1
|
Greenwald MK, Woodcock EA, Khatib D, Stanley JA. Methadone maintenance dose modulates anterior cingulate glutamate levels in heroin-dependent individuals: A preliminary in vivo (1)H MRS study. Psychiatry Res 2015; 233:218-24. [PMID: 26188663 DOI: 10.1016/j.pscychresns.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/18/2015] [Accepted: 07/03/2015] [Indexed: 01/23/2023]
Abstract
Mu-opioid receptor agonists alter brain glutamate (GLU) levels in laboratory animals. This clinical study used proton magnetic resonance spectroscopy ((1)H MRS) to examine regional brain GLU levels during experimental manipulation of methadone (MTD) maintenance dose under double-blind, within-subject conditions in seven heroin-dependent volunteers. Subjects were scanned first at a high MTD dose (100 mg/day), underwent a 3-week outpatient MTD dose taper, and then were scanned again at a low MTD dose (10-25 mg/day; modified for participant comfort). Five age- and cigarette smoking-matched controls were scanned once. In vivo short echo time (TE = 22 ms), single voxel (1)H MRS data from midline pregenual anterior cingulate cortex (ACC) and thalamus (4.5 cm(3) each) were collected using PRESS on a 4-Tesla MRI system. Absolute metabolite levels were quantified. GLU levels in the ACC, but not the thalamus, were higher at the low relative to the high MTD dose in heroin-dependent subjects. No other metabolites differed by MTD dose, or between control vs. heroin-dependent subjects (at either MTD dose). GLU levels in the ACC were inversely related to the duration of cigarette smoking (controls) and heroin use (experimental group). Future studies are warranted to investigate the relationship between GLU levels during treatment (and detoxification), and withdrawal symptoms or relapse.
Collapse
Affiliation(s)
- Mark K Greenwald
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Drive, Suite 2A, Detroit, MI 48201, USA; Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA.
| | - Eric A Woodcock
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, 3901 Chrysler Drive, Suite 2A, Detroit, MI 48201, USA; Brain Imaging Research Division, Wayne State University, Detroit, MI, USA
| | - Dalal Khatib
- Brain Imaging Research Division, Wayne State University, Detroit, MI, USA
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Morin N, Grégoire L, Morissette M, Desrayaud S, Gomez-Mancilla B, Gasparini F, Di Paolo T. MPEP, an mGlu5 receptor antagonist, reduces the development of L-DOPA-induced motor complications in de novo parkinsonian monkeys: biochemical correlates. Neuropharmacology 2012; 66:355-64. [PMID: 22884464 DOI: 10.1016/j.neuropharm.2012.07.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (l-DOPA), the gold standard therapy for Parkinson disease (PD), is associated with motor fluctuations and dyskinesias. This study sought to prevent the development of l-DOPA-induced dyskinesias (LID) with the metabotropic glutamate receptor type 5 (mGlu5 receptor) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) in the de novo treatment of monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a PD model. MPTP-lesioned monkeys were treated once daily for one month with either l-DOPA or l-DOPA + MPEP (10 mg/kg). MPEP (administered 15 min before l-DOPA) plasma concentrations were elevated during all the l-DOPA motor activation and did not accumulate during a month. The antiparkinsonian effect was maintained throughout the treatment period in MPTP-lesioned monkeys treated with l-DOPA + MPEP, while the duration of this effect decreased over time in MPTP-lesioned monkeys treated with l-DOPA alone, suggesting wearing-off. Over the month-long treatment, the mean dyskinesia score increased in l-DOPA-treated monkeys; interestingly, this increase was reduced by overall 72% in the l-DOPA + MPEP group. Mean dyskinesia scores of monkeys correlated inversely with plasma MPEP concentrations. Normal control and saline-treated MPTP-lesioned monkeys were also included for biochemical analyses. All MPTP-lesioned monkeys were extensively and similarly denervated. [(3)H]ABP688 specific binding to mGlu5 receptors increased in the putamen of l-DOPA-treated monkeys compared to control, saline or l-DOPA + MPEP-treated monkeys. Mean dyskinesia scores of MPTP-lesioned monkeys correlated positively with [(3)H]ABP688 specific binding in the putamen. This study showed a beneficial chronic antidyskinetic effect of MPEP in de novol-DOPA-treated MPTP-lesioned monkeys, supporting the therapeutic use of mGlu5 receptor antagonists in PD to prevent LID. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Nicolas Morin
- Molecular Endocrinology and Genomic Research Center, Laval University Medical Center (CHUQ), Quebec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
3
|
Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, Bezard E, Cenci MA. A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 2010; 39:352-61. [DOI: 10.1016/j.nbd.2010.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/28/2010] [Accepted: 05/01/2010] [Indexed: 10/19/2022] Open
|
4
|
Morin N, Grégoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 2010; 58:981-6. [PMID: 20074579 DOI: 10.1016/j.neuropharm.2009.12.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/22/2009] [Accepted: 12/25/2009] [Indexed: 11/27/2022]
Abstract
Brain glutamate overactivity is well documented in Parkinson's disease (PD) and antiglutamatergic drugs have been proposed to relieve PD symptoms and decrease dyskinesias. Metabotropic glutamate receptors are topics of recent interest in PD. This study investigated the effects of the metabotropic glutamate receptors type 5 (mGluR5) antagonists MPEP and MTEP on motor behavior in monkeys with a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion to model PD and treated with L-Dopa the gold standard therapy. Six Macaca fascicularis MPTP monkeys were initially treated repeatedly with L-Dopa; this treatment increased their locomotion and reduced their parkinsonian scores but also induced dyskinesias. Then, a dose-response of MPEP and MTEP (1.5-30 mg/kg) administered 15 and 30 min respectively prior to L-Dopa, showed that the antiparkinsonian activity of L-Dopa was generally maintained as measured with locomotion and antiparkinsonian scores as well as the onset and duration of the L-Dopa response. Interestingly the mean dyskinesia score during all the duration of the L-Dopa motor effect, the 1 h peak period dyskinesias scores as well as the maximal dyskinesias scores were dose-dependently reduced with both drugs reaching statistical significance at 10 and 30 mg/kg. Our results showed a beneficial antidyskinetic effect of blocking mGluR5 in L-Dopa-treated MPTP monkeys. This supports the therapeutic use of an mGluR5 antagonist to restore normal brain glutamate neurotransmission in PD and decrease dyskinesias.
Collapse
Affiliation(s)
- Nicolas Morin
- Molecular Endocrinology and Genomic Research Center, Laval University Medical Center (CHUL), 2705 Laurier Blvd, Quebec (QC), Canada
| | | | | | | | | |
Collapse
|
5
|
Park HY, Kim JH, Zuo Z, Do SH. Ethanol increases the activity of rat excitatory amino acid transporter type 4 expressed in Xenopus oocytes: role of protein kinase C and phosphatidylinositol 3-kinase. Alcohol Clin Exp Res 2008; 32:348-54. [PMID: 18226120 DOI: 10.1111/j.1530-0277.2007.00577.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutamate is the major excitatory neurotransmitter in the central nervous system and is critical for essentially all physiological processes, such as learning, memory, central pain transduction, and control of motor function. Excitatory amino acid transporters (EAATs) play a key role in regulating glutamate neurotransmission by uptake of glutamate into cells. EAAT4 is the major EAAT in the cerebellar Purkinje cells. The authors investigated the effects of ethanol on EAAT4 and the mediatory effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) in this context. METHODS Excitatory amino acid transporter 4 was expressed in Xenopus oocytes by injecting EAAT4 mRNA. l-aspartate-induced membrane currents were measured using a two-electrode voltage clamp. Responses were quantified by integrating current traces and are represented in microCoulombs (microC). RESULTS Ethanol increased EAAT4 activity in a dose-dependent manner. At ethanol concentrations of 25, 50, 100, and 200 mM, the responses were significantly higher than untreated control values. Ethanol (25 mM) significantly increased the V(max) (1.5 +/- 0.1 microC for control vs. 2.0 +/- 0.1 microC for ethanol, p < 0.05), but did not affect K(m) (2.3 +/- 0.6 microM for control vs. 1.7 +/- 0.7 microM for ethanol, p > 0.05) of EAAT4 for l-aspartate. Preincubation of oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) significantly increased EAAT4 activity. However, combinations of PMA and ethanol versus PMA or ethanol alone did not increase responses further. Two PKC inhibitors, chelerythrine and staurosporine did not reduce basal EAAT4 activity but abolished ethanol-enhanced EAAT4 activity. Pretreatment with wortmannin (a PI3K inhibitor) also abolished ethanol-enhanced EAAT4 activity. CONCLUSIONS These results demonstrate that acute ethanol exposure increases EAAT4 activity at clinically relevant concentrations and that PKC and PI3K may mediate this. The effects of ethanol on EAAT4 may play a role in the cerebellar dysfunction caused by ethanol intoxication.
Collapse
Affiliation(s)
- Hee-Yeon Park
- Department of Anesthesiology & Pain Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | | | | | | |
Collapse
|
6
|
Radad K, Gille G, Xiaojing J, Durany N, Rausch WD. CDP-choline reduces dopaminergic cell loss induced by MPP(+) and glutamate in primary mesencephalic cell culture. Int J Neurosci 2007; 117:985-98. [PMID: 17613109 DOI: 10.1080/10623320600934341] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cytidine-5'-diphosphocholine (citicoline or CDP-choline) is an essential endogenous intermediate in the biosynthesis of phosphatidylcholine. In the present study, primary dopaminergic cultures from mouse mesencephala were treated with citicoline to investigate its neuroprotective potential on the survival of dopaminergic neurons exposed to MPP(+) and glutamate. Treatment with citicoline alone significantly increased the survival of dopaminergic neurons compared to controls. MPP(+) or glutamate decreased the total number of dopaminergic neurons whereas citicoline afforded significant protection against either toxicity. Moreover, citicoline significantly decreased propidium iodide uptake by cultured cells. The study concludes that citicoline exerts stimulant and neuroprotective actions on cultured dopaminergic neurons.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | | | | | | |
Collapse
|
7
|
Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA. Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease. J Neurochem 2007; 101:483-97. [PMID: 17359492 DOI: 10.1111/j.1471-4159.2007.04456.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Metabotropic glutamate receptor type 5 (mGluR5) modulates dopamine and glutamate neurotransmission at central synapses. In this study, we addressed the role of mGluR5 in l-DOPA-induced dyskinesia, a movement disorder that is due to abnormal activation of both dopamine and glutamate receptors in the basal ganglia. A selective and potent mGluR5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine, was tested for its ability to modulate molecular, behavioural and neurochemical correlates of dyskinesia in 6-hydroxydopamine-lesioned rats treated with l-DOPA. The compound significantly attenuated the induction of abnormal involuntary movements (AIMs) by chronic l-DOPA treatment at doses that did not interfere with the rat physiological motor activities. These effects were paralleled by an attenuation of molecular changes that are strongly associated with the dyskinesiogenic action of l-DOPA (i.e. up-regulation of prodynorphin mRNA in striatal neurons). Using in vivo microdialysis, we found a temporal correlation between the expression of l-DOPA-induced AIMs and an increased GABA outflow within the substantia nigra pars reticulata. When co-administered with l-DOPA, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine greatly attenuated both the increase in nigral GABA levels and the expression of AIMs. These data demonstrate that mGluR5 antagonism produces strong anti-dyskinetic effects in an animal model of Parkinson's disease through central inhibition of the molecular and neurochemical underpinnings of l-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Flora Mela
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Guo M, Xu NJ, Li YT, Yang JY, Wu CF, Pei G. Morphine modulates glutamate release in the hippocampal CA1 area in mice. Neurosci Lett 2005; 381:12-5. [PMID: 15882781 DOI: 10.1016/j.neulet.2005.01.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Revised: 12/17/2004] [Accepted: 01/25/2005] [Indexed: 11/26/2022]
Abstract
Opiate abuse is associated with long-lasting neural adaptative changes in the brain. Increasing evidence demonstrates that opiates significantly alter the function of the glutamatergic system, while how the system is regulated still remains elusive. In the present study, we studied the effect of morphine on extracellular glutamate concentration in the hippocampus, a nucleus rich of the glutamatergic neurons. The results showed that glutamate concentration in the extracellular fluid of the hippocampus was decreased following either acute or chronic treatment of morphine. However, naloxone-induced withdrawal increased glutamate concentration significantly. These results suggest an adaptation of the glutamatergic neuronal transmission in the hippocampus after morphine treatment.
Collapse
Affiliation(s)
- Ming Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Dunlop J, Zaleska MM, Eliasof S, Moyer JA. Excitatory amino acid transporters as emerging targets for central nervous system therapeutics. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.4.543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
de Hemptinne I, Vermeiren C, Maloteaux JM, Hermans E. Induction of glial glutamate transporters in adult mesenchymal stem cells. J Neurochem 2004; 91:155-66. [PMID: 15379896 DOI: 10.1111/j.1471-4159.2004.02709.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult bone marrow mesenchymal stem cells are multipotent cells that can differentiate into a variety of mesodermal tissues. Recent studies have reported on their ability to also evolve into non-mesodermal cells, especially neural cells. While most of these studies revealed that manipulating these cells triggers the expression of typical neurone markers, less is known about the induction of neuronal- or glial-related physiological properties. The present study focused on the characterisation of glutamate transporters expression and activity in rat mesenchymal stem cells grown in culture conditions favouring their differentiation into astroglial cells. Ten days exposure of the cells to the culture supplement G5 was found to increase the expression of nestin (neuro-epithelial stem cell intermediate filament), an intermediate filament protein expressed by neural stem cells. Simultaneously, a robust induction of the high-affinity glutamate transporter GLT-1 (and GLAST) expression was detected by RT-PCR and immunocytochemistry. This expression was correlated with a highly significant increase in the Na+-dependent [3H]D-aspartate uptake. Finally, while glial fibrillary acidic protein immunoreactivity could not be detected, the induced expression of the astrocytic enzyme glutamine synthetase was demonstrated. These results indicate that in vitro differentiation of adult mesenchymal stem cells in neural precursors coincides with the induction of functional glutamate transport systems. Although the astrocytic nature of these cells remains to be confirmed, this observation gives support to the study of mesenchymal stem cells as a promising tool for the treatment of neurological diseases involving glutamate excitoxicity.
Collapse
Affiliation(s)
- Isabelle de Hemptinne
- Laboratoire de Pharmacologie Expérimentale, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
11
|
Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res 2004; 1021:41-53. [PMID: 15328030 DOI: 10.1016/j.brainres.2004.06.030] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 11/26/2022]
Abstract
Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a well known and popular herbal medicine used worldwide. Among more than 30 ginsenosides, the active ingredients of ginseng, ginsenosides Rb1 and Rg1 are regarded as the main compounds responsible for many pharmaceutical actions of ginseng. In our study, primary cultures from embryonic mouse mesencephala were exposed to neurotoxic glutamate concentration and potential protective effects of these two ginsenosides on survival and neuritic growth of dopaminergic cells were tested. Treatment of primary mesencephalic culture with 500 microM glutamate for 15 min on the 10th day in vitro (DIV) increased the release of lactate dehydrogenase (LDH) into the culture medium, the propidium iodide (PI) uptake by cultured cells and the total number of nuclei with condensed and fragmented chromatin (apoptotic features) as evaluated with Hoechst 33342. Moreover, it extensively decreased the number of tyrosine hydroxylase immunopositive (TH+) cells and adversely affected the length and number of their neuronal processes. The toxic effect of glutamate was primarily mediated by over-activation of N-methyl-D-aspartate receptor (NMDA) as treatment of cultured cells with (+)-MK 801, an NMDA receptor antagonist, nearly abolished dopaminergic cells loss and LDH release induced by glutamate. When either ginsenoside was added alone for six consecutive days (at final concentrations 0.1, 1, 10, 20 microM), ginsenoside Rb1 (at 10 microM) significantly enhanced the survival of dopaminergic neurons compared to untreated controls. In these cultures, neurite lengths and numbers were not affected by both ginsenosides. Against glutamate exposure, ginsenosides Rb1 and Rg1 could not prevent cell death. However when pre-treating for 4 days or post-treating for 2 days following glutamate exposure, they significantly increased the numbers and lengths of neurites of surviving dopaminergic cells. Thus our study indicates that ginsenosides Rb1 and Rg1 have a partial neurotrophic and neuroprotective role in dopaminergic cell culture.
Collapse
Affiliation(s)
- Khaled Radad
- Institute for Medical Chemistry, Veterinary Medical University, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | | | | | | |
Collapse
|
12
|
Jensen AA, Bräuner-Osborne H. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay. Biochem Pharmacol 2004; 67:2115-27. [PMID: 15135308 DOI: 10.1016/j.bcp.2004.02.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics of the cell lines in the FMP assay were in good agreement with previous findings in electrophysiology studies of the transporters. The FMP assay was capable of distinguishing between substrates and non-substrate inhibitors and to discriminate between "full" and "partial" substrates at the transporters. Taking advantage of the prolific nature of the FMP assay, interactions of the EAATs with substrates and inhibitors were studied in some detail. This is the first report of a high throughput screening assay for EAATs. We propose that the assay will be of great use in future studies of the transporters. Although conventional electrophysiology set-ups might be superior in terms of studying sophisticated kinetic aspects of the uptake process, the FMP assay enables the collection of considerable amounts of highly reproducible data with relatively little labor. Furthermore, considering that the number of EAAT ligands presently available is limited, and that almost all of these are characterized by low potency and a low degree of subtype selectivity, future screening of compound libraries at the EAAT-cell lines in the FMP assay could help identify structurally and pharmacologically novel ligands for the transporters.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
13
|
Hadj Tahar A, Grégoire L, Darré A, Bélanger N, Meltzer L, Bédard PJ. Effect of a selective glutamate antagonist on l-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol Dis 2004; 15:171-6. [PMID: 15006686 DOI: 10.1016/j.nbd.2003.10.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 10/16/2003] [Accepted: 10/22/2003] [Indexed: 11/18/2022] Open
Abstract
Alterations of striatal glutamate receptors are believed to be responsible, at least in part, for the pathogenesis of L-dopa-induced dyskinesias (LID). To evaluate whether co-administration of CI-1041, a novel NMDA receptor antagonist selective for the NR1A/NR2B subtype, with L-dopa might prevent the appearance of this side effect, eight de novo parkinsonian monkeys were treated chronically orally with either L-dopa alone or L-dopa plus CI-1041 (n= 4 for each group). After 4 weeks of treatment with L-dopa alone, all four animals developed moderate dyskinesias either choreic or dystonic in nature. CI-1041 co-treatment completely prevented the induction of dyskinesias in three animals and only one monkey developed mild dyskinesias at the end of the fourth week of treatment in the L-dopa + CI-1041 group. The magnitude and duration of the antiparkinsonian action of L-dopa was similar in both groups. These results suggest that selective NMDA receptor antagonism may be interesting for managing LID in Parkinson's disease patients.
Collapse
Affiliation(s)
- Abdallah Hadj Tahar
- Neuroscience Research Unit (RC 9800), CHUL, Laval University Research Center, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
14
|
Sandhu JK, Pandey S, Ribecco-Lutkiewicz M, Monette R, Borowy-Borowski H, Walker PR, Sikorska M. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res 2003; 72:691-703. [PMID: 12774309 DOI: 10.1002/jnr.10579] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although glutamate excitotoxicity has long been implicated in neuronal cell death associated with a variety of neurological disorders, the molecular mechanisms underlying this process are not yet fully understood. In part, this is due to the lack of relevant experimental cell systems recapitulating the in vivo neuronal environment, mainly neuronal-glial interactions. To explore these mechanisms, we have analyzed the cytotoxic effects of glutamate on mixed cultures of NT2/N neurons and NT2/A astrocytes derived from human NT2/D1 cells. In these cultures, the neurons were resistant to glutamate alone (up to 2 mM for 24-48 hr), but they responded to a simultaneous exposure to 0.5 mM glutamate and 6 hr of hypoxia. Neuronal cell death occurred during subsequent periods of reoxygenation (>30% within 24 hr). This was associated with a marked decrease of intracellular ATP, a significant increase in reactive oxygen species (ROS) and downregulation of glutamate uptake by astrocytes. Thus, under energy failure and high levels of ROS production, only the neurons from these mixed cultures succumbed to glutamate neurotoxicity; the astrocytic cells remained unaffected by the treatment. Taken together, our data suggested that glutamate excitotoxicity might be due to the energy failure and oxidative stress affecting the properties of the NMDA glutamate receptors and causing impairment of glutamate transporters. Cells pretreated for 72 hr with 10 microg/ml of coenzyme Q(10) (functions both as a ROS scavenger and co-factor of mitochondrial electron transport), were protected, suggesting a useful role for coenzyme Q(10) in treatments of neurological diseases associated with glutamate excitotoxicity. A model of the complex interactions between neurons and astrocytes in regulating glutamate metabolism is presented.
Collapse
Affiliation(s)
- Jagdeep K Sandhu
- Neurogenesis and Brain Repair Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Do SH, Ham BM, Zuo Z. Effects of propofol on the activity of rat glutamate transporter type 3 expressed in Xenopus oocytes: the role of protein kinase C. Neurosci Lett 2003; 343:113-6. [PMID: 12759177 DOI: 10.1016/s0304-3940(03)00358-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We investigated the effects of propofol on one type of glutamate transporter, excitatory amino acid transporter 3 (EAAT3) and the role of protein kinase C (PKC) in mediating these effects. Rat EAAT3 was expressed in Xenopus oocytes. L-glutamate (30 microM)-induced membrane currents were measured. Propofol increased glutamate-induced inward currents significantly at two tested concentrations (30 and 100 microM) but not at other concentrations. Propofol (30 microM) significantly increased V(max), but not K(m) of EAAT3 for glutamate. The combination of phorbol-12-myrisate-13-acetate (PMA, a PKC activator) and propofol did not increase the responses further compared with PMA or propofol alone. Three PKC inhibitors (staurosporine, calphostin C, and chelerythrine) did not affect basal EAAT3 activity but significantly inhibited the propofol-enhanced EAAT3 activity. Our results suggest that propofol enhances EAAT3 activity at clinically relevant concentrations and PKC may mediate these effects.
Collapse
Affiliation(s)
- Sang-Hwan Do
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, USA
| | | | | |
Collapse
|
16
|
Sandhu JK, Sikorska M, Walker PR. Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells. J Neurosci Res 2002; 68:604-14. [PMID: 12111850 DOI: 10.1002/jnr.10236] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Astrocytes are the predominant cell type in the vicinity of glutamatergic synapses, where they monitor and maintain low levels of glutamate. Synaptic homeostasis of glutamate involves its removal from the synaptic cleft via high-affinity glutamate transporters, glutamate transporter-1 (GLT-1)/excitatory amino acid transporters (EAAT)2 and glutamate and aspartate transporter (GLAST)/EAAT1, and glutamate-catabolizing enzyme, glutamine synthase. Glutamate transporters have been mostly characterized in rodent astrocytes, due to the lack of a convenient human cell system. We report here that NTera-2 (NT2/D1, a cell line derived from a human teratocarcinoma and known to differentiate into neurons) can also be differentiated by a 4-week treatment with retinoic acid into functional astrocytes (NT2/A). Differentiation was accompanied by decreased cell proliferation and cell-cycle arrest, as measured by flow cytometry, immunostaining for Ki67 and incorporation of 5-bromo-2'deoxyuridine (BrdU). Immunocytochemistry and Western blot analysis showed that NT2/A expressed glial fibrillary acidic protein, vimentin and S100beta. Reverse transcription polymerase chain reaction (PCR) detected mRNA encoding glutamate transporters GLT-1/EAAT2 and GLAST/EAAT1. The expression level of GLAST/EAAT1 was higher than that of GLT-1/EAAT2, which is a typical expression pattern for primary astrocytes. Functionality of the transporters was demonstrated by the uptake of (3)H-glutamate. NT2/A also expressed active glutamine synthase, and treatment with glutamate (up to 1 mM for 24 hr) was non-toxic, suggesting that these cells were capable of converting it to non-toxic metabolites. NT2/A and NT2-derived neurons could be grown as mixed cultures and this may prove to be a useful experimental model to study molecular mechanisms underlying glutamate excitotoxicity.
Collapse
Affiliation(s)
- Jagdeep K Sandhu
- Apoptosis Research Group, Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
17
|
Abstract
In this study I examined whether isoflurane, an inhalational anesthetic used commonly in clinical practice, affected glutamate uptake via glutamate transporters, proteins expressed in the plasma membrane of cells in the central nervous system. Isoflurane at clinically relevant concentrations (1-3%) caused a time-, sodium- and concentration-dependent increase of glutamate uptake in primary cultures of rat cerebral mixed glial cells. This enhancement was inhibited by a specific glutamate transporter inhibitor. The study also demonstrated that 2.0% isoflurane significantly increased both Vmax and Km of transporter-mediated glutamate uptake. Thus, isoflurane enhances glutamate uptake by a pathway that requires function of glutamate transporters. This represents a novel pharmacological effect of inhalational anesthetics and may contribute to isoflurane-induced anesthesia and neuroprotective effects.
Collapse
Affiliation(s)
- Z Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville 22908-0710, USA
| |
Collapse
|
18
|
Traystman RJ, Klaus JA, DeVries AC, Shaivitz AB, Hurn PD. Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes. Stroke 2001; 32:783-7. [PMID: 11239202 DOI: 10.1161/01.str.32.3.783] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Recent results suggest that selective inhibitors of presynaptic neuronal ion channels can diminish glutamate release during cerebral ischemia and modulate excitotoxic cell death. The aim of the present study was to evaluate lamotrigine (LTG), an antiepileptic that inhibits presynaptic sodium and voltage-sensitive calcium channels, as a potential stroke resuscitation agent in the rat. Three dosages of LTG were examined for effect on infarction volume and sensorimotor behavioral recovery after middle cerebral artery (MCA) occlusion. METHODS Halothane-anesthetized male Wistar rats were subjected to 2 hours of MCA occlusion by the intraluminal occlusion technique. Physiological variables were controlled, and ipsilateral cortical perfusion was monitored by laser Doppler flowmetry throughout ischemia. At onset of reperfusion, rats received intravenous LTG 5, 10, or 20 mg/kg or PBS (n=9 to 11 per group) during 15 minutes. Behavioral assessment was completed at 3 and 7 days after stroke, and the brain was harvested for histology (triphenyltetrazolium chloride staining). RESULTS Values are mean+/-SE. Cortical infarction volumes were unchanged in LTG-treated animals: 14+/-6% of contralateral cortex at 5 mg/kg LTG, 17+/-7% at 10 mg/kg, and 30+/-6% at 20 mg/kg, versus saline-treated cohorts (12+/-3%; P:=0.19; n=9). Caudate-putamen infarction injury was also unchanged (37+/-11% of contralateral caudate-putamen at 5 mg/kg LTG, 44+/-8% at 10 mg/kg, and 65+/-9% at 20 mg/kg versus saline (38+/-11%; P:=0.18). Total infarction was not different among groups (P:=0.15). Consistent with histology, behavioral outcomes were unimproved by treatment. CONCLUSIONS Histological damage and behavioral recovery at 7 days after MCA occlusion was not altered by LTG treatment over the dosage range used in the present study.
Collapse
Affiliation(s)
- R J Traystman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
19
|
Abstract
The ionotropic glutamate receptor (GluR) subtype known as the AMPA receptor, which mediates rapid excitatory synaptic transmission in many regions of the nervous system, is composed of four different protein subunits, termed GluRs 1-4. The functional properties of each AMPA receptor are determined by the relative levels of GluRs 1-4 and by post-transcriptional modifications of these proteins through mRNA editing and alternative exon splicing. The present paper reviews the published evidence for (1) localization of mRNAs and immunoreactivity for GluRs 1-4 in the cochlea and subcortical central nervous system auditory pathways of mammals and birds, and (2) involvement of AMPA receptors in synaptic transmission in the auditory system. Recent biochemical and electrophysiological evidence concerning the specialized properties of AMPA receptors on brainstem auditory neurons is also reviewed, along with data concerning how these properties emerge during normal development.
Collapse
Affiliation(s)
- T N Parks
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|