1
|
Lu X, Hu Z, Xin Y, Yang T, Wang Y, Zhang P, Liu N, Jiang Y. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Nat Commun 2024; 15:9606. [PMID: 39505906 PMCID: PMC11542025 DOI: 10.1038/s41467-024-53968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Most vertebrates, including humans, are highly adept at detecting and encoding biological motion, even when it is portrayed by just a few point lights attached to the head and major joints. However, the function of subcortical regions in biological motion perception has been scarcely explored. Here, we investigate the role of the superior colliculus in local biological motion processing. Using high-field (3 T) and ultra-high-field (7 T) functional magnetic resonance imaging, we record the neural responses of the superior colliculus to scrambled point-light walkers (with local kinematics retained) in both humans and male macaque monkeys. Results show that the superior colliculus, especially the superficial layers, selectively responds to local biological motion. Furthermore, dynamic causal modeling analysis reveals a subcortical-cortical functional pathway that transmits local biological motion signals from the superior colliculus via the middle temporal visual complex to the posterior superior temporal sulcus in the human brain. These findings suggest the existence of a cross-species mechanism in the superior colliculus that facilitates the detection of local biological motion at the early stage of the visual processing stream.
Collapse
Affiliation(s)
- Xiqian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianshu Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
May PJ, Warren S, Kojima Y. The superior colliculus projection upon the macaque inferior olive. Brain Struct Funct 2024; 229:1855-1871. [PMID: 38240754 DOI: 10.1007/s00429-023-02743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in the C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.
Collapse
Affiliation(s)
- Paul J May
- Neurobiology & Anatomical Sciences, 1475 Saint Ann Street, Jackson, MS, 39202, USA.
| | - Susan Warren
- Neurobiology & Anatomical Sciences, 1475 Saint Ann Street, Jackson, MS, 39202, USA
| | - Yoshiko Kojima
- Department of Otolaryngology - Head and Neck Surgery, Washington National Primate Research Center, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Sugino H, Tanno S, Yoshida T, Isomura Y, Hira R. Functional segregation and dynamic integration of the corticotectal descending signal in rat. Neurosci Res 2024:S0168-0102(24)00111-1. [PMID: 39306244 DOI: 10.1016/j.neures.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The superior colliculus (SC) receives inputs from various brain regions in a layer- and radial subregion-specific manner, but whether the SC exhibits subregion-specific dynamics remains unclear. To address this issue, we recorded the spiking activity of single SC neurons while photoactivating cortical areas in awake head-fixed Thy1-ChR2 rats. We classified 309 neurons that responded significantly into 8 clusters according to the response dynamics. Among them, neurons with monophasic excitatory responses (7-12 ms latency) that returned to baseline within 20 ms were commonly observed in the optic and intermediate gray layers of centromedial and centrolateral SC. In contrast, neurons with complex polyphasic responses were commonly observed in the deep layers of the anterolateral SC. Cross-correlation analysis suggested that the complex pattern could be only partly explained by an internal circuit of the deep gray layer. Our results indicate that medial to centrolateral SC neurons simply relay cortical activity, whereas neurons in the deep layers of the anterolateral SC dynamically integrate inputs from the cortex, SNr, CN, and local circuits. These findings suggest a spatial gradient in SC integration, with a division of labor between simple relay circuits and those integrating complex dynamics.
Collapse
Affiliation(s)
- Hikaru Sugino
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Tanno
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsumi Yoshida
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Hoy JL. Defense behavior: Midbrain mechanisms magnify multisensory menaces. Curr Biol 2024; 34:R831-R833. [PMID: 39255769 DOI: 10.1016/j.cub.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
'Jump scares' are particularly robust when visuals are paired with coherent sound. A new study demonstrates that connectivity between the superior colliculus and parabigeminal nucleus generates multimodal enhancement of visually triggered defensiveness, revealing a novel multisensory threat augmentation mechanism.
Collapse
Affiliation(s)
- Jennifer L Hoy
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
6
|
Peng B, Huang JJ, Li Z, Zhang LI, Tao HW. Cross-modal enhancement of defensive behavior via parabigemino-collicular projections. Curr Biol 2024; 34:3616-3631.e5. [PMID: 39019036 PMCID: PMC11373540 DOI: 10.1016/j.cub.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.
Collapse
Affiliation(s)
- Bo Peng
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhong Li
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
Visser J, Milior G, Breton R, Moulard J, Garnero M, Ezan P, Ribot J, Rouach N. Astroglial networks control visual responses of superior collicular neurons and sensory-motor behavior. Cell Rep 2024; 43:114504. [PMID: 38996064 PMCID: PMC11290320 DOI: 10.1016/j.celrep.2024.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Astroglial networks closely interact with neuronal populations, but their functional contribution to neuronal representation of sensory information remains unexplored. The superior colliculus (SC) integrates multi-sensory information by generating distinct spatial patterns of neuronal functional responses to specific sensory stimulation. Here, we report that astrocytes from the mouse SC form extensive networks in the retinorecipient layer compared to visual cortex. This strong astroglial connectivity relies on high expression of gap-junction proteins. Genetic disruption of this connectivity functionally impairs SC retinotopic and orientation preference responses. These alterations are region specific, absent in primary visual cortex, and associated at the circuit level with a specific impairment of collicular neurons synaptic transmission. This has implications for SC-related visually induced innate behavior, as disrupting astroglial networks impairs light-evoked temporary arrest. Our results indicate that astroglial networks shape synaptic circuit activity underlying SC functional visual responses and play a crucial role in integrating visual cues to drive sensory-motor behavior.
Collapse
Affiliation(s)
- Josien Visser
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France; Doctoral School No. 158, Sorbonne Université, Paris, France
| | - Giampaolo Milior
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Rachel Breton
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Maina Garnero
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France; Doctoral School No. 158, Sorbonne Université, Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Jérôme Ribot
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
8
|
Quaia C, Krauzlis RJ. Object recognition in primates: what can early visual areas contribute? Front Behav Neurosci 2024; 18:1425496. [PMID: 39070778 PMCID: PMC11272660 DOI: 10.3389/fnbeh.2024.1425496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction If neuroscientists were asked which brain area is responsible for object recognition in primates, most would probably answer infero-temporal (IT) cortex. While IT is likely responsible for fine discriminations, and it is accordingly dominated by foveal visual inputs, there is more to object recognition than fine discrimination. Importantly, foveation of an object of interest usually requires recognizing, with reasonable confidence, its presence in the periphery. Arguably, IT plays a secondary role in such peripheral recognition, and other visual areas might instead be more critical. Methods To investigate how signals carried by early visual processing areas (such as LGN and V1) could be used for object recognition in the periphery, we focused here on the task of distinguishing faces from non-faces. We tested how sensitive various models were to nuisance parameters, such as changes in scale and orientation of the image, and the type of image background. Results We found that a model of V1 simple or complex cells could provide quite reliable information, resulting in performance better than 80% in realistic scenarios. An LGN model performed considerably worse. Discussion Because peripheral recognition is both crucial to enable fine recognition (by bringing an object of interest on the fovea), and probably sufficient to account for a considerable fraction of our daily recognition-guided behavior, we think that the current focus on area IT and foveal processing is too narrow. We propose that rather than a hierarchical system with IT-like properties as its primary aim, object recognition should be seen as a parallel process, with high-accuracy foveal modules operating in parallel with lower-accuracy and faster modules that can operate across the visual field.
Collapse
Affiliation(s)
- Christian Quaia
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, United States
| | | |
Collapse
|
9
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
10
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
11
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
12
|
Johnston R, Smith MA. Brain-wide arousal signals are segregated from movement planning in the superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591284. [PMID: 38746466 PMCID: PMC11092505 DOI: 10.1101/2024.04.26.591284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
13
|
Morrow A, Smale L, Meek PD, Lundrigan B. Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:123-143. [PMID: 38569487 PMCID: PMC11346379 DOI: 10.1159/000538090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transitions in temporal niche have occurred many times over the course of mammalian evolution. These are associated with changes in sensory stimuli available to animals, particularly with visual cues, because levels of light are so much higher during the day than at night. This relationship between temporal niche and available sensory stimuli elicits the expectation that evolutionary transitions between diurnal and nocturnal lifestyles will be accompanied by modifications of sensory systems that optimize the ability of animals to receive, process, and react to important stimuli in the environment. METHODS This study examines the influence of temporal niche on investment in sensory brain tissue of 13 rodent species (five diurnal; eight nocturnal). Animals were euthanized and the brains immediately frozen on dry ice; olfactory bulbs were subsequently dissected and weighed, and the remaining brain was weighed, sectioned, and stained. Stereo Investigator was used to calculate volumes of four sensory regions that function in processing visual (lateral geniculate nucleus, superior colliculus) and auditory (medial geniculate nucleus, inferior colliculus) information. A phylogenetic framework was used to assess the influence of temporal niche on the relative sizes of these brain structures and of olfactory bulb weights. RESULTS Compared to nocturnal species, diurnal species had larger visual regions, whereas nocturnal species had larger olfactory bulbs than their diurnal counterparts. Of the two auditory structures examined, one (medial geniculate nucleus) was larger in diurnal species, while the other (inferior colliculus) did not differ significantly with temporal niche. CONCLUSION Our results indicate a possible indirect association between temporal niche and auditory investment and suggest probable trade-offs of investment between olfactory and visual areas of the brain, with diurnal species investing more in processing visual information and nocturnal species investing more in processing olfactory information.
Collapse
Affiliation(s)
- Andrea Morrow
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Paul Douglas Meek
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Coffs Harbour, NSW, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Barbara Lundrigan
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Michigan State University Museum, East Lansing, MI, USA
| |
Collapse
|
14
|
Nivinsky Margalit S, Slovin H. Encoding luminance surfaces in the visual cortex of mice and monkeys: difference in responses to edge and center. Cereb Cortex 2024; 34:bhae165. [PMID: 38652553 DOI: 10.1093/cercor/bhae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.
Collapse
Affiliation(s)
- Shany Nivinsky Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
15
|
McEwan J, Kritikos A, Zeljko M. Involvement of the superior colliculi in crossmodal correspondences. Atten Percept Psychophys 2024; 86:931-941. [PMID: 38418807 PMCID: PMC11062976 DOI: 10.3758/s13414-024-02866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
There is an increasing body of evidence suggesting that there are low-level perceptual processes involved in crossmodal correspondences. In this study, we investigate the involvement of the superior colliculi in three basic crossmodal correspondences: elevation/pitch, lightness/pitch, and size/pitch. Using a psychophysical design, we modulate visual input to the superior colliculus to test whether the superior colliculus is required for behavioural crossmodal congruency effects to manifest in an unspeeded multisensory discrimination task. In the elevation/pitch task, superior colliculus involvement is required for a behavioural elevation/pitch congruency effect to manifest in the task. In the lightness/pitch and size/pitch task, we observed a behavioural elevation/pitch congruency effect regardless of superior colliculus involvement. These results suggest that the elevation/pitch correspondence may be processed differently to other low-level crossmodal correspondences. The implications of a distributed model of crossmodal correspondence processing in the brain are discussed.
Collapse
Affiliation(s)
- John McEwan
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| | - Ada Kritikos
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Mick Zeljko
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
16
|
Ritter A, Habusha S, Givon L, Edut S, Klavir O. Prefrontal control of superior colliculus modulates innate escape behavior following adversity. Nat Commun 2024; 15:2158. [PMID: 38461293 PMCID: PMC10925020 DOI: 10.1038/s41467-024-46460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Innate defensive responses, though primarily instinctive, must also be highly adaptive to changes in risk assessment. However, adaptive changes can become maladaptive, following severe stress, as seen in posttraumatic stress disorder (PTSD). In a series of experiments, we observed long-term changes in innate escape behavior of male mice towards a previously non-threatening stimulus following an adverse shock experience manifested as a shift in the threshold of threat response. By recording neural activity in the superior colliculus (SC) while phototagging specific responses to afferents, we established the crucial influence of input arriving at the SC from the medial prefrontal cortex (mPFC), both directly and indirectly, on escape-related activity after adverse shock experience. Inactivating these specific projections during the shock effectively abolished the observed changes. Conversely, optogenetically activating them during encounters controlled escape responses. This establishes the necessity and sufficiency of those specific mPFC inputs into the SC for adverse experience related changes in innate escape behavior.
Collapse
Affiliation(s)
- Ami Ritter
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shlomi Habusha
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Lior Givon
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shahaf Edut
- School of Psychological Sciences, The University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Oded Klavir
- School of Psychological Sciences, The University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
17
|
Yang K, Wang Y, Tiw PJ, Wang C, Zou X, Yuan R, Liu C, Li G, Ge C, Wu S, Zhang T, Huang R, Yang Y. High-order sensory processing nanocircuit based on coupled VO 2 oscillators. Nat Commun 2024; 15:1693. [PMID: 38402226 PMCID: PMC10894221 DOI: 10.1038/s41467-024-45992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024] Open
Abstract
Conventional circuit elements are constrained by limitations in area and power efficiency at processing physical signals. Recently, researchers have delved into high-order dynamics and coupled oscillation dynamics utilizing Mott devices, revealing potent nonlinear computing capabilities. However, the intricate yet manageable population dynamics of multiple artificial sensory neurons with spatiotemporal coupling remain unexplored. Here, we present an experimental hardware demonstration featuring a capacitance-coupled VO2 phase-change oscillatory network. This network serves as a continuous-time dynamic system for sensory pre-processing and encodes information in phase differences. Besides, a decision-making module for special post-processing through software simulation is designed to complete a bio-inspired dynamic sensory system. Our experiments provide compelling evidence that this transistor-free coupling network excels in sensory processing tasks such as touch recognition and gesture recognition, achieving significant advantages of fewer devices and lower energy-delay-product compared to conventional methods. This work paves the way towards an efficient and compact neuromorphic sensory system based on nano-scale nonlinear dynamics.
Collapse
Affiliation(s)
- Ke Yang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yanghao Wang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Pek Jun Tiw
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Chaoming Wang
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaolong Zou
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rui Yuan
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Si Wu
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Teng Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China.
| | - Ru Huang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yuchao Yang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China.
- Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China.
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
- Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
18
|
Cheung G, Pauler FM, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Gutmann-Özgen N, Ivec AE, Bock C, Shigemoto R, Hippenmeyer S. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron 2024; 112:230-246.e11. [PMID: 38096816 DOI: 10.1016/j.neuron.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.
Collapse
Affiliation(s)
- Giselle Cheung
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Schrammel
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Natalie Gutmann-Özgen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexis E Ivec
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
19
|
Yu L, Xu J. The Development of Multisensory Integration at the Neuronal Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:153-172. [PMID: 38270859 DOI: 10.1007/978-981-99-7611-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Multisensory integration is a fundamental function of the brain. In the typical adult, multisensory neurons' response to paired multisensory (e.g., audiovisual) cues is significantly more robust than the corresponding best unisensory response in many brain regions. Synthesizing sensory signals from multiple modalities can speed up sensory processing and improve the salience of outside events or objects. Despite its significance, multisensory integration is testified to be not a neonatal feature of the brain. Neurons' ability to effectively combine multisensory information does not occur rapidly but develops gradually during early postnatal life (for cats, 4-12 weeks required). Multisensory experience is critical for this developing process. If animals were restricted from sensing normal visual scenes or sounds (deprived of the relevant multisensory experience), the development of the corresponding integrative ability could be blocked until the appropriate multisensory experience is obtained. This section summarizes the extant literature on the development of multisensory integration (mainly using cat superior colliculus as a model), sensory-deprivation-induced cross-modal plasticity, and how sensory experience (sensory exposure and perceptual learning) leads to the plastic change and modification of neural circuits in cortical and subcortical areas.
Collapse
Affiliation(s)
- Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Guo F, Zou J, Wang Y, Fang B, Zhou H, Wang D, He S, Zhang P. Human subcortical pathways automatically detect collision trajectory without attention and awareness. PLoS Biol 2024; 22:e3002375. [PMID: 38236815 PMCID: PMC10795999 DOI: 10.1371/journal.pbio.3002375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Detecting imminent collisions is essential for survival. Here, we used high-resolution fMRI at 7 Tesla to investigate the role of attention and consciousness for detecting collision trajectory in human subcortical pathways. Healthy participants can precisely discriminate collision from near-miss trajectory of an approaching object, with pupil size change reflecting collision sensitivity. Subcortical pathways from the superior colliculus (SC) to the ventromedial pulvinar (vmPul) and ventral tegmental area (VTA) exhibited collision-sensitive responses even when participants were not paying attention to the looming stimuli. For hemianopic patients with unilateral lesions of the geniculostriate pathway, the ipsilesional SC and VTA showed significant activation to collision stimuli in their scotoma. Furthermore, stronger SC responses predicted better behavioral performance in collision detection even in the absence of awareness. Therefore, human tectofugal pathways could automatically detect collision trajectories without the observers' attention to and awareness of looming stimuli, supporting "blindsight" detection of impending visual threats.
Collapse
Affiliation(s)
- Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyou Zou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Ye Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boyan Fang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Huanfen Zhou
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
21
|
Arena G, Londei F, Ceccarelli F, Ferrucci L, Borra E, Genovesio A. Disentangling the identity of the zona incerta: a review of the known connections and latest implications. Ageing Res Rev 2024; 93:102140. [PMID: 38008404 DOI: 10.1016/j.arr.2023.102140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The zona incerta (ZI) is a subthalamic region composed by loosely packed neurochemically mixed neurons, juxtaposed to the main ascending and descending bundles. The extreme neurochemical diversity that characterizes this area, together with the diffuseness of its connections with the entire neuraxis and its hard-to-reach positioning in the brain caused the ZI to keep its halo of mystery for over a century. However, in the last decades, a rich albeit fragmentary body of knowledge regarding both the incertal anatomical connections and functional implications has been built mostly based on rodent studies and its lack of cohesion makes difficult to depict an integrated, exhaustive picture regarding the ZI and its roles. This review aims to provide a unified resource that summarizes the current knowledge regarding the anatomical profile of interactions of the ZI in rodents and non-human primates and the functional significance of its connections, highlighting the aspects still unbeknown to research.
Collapse
Affiliation(s)
- Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
22
|
Coizet V, Al Tannir R, Pautrat A, Overton PG. Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures. Curr Neuropharmacol 2024; 22:1473-1490. [PMID: 37594168 PMCID: PMC11097992 DOI: 10.2174/1570159x21666230818154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 08/19/2023] Open
Abstract
The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animal's repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.
Collapse
Affiliation(s)
- Véronique Coizet
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Racha Al Tannir
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Arnaud Pautrat
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Zhou H, Wei L, Jiang Y, Wang X, Sun Y, Li F, Chen J, Sun W, Zhang L, Zhao G, Wang Z. Abnormal Ocular Movement in the Early Stage of Multiple-System Atrophy With Predominant Parkinsonism Distinct From Parkinson's Disease. J Clin Neurol 2024; 20:37-45. [PMID: 38179630 PMCID: PMC10782091 DOI: 10.3988/jcn.2023.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/02/2023] [Accepted: 05/01/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND AND PURPOSE The eye-movement examination can be applied as a noninvasive method to identify multiple-system atrophy (MSA). Few studies have investigated eye movements during the early stage of MSA with predominant parkinsonism (MSA-P). We aimed to determine the characteristic oculomotor changes in the early stage of MSA-P. METHODS We retrospectively selected 17 patients with MSA-P and 40 with Parkinson's disease (PD) with disease durations of less than 2 years, and 40 age-matched healthy controls (HCs). Oculomotor performance in the horizontal direction was measured in detail using videonystagmography. RESULTS We found that the proportions of patients with MSA-P and PD exhibiting abnormal eye movements were 82.4% and 77.5%, respectively, which were significantly higher than that in the HCs (47.5%, p<0.05). Compared with HCs, patients with MSA-P presented significantly higher abnormal proportions of fixation and gaze-holding (17.6% vs. 0%), without-fixation (47.1% vs. 0%), prolonged latency in reflexive saccades (29.4% vs. 5.0%), memory-guided saccades (93.3% vs. 10.0%), and catch-up saccades in smooth-pursuit movement (SPM, 41.2% vs. 0) (all p<0.05). Compared with those with PD, patients with MSA-P presented a significantly higher proportion of catch-up saccades in SPM (41.2% vs. 2.5%, p<0.001). CONCLUSIONS MSA-P presented the characteristic of catch-up saccades in SPM in the early stage, which may provide some value in differentiating MSA-P from PD.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Luhua Wei
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yanyan Jiang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jing Chen
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Lin Zhang
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, USA
| | - Guiping Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| |
Collapse
|
24
|
Esposito M, Palermo S, Nahi YC, Tamietto M, Celeghin A. Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System. Curr Neuropharmacol 2024; 22:1497-1512. [PMID: 37653629 PMCID: PMC11097991 DOI: 10.2174/1570159x21666230831163052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 09/02/2023] Open
Abstract
The ability of the brain to recognize and orient attention to relevant stimuli appearing in the visual field is highlighted by a tuning process, which involves modulating the early visual system by both cortical and subcortical brain areas. Selective attention is coordinated not only by the output of stimulus-based saliency maps but is also influenced by top-down cognitive factors, such as internal states, goals, or previous experiences. The basal ganglia system plays a key role in implicitly modulating the underlying mechanisms of selective attention, favouring the formation and maintenance of implicit sensory-motor memories that are capable of automatically modifying the output of priority maps in sensory-motor structures of the midbrain, such as the superior colliculus. The article presents an overview of the recent literature outlining the crucial contribution of several subcortical structures to the processing of different sources of salient stimuli. In detail, we will focus on how the mesencephalic- basal ganglia closed loops contribute to implicitly addressing and modulating selective attention to prioritized stimuli. We conclude by discussing implicit behavioural responses observed in clinical populations in which awareness is compromised at some level. Implicit (emergent) awareness in clinical conditions that can be accompanied by manifest anosognosic symptomatology (i.e., hemiplegia) or involving abnormal conscious processing of visual information (i.e., unilateral spatial neglect and blindsight) represents interesting neurocognitive "test cases" for inferences about mesencephalicbasal ganglia closed-loops involvement in the formation of implicit sensory-motor memories.
Collapse
Affiliation(s)
- Matteo Esposito
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
| | - Sara Palermo
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
- Neuroradiology Unit, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Marco Tamietto
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
- Department of Medical and Clinical Psychology, and CoRPS - Center of Research on Psychology in Somatic Diseases, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
| | - Alessia Celeghin
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
| |
Collapse
|
25
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
26
|
Baruchin LJ, Alleman M, Schröder S. Reward Modulates Visual Responses in the Superficial Superior Colliculus of Mice. J Neurosci 2023; 43:8663-8680. [PMID: 37879894 PMCID: PMC7615379 DOI: 10.1523/jneurosci.0089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The processing of sensory input is constantly adapting to behavioral demands and internal states. The drive to obtain reward, e.g., searching for water when thirsty, is a strong behavioral demand and associating the reward with its source, a certain environment or action, is paramount for survival. Here, we show that water reward increases subsequent visual activity in the superficial layers of the superior colliculus (SC), which receive direct input from the retina and belong to the earliest stages of visual processing. We trained mice of either sex to perform a visual decision task and recorded the activity of neurons in the SC using two-photon calcium imaging and high-density electrophysiological recordings. Responses to visual stimuli in around 20% of visually responsive neurons in the superficial SC were affected by reward delivered in the previous trial. Reward mostly increased visual responses independent from modulations due to pupil size changes. The modulation of visual responses by reward could not be explained by movements like licking. It was specific to responses to the following visual stimulus, independent of slow fluctuations in neural activity and independent of how often the stimulus was previously rewarded. Electrophysiological recordings confirmed these results and revealed that reward affected the early phase of the visual response around 80 ms after stimulus onset. Modulation of visual responses by reward, but not pupil size, significantly improved the performance of a population decoder to detect visual stimuli, indicating the relevance of reward modulation for the visual performance of the animal.SIGNIFICANCE STATEMENT To learn which actions lead to food, water, or safety, it is necessary to integrate the receiving of reward with sensory stimuli related to the reward. Cortical stages of sensory processing have been shown to represent stimulus-reward associations. Here, we show, however, that reward influences neurons at a much earlier stage of sensory processing, the superior colliculus (SC), receiving direct input from the retina. Visual responses were increased shortly after the animal received the water reward, which led to an improved stimulus signal in the population of these visual neurons. Reward modulation of early visual responses may thus improve perception of visual environments predictive of reward.
Collapse
Affiliation(s)
- Liad J Baruchin
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Matteo Alleman
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Sylvia Schröder
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
27
|
Wang CA, Muggleton NG, Chang YH, Barquero C, Kuo YC. Time-on-task effects on human pupillary and saccadic metrics after theta burst transcranial magnetic stimulation over the frontal eye field. IBRO Neurosci Rep 2023; 15:364-375. [PMID: 38046886 PMCID: PMC10689284 DOI: 10.1016/j.ibneur.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Pupil size undergoes constant changes primarily influenced by ambient luminance. These changes are referred to as the pupillary light reflex (PLR), where the pupil transiently constricts in response to light. PLR kinematics provides valuable insights into autonomic nervous system function and have significant clinical applications. Recent research indicates that attention plays a role in modulating the PLR, and the circuit involving the frontal eye field (FEF) and superior colliculus is causally involved in controlling this pupillary modulation. However, there is limited research exploring the role of the human FEF in these pupillary responses, and its impact on PLR metrics remains unexplored. Additionally, although the protocol of continuous theta-burst stimulation (cTBS) is well-established, the period of disruption after cTBS is yet to be examined in pupillary responses. Our study aimed to investigate the effects of FEF cTBS on pupillary and saccadic metrics in relation to time spent performing a task (referred to as time-on-task). We presented a bright stimulus to induce the PLR in visual- and memory-delay saccade tasks following cTBS over the right FEF or vertex. FEF cTBS, compared to vertex cTBS, resulted in decreased baseline pupil size, peak constriction velocities, and amplitude. Furthermore, the time-on-task effects on baseline pupil size, peak amplitude, and peak time differed between the two stimulation conditions. In contrast, the time-on-task effects on saccadic metrics were less pronounced between the two conditions. In summary, our study provides the first evidence that FEF cTBS affects human PLR metrics and that these effects are modulated by time-on-task.
Collapse
Affiliation(s)
- Chin-An Wang
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Neil G. Muggleton
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Yi-Hsuan Chang
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
| | - Cesar Barquero
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
- Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Ying-Chun Kuo
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
28
|
Suzuki M, Pennartz CMA, Aru J. How deep is the brain? The shallow brain hypothesis. Nat Rev Neurosci 2023; 24:778-791. [PMID: 37891398 DOI: 10.1038/s41583-023-00756-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today's dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
29
|
Jiang S, Honnuraiah S, Stuart GJ. Characterization of primary visual cortex input to specific cell types in the superior colliculus. Front Neuroanat 2023; 17:1282941. [PMID: 38020214 PMCID: PMC10667433 DOI: 10.3389/fnana.2023.1282941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The superior colliculus is a critical brain region involved in processing visual information. It receives visual input directly from the retina, as well as via a projection from primary visual cortex. Here we determine which cell types in the superficial superior colliculus receive visual input from primary visual cortex in mice. Neurons in the superficial layers of the superior colliculus were classified into four groups - Wide-field, narrow-field, horizontal and stellate - based on their morphological and electrophysiological properties. To determine functional connections between V1 and these four different cell types we expressed Channelrhodopsin2 in primary visual cortex and then optically stimulated these axons while recording from different neurons in the superficial superior colliculus using whole-cell patch-clamp recording in vitro. We found that all four cell types in the superficial layers of the superior colliculus received monosynaptic (direct) input from V1. Wide-field neurons were more likely than other cell types to receive primary visual cortex input. Our results provide information on the cell specificity of the primary visual cortex to superior colliculus projection, increasing our understanding of how visual information is processed in the superior colliculus at the single cell level.
Collapse
Affiliation(s)
- Shuang Jiang
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Suraj Honnuraiah
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Greg J. Stuart
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
30
|
Lee H, Weinberg-Wolf H, Lee HL, Lee T, Conte J, Godoy-Parejo C, Demb JB, Rudenko A, Kim IJ. Brn3b regulates the formation of fear-related midbrain circuits and defensive responses to visual threat. PLoS Biol 2023; 21:e3002386. [PMID: 37983249 PMCID: PMC10695396 DOI: 10.1371/journal.pbio.3002386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 12/04/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Defensive responses to visually threatening stimuli represent an essential fear-related survival instinct, widely detected across species. The neural circuitry mediating visually triggered defensive responses has been delineated in the midbrain. However, the molecular mechanisms regulating the development and function of these circuits remain unresolved. Here, we show that midbrain-specific deletion of the transcription factor Brn3b causes a loss of neurons projecting to the lateral posterior nucleus of the thalamus. Brn3b deletion also down-regulates the expression of the neuropeptide tachykinin 2 (Tac2). Furthermore, Brn3b mutant mice display impaired defensive freezing responses to visual threat precipitated by social isolation. This behavioral phenotype could be ameliorated by overexpressing Tac2, suggesting that Tac2 acts downstream of Brn3b in regulating defensive responses to threat. Together, our experiments identify specific genetic components critical for the functional organization of midbrain fear-related visual circuits. Similar mechanisms may contribute to the development and function of additional long-range brain circuits underlying fear-associated behavior.
Collapse
Affiliation(s)
- Hyoseo Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hae-Lim Lee
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joseph Conte
- Department of Biology, City College of New York, New York, New York, United States of America
| | - Carlos Godoy-Parejo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jonathan B. Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America
| | - Andrii Rudenko
- Department of Biology, City College of New York, New York, New York, United States of America
- Graduate Programs in Biology and Biochemistry, City University of New York, New York, New York, United States of America
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
31
|
Choi JS, Ayupe AC, Beckedorff F, Catanuto P, McCartan R, Levay K, Park KK. Single-nucleus RNA sequencing of developing superior colliculus identifies neuronal diversity and candidate mediators of circuit assembly. Cell Rep 2023; 42:113037. [PMID: 37624694 PMCID: PMC10592058 DOI: 10.1016/j.celrep.2023.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment of neural connectivity. Here we perform single-nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Using these data, we find that Pax7 expression is restricted to a subset of GABAergic neurons. Our data provide a valuable resource for interrogating the mechanisms of circuit development and identifying markers for manipulating specific SC neuronal populations and circuits.
Collapse
Affiliation(s)
- James S Choi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Paola Catanuto
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Robyn McCartan
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA.
| |
Collapse
|
32
|
Choi I, Demir I, Oh S, Lee SH. Multisensory integration in the mammalian brain: diversity and flexibility in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220338. [PMID: 37545309 PMCID: PMC10404930 DOI: 10.1098/rstb.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 08/08/2023] Open
Abstract
Multisensory integration (MSI) occurs in a variety of brain areas, spanning cortical and subcortical regions. In traditional studies on sensory processing, the sensory cortices have been considered for processing sensory information in a modality-specific manner. The sensory cortices, however, send the information to other cortical and subcortical areas, including the higher association cortices and the other sensory cortices, where the multiple modality inputs converge and integrate to generate a meaningful percept. This integration process is neither simple nor fixed because these brain areas interact with each other via complicated circuits, which can be modulated by numerous internal and external conditions. As a result, dynamic MSI makes multisensory decisions flexible and adaptive in behaving animals. Impairments in MSI occur in many psychiatric disorders, which may result in an altered perception of the multisensory stimuli and an abnormal reaction to them. This review discusses the diversity and flexibility of MSI in mammals, including humans, primates and rodents, as well as the brain areas involved. It further explains how such flexibility influences perceptual experiences in behaving animals in both health and disease. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Ilsong Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ilayda Demir
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungmi Oh
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Abstract
The superior colliculus (SC) is a subcortical brain structure that is relevant for sensation, cognition, and action. In nonhuman primates, a rich history of studies has provided unprecedented detail about this structure's role in controlling orienting behaviors; as a result, the primate SC has become primarily regarded as a motor control structure. However, as in other species, the primate SC is also a highly visual structure: A fraction of its inputs is retinal and complemented by inputs from visual cortical areas, including the primary visual cortex. Motivated by this, recent investigations are revealing the rich visual pattern analysis capabilities of the primate SC, placing this structure in an ideal position to guide orienting movements. The anatomical proximity of the primate SC to both early visual inputs and final motor control apparatuses, as well as its ascending feedback projections to the cortex, affirms an important role for this structure in active perception.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany;
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Chih-Yang Chen
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan;
| | - Amarender R Bogadhi
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany;
| |
Collapse
|
34
|
Li C, Kühn NK, Alkislar I, Sans-Dublanc A, Zemmouri F, Paesmans S, Calzoni A, Ooms F, Reinhard K, Farrow K. Pathway-specific inputs to the superior colliculus support flexible responses to visual threat. SCIENCE ADVANCES 2023; 9:eade3874. [PMID: 37647395 PMCID: PMC10468139 DOI: 10.1126/sciadv.ade3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Behavioral flexibility requires directing feedforward sensory information to appropriate targets. In the superior colliculus, divergent outputs orchestrate different responses to visual threats, but the circuit organization enabling the flexible routing of sensory information remains unknown. To determine this structure, we focused on inhibitory projection (Gad2) neurons. Trans-synaptic tracing and neuronal recordings revealed that Gad2 neurons projecting to the lateral geniculate nucleus (LGN) and the parabigeminal nucleus (PBG) form two separate populations, each receiving a different set of non-retinal inputs. Inhibiting the LGN- or PBG-projecting Gad2 neurons resulted in opposing effects on behavior; increasing freezing or escape probability to visual looming, respectively. Optogenetic activation of selected inputs to the LGN- and PBG-projecting Gad2 cells predictably regulated responses to visual threat. These data suggest that projection-specific sampling of brain-wide inputs provides a circuit design principle that enables visual inputs to be selectively routed to produce context-specific behavior.
Collapse
Affiliation(s)
- Chen Li
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Norma K. Kühn
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Alkislar
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Northeastern University, Boston, MA, USA
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Firdaouss Zemmouri
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Soraya Paesmans
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alex Calzoni
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frédérique Ooms
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Imec, Leuven, Belgium
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Imec, Leuven, Belgium
| |
Collapse
|
35
|
Xu T, Jin Z, Yang M, Chen Z, Xiong H. Whole brain inputs to major descending pathways of the anterior lateral motor cortex. J Neurophysiol 2023; 130:278-290. [PMID: 37377198 DOI: 10.1152/jn.00112.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze, and compare whole brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC-, and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.NEW & NOTEWORTHY Distinct descending pathways of anterior lateral motor cortex (ALM) share common inputs. These inputs are with varied weights. Most inputs were from the ipsilateral side of brain. Preferential inputs were provided by cortex and thalamus (TH).
Collapse
Affiliation(s)
- Tonghui Xu
- Department of Laboratory Animal Science, Fudan University, Shanghai, People's Republic of China
| | - Zitao Jin
- Institute of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Mei Yang
- Department of Laboratory Animal Science, Fudan University, Shanghai, People's Republic of China
| | - Zhilong Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, People's Republic of China
- Piedmont Medical Technology Co., Ltd., Zhuhai, People's Republic of China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People's Republic of China
| |
Collapse
|
36
|
Warren S, May PJ. Brainstem sources of input to the central mesencephalic reticular formation in the macaque. Exp Brain Res 2023:10.1007/s00221-023-06641-6. [PMID: 37474798 DOI: 10.1007/s00221-023-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 07/22/2023]
Abstract
Physiological studies indicate that the central mesencephalic reticular formation (cMRF) plays a role in gaze changes, including control of disjunctive saccades. Neuroanatomical studies have demonstrated strong interconnections with the superior colliculus, along with projections to extraocular motor nuclei, the preganglionic nucleus of Edinger-Westphal, the paramedian pontine reticular formation, nucleus raphe interpositus, medullary reticular formation and cervical spinal cord, as might be expected for a structure that is intimately involved in gaze control. However, the sources of input to this midbrain structure have not been described in detail. In the present study, the brainstem cells of origin supplying the cMRF were labeled by retrograde transport of tracer (wheat germ agglutinin conjugated horseradish peroxidase) in macaque monkeys. Within the diencephalon, labeled neurons were noted in the ventromedial nucleus of the hypothalamus, pregeniculate nucleus and habenula. In the midbrain, labeled cells were found in the substantia nigra pars reticulata, medial pretectal nucleus, superior colliculus, tectal longitudinal column, periaqueductal gray, supraoculomotor area, and contralateral cMRF. In the pons they were located in the paralemniscal zone, parabrachial nucleus, locus coeruleus, nucleus prepositus hypoglossi and the paramedian pontine reticular formation. Finally, in the medulla they were observed in the medullary reticular formation. The fact that this list of input sources is very similar to those of the superior colliculus supports the view that the cMRF represents an important gaze control center.
Collapse
Affiliation(s)
- Susan Warren
- Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Paul J May
- Department of Advanced Biomedical Education, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
37
|
Baier F, Reinhard K, Tong V, Murmann J, Farrow K, Hoekstra HE. The neural basis of defensive behaviour evolution in Peromyscus mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547734. [PMID: 37461474 PMCID: PMC10350006 DOI: 10.1101/2023.07.04.547734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Evading imminent predator threat is critical for survival. Effective defensive strategies can vary, even between closely related species. However, the neural basis of such species-specific behaviours is still poorly understood. Here we find that two sister species of deer mice (genus Peromyscus) show different responses to the same looming stimulus: P. maniculatus, which occupy densely vegetated habitats, predominantly dart to escape, while the open field specialist, P. polionotus, pause their movement. This difference arises from species-specific escape thresholds, is largely context-independent, and can be triggered by both visual and auditory threat stimuli. Using immunohistochemistry and electrophysiological recordings, we find that although visual threat activates the superior colliculus in both species, the role of the dorsal periaqueductal gray (dPAG) in driving behaviour differs. While dPAG activity scales with running speed and involves both excitatory and inhibitory neurons in P. maniculatus, the dPAG is largely silent in P. polionotus, even when darting is triggered. Moreover, optogenetic activation of excitatory dPAG neurons reliably elicits darting behaviour in P. maniculatus but not P. polionotus. Together, we trace the evolution of species-specific escape thresholds to a central circuit node, downstream of peripheral sensory neurons, localizing an ecologically relevant behavioural difference to a specific region of the complex mammalian brain.
Collapse
Affiliation(s)
- Felix Baier
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Present address: Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Present address: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Victoria Tong
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Julie Murmann
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Present address: Institute of Science & Technology Austria, Klosterneuburg, Austria
| | - Karl Farrow
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Hopi E. Hoekstra
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
38
|
Michalczyk Ł. Fixation offset decreases pupillary inhibition of return. Brain Cogn 2023; 170:106058. [PMID: 37390691 DOI: 10.1016/j.bandc.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Inhibition of return (IOR) is reflected as a slower manual or saccadic response to a cued rather than an uncued target (manual IOR and saccadic IOR, respectively), and as a pupillary dilation when a bright, relative to a dark side of a display is cued (pupillary IOR). The aim of this study was to investigate the relation between an IOR and oculomotor system. According to the predominant view, only the saccadic IOR is strictly related to the visuomotor process, and the manual and pupillary IORs depend on non-motor factors (e.g., short-term visual depression). Alternatively, the after-effect of the covert-orienting hypothesis postulates that IOR is strictly related to the oculomotor system. As fixation offset affects oculomotor processes, this study investigated whether fixation offset also affects pupillary and manual IORs. The results show that fixation offset decreased IOR in pupillary but not manual responses, and provides support for the hypothesis that at least the pupillary IOR is tightly linked to eye movement preparation.
Collapse
Affiliation(s)
- Łukasz Michalczyk
- Institute of Psychology, Jesuit University Ignatianum in Krakow, Krakow, Poland.
| |
Collapse
|
39
|
Liu Y, Savier EL, DePiero VJ, Chen C, Schwalbe DC, Abraham-Fan RJ, Chen H, Campbell JN, Cang J. Mapping visual functions onto molecular cell types in the mouse superior colliculus. Neuron 2023; 111:1876-1886.e5. [PMID: 37086721 PMCID: PMC10330256 DOI: 10.1016/j.neuron.2023.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The superficial superior colliculus (sSC) carries out diverse roles in visual processing and behaviors, but how these functions are delegated among collicular neurons remains unclear. Here, using single-cell transcriptomics, we identified 28 neuron subtypes and subtype-enriched marker genes from tens of thousands of adult mouse sSC neurons. We then asked whether the sSC's molecular subtypes are tuned to different visual stimuli. Specifically, we imaged calcium dynamics in single sSC neurons in vivo during visual stimulation and then mapped marker gene transcripts onto the same neurons ex vivo. Our results identify a molecular subtype of inhibitory neuron accounting for ∼50% of the sSC's direction-selective cells, suggesting a genetic logic for the functional organization of the sSC. In addition, our studies provide a comprehensive molecular atlas of sSC neuron subtypes and a multimodal mapping method that will facilitate investigation of their respective functions, connectivity, and development.
Collapse
Affiliation(s)
- Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elise L Savier
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Victor J DePiero
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Dana C Schwalbe
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Hui Chen
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
40
|
Lavezzi AM, Mehboob R, Piscioli F, Pusiol T. Involvement of the Superior Colliculus in SIDS Pathogenesis. Biomedicines 2023; 11:1689. [PMID: 37371784 DOI: 10.3390/biomedicines11061689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to investigate the involvement of the mesencephalic superior colliculus (SC) in the pathogenetic mechanism of SIDS, a syndrome frequently ascribed to arousal failure from sleep. We analyzed the brains of 44 infants who died suddenly within the first 7 months of life, among which were 26 infants with SIDS and 18 controls. In-depth neuropathological investigations of serial sections of the midbrain showed the SC layered cytoarchitectural organization already well known in animals, as made up of seven distinct layers, but so far never highlighted in humans, albeit with some differences. In 69% of SIDS cases but never in the controls, we observed alterations of the laminar arrangement of the SC deep layers (precisely, an increased number of polygonal cells invading the superficial layers and an increased presence of intensely stained myelinated fibers). Since it has been demonstrated in experimental studies that the deep layers of the SC exert motor control including that of the head, their developmental disorder could lead to the failure of newborns who are in a prone position to resume regular breathing by moving their heads in the sleep-arousal phase. The SC anomalies highlighted here represent a new step in understanding the pathogenetic process that leads to SIDS.
Collapse
Affiliation(s)
- Anna M Lavezzi
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Riffat Mehboob
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore 54000, Pakistan
| | - Francesco Piscioli
- Provincial Health Care Services, Institute of Pathology, Santa Maria del Carmine Hospital, 38068 Rovereto, Italy
| | - Teresa Pusiol
- Provincial Health Care Services, Institute of Pathology, Santa Maria del Carmine Hospital, 38068 Rovereto, Italy
| |
Collapse
|
41
|
Ayupe AC, Choi JS, Beckedorff F, Catanuto P, Mccartan R, Levay K, Park KK. Single-Nucleus RNA Sequencing of Developing and Mature Superior Colliculus Identifies Neuronal Diversity and Candidate Mediators of Circuit Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526254. [PMID: 36778361 PMCID: PMC9915630 DOI: 10.1101/2023.02.01.526254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment and refinement of neural connectivity. Here we performed single nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We used these data to identify Pax7 as a marker for an anatomically homogeneous population of GABAergic neurons. Lastly, we report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Our data provide a valuable resource for interrogating the mechanisms of circuit development, and identifying markers for manipulating specific SC neuronal populations and circuits.
Collapse
|
42
|
Wu Q, Zhang Y. Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neurosci Bull 2023; 39:994-1008. [PMID: 36694085 PMCID: PMC10264346 DOI: 10.1007/s12264-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/30/2022] [Indexed: 01/26/2023] Open
Abstract
Evading or escaping from predators is one of the most crucial issues for survival across the animal kingdom. The timely detection of predators and the initiation of appropriate fight-or-flight responses are innate capabilities of the nervous system. Here we review recent progress in our understanding of innate visually-triggered defensive behaviors and the underlying neural circuit mechanisms, and a comparison among vinegar flies, zebrafish, and mice is included. This overview covers the anatomical and functional aspects of the neural circuits involved in this process, including visual threat processing and identification, the selection of appropriate behavioral responses, and the initiation of these innate defensive behaviors. The emphasis of this review is on the early stages of this pathway, namely, threat identification from complex visual inputs and how behavioral choices are influenced by differences in visual threats. We also briefly cover how the innate defensive response is processed centrally. Based on these summaries, we discuss coding strategies for visual threats and propose a common prototypical pathway for rapid innate defensive responses.
Collapse
Affiliation(s)
- Qiwen Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
43
|
Cazzoli D, Kaufmann BC, Rühe H, Geiser N, Vanbellingen T, Nyffeler T. A case study of left visual neglect after right pontine lesion: pathophysiological evidence for the infratentorial involvement in human visual attention. J Neurophysiol 2023; 129:1534-1539. [PMID: 37222432 DOI: 10.1152/jn.00123.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Hemispatial neglect, the inability to attend to the contralesional side of space, is the most common disturbance of visuospatial attention. Both hemispatial neglect and visuospatial attention are typically associated with extended cortical networks. Nevertheless, recent accounts challenge this so-called corticocentric view and postulate the participation of structures well beyond the telencephalic cortex, in particular advocating the role of the brainstem. However, to the best of our knowledge, hemispatial neglect after a brainstem lesion has not yet been described. We describe, for the first time in a human, the occurrence and remission of contralesional visual hemispatial neglect after a focal lesion in the right pons. Hemispatial neglect was assessed by means of video-oculography during free visual exploration, a very sensitive and established method, and its remission was followed up until 3 wk after stroke. Moreover, by means of a lesion-deficit approach complemented by imaging, we identify a pathophysiological mechanism involving the disconnection of cortico-ponto-cerebellar and/or tecto-cerebellar-tectal pathways passing through the pons. Our findings offer, for the first time in a human, causal, lesion-based support for recent seminal accounts postulating the role of infratentorial structures participating in the activity of cerebral cortical attentional networks mediating attentional processes.NEW & NOTEWORTHY Visuospatial attention and its most common disturbance, hemispatial neglect, are typically associated with extended cortical networks. However, recent accounts challenge this corticocentric view and advocate the role of infratentorial structures. We describe, for the first time in a human, the occurrence of contralesional visual hemispatial neglect after a focal lesion in the right pons. We provide causal, lesion-based evidence for a pathophysiological mechanism involving the disconnection of cortico-ponto-cerebellar and/or tecto-cerebellar-tectal pathways passing through the pons.
Collapse
Affiliation(s)
- Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital LUKS, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Brigitte C Kaufmann
- Neurocenter, Luzerner Kantonsspital LUKS, Lucerne, Switzerland
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute (ICM), Inserm, CNRS, Paris, France
| | - Henrik Rühe
- Neurocenter, Luzerner Kantonsspital LUKS, Lucerne, Switzerland
| | - Nora Geiser
- Neurocenter, Luzerner Kantonsspital LUKS, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital LUKS, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital LUKS, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Katz LN, Yu G, Herman JP, Krauzlis RJ. Correlated variability in primate superior colliculus depends on functional class. Commun Biol 2023; 6:540. [PMID: 37202508 DOI: 10.1038/s42003-023-04912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Correlated variability in neuronal activity (spike count correlations, rSC) can constrain how information is read out from populations of neurons. Traditionally, rSC is reported as a single value summarizing a brain area. However, single values, like summary statistics, stand to obscure underlying features of the constituent elements. We predict that in brain areas containing distinct neuronal subpopulations, different subpopulations will exhibit distinct levels of rSC that are not captured by the population rSC. We tested this idea in macaque superior colliculus (SC), a structure containing several functional classes (i.e., subpopulations) of neurons. We found that during saccade tasks, different functional classes exhibited differing degrees of rSC. "Delay class" neurons displayed the highest rSC, especially during saccades that relied on working memory. Such dependence of rSC on functional class and cognitive demand underscores the importance of taking functional subpopulations into account when attempting to model or infer population coding principles.
Collapse
Affiliation(s)
- Leor N Katz
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - Gongchen Yu
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Benarroch E. What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders? Neurology 2023; 100:784-790. [PMID: 37068960 PMCID: PMC10115501 DOI: 10.1212/wnl.0000000000207254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
|
46
|
Smyre SA, Bean NL, Stein BE, Rowland BA. Predictability alters multisensory responses by modulating unisensory inputs. Front Neurosci 2023; 17:1150168. [PMID: 37065927 PMCID: PMC10090419 DOI: 10.3389/fnins.2023.1150168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The multisensory (deep) layers of the superior colliculus (SC) play an important role in detecting, localizing, and guiding orientation responses to salient events in the environment. Essential to this role is the ability of SC neurons to enhance their responses to events detected by more than one sensory modality and to become desensitized (‘attenuated’ or ‘habituated’) or sensitized (‘potentiated’) to events that are predictable via modulatory dynamics. To identify the nature of these modulatory dynamics, we examined how the repetition of different sensory stimuli affected the unisensory and multisensory responses of neurons in the cat SC. Neurons were presented with 2HZ stimulus trains of three identical visual, auditory, or combined visual–auditory stimuli, followed by a fourth stimulus that was either the same or different (‘switch’). Modulatory dynamics proved to be sensory-specific: they did not transfer when the stimulus switched to another modality. However, they did transfer when switching from the visual–auditory stimulus train to either of its modality-specific component stimuli and vice versa. These observations suggest that predictions, in the form of modulatory dynamics induced by stimulus repetition, are independently sourced from and applied to the modality-specific inputs to the multisensory neuron. This falsifies several plausible mechanisms for these modulatory dynamics: they neither produce general changes in the neuron’s transform, nor are they dependent on the neuron’s output.
Collapse
|
47
|
Johnson KO, Harel L, Triplett JW. Postsynaptic NMDA Receptor Expression Is Required for Visual Corticocollicular Projection Refinement in the Mouse Superior Colliculus. J Neurosci 2023; 43:1310-1320. [PMID: 36717228 PMCID: PMC9987568 DOI: 10.1523/jneurosci.1473-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023] Open
Abstract
Efficient sensory processing of spatial information is facilitated through the organization of neuronal connections into topographic maps of space. In integrative sensory centers, converging topographic maps must be aligned to merge spatially congruent information. The superior colliculus (SC) receives topographically ordered visual inputs from retinal ganglion cells (RGCs) in the eye and layer 5 neurons in the primary visual cortex (L5-V1). Previous studies suggest that RGCs instruct the alignment of later-arriving L5-V1 inputs in an activity-dependent manner. However, the molecular mechanisms underlying this remain unclear. Here, we explored the role of NMDA receptors in visual map alignment in the SC using a conditional genetic knockout approach. We leveraged a novel knock-in mouse line that expresses tamoxifen-inducible Cre recombinase under the control of the Tal1 gene (Tal1CreERT2 ), which we show allows for specific recombination in the superficial layers of the SC. We used Tal1CreERT2 mice of either sex to conditionally delete the obligate GluN1 subunit of the NMDA receptor (SC-cKO) during the period of visual map alignment. We observed a significant disruption of L5-V1 axon terminal organization in the SC of SC-cKO mice. Importantly, retinocollicular topography was unaffected in this context, suggesting that alignment is also disrupted. Time-course experiments suggest that NMDA receptors may play a critical role in the refinement of L5-V1 inputs in the SC. Together, these data implicate NMDA receptors as critical mediators of activity-dependent visual map alignment in the SC.SIGNIFICANCE STATEMENT Alignment of topographic inputs is critical for integration of spatially congruent sensory information; however, little is known about the mechanisms underlying this complex process. Here, we took a conditional genetic approach to explore the role of NMDA receptors in the alignment of retinal and cortical visual inputs in the superior colliculus. We characterize a novel mouse line providing spatial and temporal control of recombination in the superior colliculus and reveal a critical role for NMDA expression in visual map alignment. These data support a role for neuronal activity in visual map alignment and provide mechanistic insight into this complex developmental process.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
| | - Leeor Harel
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20037
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037
| |
Collapse
|
48
|
Modulation of cholinergic, GABA-ergic and glutamatergic components of superior colliculus affect REM sleep in rats. Behav Brain Res 2023; 438:114177. [PMID: 36306944 DOI: 10.1016/j.bbr.2022.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
The superior colliculus (SC) is associated with visual attention, spatial navigation, decision making, escape and approach responses, some of which are important for defence and survival in rodents. SC helps in initiating and controlling saccadic eye movements and gaze during wakefulness. It is also activated during rapid eye movement (REM) sleep associated rapid eye movements (REMs). To investigate the contribution of SC in sleep-wake behaviour, we have demonstrated that manipulation of SC with scopolamine, carbachol, muscimol, picrotoxin and MK-801 decreased the amount of REM sleep. We observed that scopolamine and picrotoxin as well as muscimol decreased REM sleep frequency. MK-801 decreased percent amount of REM sleep, however, neither the frequency nor the duration/episode was affected. The cholinergic and GABA-ergic modulation of SC affecting REM sleep may be involved in REM sleep associated visuo-spatial learning and memory consolidation, which however, need to be confirmed. Furthermore, the results suggest involvement of efferent from SC in modulation of sleep-waking via the brainstem sleep regulating areas.
Collapse
|
49
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
50
|
Reynaert B, Morales C, Mpodozis J, Letelier JC, Marín GJ. A blinking focal pattern of re-entrant activity in the avian tectum. Curr Biol 2023; 33:1-14.e4. [PMID: 36446352 DOI: 10.1016/j.cub.2022.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Re-entrant connections are inherent to nervous system organization; however, a comprehensive understanding of their operation is still lacking. In birds, topographically organized re-entrant signals, carried by axons from the nucleus-isthmi-parvocellularis (Ipc), are distinctly recorded as bursting discharges across the optic tectum (TeO). Here, we used up to 48 microelectrodes regularly spaced on the superficial tectal layers of anesthetized pigeons to characterize the spatial-temporal pattern of this axonal re-entrant activity in response to different visual stimulation. We found that a brief luminous spot triggered repetitive waves of bursting discharges that, appearing from initial sources, propagated horizontally to areas representing up to 28° of visual space, widely exceeding the area activated by the retinal fibers. In response to visual motion, successive burst waves started along and around the stimulated tectal path, tracking the stimulus in discontinuous steps. When two stimuli were presented, the burst-wave sources alternated between the activated tectal loci, as if only one source could be active at any given time. Because these re-entrant signals boost the retinal input to higher visual areas, their peculiar dynamics mimic a blinking "spotlight," similar to the internal searching mechanism classically used to explain spatial attention. Tectal re-entry from Ipc is thus highly structured and intrinsically discontinuous, and higher tectofugal areas, which lack retinotopic organization, will thus receive incoming visual activity in a sequential and piecemeal fashion. We anticipate that analogous re-entrant patterns, perhaps hidden in less bi-dimensionally organized topographies, may organize the flow of neural activity in other parts of the brain as well.
Collapse
Affiliation(s)
- Bryan Reynaert
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Juan Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile.
| |
Collapse
|