltage-activated Ca(2+) currents (sensitive to nimodipine and mibefradil, respectively) played a negligible role. The late-onset burst was occluded by intracellular cAMP. These results indicate that afferent activity can regulate H- and TRP-current gating in UBCs generating synaptically driven EPSP-independent responses, in which the delay rather than amplitude is graded with the intensity of the input pattern. This modality of synaptic transmission may play an important role in regulating UBC activation and granular layer functions in the vestibulo-cerebellum.
Collapse
Affiliation(s)
- F Locatelli
- Department of Neuroscience, Via Mondino 2, I-27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
27
|
Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 2012; 13:619-35. [PMID: 22895474 DOI: 10.1038/nrn3312] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies on synaptic plasticity in the context of learning have been dominated by the view that a single, particular type of plasticity forms the underlying mechanism for a particular type of learning. However, emerging evidence shows that many forms of synaptic and intrinsic plasticity at different sites are induced conjunctively during procedural memory formation in the cerebellum. Here, we review the main forms of long-term plasticity in the cerebellar cortex that underlie motor learning. We propose that the different forms of plasticity in the granular layer and the molecular layer operate synergistically in a temporally and spatially distributed manner, so as to ultimately create optimal output for behaviour.
Collapse
Affiliation(s)
- Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Mixed inhibitory synaptic balance correlates with glutamatergic synaptic phenotype in cerebellar unipolar brush cells. J Neurosci 2012; 32:4632-44. [PMID: 22457509 DOI: 10.1523/jneurosci.5122-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory synapses display a great diversity through varying combinations of presynaptic GABA and glycine release and postsynaptic expression of GABA and glycine receptor subtypes. We hypothesized that increased flexibility offered by this dual transmitter system might serve to tune the inhibitory phenotype to the properties of afferent excitatory synaptic inputs in individual cells. Vestibulocerebellar unipolar brush cells (UBC) receive a single glutamatergic synapse from a mossy fiber (MF), which makes them an ideal model to study excitatory-inhibitory interactions. We examined the functional phenotypes of mixed inhibitory synapses formed by Golgi interneurons onto UBCs in rat slices. We show that glycinergic IPSCs are present in all cells. An additional GABAergic component of large amplitude is only detected in a subpopulation of UBCs. This GABAergic phenotype is strictly anti-correlated with the expression of type II, but not type I, metabotropic glutamate receptors (mGluRs) at the MF synapse. Immunohistochemical stainings and agonist applications show that global UBC expression of glycine and GABA(A) receptors matches the pharmacological profile of IPSCs. Paired recordings of Golgi cells and UBCs confirm the postsynaptic origin of the inhibitory phenotype, including the slow kinetics of glycinergic components. These results strongly suggest the presence of a functional coregulation of excitatory and inhibitory phenotypes at the single-cell level. We propose that slow glycinergic IPSCs may provide an inhibitory tone, setting the gain of the MF to UBC relay, whereas large and fast GABAergic IPSCs may in addition control spike timing in mGluRII-negative UBCs.
Collapse
|
29
|
Herfst L, Burgalossi A, Haskic K, Tukker JJ, Schmidt M, Brecht M. Friction-based stabilization of juxtacellular recordings in freely moving rats. J Neurophysiol 2012; 108:697-707. [PMID: 22514297 DOI: 10.1152/jn.00910.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Virtually nothing is known about the activity of morphologically identified neurons in freely moving mammals. Here we describe stabilization and positioning techniques that allow juxtacellular recordings from labeled single neurons in awake, freely moving animals. This method involves the use of a friction-based device that allows stabilization of the recording pipette by friction forces. Friction is generated by a clamplike mechanism that tightens a sliding pipette holder to a preimplanted pipette guide. The interacting surfaces are smoothed to optical quality (<5-nm roughness) to enable micrometer stepping precision of the device during operation. Our method allows recordings from identified neurons in freely moving animals, and thus opens new perspectives for analyzing the role of identified neurons in the control of behavior.
Collapse
Affiliation(s)
- Lucas Herfst
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J Neurosci 2011; 31:9824-35. [PMID: 21734274 DOI: 10.1523/jneurosci.1738-11.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cerebellar Purkinje cells have two distinct action potentials: complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates primary afferent mossy fibers and tertiary afferent climbing fibers that project to the uvula-nodulus (folia 8-10). CSs and SSs normally discharge antiphasically during sinusoidal roll-tilt. When CSs increase, SSs decrease. We tested the relative independence of these pathways in mice by making electrolytic microlesions of the two inferior olivary nuclei from which vestibular climbing fibers originate; the β-nucleus and dorsomedial cell column. This reduced vestibular climbing fiber signaling to the contralateral folia 8-10, while leaving intact vestibular primary and secondary afferent mossy fibers. We recorded from Purkinje cells and interneurons in folia 8-10, identified by juxtacellular labeling with Neurobiotin. Microlesions of the inferior olive increased the spontaneous discharge of SSs in contralateral folia 8-10, but blocked their modulation during vestibular stimulation. The vestibularly evoked discharge of excitatory cerebellar interneurons (granule cells and unipolar brush cells) was not modified by olivary microlesions. The modulated discharge of stellate cells, but not Golgi cells, was reduced by olivary microlesions. We conclude that vestibular modulation of CSs and SSs depends on intact climbing fibers. The absence of vestibularly modulated SSs following olivary microlesions reflects the loss of climbing fiber-evoked stellate cell discharge.
Collapse
|
31
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Barmack NH, Yakhnitsa V. Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 2011; 17:221-36. [PMID: 21362689 DOI: 10.1177/1073858410380251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cerebellum's role in sensory-motor control and adaptation is undisputed. However, a key hypothesis pertaining to the function of cerebellar circuitry lacks experimental support. It is universally assumed that the discharge of mossy fibers accounts for modulation of Purkinje cell "simple spikes" (SSs). This assumption acts as a prism through which all other functions of cerebellar circuitry are viewed. The vestibulo-cerebellum (nodulus and uvula) receives a large, unilateral, vestibular primary afferent mossy fiber projection. We can test its role in modulating Purkinje cell SSs by recording the modulated activity of both mossy fiber terminals and Purkinje cell SSs evoked by identical natural vestibular stimulation. Sinusoidal rotation about the longitudinal axis (roll) modulates the activity of vestibular primary afferent mossy and climbing fibers as well as Purkinje cell SSs and complex spikes (CSs). Remarkably, vestibular primary afferent mossy fibers discharge 180 degrees out of phase with SSs. This indicates that mossy fibers cannot account for SS modulation unless an inhibitory synapse is interposed between mossy fibers or vestibular climbing fibers and Purkinje cells. The authors review several experiments that address the relative contributions of mossy and climbing fiber afferents to the modulation of SSs. They conclude that climbing fibers, not mossy fibers, are primarily responsible for the modulation of SSs as well as CSs and they propose revised functions for these two afferent systems.
Collapse
Affiliation(s)
- Neal H Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
33
|
Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 2011; 31:712-24. [PMID: 21228180 DOI: 10.1523/jneurosci.1959-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar cortical interneurons such as Golgi cells, basket cells, stellate cells, unipolar brush cells, and granule cells play an essential role in the operations of the cerebellum. However, detailed functional studies of the activity of these cells in both anesthetized and behaving animals have been hampered by problems in recognizing their physiological signatures. We have extracellularly recorded the spontaneous activity of vestibulocerebellar interneurons in ketamine/xylazine-anesthetized rats and subsequently labeled them with Neurobiotin using the juxtacellular technique. After recovery and morphological identification of these cells, they were related to statistical measures of their spontaneous activity. Golgi cells display a somewhat irregular firing pattern with relatively low average frequencies. Unipolar brush cells are characterized by more regular firing at higher rates. Basket and stellate cells are alike in their firing characteristics, which mainly stand out by their irregularity; some of them are set apart by their very slow average rate. The spontaneous activity of interneurons examined in the ketamine/xylazine rabbit fit within this general pattern. In the rabbit, granule cells were identified by the spontaneous occurrence of extremely high-frequency bursts of action potentials, which were also recognized in the rat. On the basis of these observations, we devised an algorithm that reliably determined the identity of 75% of the cells with only 2% incorrect classifications. The remaining cells were placed into border categories within which no classification was attempted. We propose that this algorithm can be used to help classify vestibulocerebellar interneurons recorded in awake, behaving animals.
Collapse
|
34
|
Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex. J Neurosci 2011; 30:17004-14. [PMID: 21159970 DOI: 10.1523/jneurosci.3513-10.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar processing of incoming information begins at the synapse between mossy fibers and granule cells, a synapse that is strongly controlled through Golgi cell inhibition. Thus, Golgi cells are uniquely positioned to control the flow of information into the cerebellar cortex and understanding their responses during behavior is essential to understanding cerebellar function. Here we show, for the first time, that Golgi cells express a unique oculomotor-related signal that can be used to provide state- and time-specific filtering of granule cell activity. We used newly established criteria to identify the unique electrophysiological signature of Golgi cells and recorded these neurons in the squirrel monkey ventral paraflocculus during oculomotor behaviors. We found that they carry eye movement, but not vestibular or visual, information and that this eye movement information is only expressed within a specific range of eye positions for each neuron. In addition, simultaneous recordings of Golgi cells and nearby mossy fibers revealed that Golgi cells have the opposite directional tuning of the mossy fiber(s) that likely drive their responses, and that these responses are more sluggish than their mossy fiber counterparts. Because the mossy fiber inputs appear to convey the activity of burst-tonic neurons in the brainstem, Golgi cell responses reflect a time-filtered negative image of the motor command sent to the extraocular muscles. We suggest a role for Golgi cells in the construction of forward models of movement, commonly hypothesized as a major function of the cerebellar cortex in motor control.
Collapse
|
35
|
Tahon K, Wijnants M, De Schutter E, Maex R. Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input. J Neurophysiol 2011; 105:1327-41. [PMID: 21228303 DOI: 10.1152/jn.00317.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼ 20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation.
Collapse
Affiliation(s)
- Koen Tahon
- Laboratory for Theoretical Neurobiology, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
36
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
37
|
Abstract
Accurate diagnosis of abnormal eye movements depends upon knowledge of the purpose, properties, and neural substrate of distinct functional classes of eye movement. Here, we summarize current concepts of the anatomy of eye movement control. Our approach is bottom-up, starting with the extraocular muscles and their innervation by the cranial nerves. Second, we summarize the neural circuits in the pons underlying horizontal gaze control, and the midbrain connections that coordinate vertical and torsional movements. Third, the role of the cerebellum in governing and optimizing eye movements is presented. Fourth, each area of cerebral cortex contributing to eye movements is discussed. Last, descending projections from cerebral cortex, including basal ganglionic circuits that govern different components of gaze, and the superior colliculus, are summarized. At each stage of this review, the anatomical scheme is used to predict the effects of lesions on the control of eye movements, providing clinical-anatomical correlation.
Collapse
|
38
|
Vervaeke K, Lorincz A, Gleeson P, Farinella M, Nusser Z, Silver RA. Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 2010; 67:435-51. [PMID: 20696381 PMCID: PMC2954316 DOI: 10.1016/j.neuron.2010.06.028] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 11/18/2022]
Abstract
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input layer. We show with immunohistochemistry, electron microscopy, and electrophysiology that Connexin-36 is necessary for functional gap junctions (GJs) between GoC dendrites. In the absence of coincident synaptic input, GoCs synchronize their firing. In contrast, sparse, coincident mossy fiber input triggered a mixture of excitation and inhibition of GoC firing and spike desynchronization. Inhibition is caused by propagation of the spike afterhyperpolarization through GJs. This triggers network desynchronization because heterogeneous coupling to surrounding cells causes spike-phase dispersion. Detailed network models predict that desynchronization is robust, local, and dependent on synaptic input properties. Our results show that GJ coupling can be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input.
Collapse
Affiliation(s)
- Koen Vervaeke
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
39
|
Cerminara NL, Rawson JA, Apps R. Electrophysiological characterization of the cerebellum in the arterially perfused hindbrain and upper body of the rat. THE CEREBELLUM 2010; 9:218-31. [PMID: 20033360 PMCID: PMC2866334 DOI: 10.1007/s12311-009-0152-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, a non-pulsatile arterially perfused hindbrain and upper body rat preparation is described which is an extension of the brainstem preparation reported by Potts et al., (Brain Res Bull 53(1):59-67), 1. The modified in situ preparation allows study of cerebellar function whilst preserving the integrity of many of its interconnections with the brainstem, upper spinal cord and the peripheral nervous system of the head and forelimbs. Evoked mossy fibre, climbing fibre and parallel fibre field potentials and EMG activity elicited in forelimb biceps muscle by interpositus stimulation provided evidence that both cerebellar inputs and outputs remain operational in this preparation. Similarly, the spontaneous and evoked single unit activity of Purkinje cells, putative Golgi cells, molecular interneurones and cerebellar nuclear neurones was similar to activity patterns reported in vivo. The advantages of the preparation include the ability to record, without the complications of anaesthesia, stabile single unit activity for extended periods (3 h or more), from regions of the rat cerebellum that are difficult to access in vivo. The preparation should therefore be a useful adjunct to in vitro and in vivo studies of neural circuits underlying cerebellar contributions to movement control and motor learning.
Collapse
Affiliation(s)
- Nadia L Cerminara
- Department of Physiology and Pharmacology, University of Bristol, UK.
| | | | | |
Collapse
|
40
|
Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L. BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 2009; 4:e7991. [PMID: 19956720 PMCID: PMC2776494 DOI: 10.1371/journal.pone.0007991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/23/2009] [Indexed: 12/02/2022] Open
Abstract
Calcium signaling plays a central role in normal CNS functioning and dysfunction. As cerebellar Purkinje cells express the major regulatory elements of calcium control and represent the sole integrative output of the cerebellar cortex, changes in neural activity- and calcium-mediated membrane properties of these cells are expected to provide important insights into both intrinsic and network physiology of the cerebellum. We studied the electrophysiological behavior of Purkinje cells in genetically engineered alert mice that do not express BK calcium-activated potassium channels and in wild-type mice with pharmacological BK inactivation. We confirmed BK expression in Purkinje cells and also demonstrated it in Golgi cells. We demonstrated that either genetic or pharmacological BK inactivation leads to ataxia and to the emergence of a beta oscillatory field potential in the cerebellar cortex. This oscillation is correlated with enhanced rhythmicity and synchronicity of both Purkinje and Golgi cells. We hypothesize that the temporal coding modification of the spike firing of both Purkinje and Golgi cells leads to the pharmacologically or genetically induced ataxia.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université Mons-Hainaut (UMH), Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthias Sausbier
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Ulrike Sausbier
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Winfried Neuhuber
- Institute of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Ruth
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Servais
- Laboratory of Electrophysiology, Université Mons-Hainaut (UMH), Mons, Belgium
- Department of child neurology, Hôpital Robert Debré, Paris, France
- * E-mail:
| |
Collapse
|
41
|
Roš H, Sachdev RNS, Yu Y, Šestan N, McCormick DA. Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci 2009; 29:10309-20. [PMID: 19692605 PMCID: PMC3137973 DOI: 10.1523/jneurosci.2327-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/28/2009] [Indexed: 11/21/2022] Open
Abstract
Activity in neocortex is often characterized by synchronized oscillations of neurons and networks, resulting in the generation of a local field potential (LFP) and electroencephalogram. Do the neuronal networks of the cerebellum also generate synchronized oscillations and are they under the influence of those in the neocortex? Here we show that, in the absence of any overt external stimulus, the cerebellar cortex generates a slow oscillation that is correlated with that of the neocortex. Disruption of the neocortical slow oscillation abolishes the cerebellar slow oscillation, whereas blocking cerebellar activity has no overt effect on the neocortex. We provide evidence that the cerebellar slow oscillation results in part from the activation of granule, Golgi, and Purkinje neurons. In particular, we show that granule and Golgi cells discharge trains of single spikes, and Purkinje cells generate complex spikes, during the "up" state of the slow oscillation. Purkinje cell simple spiking is weakly related to the cerebellar and neocortical slow oscillation in a minority of cells. Our results indicate that the cerebellum generates rhythmic network activity that can be recorded as an LFP in the anesthetized animal, which is driven by synchronized oscillations of the neocortex. Furthermore, we show that correlations between neocortical and cerebellar LFPs persist in the awake animal, indicating that neocortical circuits modulate cerebellar neurons in a similar manner in natural behavioral states. Thus, the projection neurons of the neocortex collectively exert a driving and modulatory influence on cerebellar network activity.
Collapse
Affiliation(s)
- Hana Roš
- Department of Neurobiology, School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Robert N. S. Sachdev
- Department of Neurobiology, School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Yuguo Yu
- Department of Neurobiology, School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Nenad Šestan
- Department of Neurobiology, School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - David A. McCormick
- Department of Neurobiology, School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
42
|
Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J Neurosci 2009; 29:250-62. [PMID: 19129401 DOI: 10.1523/jneurosci.4791-08.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anatomical organization of the granular layer of the cerebellum suggests an important function for Golgi cells (GC) in the pathway conveying mossy fiber (MF) afferents to Purkinje cells. Based on such anatomic observations, early proposals have attributed a role in "gain control" for GCs, a function disputed by recent investigations, which assert that GCs instead contribute to oscillatory mechanisms. However, conclusive physiological evidence based on studies of cerebellum-dependent behavior supporting/dismissing the gain control proposition has been lacking as of yet. We addressed the possible function of this interneuron by recording the activity of a large number of both MFs and GCs during saccadic eye movements from the same cortical area of the monkey cerebellum, namely the oculomotor vermis (OMV). Our cellular identification conformed to previously established criteria, mainly to juxtacellular labeling studies correlating physiological parameters with cell morphology. Response patterns of both MFs and GCs were highly heterogeneous. MF discharges correlated linearly with eye saccade metrics and timing, showing directional preference and precise direction tuning. In contrast, GC discharges did not correlate strongly with the metrics or direction of movement. Their discharge properties were also unaffected by motor learning during saccadic adaptation. The OMV therefore receives a barrage of information about eye movements from different oculomotor areas over the MF pathway, which is not reflected in GCs. The unspecificity of GCs has important implications for the intricacies of neuronal processing in the granular layer, clearly discrediting their involvement in gain control and instead suggesting a more secluded role for these interneurons.
Collapse
|
43
|
Birnstiel S, Slater NT, McCrimmon DR, Mugnaini E, Hartell NA. Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells. Neuroscience 2009; 162:702-12. [PMID: 19409228 DOI: 10.1016/j.neuroscience.2009.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 01/27/2023]
Abstract
Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bursts of action potentials in the postsynaptic UBC. The axons of UBCs themselves form mossy fiber contacts with other UBCs and granule cells, forming an excitatory, intrinsic cerebellar network that has the capacity to synchronize and amplify mossy fiber inputs to potentially large populations of granule cells. In this paper, we demonstrate that UBCs in rat cerebellar slices express low voltage activated (LVA) fast-inactivating and high voltage activated (HVA) slowly inactivating calcium channels. LVA calcium currents are mediated by T-type calcium channels and they are associated with calcium increases in the dendrites and to a lesser extent the cell soma. HVA currents, mediated by L-type calcium channels, are slowly inactivating and they produce larger overall increases in intracellular calcium but with a similar distribution pattern. We review these observations alongside several recent papers that examine how intrinsic membrane properties influence UBCs firing patterns and we discuss how UBC signaling may affect downstream cerebellar processing.
Collapse
Affiliation(s)
- S Birnstiel
- Northwestern University Institute for Neuroscience, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
44
|
Holtzman T, Cerminara NL, Edgley SA, Apps R. Characterization in vivo of bilaterally branching pontocerebellar mossy fibre to Golgi cell inputs in the rat cerebellum. Eur J Neurosci 2008; 29:328-39. [PMID: 19077121 DOI: 10.1111/j.1460-9568.2008.06572.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Golgi cells regulate the flow of information from mossy fibres to the cerebellar cortex, through a mix of feedback and feedforward inhibitory actions on granule cells. The aim of the current study was to examine mossy fibre input to Golgi cells, in order to assess their impact on switching Golgi cells into feedforward behaviour. In urethane-anaesthetized rats, extracellular recordings were made from Golgi cells in Crus II (n = 18). Spikes were evoked in all Golgi cells by microstimulation within the contralateral hemispheral cortex, via branches of mossy fibres that terminate in both cerebellar hemispheres. The latencies of these responses were very short, consistent with a monosynaptic mossy fibre contact [average onset latency 2.3 +/- 0.1 ms (SEM)]. The same stimuli had no measurable effect on spike responses of nearby Purkinje cells (n = 12). Systematic mapping in the contralateral cerebellar hemisphere (Crus Ib, IIa, IIb and the paramedian lobule) usually revealed one low-intensity stimulus 'hotspot' (12-35 microA) from which short-latency spikes could be evoked in an individual Golgi cell. Microinjections of red and green retrograde tracers (latex beads, approximately 50-150 nL injection volume) made at the recording site and the stimulation hotspot resulted in double-labelled neurons within the pontine nuclei. Overall, this suggests that subsets of pontine neurons supply mossy fibres that branch to both hemispheres, some of which directly target Golgi cells. Such an arrangement may provide a common feedforward inhibitory link to temporally couple activity on both sides of the cerebellum during behaviour.
Collapse
Affiliation(s)
- Tahl Holtzman
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB23DY, UK.
| | | | | | | |
Collapse
|
45
|
Russo MJ, Yau HJ, Nunzi MG, Mugnaini E, Martina M. Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells. J Neurophysiol 2008; 100:3351-60. [PMID: 18945818 DOI: 10.1152/jn.90533.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal firing is regulated by the complex interaction of multiple depolarizing and hyperpolarizing currents; intrinsic firing, which defines the neuronal ability to generate action potentials in the absence of synaptic excitation, is particularly sensitive to modulation by currents that are active below the action potential threshold. Cerebellar unipolar brush cells (UBCs) are excitatory granule layer interneurons that are capable of intrinsic firing; here we show that, in acute mouse cerebellar slices, barium-sensitive background potassium channels of UBCs effectively regulate intrinsic firing. We also demonstrate that these channels are regulated by group II metabotropic glutamate receptors (mGluRs), which we show to be present in both of the known subsets of UBCs, one of which expresses calretinin and the other mGluR1alpha. Finally, we show that background potassium currents controlling UBCs' firing are mediated by at least two channel types, one of which is sensitive and the other insensitive to the GIRK blocker tertiapin. Thus in UBCs, glutamatergic transmission appears to have a complex bimodal effect: although it increases spontaneous firing through activation of ionotropic receptors, it also has inhibitory effects through the mGluR-dependent activation of tertiapin-sensitive and -insensitive background potassium currents.
Collapse
Affiliation(s)
- Marco J Russo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
46
|
Distribution of granule cells projecting to focal Purkinje cells in mouse uvula-nodulus. Neuroscience 2008; 156:216-21. [PMID: 18706489 DOI: 10.1016/j.neuroscience.2008.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/16/2008] [Accepted: 07/10/2008] [Indexed: 11/22/2022]
Abstract
Mossy and climbing fibers convey a broad array of signals from vestibular end organs to Purkinje cells in the vestibulo-cerebellum. We have shown previously that Purkinje cell simple spikes (SSs) and climbing fiber-evoked complex spikes (CSs) in the mouse uvula-nodulus are arrayed in 400 microm wide sagittal climbing fiber zones corresponding to the rotational axes of the vertical semicircular canals. It is often assumed that mossy fibers modulate a higher frequency of SSs through the intermediary action of granule cells whose parallel fibers course through the Purkinje cell dendritic tree. This assumption is complicated by the diffuse topography of vestibular primary afferent mossy fiber projections to the uvula-nodulus and the dispersion of mossy fiber signals along folial axes by parallel fibers. Here we measure this parallel fiber dispersion. We made microinjections of neurobiotin into the molecular layers of different folia within the mouse vestibulo-cerebellum and measured the distribution of granule cells retrogradely labeled by the injected neurobiotin. Sixty-two percent of labeled granule cells were located outside a 400 microm sagittal zone flanking the injection site. The dispersion of labeled granule cells was approximately 2.5 mm along folial axes that were 2.7-2.9 mm wide. Our data suggest that topographic specificity of SSs could not be attributed to the topography of vestibular primary afferent mossy fiber-granule cell projections. Rather the response specificity of SSs must be attributed to other mechanisms related to climbing fiber-evoked Purkinje cell and interneuronal activity.
Collapse
|
47
|
Abstract
The output signal of Purkinje cells is conveyed by the modulated discharge of simple spikes (SSs) often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cell dendrites. Although generally accepted, this view lacks experimental support. We can address this view by controlling afferent signals that reach the cerebellum over climbing and mossy fiber pathways. Vestibular primary afferents constitute the largest mossy fiber projection to the uvula-nodulus. The discharge of vestibular primary afferent mossy fibers increases during ipsilateral roll tilt. The discharge of SSs decreases during ipsilateral roll tilt. Climbing fiber discharge [complex spikes (CSs)] increases during ipsilateral roll tilt. These observations suggest that the modulation of SSs during vestibular stimulation cannot be attributed directly to vestibular mossy fiber afferents. Rather we suggest that interneurons driven by vestibular climbing fibers may determine SS modulation. We recorded from cerebellar interneurons (granule, unipolar brush, Golgi, stellate, basket, and Lugaro cells) and Purkinje cells in the uvula-nodulus of anesthetized mice during vestibular stimulation. We identified all neuronal types by juxtacellular labeling with neurobiotin. Granule, unipolar brush, stellate, and basket cells discharge in phase with ipsilateral roll tilt and in phase with CSs. Golgi cells discharge out of phase with ipsilateral roll tilt and out of phase with CSs. The phases of stellate and basket cell discharge suggests that their activity could account for the antiphasic behavior of CSs and SSs. Because Golgi cells discharge in phase with SSs, Golgi cell activity cannot account for SS modulation. The sagittal array of Golgi cell axon terminals suggests that they contribute to the organization of discrete parasagittal vestibular zones.
Collapse
|
48
|
Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nucleus. Neuroscience 2008; 154:29-50. [PMID: 18343594 DOI: 10.1016/j.neuroscience.2008.01.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/16/2008] [Indexed: 11/21/2022]
Abstract
In most mammals the cochlear nuclear complex (CN) contains a distributed system of granule cells (GCS), whose parallel fiber axons innervate the dorsal cochlear nucleus (DCN). Like their counterpart in cerebellum, CN granules are innervated by mossy fibers of various origins. The GCS is complemented by unipolar brush (UBCs) and Golgi cells, and by stellate and cartwheel cells of the DCN. This cerebellum-like microcircuit modulates the activity of the DCN's main projection neurons, the pyramidal, giant and tuberculoventral neurons, and is thought to improve auditory performance by integrating acoustic and proprioceptive information. In this paper, we focus on the rat UBCs, a chemically heterogeneous neuronal population, using antibodies to calretinin, metabotropic glutamate receptor 1alpha (mGluR1alpha), epidermal growth factor substrate 8 (Eps8) and the transcription factor T-box gene Tbr2 (Tbr2). Eps8 and Tbr2 labeled most of the CN's UBCs, if not the entire population, while calretinin and mGluR1alpha distinguished two largely separate subsets with overlapping distributions. By double labeling with antibodies to Tbr2 and the alpha6 GABA receptor A (GABAA) subunit, we found that UBCs populate all regions of the GCS and occur at remarkably high densities in the DCN and subpeduncular corner, but rarely in the lamina. Although GCS subregions likely share the same microcircuitry, their dissimilar UBC densities suggest they may be functionally distinct. UBCs and granules are also present in regions previously not included in the GCS, namely the rostrodorsal magnocellular portions of ventral cochlear nucleus, vestibular nerve root, trapezoid body, spinal tract and sensory and principal nuclei of the trigeminal nerve, and cerebellar peduncles. The UBC's dendritic brush receives AMPA- and NMDA-mediated input from an individual mossy fiber, favoring singularity of input, and its axon most likely forms several mossy fiber-like endings that target numerous granule cells and other UBCs, as in the cerebellum. The UBCs therefore, may amplify afferent signals temporally and spatially, synchronizing pools of target neurons.
Collapse
|
49
|
High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 2008; 450:1245-8. [PMID: 18097412 DOI: 10.1038/nature05995] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/11/2007] [Indexed: 12/25/2022]
Abstract
Understanding the transmission of sensory information at individual synaptic connections requires knowledge of the properties of presynaptic terminals and their patterns of firing evoked by sensory stimuli. Such information has been difficult to obtain because of the small size and inaccessibility of nerve terminals in the central nervous system. Here we show, by making direct patch-clamp recordings in vivo from cerebellar mossy fibre boutons-the primary source of synaptic input to the cerebellar cortex-that sensory stimulation can produce bursts of spikes in single boutons at very high instantaneous firing frequencies (more than 700 Hz). We show that the mossy fibre-granule cell synapse exhibits high-fidelity transmission at these frequencies, indicating that the rapid burst of excitatory postsynaptic currents underlying the sensory-evoked response of granule cells can be driven by such a presynaptic spike burst. We also demonstrate that a single mossy fibre can trigger action potential bursts in granule cells in vitro when driven with in vivo firing patterns. These findings suggest that the relay from mossy fibre to granule cell can act in a 'detonator' fashion, such that a single presynaptic afferent may be sufficient to transmit the sensory message. This endows the cerebellar mossy fibre system with remarkable sensitivity and high fidelity in the transmission of sensory information.
Collapse
|
50
|
Krauss GL, Koubeissi MZ. Cerebellar and thalamic stimulation treatment for epilepsy. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:347-56. [PMID: 17691323 DOI: 10.1007/978-3-211-33081-4_40] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present chapter describes the most important available experimental and clinical evidence on the role of electrical stimulation of the cerebellum or the thalamus in the control of epilepsy. Cerebellum serves as an integrator of sensory information and regulator of motor coordinating and training. The sole output of the cerebellum is inhibitory Purkinje cell projections to deep cerebellar nuclei in the brainstem. Cerebellar stimulation in animal models of epilepsy has given mixed results. Nevertheless, more than 130 epileptic patients have been subjected to cerebellar stimulation and the results from uncontrolled studies have been encouraging. The anterior thalamic nucleus (ATN) is part of the Papez circuit, a group of limbic structures with demonstrated role in epilepsy. The centromedian thalamic nucleus (CMN) is considered part of the thalamic reticular system. Stimulation of either of these nuclei in experimental animals has been associated with considerable antiepileptic effects. On the basis of the research evidence, numerous studies have been done on humans, which gave promising results. Currently, a multicenter trial on stimulation of the ATN, the SANTE trial is in progress in the USA. On the basis of the reported studies, the authors aim to provide insights into how the electrical stimulation of the above structures exerts an antiepileptic effect and also provide suggestions regarding the future progress in this field.
Collapse
Affiliation(s)
- G L Krauss
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|