1
|
González-García M, Carrillo-Franco L, Morales-Luque C, Dawid-Milner MS, López-González MV. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. BIOLOGY 2024; 13:118. [PMID: 38392336 PMCID: PMC10886357 DOI: 10.3390/biology13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker-Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. These cores of autonomic structures are not only involved in the generation and modulation of cardiorespiratory responses to various stressors but also help to shape the cardiorespiratory motor patterns that are important for vocal production. Clinical studies show increased activity in the central circuits responsible for vocalization in certain speech disorders, such as spasmodic dysphonia because of laryngeal dystonia.
Collapse
Affiliation(s)
- Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| |
Collapse
|
2
|
Kaplan GB, Thompson BL. Neuroplasticity of the extended amygdala in opioid withdrawal and prolonged opioid abstinence. Front Pharmacol 2023; 14:1253736. [PMID: 38044942 PMCID: PMC10690374 DOI: 10.3389/fphar.2023.1253736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Opioid use disorder is characterized by excessive use of opioids, inability to control its use, a withdrawal syndrome upon discontinuation of opioids, and long-term likelihood of relapse. The behavioral stages of opioid addiction correspond with affective experiences that characterize the opponent process view of motivation. In this framework, active involvement is accompanied by positive affective experiences which gives rise to "reward craving," whereas the opponent process, abstinence, is associated with the negative affective experiences that produce "relief craving." Relief craving develops along with a hypersensitization to the negatively reinforcing aspects of withdrawal during abstinence from opioids. These negative affective experiences are hypothesized to stem from neuroadaptations to a network of affective processing called the "extended amygdala." This negative valence network includes the three core structures of the central nucleus of the amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (NAc shell), in addition to major inputs from the basolateral amygdala (BLA). To better understand the major components of this system, we have reviewed their functions, inputs and outputs, along with the associated neural plasticity in animal models of opioid withdrawal. These models demonstrate the somatic, motivational, affective, and learning related models of opioid withdrawal and abstinence. Neuroadaptations in these stress and motivational systems are accompanied by negative affective and aversive experiences that commonly give rise to relapse. CeA neuroplasticity accounts for many of the aversive and fear-related effects of opioid withdrawal via glutamatergic plasticity and changes to corticotrophin-releasing factor (CRF)-containing neurons. Neuroadaptations in BNST pre-and post-synaptic GABA-containing neurons, as well as their noradrenergic modulation, may be responsible for a variety of aversive affective experiences and maladaptive behaviors. Opioid withdrawal yields a hypodopaminergic and amotivational state and results in neuroadaptive increases in excitability of the NAc shell, both of which are associated with increased vulnerability to relapse. Finally, BLA transmission to hippocampal and cortical regions impacts the perception of conditioned aversive effects of opioid withdrawal by higher executive systems. The prevention or reversal of these varied neuroadaptations in the extended amygdala during opioid withdrawal could lead to promising new interventions for this life-threatening condition.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
3
|
Maurício LS, Leme DP, Hötzel MJ. How to Understand Them? A Review of Emotional Indicators in Horses. J Equine Vet Sci 2023; 126:104249. [PMID: 36806715 DOI: 10.1016/j.jevs.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Stabled horses often experience negative emotions due to the inappropriate living conditions imposed by humans. However, identifying what emotions horses experience and what can trigger positive and negative emotions in stabled horses can be challenging. In this article we present a brief history of the study of emotions and models that explain emotions from a scientific point of view and the physiological bases and functions of emotions. We then review and discuss physiological and behavioral indicators and cognitive bias tests developed to assess emotions in horses. Hormone concentrations, body temperature, the position of the ears, facial expressions and behaviors, such as approach and avoidance behaviors, can provide valuable information about emotional states in horses. The cognitive bias paradigm is a recent and robust tool to assess emotions in horses. Knowing how to evaluate the intensity and frequency of an individual's emotions can guide horse owners and caretakers to identify practices and activities that should be stimulated, avoided or even banned from the individual's life, in favor of a life worth living. The development and validation of novel indicators of emotions considering positive and negative contexts can help in these actions.
Collapse
Affiliation(s)
- Letícia Santos Maurício
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Denise Pereira Leme
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maria José Hötzel
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
de Carvalho M, Swash M. Upper and lower motor neuron neurophysiology and motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:17-29. [PMID: 37562869 DOI: 10.1016/b978-0-323-98818-6.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This chapter considers the principles that underlie neurophysiological studies of upper motor neuron or lower motor neuron lesions, based on an understanding of the normal structure and function of the motor system. Human motor neurophysiology consists of an evaluation of the active components of the motor system that are relevant to volitional movements. Relatively primitive motor skills include locomotion, much dependent on the spinal cord central pattern generator, reaching, involving proximal and distal muscles activation, and grasping. Humans are well prepared to perform complex movements like writing. The role of motor cortex is critical for the motor activity, very dependent on the continuous sensory feedback, and this is essential for adapting the force and speed control, which contributes to motor learning. Most corticospinal neurons in the brain project to brainstem and spinal cord, many with polysynaptic inhibitory rather than excitatory connections. The monosynaptic connections observed in humans and primates constitute a specialized pathway implicated in fractional finger movements. Spinal cord has a complex physiology, and local reflexes and sensory feedback are essential to control adapted muscular contraction during movement. The cerebellum has a major role in motor coordination, but also consistent roles in sensory activities, speech, and language, in motor and spatial memory, and in psychological activity. The motor unit is the final effector of the motor drive. The complex interplay between the lower motor neuron, its axon, motor end-plates, and muscle fibers allows a relevant plasticity in the movement output.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.
| | - Michael Swash
- Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Barts and London School of Medicine, Queen Mary University of London and Royal London Hospital, London, United Kingdom
| |
Collapse
|
5
|
Singh K, García-Gomar MG, Cauzzo S, Staab JP, Indovina I, Bianciardi M. Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:3086-3112. [PMID: 35305272 PMCID: PMC9188976 DOI: 10.1002/hbm.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high‐spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area‐parabrachial pigmented, microcellular tegmental–parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus‐alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, Staab J, Indovina I, Bianciardi M. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage 2022; 250:118925. [PMID: 35074504 DOI: 10.1016/j.neuroimage.2022.118925] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus - alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.
Collapse
Affiliation(s)
- Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy; Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Jeffrey Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
7
|
Singh K, Cauzzo S, García-Gomar MG, Stauder M, Vanello N, Passino C, Bianciardi M. Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI. Neuroimage 2022; 249:118865. [PMID: 35031472 DOI: 10.1016/j.neuroimage.2021.118865] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
8
|
Schaefer LV, Dech S, Aehle M, Bittmann FN. Disgusting odours affect the characteristics of the Adaptive Force in contrast to neutral and pleasant odours. Sci Rep 2021; 11:16410. [PMID: 34385522 PMCID: PMC8361115 DOI: 10.1038/s41598-021-95759-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
The olfactomotor system is especially investigated by examining the sniffing in reaction to olfactory stimuli. The motor output of respiratory-independent muscles was seldomly considered regarding possible influences of smells. The Adaptive Force (AF) characterizes the capability of the neuromuscular system to adapt to external forces in a holding manner and was suggested to be more vulnerable to possible interfering stimuli due to the underlying complex control processes. The aim of this pilot study was to measure the effects of olfactory inputs on the AF of the hip and elbow flexors, respectively. The AF of 10 subjects was examined manually by experienced testers while smelling at sniffing sticks with neutral, pleasant or disgusting odours. The reaction force and the limb position were recorded by a handheld device. The results show, inter alia, a significantly lower maximal isometric AF and a significantly higher AF at the onset of oscillations by perceiving disgusting odours compared to pleasant or neutral odours (p < 0.001). The adaptive holding capacity seems to reflect the functionality of the neuromuscular control, which can be impaired by disgusting olfactory inputs. An undisturbed functioning neuromuscular system appears to be characterized by a proper length tension control and by an earlier onset of mutual oscillations during an external force increase. This highlights the strong connection of olfaction and motor control also regarding respiratory-independent muscles.
Collapse
Affiliation(s)
- Laura V Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Silas Dech
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Markus Aehle
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Frank N Bittmann
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
9
|
Subramanian HH, Balnave R, Holstege G. Response to Pamela Davis and Shi Ping Zhang. J Voice 2021; 37:458-460. [PMID: 33676808 DOI: 10.1016/j.jvoice.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Ron Balnave
- School of Biomedical Sciences, The University of Sydney, Australia
| | - Gert Holstege
- University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat. Nat Commun 2020; 11:5386. [PMID: 33106488 PMCID: PMC7588412 DOI: 10.1038/s41467-020-19167-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023] Open
Abstract
Stress-related disorders such as depression and anxiety are characterized by enhanced negative emotion and physiological dysfunction. Whilst elevated activity within area 25 of the subgenual anterior cingulate cortex (sgACC/25) has been implicated in these illnesses, it is unknown whether this over-activity is causal. By combining targeted intracerebral microinfusions with cardiovascular and behavioral monitoring in marmosets, we show that over-activation of sgACC/25 reduces vagal tone and heart rate variability, alters cortisol dynamics during stress and heightens reactivity to proximal and distal threat. 18F-FDG PET imaging shows these changes are accompanied by altered activity within a network of brain regions including the amygdala, hypothalamus and dorsolateral prefrontal cortex. Ketamine, shown to have rapid antidepressant effects, fails to reverse elevated arousal to distal threat contrary to the beneficial effects we have previously demonstrated on over-activation induced reward blunting, illustrating the symptom-specificity of its actions. Alexander et al. causally implicate over-activity in primate subgenual cingulate in affective and cardiovascular dysfunction relevant to anxiety and depression. Over-activation led to elevated activity in a stress-related network whilst decreasing activity in higher-order prefrontal cognitive regions.
Collapse
|
11
|
Neural Signals in Red Nucleus during Reactive and Proactive Adjustments in Behavior. J Neurosci 2020; 40:4715-4726. [PMID: 32376779 PMCID: PMC7294803 DOI: 10.1523/jneurosci.2775-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to adjust behavior is an essential component of cognitive control. Much is known about frontal and striatal processes that support cognitive control, but few studies have investigated how motor signals change during reactive and proactive adjustments in motor output. To address this, we characterized neural signals in red nucleus (RN), a brain region linked to motor control, as male and female rats performed a novel variant of the stop-signal task. We found that activity in RN represented the direction of movement and was strongly correlated with movement speed. Additionally, we found that directional movement signals were amplified on STOP trials before completion of the response and that the strength of RN signals was modulated when rats exhibited cognitive control. These results provide the first evidence that neural signals in RN integrate cognitive control signals to reshape motor outcomes reactively within trials and proactivity across them.SIGNIFICANCE STATEMENT Healthy human behavior requires the suppression or inhibition of errant or maladaptive motor responses, often called cognitive control. While much is known about how frontal brain regions facilitate cognitive control, less is known about how motor regions respond to rapid and unexpected changes in action selection. To address this, we recorded from neurons in the red nucleus, a motor region thought to be important for initiating movement in rats performing a cognitive control task. We show that red nucleus tracks motor plans and that selectivity was modulated on trials that required shifting from one motor response to another. Collectively, these findings suggest that red nucleus contributes to modulating motor behavior during cognitive control.
Collapse
|
12
|
Microstimulation in Different Parts of the Periaqueductal Gray Generates Different Types of Vocalizations in the Cat. J Voice 2020; 35:804.e9-804.e25. [PMID: 32147316 DOI: 10.1016/j.jvoice.2020.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/20/2022]
Abstract
In the cat four different types of vocalization, mews, howls, cries, and hisses were generated by microstimulation in different parts of the periaqueductal gray (PAG). While mews imply positive vocal expressions, howls, hisses, and cries represent negative vocal expressions. In the intermediate PAG, mews were generated in the lateral column, howls, and hisses in the ventrolateral column. Cries were generated in two other regions, the lateral column of the rostral PAG and the ventrolateral column of the caudal PAG. In order to define the specific motor patterns of the mews, howls, and cries, the following muscles were recorded during these vocalizations; larynx (cricothyroid, thyroarytenoid, and posterior cricoarytenoid), tongue (genioglossus), jaw (digastric), and respiration muscles (diaphragm, internal intercostal, external, and internal abdominal oblique). During these mews, howls, and cries we analyzed the frequency, intensity, activation cascades power density, turns, and amplitude analysis of the electromyograms (EMGs). It appeared that each type of vocalization consists of a specific circumscribed motor coordination. The nucleus retroambiguus (NRA) in the caudal medulla is known to serve as the final premotor interneuronal output system for vocalization. Although neurochemical microstimulation in the NRA itself also generated vocalizations, they only consisted of guttural sounds, the EMGs of which involved only small parts of the EMGs of the mews, howls, and cries generated by neurochemical stimulation in the PAG. These results demonstrate that positive and negative vocalizations are generated in different parts of the PAG. These parts have access to different groups of premotoneurons in the NRA, that, in turn, have access to different groups of motoneurons in the brainstem and spinal cord, resulting in different vocalizations. The findings would serve a valuable model for diagnostic assessment of voice disorders in humans.
Collapse
|
13
|
Noble DJ, Martin KK, Parvin S, Garraway SM. Spontaneous and Stimulus-Evoked Respiratory Rate Elevation Corresponds to Development of Allodynia in Spinal Cord-Injured Rats. J Neurotrauma 2019; 36:1909-1922. [PMID: 30489202 DOI: 10.1089/neu.2018.5936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory complications frequently accompany spinal cord injury (SCI) and slowed breathing has been shown to mitigate pain sensitivity. It is possible that elevated respiratory rates (RRs) signal the emergence of chronic pain after SCI. We previously validated the use of remote electric field sensors to noninvasively track breathing in freely behaving rodents. Here, we examined spontaneous (resting) and stimulus-evoked RRs as potential indices of mechanical hypersensitivity following SCI. Adult male Long-Evans rats received a lower thoracic hemisection or contusion SCI, or sham surgery, and underwent weekly assessments of mechanical and thermal sensitivity using the von Frey and Hargreaves tests, respectively. Resting RRs were recorded with remote sensors prior to nociception assays as well as 1 day post-surgery. Evoked RRs were quantified weekly in response to at-level mechanical stimulation provided by a small brush at various stimulation speeds, including those corresponding to the distinct tuning properties of a sub-population of cutaneous afferents known as C-low threshold mechanoreceptors. SCI rats developed mechanical hypersensitivity, which peaked 2-3 weeks after SCI. Compared with at baseline, hemisection SCI rats showed significantly heightened resting RRs at 1 day and 7 days post-injury, and the latter predicted development of pain hypersensitivity. In contusion SCI rats, resting RR increases were less substantial but occurred at all weekly time-points. Increases in brush-evoked RR coincided with full expression of hypersensitivity at 14 (hemisection) or 21 (contusion) days after SCI, and these effects were restricted to the lowest brush speeds. Our results support the possibility that early changes in RR may convey pain information in rats.
Collapse
Affiliation(s)
- Donald J Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Karmarcha K Martin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Alexander L, Clarke HF, Roberts AC. A Focus on the Functions of Area 25. Brain Sci 2019; 9:E129. [PMID: 31163643 PMCID: PMC6627335 DOI: 10.3390/brainsci9060129] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Subcallosal area 25 is one of the least understood regions of the anterior cingulate cortex, but activity in this area is emerging as a crucial correlate of mood and affective disorder symptomatology. The cortical and subcortical connectivity of area 25 suggests it may act as an interface between the bioregulatory and emotional states that are aberrant in disorders such as depression. However, evidence for such a role is limited because of uncertainty over the functional homologue of area 25 in rodents, which hinders cross-species translation. This emphasizes the need for causal manipulations in monkeys in which area 25, and the prefrontal and cingulate regions in which it is embedded, resemble those of humans more than rodents. In this review, we consider physiological and behavioral evidence from non-pathological and pathological studies in humans and from manipulations of area 25 in monkeys and its putative homologue, the infralimbic cortex (IL), in rodents. We highlight the similarities between area 25 function in monkeys and IL function in rodents with respect to the regulation of reward-driven responses, but also the apparent inconsistencies in the regulation of threat responses, not only between the rodent and monkey literatures, but also within the rodent literature. Overall, we provide evidence for a causal role of area 25 in both the enhanced negative affect and decreased positive affect that is characteristic of affective disorders, and the cardiovascular and endocrine perturbations that accompany these mood changes. We end with a brief consideration of how future studies should be tailored to best translate these findings into the clinic.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Hannah F Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
15
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
16
|
Park KS, Hass CJ, Fawver B, Lee H, Janelle CM. Emotional states influence forward gait during music listening based on familiarity with music selections. Hum Mov Sci 2019; 66:53-62. [PMID: 30913416 DOI: 10.1016/j.humov.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Music elicits a wide range of human emotions, which influence human movement. We sought to determine how emotional states impact forward gait during music listening, and whether the emotional effects of music on gait differ as a function of familiarity with music. Twenty-four healthy young adults completed walking trials while listening to four types of music selections: experimenter-selected music (unfamiliar-pleasant), its dissonant counterpart (unfamiliar-unpleasant), each participant's self-selected favorite music (familiar-pleasant), and its dissonant counterpart (familiar-unpleasant). Faster gait velocity, cadence, and stride time, as well as longer stride length were identified during pleasant versus unpleasant music conditions. Increased gait velocity, stride length, and cadence as well as reduced stride time were positively correlated with subjective ratings of emotional arousal and pleasure as well as musical emotions such as happiness-elation, nostalgia-longing, interest-expectancy, pride-confidence, and chills, and they were negatively related to anger-irritation and disgust-contempt. Moreover, familiarity with music interacted with emotional responses to influence gait kinematics. Gait velocity was faster in the familiar-pleasant music condition relative to the familiar-unpleasant condition, primarily due to longer stride length. In contrast, no differences in any gait parameters were found between unfamiliar-pleasant and unfamiliar-unpleasant music conditions. These results suggest emotional states influence gait behavior during music listening and that such effects are altered by familiarity with music. Our findings provide fundamental evidence of the impact of musical emotion on human gait, with implications for using music to enhance motor performance in clinical and performance settings.
Collapse
Affiliation(s)
- K Shin Park
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Bradley Fawver
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, USA
| | - Hyokeun Lee
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Christopher M Janelle
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Faull OK, Subramanian HH, Ezra M, Pattinson KTS. The midbrain periaqueductal gray as an integrative and interoceptive neural structure for breathing. Neurosci Biobehav Rev 2019; 98:135-144. [PMID: 30611797 DOI: 10.1016/j.neubiorev.2018.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/08/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023]
Abstract
The periaqueductal gray (PAG) plays a critical role in autonomic function and behavioural responses to threatening stimuli. Recent evidence has revealed the PAG's potential involvement in the perception of breathlessness, a highly threatening respiratory symptom. In this review, we outline the current evidence in animals and humans on the role of the PAG in respiratory control and in the perception of breathlessness. While recent work has unveiled dissociable brain activity within the lateral PAG during perception of breathlessness and ventrolateral PAG during conditioned anticipation in healthy humans, this is yet to be translated into diseases dominated by breathlessness symptomology, such as chronic obstructive pulmonary disease. Understanding how the sub-structures of the PAG differentially interact with interoceptive brain networks involved in the perception of breathlessness will help towards understanding discordant symptomology, and may reveal treatment targets for those debilitated by chronic and pervasive breathlessness.
Collapse
Affiliation(s)
- Olivia K Faull
- Translational Neuromodeling Unit, University of Zürich and ETH Zürich, Zürich, Switzerland; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | | | - Martyn Ezra
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kyle T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Sojka P, Bareš M, Kašpárek T, Světlák M. Processing of Emotion in Functional Neurological Disorder. Front Psychiatry 2018; 9:479. [PMID: 30344497 PMCID: PMC6182079 DOI: 10.3389/fpsyt.2018.00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023] Open
Abstract
Emotions have traditionally been considered crucial in the development of functional neurological disorder, but the evidence underpinning this association is not clear. We aimed to summarize evidence for association between functional neurological disorder and emotions as formulated by Breuer and Freud in their conception of hysterical conversion. Based on a systematic literature search, we identified 34 controlled studies and categorized them into four groups: (i) autonomic arousal, (ii) emotion-motion interactions, (iii) social modulation of symptoms, and (iv) bodily awareness in FND. We found evidence for autonomic dysregulation in FND; convergent neuroimaging findings implicate abnormal limbic-motor interactions in response to emotional stimuli in FND. Our results do not provide enough empirical evidence for social modulation of the symptoms, but there is a clinical support for the role of suggestion and placebo in FND. Our results provide evidence for abnormal bodily awareness in FND. Based on these findings, we propose that functional neurological symptoms are forms of emotional reactions shaped into symptoms by previous experience with illness and possibly reinforced by actual social contexts. Additional research should investigate the effect of social context on the intensity of functional neurological symptoms and associated brain regions.
Collapse
Affiliation(s)
- Petr Sojka
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
| | - Martin Bareš
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Tomáš Kašpárek
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Miroslav Světlák
- Department of Neurology, Faculty of Medicine, Masaryk University and St Anne's University Hospital Brno, Brno, Czechia
- Department of Psychology and Psychosomatics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| |
Collapse
|
19
|
Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS. Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 2018; 223:2907-2924. [PMID: 29700637 PMCID: PMC5997555 DOI: 10.1007/s00429-018-1669-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
The lateral preoptic area (LPO) and ventral pallidum (VP) are structurally and functionally distinct territories in the subcommissural basal forebrain. It was recently shown that unilateral infusion of the GABAA receptor antagonist, bicuculline, into the LPO strongly invigorates exploratory locomotion, whereas bicuculline infused unilaterally into the VP has a negligible locomotor effect, but when infused bilaterally, produces vigorous, abnormal pivoting and gnawing movements and compulsive ingestion. This study was done to further characterize these responses. We observed that bilateral LPO infusions of bicuculline activate exploratory locomotion only slightly more potently than unilateral infusions and that unilateral and bilateral LPO injections of the GABAA receptor agonist muscimol potently suppress basal locomotion, but only modestly inhibit locomotion invigorated by amphetamine. In contrast, unilateral infusions of muscimol into the VP affect basal and amphetamine-elicited locomotion negligibly, but bilateral VP muscimol infusions profoundly suppress both. Locomotor activation elicited from the LPO by bicuculline was inhibited modestly and profoundly by blockade of dopamine D2 and D1 receptors, respectively, but was not entirely abolished even under combined blockade of dopamine D1 and D2 receptors. That is, infusing the LPO with bic caused instances of near normal, even if sporadic, invigoration of locomotion in the presence of saturating dopamine receptor blockade, indicating that LPO can stimulate locomotion in the absence of dopamine signaling. Pivoting following bilateral VP bicuculline infusions was unaffected by dopamine D2 receptor blockade, but was completely suppressed by D1 receptor blockade. The present results are discussed in a context of neuroanatomical and functional organization underlying exploratory locomotion and adaptive movements.
Collapse
Affiliation(s)
- Suriya Subramanian
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Rhett A Reichard
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Hunter S Stevenson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Zachary M Schwartz
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
20
|
Wang X, Smith K, Pearson M, Hughes A, Cosden ML, Marcus J, Hess JF, Savage MJ, Rosahl T, Smith SM, Schachter JB, Uslaner JM. Early intervention of tau pathology prevents behavioral changes in the rTg4510 mouse model of tauopathy. PLoS One 2018; 13:e0195486. [PMID: 29624602 PMCID: PMC5889169 DOI: 10.1371/journal.pone.0195486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/24/2018] [Indexed: 11/19/2022] Open
Abstract
Although tau pathology, behavioral deficits, and neuronal loss are observed in patients with tauopathies, the relationship between these endpoints has not been clearly established. Here we found that rTg4510 mice, which overexpress human mutant tau in the forebrain, develop progressive age-dependent increases in locomotor activity (LMA), which correlates with neurofibrillary tangle (NFT) pathology, hyperphosphorylated tau levels, and brain atrophy. To further clarify the relationship between these endpoints, we treated the rTg4510 mice with either doxycycline to reduce mutant tau expression or an O-GlcNAcase inhibitor Thiamet G, which has been shown to ameliorate tau pathology in animal models. We found that both doxycycline and Thiamet G treatments starting at 2 months of age prevented the progression of hyperactivity, slowed brain atrophy, and reduced brain hyperphosphorylated tau. In contrast, initiating doxycycline treatment at 4 months reduced neither brain hyperphosphorylated tau nor hyperactivity, further confirming the relationship between these measures. Collectively, our results demonstrate a unique behavioral phenotype in the rTg4510 mouse model of tauopathy that strongly correlates with disease progression, and that early interventions which reduce tau pathology ameliorate the progression of the locomotor dysfunction. These findings suggest that better understanding the relationship between locomotor deficits and tau pathology in the rTg4510 model may improve our understanding of the mechanisms underlying behavioral disturbances in patients with tauopathies.
Collapse
Affiliation(s)
- Xiaohai Wang
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
- * E-mail:
| | - Karen Smith
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Michelle Pearson
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Anna Hughes
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Mali L. Cosden
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Jacob Marcus
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - J. Fred Hess
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Mary J. Savage
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Thomas Rosahl
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Sean M. Smith
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Joel B. Schachter
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Jason M. Uslaner
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| |
Collapse
|
21
|
Nakayama Y, Shimizu T, Matsuda C, Haraguchi M, Hayashi K, Mochizuki Y, Nagao M, Kawata A, Isozaki E. Non-motor manifestations in ALS patients with tracheostomy and invasive ventilation. Muscle Nerve 2017; 57:735-741. [PMID: 29105161 DOI: 10.1002/mus.26004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022]
Abstract
INTRODUCTION This study aimed to investigate non-motor manifestations in amyotrophic lateral sclerosis (ALS) patients with tracheostomy and invasive ventilation (TIV) and their relevance to disease progression. METHODS Sixty-seven ALS patients with TIV were enrolled, and followed-up prospectively. The patients were classified at the final evaluation into two subgroups according to the duration of TIV use or disease stage measured by communication impairment. We identified non-motor manifestations and investigated their frequencies and differences across the stages. RESULTS The non-motor manifestations were macroglossia (22.4%), unstable blood pressure (38.8%), hypothermia (26.9%), dysuria (50.7%), and hyperglycemia (12.1%). These manifestations occurred significantly more frequently in patients with TIV ≥5 years than in patients with TIV <5 years, and more in patients with severe communication impairment than in those with preserved communication ability. DISCUSSION Non-motor manifestations are observed at a high rate in ALS patients with TIV, and are possibly related to disease progression. Muscle Nerve 57: 735-741, 2018.
Collapse
Affiliation(s)
- Yuki Nakayama
- ALS Nursing Care Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Chiharu Matsuda
- ALS Nursing Care Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michiko Haraguchi
- ALS Nursing Care Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yoko Mochizuki
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Masahiro Nagao
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Subramanian HH, Huang ZG, Silburn PA, Balnave RJ, Holstege G. The physiological motor patterns produced by neurons in the nucleus retroambiguus in the rat and their modulation by vagal, peripheral chemosensory, and nociceptive stimulation. J Comp Neurol 2017; 526:229-242. [DOI: 10.1002/cne.24318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Hari H. Subramanian
- Queensland Brain Institute, Asia-Pacific Centre for Neuromodulation, The University of Queensland; Brisbane 4072 Australia
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
| | - Zheng-Gui Huang
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
- Department of Pharmacology; Wannan Medical College; Wuhu City Anhui Province 241002 People's Republic of China
| | - Peter A. Silburn
- Queensland Brain Institute, Asia-Pacific Centre for Neuromodulation, The University of Queensland; Brisbane 4072 Australia
| | - Ron J. Balnave
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
| | - Gert Holstege
- The University of Queensland; Brisbane 4072 Australia
| |
Collapse
|
23
|
Safarpour Y, Mousavi T, Jabbari B. Botulinum Toxin Treatment in Multiple Sclerosis-a Review. Curr Treat Options Neurol 2017; 19:33. [PMID: 28819801 DOI: 10.1007/s11940-017-0470-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of review The purpose of this review is to provide updated information on the role of botulinum neurotoxin (BoNT) therapy in multiple sclerosis (MS). This review aims to answer which symptoms of multiple sclerosis may be amenable to BoNT therapy. Recent findings We searched the literature on the efficacy of BoNTs for treatment of MS symptoms up to April 1st 2017 via the Yale University Library's search engine including but not limited to Pub Med and Ovis SP. The level of efficacy was defined according to the assessment's criteria set forth by the Subcommittee on Guideline Development of the American Academy of Neurology. Significant efficacy was found for two indications based on the available blinded studies (class I and II) and has been suggested for several others through open-label clinical trials. Summary There is level A evidence (effective- two or more class I) that injection of BoNT-A into the bladder's detrusor muscle improves MS-related neurogenic detrusor overactivity (NDO) and MS-related overactive (OA) bladder. There is level B evidence (probably effective- two class II studies) for utility of intramuscular BoNT-A injections for spasticity of multiple sclerosis. Emerging data based on retrospective class IV studies demonstrates that intramuscular injection of BoNTs may help other symptoms of MS such as focal tonic spasms, focal myokymia, spastic dysphagia, and double vision in internuclear ophthalmoplegia. There is no data on MS-related trigeminal neuralgia and sialorrhea, two conditions which have been shown to respond to BoNT therapy in non-MS population.
Collapse
|
24
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
25
|
Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. NATURE REVIEWS. MATERIALS 2017; 2:16093. [PMID: 31448131 PMCID: PMC6707077 DOI: 10.1038/natrevmats.2016.93] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Within the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the tools capable of probing the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not address the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices capable of simultaneous recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes, and look at emergent directions inspired by the principles of neural transduction.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Holstege G. How the Emotional Motor System Controls the Pelvic Organs. Sex Med Rev 2016; 4:303-328. [DOI: 10.1016/j.sxmr.2016.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/27/2022]
|
27
|
Hashikawa K, Hashikawa Y, Falkner A, Lin D. The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 2016; 38:27-37. [PMID: 26849838 DOI: 10.1016/j.conb.2016.01.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 01/02/2023]
Abstract
Tinbergen proposed that instinctive behaviors can be divided into appetitive and consummatory phases. During mating and aggression, the appetitive phase contains various actions to bring an animal to a social target and the consummatory phase allows stereotyped actions to take place. Here, we summarize recent advances in elucidating the neural circuits underlying the appetitive and consummatory phases of sexual and aggressive behaviors with a focus on male mice. We outline the role of the main olfactory inputs in the initiation of social approach; the engagement of the accessory olfactory system during social investigation, and the role of the hypothalamus and its downstream pathways in orchestrating social behaviors through a suite of motor actions.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Yoshiko Hashikawa
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Annegret Falkner
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Dayu Lin
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
28
|
Holstege G, Subramanian HH. Two different motor systems are needed to generate human speech. J Comp Neurol 2015; 524:1558-77. [DOI: 10.1002/cne.23898] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Gert Holstege
- Asia-Pacific Centre for Neuromodulation; Queensland Brain Institute; The University of Queensland; Brisbane 4072 Australia
| | - Hari H. Subramanian
- Asia-Pacific Centre for Neuromodulation; Queensland Brain Institute; The University of Queensland; Brisbane 4072 Australia
| |
Collapse
|
29
|
Sivertsen MS, Perreault MC, Glover JC. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories. J Comp Neurol 2015; 524:1270-91. [PMID: 26400815 DOI: 10.1002/cne.23904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023]
Abstract
We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628-1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the pontine reticular formation (PRF). We obtained estimates of relative neuron numbers by counting from sections, digitally generated neuron position maps, and 3D reconstructions. Ipsilateral pRS neurons outnumber contralateral pRS neurons by threefold and are distributed about equally in rostral and caudal regions of the PRF, whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron somata are on average larger than contralateral. No pRS neurons are positive in transgenic mice that report the expression of GAD, suggesting that they are predominantly excitatory. Putative GABAergic interneurons are interspersed among the pRS neurons, however. Ipsilateral and contralateral pRS axons have distinctly different trajectories within the brainstem. Their initial spinal funicular trajectories also differ, with ipsilateral and contralateral pRS axons more highly concentrated medially and laterally, respectively. The larger size and greater number of ipsilateral vs. contralateral pRS neurons is compatible with our previous finding that the uncrossed projection transmits more reliably to spinal motoneurons. The information about supraspinal and initial spinal pRS axon trajectories should facilitate future physiological assessment of synaptic connections between pRS neurons and spinal neurons.
Collapse
Affiliation(s)
- Magne S Sivertsen
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
| | | | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, 0317, Oslo, Norway
| |
Collapse
|
30
|
Subramanian HH, Arun M, Silburn PA, Holstege G. Motor organization of positive and negative emotional vocalization in the cat midbrain periaqueductal gray. J Comp Neurol 2015; 524:1540-57. [PMID: 26235936 DOI: 10.1002/cne.23869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022]
Abstract
Neurochemical microstimulation in different parts of the midbrain periaqueductal gray (PAG) in the cat generates four different types of vocalization, mews, howls, cries, and hisses. Mews signify positive vocal expression, whereas howls, hisses, and cries signify negative vocal communications. Mews were generated in the lateral column of the intermediate PAG and howls and hisses in the ventrolateral column of the intermediate PAG. Cries were generated in two regions, the lateral column of the rostral PAG and the ventrolateral column of the caudal PAG. To define the specific motor patterns belonging to mews, howls, and cries, the following muscles were recorded during these vocalizations: larynx (cricothyroid, thyroarytenoid, and posterior cricoarytenoid), tongue (genioglossus), jaw (digastric), and respiration (diaphragm, internal intercostal, external abdominal oblique, and internal abdominal oblique) muscles. Furthermore, the frequency, intensity, activation cascades, and turns and amplitude analyses of the electromyograms (EMGs) during these vocalizations were analyzed. The results show that each type of vocalization consists of a specific, circumscribed motor coordination. The nucleus retroambiguus (NRA) in the caudal medulla serves as the final premotor interneuronal output system for vocalization. NRA neurochemical microstimulation also generated vocalizations (guttural sounds). Analysis of the EMGs demonstrated that these vocalizations consist of only small parts of the emotional voalizations generated by neurochemical stimulation in the PAG. These results demonstrate that motor organization of positive and negative emotional vocal expressions are segregated in the PAG and that the PAG uses the NRA as a tool to gain access to the motoneurons generating vocalization.
Collapse
Affiliation(s)
| | - Mridula Arun
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute.,School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute
| | - Gert Holstege
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute
| |
Collapse
|
31
|
Wienecke J, Enríquez Denton M, Stecina K, Kirkwood PA, Hultborn H. Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves. Front Neural Circuits 2015; 9:1. [PMID: 25713515 PMCID: PMC4322721 DOI: 10.3389/fncir.2015.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves). Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2) and spontaneously occurring locomotor drive potentials (LDPs) in hindlimb motoneurons, together with hindlimb and phrenic nerve discharges. In four of the cats both drives and their voltage-dependent amplification were absent or modest, but in the other three, one or other of these drives was common and the voltage-dependent amplification was frequently strong. Moreover, in these three cats the blood pressure showed marked periodic variation (Mayer waves), with a slow rate (periods 9–104 s, mean 39 ± 17 SD). Profound modulation, synchronized with the Mayer waves was seen in the occurrence and/or in the amplification of the CRDPs or LDPs. In one animal, where CRDPs were present in most cells and the amplification was strong, the CRDP consistently triggered sustained plateaux at one phase of the Mayer wave cycle. In the other two animals, LDPs were common, and the occurrence of the locomotor drive was gated by the Mayer wave cycle, sometimes in alternation with the respiratory drive. Other interactions between the two drives involved respiration providing leading events, including co-activation of flexors and extensors during post-inspiration or a locomotor drive gated or sometimes entrained by respiration. We conclude that the respiratory drive in hindlimb motoneurons is transmitted via elements of the locomotor central pattern generator. The rapid modulation related to Mayer waves suggests the existence of a more direct and specific descending modulatory control than has previously been demonstrated.
Collapse
Affiliation(s)
- Jacob Wienecke
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen Copenhagen, Denmark ; Department of Nutrition, Exercise and Sports, The Panum Institute, University of Copenhagen Copenhagen, Denmark
| | - Manuel Enríquez Denton
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen Copenhagen, Denmark ; Sobell Department for Motor Neuroscience and Movement Disorders, University College London Institute of Neurology London, UK ; Universidad del Valle de México Mexico City, Mexico
| | - Katinka Stecina
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen Copenhagen, Denmark ; Department of Physiology and Pathophysiology, University of Manitoba Winnipeg, MB, Canada
| | - Peter A Kirkwood
- Sobell Department for Motor Neuroscience and Movement Disorders, University College London Institute of Neurology London, UK
| | - Hans Hultborn
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
32
|
Lavezzi HN, Parsley KP, Zahm DS. Modulation of locomotor activation by the rostromedial tegmental nucleus. Neuropsychopharmacology 2015; 40:676-87. [PMID: 25164249 PMCID: PMC4289956 DOI: 10.1038/npp.2014.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022]
Abstract
The rostromedial tegmental nucleus (RMTg) is a strong inhibitor of dopamine neurons in the ventral tegmental area (VTA) reported to influence neurobiological and behavioral responses to reward omission, aversive and fear-eliciting stimuli, and certain drugs of abuse. Insofar as previous studies implicate ventral mesencephalic dopamine neurons as an essential component of locomotor activation, we hypothesized that the RMTg also should modulate locomotion activation. We observed that bilateral infusions into the RMTg of the gamma-aminobutyric acid A (GABAA) agonist, muscimol, indeed activate locomotion. Alternatively, bilateral RMTg infusions of the GABAA receptor antagonist, bicuculline, suppress robust activations of locomotion elicited in two distinct ways: (1) by disinhibitory stimulation of neurons in the lateral preoptic area and (2) by return of rats to an environment previously paired with amphetamine administration. The possibility that suppressive locomotor effects of RMTg bicuculline infusions were due to unintended spread of drug to the nearby VTA was falsified by a control experiment showing that bilateral infusions of bicuculline into the VTA produce activation rather than suppression of locomotion. These results objectively implicate the RMTg in the regulation of locomotor activation. The effect is important because much evidence reported in the literature suggests that locomotor activation can be an involuntary behavioral expression of expectation and/or want without which the willingness to execute adaptive behaviors is impaired.
Collapse
Affiliation(s)
- Heather N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, USA,Department of Pharmacological and Physiological, Science, St Louis University School of Medicine, 1402 S., Grand Boulevard, St Louis, MO 63104, USA, Tel: +1 314 977 8003, Fax: +1 314 977 6411, E-mail:
| |
Collapse
|
33
|
Grèzes J, Valabrègue R, Gholipour B, Chevallier C. A direct amygdala-motor pathway for emotional displays to influence action: A diffusion tensor imaging study. Hum Brain Mapp 2014; 35:5974-83. [PMID: 25053375 DOI: 10.1002/hbm.22598] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/01/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
An important evolutionary function of emotions is to prime individuals for action. Although functional neuroimaging has provided evidence for such a relationship, little is known about the anatomical substrates allowing the limbic system to influence cortical motor-related areas. Using diffusion-weighted magnetic resonance imaging and probabilistic tractography on a cohort of 40 participants, we provide evidence of a structural connection between the amygdala and motor-related areas (lateral and medial precentral, motor cingulate and primary motor cortices, and postcentral gyrus) in humans. We then compare this connection with the connections of the amygdala with emotion-related brain areas (superior temporal sulcus, fusiform gyrus, orbitofrontal cortex, and lateral inferior frontal gyrus) and determine which amygdala nuclei are at the origin of these projections. Beyond the well-known subcortical influences over automatic and stereotypical emotional behaviors, a direct amygdala-motor pathway might provide a mechanism by which the amygdala can influence more complex motor behaviors.
Collapse
Affiliation(s)
- Julie Grèzes
- Cognitive Neuroscience Laboratory, Inserm U960, Institute for Cognitive Studies, Ecole Normale Supérieure, Paris, France; Centre de NeuroImagerie de Recherche - CENIR, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie-Paris 6, UMR-S975, Inserm U975, CNRS UMR7225, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
34
|
Yang T, Bassuk AG, Stricker S, Fritzsch B. Prickle1 is necessary for the caudal migration of murine facial branchiomotor neurons. Cell Tissue Res 2014; 357:549-61. [PMID: 24927917 DOI: 10.1007/s00441-014-1925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Facial branchiomotor neurons (FBMs) of vertebrates typically develop in rhombomere 4 (r4), and in mammals and several other vertebrate taxa, migrate caudally into r6 and subsequently laterally and ventrally to the pial surface. How similar or dissimilar these migratory processes between species are at a molecular level remains unclear. In zebrafish and mouse, mutations in certain PCP genes disrupt normal caudal migration of FBMs. Zebrafish prickle1a (prickle-like 1a) and prickle1b, two orthologs of Prickle1, act non-cell-autonomously and cell-autonomously, respectively, to regulate FBM migration. Here, we show that, in Prickle1 (C251X/C251X) mice which have reduced Prickle1 expression, the caudal migration of FBMs is affected. Most FBM neurons do not migrate caudally along the floor plate. However, some neurons perform limited caudal migration such that the neurons eventually lie near the pial surface from r4 to anterior r6. FBMs in Prickle1 (C251X/C251X) mice survive until P0 and form an ectopic nucleus dorsal to the olivo-cochlear efferents of r4. Ror2, which modifies the PCP pathway in other systems, is expressed by the migrating mouse FBMs, but is not required for FBM caudal migration. Our results suggest that, in mice, Prickle1 is part of a molecular mechanism that regulates FBM caudal migration and separates the FBM and the olivo-cochlear efferents. This defective caudal migration of FBMs in Prickle1C251X mutants resembles Vangl2 mutant defects. In contrast to other developing systems that show similar defects in Prickle1, Wnt5a and Ror2, the latter two only have limited or no effect on FBM caudal migration.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | |
Collapse
|
35
|
The midbrain periaqueductal gray changes the eupneic respiratory rhythm into a breathing pattern necessary for survival of the individual and of the species. PROGRESS IN BRAIN RESEARCH 2014; 212:351-84. [PMID: 25194206 DOI: 10.1016/b978-0-444-63488-7.00017-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modulation of respiration is a prerequisite for survival of the individual and of the species. For example, respiration has to be adjusted in case of speech, strenuous exercise, laughing, crying, or sudden escape from danger. Respiratory centers in pons and medulla generate the basic respiratory rhythm or eupnea, but they cannot modulate breathing in the context of emotional challenges, for which they need input from higher brain centers. In simple terms, the prefrontal cortex integrates visual, auditory, olfactory, and somatosensory information and informs subcortical structures such as amygdala, hypothalamus, and finally the midbrain periaqueductal gray (PAG) about the results. The PAG, in turn, generates the final motor output for basic survival, such as setting the level of all cells in the brain and spinal cord. Best known in this framework is determining the level of pain perception. The PAG also controls heart rate, blood pressure, micturition, sexual behavior, vocalization, and many other basic motor output systems. Within this context, the PAG also changes the eupneic respiratory rhythm into a breathing pattern necessary for basic survival. This review examines the latest developments regarding of how the PAG controls respiration.
Collapse
|
36
|
Holstege G. The periaqueductal gray controls brainstem emotional motor systems including respiration. PROGRESS IN BRAIN RESEARCH 2014; 209:379-405. [PMID: 24746059 DOI: 10.1016/b978-0-444-63274-6.00020-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiration is a motor system essential for the survival of the individual and of the species. Because of its vital significance, studies on respiration often assume that breathing takes place independent of other motor systems. However, motor systems generating vocalization, coughing, sneezing, vomiting, as well as parturition, ejaculation, and defecation encompass abdominal pressure control, which involves changes in the respiratory pattern. The mesencephalic periaqueductal gray (PAG) controls all these motor systems. It determines the level setting of the whole body by means of its very strong projections to the ventromedial medullary tegmentum, but it also controls the cell groups that generate vocalization, coughing, sneezing, vomiting, as well as respiration. For this control, the PAG maintains very strong connections with the nucleus retroambiguus, which enables it to control abdominal and intrathoracic pressure. In this same context, the PAG also runs the pelvic organs, bladder, uterus, prostate, seminal vesicles, and the distal colon and rectum via its projections to the pelvic organ stimulating center and the pelvic floor stimulating center. These cell groups, via long descending projections, have direct control of the parasympathetic motoneurons in the sacral cord as well as of the somatic motoneurons in the nucleus of Onuf, innervating the pelvic floor. Respiration, therefore, is not a motor system that functions by itself, but is strongly regulated by the same systems that also control the other motor output systems.
Collapse
Affiliation(s)
- Gert Holstege
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
37
|
Zorba OÜ, Kirbaş S, Uzun H, Önem K, Çetinkaya M, Rifaioğlu MM. Is There a Relation between Reticular Formation and Storage Symptoms in Men. Low Urin Tract Symptoms 2014; 6:46-51. [PMID: 26663500 DOI: 10.1111/luts.12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To reveal brainstem originated pathology in men with different types of lower urinary tract symptoms blink reflex latency times were assessed. METHODS A total of 32 men, 16 with storage and 16 with voiding symptoms, were enrolled in the study. Blink reflex latency times were analyzed through electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle were recorded: the latency times for the early ipsilateral response, R1, and the late bilateral responses, R2. RESULTS The mean ages of the patients with storage and voiding symptoms were 57.31 ± 6.87 and 58.06 ± 6.29 years, respectively. The R2 latency times were significantly longer in men with storage symptoms. However, the R1 latency times were similar for the two groups. CONCLUSION Late blink latency times were long only in patients who had storage symptoms. An oligosynaptic path through the trigeminal nuclei, which includes one or two interneurons, is responsible for early response; however, late response is relayed through a polysynaptic path, including neurons in the reticular formation. It has also been shown that stimulation of the pontine reticular formation inhibits the micturition contraction. In some patients, storage symptoms may result from pathology that originates with the reticular formation and this pathology may lead to increases in late blink latency times. Additional studies are needed on other reflexes that are mediated through reticular formation, in order to show the possible dysfunction of the reticular formation in men with storage symptoms.
Collapse
Affiliation(s)
- Orhan Ü Zorba
- Department of Urology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Serkan Kirbaş
- Department of Neurology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hakkı Uzun
- Department of Urology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kadir Önem
- Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | | | | |
Collapse
|
38
|
Huynh HK, Willemsen AT, Lovick TA, Holstege G. Pontine Control of Ejaculation and Female Orgasm. J Sex Med 2013; 10:3038-48. [DOI: 10.1111/jsm.12300] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
40
|
How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia 2013; 55:105-14. [PMID: 24080262 DOI: 10.1016/j.neuropsychologia.2013.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/21/2013] [Accepted: 09/07/2013] [Indexed: 11/23/2022]
Abstract
Research in social cognition has mainly focused on the detection and comprehension of others' mental and emotional states. Doing so, past studies have adopted a "contemplative" view of the role of the observer engaged in a social interaction. However, the adaptive problem posed by the social environment is first and foremost that of coordination, which demands more of social cognition beyond mere detection and comprehension of others' hidden states. Offering a theoretical framework that takes into account the dynamical aspect of social interaction - notably by accounting for constant interplay between emotional appraisal and motor processes in socially engaged human brain - thus constitutes an important challenge for the field of social cognition. Here, we propose that our social environment can be seen as presenting opportunities for actions regarding others. Within such a framework, non-verbal social signals such as emotional displays are considered to have evolved to influence the observer in consistent ways. Consequently, social signals can modulate motor responses in observers. In line with this theoretical framework we provide evidence that emotional and motor processes are actually tightly linked during the perception of threat signals. This is ultimately reflected in the human brain by constant interplay between limbic and motor areas.
Collapse
|
41
|
Fournier-Gosselin MP, Lipsman N, Saint-Cyr JA, Hamani C, Lozano AM. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation. Mov Disord 2013; 28:1330-6. [PMID: 23926071 DOI: 10.1002/mds.25620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.
Collapse
|
42
|
Luppi PH, Clément O, Valencia Garcia S, Brischoux F, Fort P. New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med 2013; 14:714-8. [DOI: 10.1016/j.sleep.2013.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 10/26/2022]
|
43
|
Zorba OÜ, Kırbaş S, Uzun H, Cetinkaya M, Önem K, Rifaioğlu MM. Overactive bladder and pontine reticular formation. Urol Int 2013; 91:417-22. [PMID: 24296362 DOI: 10.1159/000350940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/23/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The etiology of overactive bladder (OAB) remains unclear. Observed neurogenic factors in the literature are limited to suprapontine or spinal pathologies. The blink reflex is a useful tool in the evaluation of brainstem functions. Blink reflex latency times were evaluated in order to reveal pathology in the brainstem. METHODS A total of 60 women, 30 patients with idiopathic OAB and 30 healthy controls, were enrolled in the study. Blink reflex latency times were analyzed by electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle, early ipsilateral response (R1) and late bilateral response (R2) latency times, were recorded. RESULTS Mean ages of the patients and controls were 51.9 ± 5.3 and 49.2 ± 6.2 years, respectively. R2 latency times were significantly higher in patients than in controls. However, R1 latency times were similar between the two groups. CONCLUSIONS The results of the study suggest a significant relation between late blink latency times and OAB. An oligosynaptic path via the trigeminal nuclei is responsible for R1; however, R2 response is relayed through the reticular formation. Stimulation of pontine reticular formation inhibits micturition contraction. In some patients, idiopathic OAB may result from reticular formation-originated pathology. Additional studies on other reticular formation-mediated reflexes are needed to reveal possible dysfunction of reticular formation.
Collapse
Affiliation(s)
- Orhan Ünal Zorba
- Department Urology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | | | | | | | | | | |
Collapse
|
44
|
de Almeida ATR, Kirkwood PA. Specificity in monosynaptic and disynaptic bulbospinal connections to thoracic motoneurones in the rat. J Physiol 2013; 591:4043-63. [PMID: 23774278 DOI: 10.1113/jphysiol.2013.256503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The respiratory activity in the intercostal nerves of the rat is unusual, in that motoneurones of both branches of the intercostal nerves, internal and external, are activated during expiration. Here, the pathways involved in that activation were investigated in anaesthetised and in decerebrate rats by cross-correlation and by intracellular spike-triggered averaging from expiratory bulbospinal neurones (EBSNs), with a view to revealing specific connections that could be used in studies of experimental spinal cord injury. Decerebrate preparations, which showed the strongest expiratory activity, were found to be the most suitable for these measurements. Cross-correlations in these preparations showed monosynaptic connections from 16/19 (84%) of EBSNs, but only to internal intercostal nerve motoneurones (24/37, 65% of EBSN/nerve pairs), whereas disynaptic connections were seen for external intercostal nerve motoneurones (4/19, 21% of EBSNs or 7/25, 28% of EBSN/nerve pairs). There was evidence for additional disynaptic connections to internal intercostal nerve motoneurones. Intracellular spike-triggered averaging revealed excitatory postsynaptic potentials, which confirmed these connections. This is believed to be the first report of single descending fibres that participate in two different pathways to two different groups of motoneurones. It is of interest compared with the cat, where only one group of motoneurones is activated during expiration and only one of the pathways has been detected. The specificity of the connections could be valuable in studies of plasticity in pathological situations, but care will be needed in studying connections in such situations, because their strength was found here to be relatively weak.
Collapse
Affiliation(s)
- Anoushka T R de Almeida
- Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
45
|
Smaers JB, Soligo C. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc Biol Sci 2013; 280:20130269. [PMID: 23536600 PMCID: PMC3619515 DOI: 10.1098/rspb.2013.0269] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022] Open
Abstract
Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.
Collapse
Affiliation(s)
- J B Smaers
- Department of Anthropology, University College London, 14 Taviton Street, London WC1H 0BW, UK.
| | | |
Collapse
|
46
|
Luppi PH, Clément O, Fort P. Brainstem structures involved in rapid eye movement sleep behavior disorder. Sleep Biol Rhythms 2013. [DOI: 10.1111/j.1479-8425.2012.00544.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 2013; 219:511-26. [PMID: 23423460 DOI: 10.1007/s00429-013-0514-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/31/2013] [Indexed: 01/02/2023]
Abstract
Ambulatory locomotion in the rodent is robustly activated by unilateral infusions into the basal forebrain of type A gamma-aminobutyric acid receptor antagonists, such as bicuculline and picrotoxin. The present study was carried out to better localize the neuroanatomical substrate(s) underlying this effect. To accomplish this, differences in total locomotion accumulated during a 20-min test period following bicuculline versus saline infusions in male Sprague-Dawley rats were calculated, rank ordered and mapped on a diagram of basal forebrain transposed from immunoprocessed sections. The most robust locomotor activation was elicited by bicuculline infusions clustered in rostral parts of the preoptic area. Unilateral infusions of bicuculline into the ventral pallidum produced an unanticipatedly diminutive activation of locomotion, which led us to evaluate bilateral ventral pallidal infusions, and these also produced only a small activation of locomotion, and, interestingly, a non-significant trend toward suppression of rearing. Subjects with bicuculline infused bilaterally into the ventral pallidum also exhibited persistent bouts of abnormal movements. Bicuculline infused unilaterally into other forebrain structures, including the bed nucleus of stria terminalis, caudate-putamen, globus pallidus, sublenticular extended amygdala and sublenticular substantia innominata, did not produce significant locomotor activation. Our data identify the rostral preoptic area as the main substrate for the locomotor-activating effects of basal forebrain bicuculline infusions. In contrast, slight activation of locomotion and no effect on rearing accompanied unilateral and bilateral ventral pallidal infusions. Implications of these findings for forebrain processing of reward are discussed.
Collapse
|
48
|
Road JD, Ford TW, Kirkwood PA. Connections between expiratory bulbospinal neurons and expiratory motoneurons in thoracic and upper lumbar segments of the spinal cord. J Neurophysiol 2013; 109:1837-51. [PMID: 23324322 PMCID: PMC3628013 DOI: 10.1152/jn.01008.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cross-correlation of neural discharges was used to investigate the connections between expiratory bulbospinal neurons (EBSNs) in the caudal medulla and expiratory motoneurons innervating thoracic and abdominal muscles in anesthetized cats. Peaks were seen in the cross-correlation histograms for around half of the EBSN-nerve pairs for the following: at T8, the nerve branches innervating internal intercostal muscle and external abdominal oblique muscle and a more distal branch of the internal intercostal nerve; and at L1, a nerve branch innervating internal abdominal oblique muscle and a more distal branch of the ventral ramus. Fewer peaks were seen for the L1 nerve innervating external abdominal oblique, but a paucity of presumed α-motoneuron discharges could explain the rarity of the peaks in this instance. Taking into account individual EBSN conduction times to T8 and to L1, as well as peripheral conduction times, nearly all of the peaks were interpreted as representing monosynaptic connections. Individual EBSNs showed connections at both T8 and L1, but without any discernible pattern. The overall strength of the monosynaptic connection from EBSNs at L1 was found to be very similar to that at T8, which was previously argued to be substantial and responsible for the temporal patterns of expiratory motoneuron discharges. However, we argue that other inputs are required to create the stereotyped spatial patterns of discharges in the thoracic and abdominal musculature.
Collapse
Affiliation(s)
- J D Road
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | | | | |
Collapse
|
49
|
Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol (Oxf) 2013; 207:93-109. [PMID: 23164237 DOI: 10.1111/apha.12019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/29/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
Dr DeGroat and Wickens has reviewed the central neural mechanisms controlling the lower urinary tract with a major focus on the brain stem circuitry that mediates the switch-like characteristics of micturition, in particular the periaqueductal grey and the pontine micturition centre (de 2012). The review culminates in a computer model of how the brainstem switch operates in animals in which forebrain influences on micturition have been removed by decerebration. In this complementary paper, we review the mechanisms of forebrain involvement in the voluntary control of human micturition and the maintenance of continence with evidence based heavily on the results of functional brain imaging experiments.
Collapse
Affiliation(s)
- D. J. Griffiths
- Division of Geriatric Medicine, University of Pittsburgh; Pittsburgh; PA; USA
| | - C. J. Fowler
- Institute of Neurology, University College London; London; UK
| |
Collapse
|
50
|
Oka T, Yokota S, Tsumori T, Niu JG, Yasui Y. Glutamatergic neurons in the lateral periaqueductal gray innervate neurokinin-1 receptor-expressing neurons in the ventrolateral medulla of the rat. Neurosci Res 2012; 74:106-15. [DOI: 10.1016/j.neures.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
|