1
|
Gupta B, Saxena A, Perillo ML, Wade-Kleyn LC, Thompson CH, Purcell EK. Structural, Functional, and Genetic Changes Surrounding Electrodes Implanted in the Brain. Acc Chem Res 2024; 57:1346-1359. [PMID: 38630432 PMCID: PMC11079975 DOI: 10.1021/acs.accounts.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Implantable neurotechnology enables monitoring and stimulating of the brain signals responsible for performing cognitive, motor, and sensory tasks. Electrode arrays implanted in the brain are increasingly used in the clinic to treat a variety of sources of neurological diseases and injuries. However, the implantation of a foreign body typically initiates a tissue response characterized by physical disruption of vasculature and the neuropil as well as the initiation of inflammation and the induction of reactive glial states. Likewise, electrical stimulation can induce damage to the surrounding tissue depending on the intensity and waveform parameters of the applied stimulus. These phenomena, in turn, are likely influenced by the surface chemistry and characteristics of the materials employed, but further information is needed to effectively link the biological responses observed to specific aspects of device design. In order to inform improved design of implantable neurotechnology, we are investigating the basic science principles governing device-tissue integration. We are employing multiple techniques to characterize the structural, functional, and genetic changes that occur in the cells surrounding implanted electrodes. First, we have developed a new "device-in-slice" technique to capture chronically implanted electrodes within thick slices of live rat brain tissue for interrogation with single-cell electrophysiology and two-photon imaging techniques. Our data revealed several new observations of tissue remodeling surrounding devices: (a) there was significant disruption of dendritic arbors in neurons near implants, where losses were driven asymmetrically on the implant-facing side. (b) There was a significant loss of dendritic spine densities in neurons near implants, with a shift toward more immature (nonfunctional) morphologies. (c) There was a reduction in excitatory neurotransmission surrounding implants, as evidenced by a reduction in the frequency of excitatory postsynaptic currents (EPSCs). Lastly, (d) there were changes in the electrophysiological underpinnings of neuronal spiking regularity. In parallel, we initiated new studies to explore changes in gene expression surrounding devices through spatial transcriptomics, which we applied to both recording and stimulating arrays. We found that (a) device implantation is associated with the induction of hundreds of genes associated with neuroinflammation, glial reactivity, oligodendrocyte function, and cellular metabolism and (b) electrical stimulation induces gene expression associated with damage or plasticity in a manner dependent upon the intensity of the applied stimulus. We are currently developing computational analysis tools to distill biomarkers of device-tissue interactions from large transcriptomics data sets. These results improve the current understanding of the biological response to electrodes implanted in the brain while producing new biomarkers for benchmarking the effects of novel electrode designs on responses. As the next generation of neurotechnology is developed, it will be increasingly important to understand the influence of novel materials, surface chemistries, and implant architectures on device performance as well as the relationship with the induction of specific cellular signaling pathways.
Collapse
Affiliation(s)
- Bhavna Gupta
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Akash Saxena
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Mason L. Perillo
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Lauren C. Wade-Kleyn
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Cort H. Thompson
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Erin K. Purcell
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
van der Grinten M, de Ruyter van Steveninck J, Lozano A, Pijnacker L, Rueckauer B, Roelfsema P, van Gerven M, van Wezel R, Güçlü U, Güçlütürk Y. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses. eLife 2024; 13:e85812. [PMID: 38386406 PMCID: PMC10883675 DOI: 10.7554/elife.85812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or 'phosphenes') has limited resolution, and a great portion of the field's research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator's suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.
Collapse
Affiliation(s)
| | | | - Antonio Lozano
- Netherlands Institute for Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Laura Pijnacker
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bodo Rueckauer
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Pieter Roelfsema
- Netherlands Institute for Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Marcel van Gerven
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Richard van Wezel
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Umut Güçlü
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Yağmur Güçlütürk
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
3
|
Zhao ZP, Nie C, Jiang CT, Cao SH, Tian KX, Yu S, Gu JW. Modulating Brain Activity with Invasive Brain-Computer Interface: A Narrative Review. Brain Sci 2023; 13:brainsci13010134. [PMID: 36672115 PMCID: PMC9856340 DOI: 10.3390/brainsci13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Brain-computer interface (BCI) can be used as a real-time bidirectional information gateway between the brain and machines. In particular, rapid progress in invasive BCI, propelled by recent developments in electrode materials, miniature and power-efficient electronics, and neural signal decoding technologies has attracted wide attention. In this review, we first introduce the concepts of neuronal signal decoding and encoding that are fundamental for information exchanges in BCI. Then, we review the history and recent advances in invasive BCI, particularly through studies using neural signals for controlling external devices on one hand, and modulating brain activity on the other hand. Specifically, regarding modulating brain activity, we focus on two types of techniques, applying electrical stimulation to cortical and deep brain tissues, respectively. Finally, we discuss the related ethical issues concerning the clinical application of this emerging technology.
Collapse
Affiliation(s)
- Zhi-Ping Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chuang Nie
- Strategic Support Force Medical Center, Beijing 100101, China
| | - Cheng-Teng Jiang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Hao Cao
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Xi Tian
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (S.Y.); (J.-W.G.); Tel.: +86-010-8254-4786 (S.Y.); +86-010-6635-6729 (J.-W.G.)
| | - Jian-Wen Gu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Strategic Support Force Medical Center, Beijing 100101, China
- Correspondence: (S.Y.); (J.-W.G.); Tel.: +86-010-8254-4786 (S.Y.); +86-010-6635-6729 (J.-W.G.)
| |
Collapse
|
4
|
Oz R, Edelman-Klapper H, Nivinsky-Margalit S, Slovin H. Microstimulation in the primary visual cortex: activity patterns and their relation to visual responses and evoked saccades. Cereb Cortex 2022; 33:5192-5209. [PMID: 36300613 DOI: 10.1093/cercor/bhac409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Intracortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of a small point of light, termed phosphene, and evoke saccades directed to the receptive field of the stimulated neurons. Although ICMS is widely used, a direct measurement of the spatio-temporal patterns of neural activity evoked by ICMS and their relation to the neural responses evoked by visual stimuli or how they relate to ICMS-evoked saccades are still missing. To investigate this, we combined ICMS with voltage-sensitive dye imaging in V1 of behaving monkeys and measured neural activity at a high spatial (meso-scale) and temporal resolution. We then compared the population response evoked by small visual stimuli to those evoked by microstimulation. Both stimulation types evoked population activity that spread over few millimeters in V1 and propagated to extrastriate areas. However, the population responses evoked by ICMS have shown faster dynamics for the activation transients and the horizontal propagation of activity revealed a wave-like propagation. Finally, neural activity in the ICMS condition was higher for trials with evoked saccades as compared with trials without saccades. Our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.
Collapse
Affiliation(s)
- Roy Oz
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Hadar Edelman-Klapper
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Shany Nivinsky-Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
5
|
Uguz I, Shepard KL. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. SCIENCE ADVANCES 2022; 8:eabq6354. [PMID: 36260686 PMCID: PMC9581492 DOI: 10.1126/sciadv.abq6354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Most neuromodulation approaches rely on extracellular electrical stimulation with penetrating electrodes at the cost of cortical damage. Surface electrodes, in contrast, are much less invasive but are challenged by the lack of proximity to axonal processes, leading to poor resolution. Here, we demonstrate that high-density (40-μm pitch), high-capacitance (>1 nF), single neuronal resolution PEDOT:PSS electrodes can be programmed to shape the charge injection front selectively at depths approaching 300 micrometers with a lateral resolution better than 100 micrometers. These electrodes, patterned on thin-film parylene substrate, can be subdurally implanted and adhere to the pial surface in chronic settings. By leveraging surface arrays that are optically transparent with PEDOT:PSS local interconnects and integrated with depth electrodes, we are able to combine surface stimulation and recording with calcium imaging and depth recording to demonstrate these spatial limits of bidirectional communication with pyramidal neurons in mouse visual cortex both laterally and at depth from the surface.
Collapse
|
6
|
Hayashida Y, Kameda S, Umehira Y, Ishikawa S, Yagi T. Multichannel stimulation module as a tool for animal studies on cortical neural prostheses. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:927581. [PMID: 36176924 PMCID: PMC9513350 DOI: 10.3389/fmedt.2022.927581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Intracortical microstimulation to the visual cortex is thought to be a feasible technique for inducing localized phosphenes in patients with acquired blindness, and thereby for visual prosthesis. In order to design effective stimuli for the prosthesis, it is important to elucidate relationships between the spatio-temporal patterns of stimuli and the resulting neural responses and phosphenes through pre-clinical animal studies. However, the physiological basis of effective spatial patterns of the stimuli for the prosthesis has been little investigated in the literature, at least partly because that the previously developed multi-channel stimulation systems were designed specifically for the clinical use. In the present, a 64-channel stimulation module was developed as a scalable tool for animal experiments. The operations of the module were verified by not only dry-bench tests but also physiological animal experiments in vivo. The results demonstrated its usefulness for examining the stimulus-response relationships in a quantitative manner, and for inducing the multi-site neural excitations with a multi-electrode array. In addition, this stimulation module could be used to generate spatially patterned stimuli with up to 4,096 channels in a dynamic way, in which the stimulus patterns can be updated at a certain frame rate in accordance with the incoming visual scene. The present study demonstrated that our stimulation module is applicable to the physiological and other future studies in animals on the cortical prostheses.
Collapse
Affiliation(s)
- Yuki Hayashida
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
- Department of Information Engineering, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Seiji Kameda
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yuichi Umehira
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Shinnosuke Ishikawa
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Tetsuya Yagi
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Fukui University of Technology, Fukui, Japan
| |
Collapse
|
7
|
de Ruyter van Steveninck J, van Gestel T, Koenders P, van der Ham G, Vereecken F, Güçlü U, van Gerven M, Güçlütürk Y, van Wezel R. Real-world indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-based scene simplification at different phosphene resolutions. J Vis 2022; 22:1. [PMID: 35103758 PMCID: PMC8819280 DOI: 10.1167/jov.22.2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Neuroprosthetic implants are a promising technology for restoring some form of vision in people with visual impairments via electrical neurostimulation in the visual pathway. Although an artificially generated prosthetic percept is relatively limited compared with normal vision, it may provide some elementary perception of the surroundings, re-enabling daily living functionality. For mobility in particular, various studies have investigated the benefits of visual neuroprosthetics in a simulated prosthetic vision paradigm with varying outcomes. The previous literature suggests that scene simplification via image processing, and particularly contour extraction, may potentially improve the mobility performance in a virtual environment. In the current simulation study with sighted participants, we explore both the theoretically attainable benefits of strict scene simplification in an indoor environment by controlling the environmental complexity, as well as the practically achieved improvement with a deep learning-based surface boundary detection implementation compared with traditional edge detection. A simulated electrode resolution of 26 × 26 was found to provide sufficient information for mobility in a simple environment. Our results suggest that, for a lower number of implanted electrodes, the removal of background textures and within-surface gradients may be beneficial in theory. However, the deep learning-based implementation for surface boundary detection did not improve mobility performance in the current study. Furthermore, our findings indicate that, for a greater number of electrodes, the removal of within-surface gradients and background textures may deteriorate, rather than improve, mobility. Therefore, finding a balanced amount of scene simplification requires a careful tradeoff between informativity and interpretability that may depend on the number of implanted electrodes.
Collapse
Affiliation(s)
- Jaap de Ruyter van Steveninck
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tom van Gestel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Paula Koenders
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Guus van der Ham
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Floris Vereecken
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Umut Güçlü
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel van Gerven
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Yagmur Güçlütürk
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Richard van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| |
Collapse
|
8
|
Bosking WH, Oswalt DN, Foster BL, Sun P, Beauchamp MS, Yoshor D. Percepts evoked by multi-electrode stimulation of human visual cortex. Brain Stimul 2022; 15:1163-1177. [PMID: 35985472 PMCID: PMC9831085 DOI: 10.1016/j.brs.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/11/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Direct electrical stimulation of early visual cortex evokes the perception of small spots of light known as phosphenes. Previous studies have examined the location, size, and brightness of phosphenes evoked by stimulation of single electrodes. While it has been envisioned that concurrent stimulation of many electrodes could be used as the basis for a visual cortical prosthesis, the percepts resulting from multi-electrode stimulation have not been fully characterized. OBJECTIVE To understand the rules governing perception of phosphenes evoked by multi-electrode stimulation of visual cortex. METHODS Multi-electrode stimulation was conducted in human epilepsy patients. We examined the number and spatial arrangement of phosphenes evoked by stimulation of individual multi-electrode groups (n = 8), and the ability of subjects to discriminate between the pattern of phosphenes generated by stimulation of different multi-electrode groups (n = 7). RESULTS Simultaneous stimulation of pairs of electrodes separated by greater than 4 mm tended to produce perception of two distinct phosphenes. Simultaneous stimulation of three electrodes gave rise to a consistent spatial pattern of phosphenes, but with significant variation in the absolute location, size, and orientation of that pattern perceived on each trial. Although multi-electrode stimulation did not produce perception of recognizable forms, subjects could use the pattern of phosphenes evoked by stimulation to perform simple discriminations. CONCLUSIONS The number of phosphenes produced by multi-electrode stimulation can be predicted using a model for spread of activity in early visual cortex, but there are additional subtle effects that must be accounted for.
Collapse
Affiliation(s)
- William H. Bosking
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA,Corresponding author. Department of Neurosurgery, University of Pennsylvania, 3700 Hamilton Walk, Richards Room 6A, Philadelphia, PA, 19104, USA. (W.H. Bosking)
| | - Denise N. Oswalt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ping Sun
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael S. Beauchamp
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Chakraborty B, Joshi-Imre A, Cogan SF. Charge injection characteristics of sputtered ruthenium oxide electrodes for neural stimulation and recording. J Biomed Mater Res B Appl Biomater 2022; 110:229-238. [PMID: 34259381 PMCID: PMC8608743 DOI: 10.1002/jbm.b.34906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
We have studied the charge-injection characteristics and electrochemical impedance of sputtered ruthenium oxide (RuOx ) films as electrode coatings for neural stimulation and recording electrodes. RuOx films were deposited by reactive DC magnetron sputtering, using a combination of water vapor and oxygen gas as reactive plasma constituents. The cathodal charge storage capacity of planar RuOx electrodes was found to be 54.6 ± 9.5 mC/cm2 (mean ± SD, n = 12), and the charge-injection capacity in a 0.2-ms cathodal current pulse was found to be 7.1 ± 0.3 mC/cm2 (mean ± SD, n = 15) at 0.6 V positive bias versus Ag|AgCl, in phosphate buffer saline at room temperature for ~250 nm thick films. In general, the RuOx films exhibited high charge-injection capacities, with or without a positive interpulse bias, comparable to sputtered iridium oxide (SIROF) coatings. The charge-injection capacity increased monotonically with film thickness from 120 to 630 nm, and reached 11.30 ± 0.34 mC/cm2 (mean ± SD, n = 5) at 0.6 V bias versus Ag|AgCl at 630 nm film thickness. In addition, RuOx films showed minimal changes in electrochemical characteristics over 1.5 billion cycles of constant current pulsing at a charge density of 408 μC/cm2 (8 nC/phase, 200 μs pulse width). The findings of low-impedance, high charge-injection capacity, and long-term pulsing stability suggest the suitability of RuOx as a comparatively inexpensive and favorable choice of electrode material for neural stimulation and recording.
Collapse
Affiliation(s)
- Bitan Chakraborty
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| | - Alexandra Joshi-Imre
- Department of Research, The University of Texas at Dallas, Richardson, Texas, USA
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
10
|
Pio-Lopez L, Poulkouras R, Depannemaecker D. Visual cortical prosthesis: an electrical perspective. J Med Eng Technol 2021; 45:394-407. [PMID: 33843427 DOI: 10.1080/03091902.2021.1907468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The electrical stimulation of the visual cortices has the potential to restore vision to blind individuals. Until now, the results of visual cortical prosthetics have been limited as no prosthesis has restored a full working vision but the field has shown a renewed interest these last years, thanks to wireless and technological advances. However, several scientific and technical challenges are still open to achieve the therapeutic benefit expected by these new devices. One of the main challenges is the electrical stimulation of the brain itself. In this review, we analyse the results in electrode-based visual cortical prosthetics from the electrical point of view. We first describe what is known about the electrode-tissue interface and safety of electrical stimulation. Then we focus on the psychophysics of prosthetic vision and the state-of-the-art on the interplay between the electrical stimulation of the visual cortex and the phosphene perception. Lastly, we discuss the challenges and perspectives of visual cortex electrical stimulation and electrode array design to develop the new generation implantable cortical visual prostheses.
Collapse
Affiliation(s)
| | - Romanos Poulkouras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, Gardanne, France.,Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Damien Depannemaecker
- Department of Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Ryu SB, Paulk AC, Yang JC, Ganji M, Dayeh SA, Cash SS, Fried SI, Lee SW. Spatially confined responses of mouse visual cortex to intracortical magnetic stimulation from micro-coils. J Neural Eng 2020; 17:056036. [PMID: 32998116 PMCID: PMC8923513 DOI: 10.1088/1741-2552/abbd22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical stimulation via microelectrodes implanted in cortex has been suggested as a potential treatment for a wide range of neurological disorders. Despite some success however, the effectiveness of conventional electrodes remains limited, in part due to an inability to create specific patterns of neural activity around each electrode and in part due to challenges with maintaining a stable interface. The use of implantable micro-coils to magnetically stimulate the cortex has the potential to overcome these limitations because the asymmetric fields from coils can be harnessed to selectively activate some neurons, e.g. vertically-oriented pyramidal neurons while avoiding others, e.g. horizontally-oriented passing axons. In vitro experiments have shown that activation is indeed confined with micro-coils but their effectiveness in the intact brain of living animals has not been evaluated. APPROACH To assess the efficacy of stimulation, a 128-channel custom recording microelectrode array was positioned on the surface of the visual cortex (ECoG) in anesthetized mice and responses to magnetic and electric stimulation were compared. Stimulation was delivered from electrodes or micro-coils implanted through a hole in the center of the recording array at a rate of 200 pulses per second for 100 ms. MAIN RESULTS Both electric and magnetic stimulation reliably elicited cortical responses, although activation from electric stimulation was spatially expansive, often extending more than 1 mm from the stimulation site, while activation from magnetic stimulation was typically confined to a ∼300 µm diameter region around the stimulation site. Results were consistent for stimulation of both cortical layer 2/3 and layer 5 as well as across a range of stimulus strengths. SIGNIFICANCE The improved focality with magnetic stimulation suggests that the effectiveness of cortical stimulation can be improved. Improved focality may be particularly attractive for cortical prostheses that require high spatial resolution, e.g. devices that target sensory cortex, as it may lead to improved acuity.
Collapse
Affiliation(s)
- Sang Baek Ryu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelique C. Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jimmy C. Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehran Ganji
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Shadi A. Dayeh
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shelley I. Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Seung Woo Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2020; 27:129-142. [PMID: 32648527 DOI: 10.1177/1073858420936253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For 150 years artificial stimulation has been used to study the function of the nervous system. Such stimulation-whether electrical or optogenetic-eventually may be used in neuroprosthetic devices to replace lost sensory inputs and to otherwise introduce information into the nervous system. Efforts toward this goal can be classified broadly as either biomimetic or arbitrary. Biomimetic stimulation aims to mimic patterns of natural neural activity, so that the subject immediately experiences the artificial stimulation as if it were natural sensation. Arbitrary stimulation, in contrast, makes no attempt to mimic natural patterns of neural activity. Instead, different stimuli-at different locations and/or in different patterns-are assigned different meanings randomly. The subject's time and effort then are required to learn to interpret different stimuli, a process that engages the brain's inherent plasticity. Here we will examine progress in using artificial stimulation to inject information into the cerebral cortex and discuss the challenges for and the promise of future development.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.,Department of Neurology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
13
|
Rodenkirch C, Wang Q. Rapid and transient enhancement of thalamic information transmission induced by vagus nerve stimulation. J Neural Eng 2020; 17:026027. [PMID: 31935689 DOI: 10.1088/1741-2552/ab6b84] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) has been FDA-approved as a long-term, therapeutic treatment for multiple disorders, including pharmacoresistant epilepsy and depression. Here we elucidate the short-term effects of VNS on sensory processing. APPROACH We employed an information theoretic approach to examine the effects of VNS on thalamocortical transmission of sensory-related information along the somatosensory pathway. MAIN RESULTS We found that VNS enhanced the selectivity of the response of thalamic neurons to specific kinetic features in the stimuli, resulting in a significant increase in the efficiency and rate of stimulus-related information conveyed by thalamic spikes. VNS-induced improvements in thalamic sensory processing coincided with a decrease in thalamic burst firing. Importantly, we found VNS-induced enhancement of sensory processing had a rapid onset and offset, completely disappearing one minute after cessation of VNS. The timescales of these effects indicate against an underlying mechanism involving long-term neuroplasticity. We found several patterns of VNS (tonic, standard duty-cycle, and fast duty-cycle) all induced similar improvements in sensory processing. Under closer inspection we noticed that due to the fast timescale of VNS effects on sensory processing, standard duty-cycle VNS induced a fluctuating sensory processing state which may be sub-optimal for perceptual behavior. Fast duty-cycle VNS and continuous, tonic VNS induced quantitatively similar improvements in thalamic information transmission as standard duty-cycle VNS without inducing a fluctuating thalamic state. Further, we found the strength of VNS-induced improvements in sensory processing increased monotonically with amplitude and frequency of VNS. SIGNIFICANCE These results demonstrate, for the first time, the feasibility of utilizing specific patterns of VNS to rapidly improve sensory processing and confirm fast duty-cycle and tonic patterns as optimal for this purpose, while showing standard duty-cycle VNS causes non-optimal fluctuations in thalamic state.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, ET351, 500 W. 120th Street, New York, NY 10027, United States of America
| | | |
Collapse
|
14
|
O'Shea DJ, Shenoy KV. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. J Neural Eng 2018; 15:026020. [PMID: 29265009 PMCID: PMC5833982 DOI: 10.1088/1741-2552/aaa365] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. APPROACH We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. MAIN RESULTS The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. SIGNIFICANCE We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States of America. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | | |
Collapse
|
15
|
Najarpour Foroushani A, Pack CC, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J Neural Eng 2018; 15:021005. [DOI: 10.1088/1741-2552/aaa904] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Bosking WH, Beauchamp MS, Yoshor D. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annu Rev Vis Sci 2017; 3:141-166. [PMID: 28753382 PMCID: PMC6916716 DOI: 10.1146/annurev-vision-111815-114525] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible.
Collapse
Affiliation(s)
- William H Bosking
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Michael S Beauchamp
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| |
Collapse
|
17
|
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res 2017; 60:101-119. [DOI: 10.1016/j.preteyeres.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/07/2023]
|
18
|
O'Shea DJ, Trautmann E, Chandrasekaran C, Stavisky S, Kao JC, Sahani M, Ryu S, Deisseroth K, Shenoy KV. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Exp Neurol 2017; 287:437-451. [PMID: 27511294 PMCID: PMC5154795 DOI: 10.1016/j.expneurol.2016.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/19/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Eric Trautmann
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | | | - Sergey Stavisky
- Neurosciences Program, Stanford University, Stanford, CA 94305, United States
| | - Jonathan C Kao
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Maneesh Sahani
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Stephen Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States; Deparment of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
19
|
Kapócs G, Scholkmann F, Salari V, Császár N, Szőke H, Bókkon I. Possible role of biochemiluminescent photons for lysergic acid diethylamide (LSD)-induced phosphenes and visual hallucinations. Rev Neurosci 2017; 28:77-86. [PMID: 27732562 DOI: 10.1515/revneuro-2016-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/03/2016] [Indexed: 11/15/2022]
Abstract
AbstractToday, there is an increased interest in research on lysergic acid diethylamide (LSD) because it may offer new opportunities in psychotherapy under controlled settings. The more we know about how a drug works in the brain, the more opportunities there will be to exploit it in medicine. Here, based on our previously published papers and investigations, we suggest that LSD-induced visual hallucinations/phosphenes may be due to the transient enhancement of bioluminescent photons in the early retinotopic visual system in blind as well as healthy people.
Collapse
Affiliation(s)
- Gábor Kapócs
- 1Social Home for Psychiatric Patients, H-9970, Szentgotthard, Hungary
- 2Institute of Behavioral Sciences, Semmelweis University, H-1089, Budapest, Hungary
| | - Felix Scholkmann
- 3Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- 4Research Office for Complex Physical and Biological Systems (ROCoS), CH-8038 Zurich, Switzerland
| | - Vahid Salari
- 5Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran (Islamic Republic of)
- 6School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran (Islamic Republic of)
| | - Noémi Császár
- 7Psychoszomatic OutPatient Department, H-1037, Budapest, Hungary
- 8Gaspar Karoly University Psychological Institute, H-1091 Budapest, Hungary
| | - Henrik Szőke
- 9Doctors School of Health Sciences, University of Pécs, H-7621 Pécs, Hungary
| | - István Bókkon
- 7Psychoszomatic OutPatient Department, H-1037, Budapest, Hungary
- 10Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA 01854, United States of America
| |
Collapse
|
20
|
Kreiman G. A null model for cortical representations with grandmothers galore. LANGUAGE, COGNITION AND NEUROSCIENCE 2016; 32:274-285. [PMID: 29204455 PMCID: PMC5710804 DOI: 10.1080/23273798.2016.1218033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There has been extensive discussion in the literature about the extent to which cortical representations can be described as localist or distributed. Here we discuss a simple null model that encompasses a family of related architectures describing the transformation of signals throughout the parts of the visual system involved in object recognition. This family of models constitutes a rigorous first approximation to explain the neurophysiological properties of ventral visual cortex. This null model contains both distributed and local representations throughout the entire hierarchy of computations and the responses of individual units are meaningful and interpretable when encoding is adequately defined for each computational stage.
Collapse
|
21
|
Watson M, Sawan M, Dancause N. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration. PLoS One 2016; 11:e0159441. [PMID: 27442588 PMCID: PMC4956212 DOI: 10.1371/journal.pone.0159441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100–200 Hz or pulse duration from 0.18–0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.
Collapse
Affiliation(s)
- Meghan Watson
- Polystim Neurotechnologies, Institute of Biomedical Engineering, Polytechnique, Montreal, Quebec, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| | - Mohamad Sawan
- Polystim Neurotechnologies, Institute of Biomedical Engineering, Polytechnique, Montreal, Quebec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Chernov MM, Chen G, Torre-Healy LA, Friedman RM, Roe AW. Microelectrode array stimulation combined with intrinsic optical imaging: A novel tool for functional brain mapping. J Neurosci Methods 2016; 263:7-14. [PMID: 26820903 DOI: 10.1016/j.jneumeth.2016.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/24/2015] [Accepted: 01/16/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Functional brain mapping via cortical microstimulation is a widely used clinical and experimental tool. However, data are traditionally collected point by point, making the technique very time consuming. Moreover, even in skilled hands, consistent penetration depths are difficult to achieve. Finally, the effects of microstimulation are assessed behaviorally, with no attempt to capture the activity of the local cortical circuits being stimulated. NEW METHOD We propose a novel method for functional brain mapping, which combines the use of a microelectrode array with intrinsic optical imaging. The precise spacing of electrodes allows for fast, accurate mapping of the area of interest in a regular grid. At the same time, the optical window allows for visualization of local neural connections when stimulation is combined with intrinsic optical imaging. RESULTS We demonstrate the efficacy of our technique using the primate motor cortex as a sample application, using a combination of microstimulation, imaging and electrophysiological recordings during wakefulness and under anesthesia. Comparison with current method: We find the data collected with our method is consistent with previous data published by others. We believe that our approach enables data to be collected faster and in a more consistent fashion and makes possible a number of studies that would be difficult to carry out with the traditional approach. CONCLUSIONS Our technique allows for simultaneous modulation and imaging of cortical sensorimotor networks in wakeful subjects over multiple sessions which is highly desirable for both the study of cortical organization and the design of brain machine interfaces.
Collapse
Affiliation(s)
- Mykyta M Chernov
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States.
| | - Gang Chen
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Luke A Torre-Healy
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Anna W Roe
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| |
Collapse
|
23
|
Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 2016; 54:63-76. [PMID: 26753775 DOI: 10.1007/s11517-015-1442-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
Neural stimulation using injected electrical charge is widely used both in functional therapies and as an experimental tool for neuroscience applications. Electrical pulses can induce excitation of targeted neural pathways that aid in the treatment of neural disorders or dysfunction of the central and peripheral nervous system. In this review, we summarize the recent trends in the field of electrical stimulation for therapeutic interventions of nervous system disorders, such as for the restoration of brain, eye, ear, spinal cord, nerve and muscle function. Neural prosthetic applications are discussed, and functional electrical stimulation parameters for treating such disorders are reviewed. Important considerations for implantable packaging and enhancing device reliability are also discussed. Neural stimulators are expected to play a profound role in implantable neural devices that treat disorders and help restore functions in injured or disabled nervous system.
Collapse
|
24
|
Roe AW, Chernov MM, Friedman RM, Chen G. In Vivo Mapping of Cortical Columnar Networks in the Monkey with Focal Electrical and Optical Stimulation. Front Neuroanat 2015; 9:135. [PMID: 26635539 PMCID: PMC4644798 DOI: 10.3389/fnana.2015.00135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022] Open
Abstract
There are currently largescale efforts to understand the brain as a connection machine. However, there has been little emphasis on understanding connection patterns between functionally specific cortical columns. Here, we review development and application of focal electrical and optical stimulation methods combined with optical imaging and fMRI mapping in the non-human primate. These new approaches, when applied systematically on a large scale, will elucidate functionally specific intra-areal and inter-areal network connection patterns. Such functionally specific network data can provide accurate views of brain network topology.
Collapse
Affiliation(s)
- Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University Hangzhou, China
| | - Mykyta M Chernov
- Department of Psychology, Vanderbilt University, Nashville TN, USA
| | | | - Gang Chen
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University Hangzhou, China
| |
Collapse
|
25
|
Lowery AJ, Rosenfeld JV, Lewis PM, Browne D, Mohan A, Brunton E, Yan E, Maller J, Mann C, Rajan R, Rosa M, Pritchard J. Restoration of vision using wireless cortical implants: The Monash Vision Group project. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1041-1044. [PMID: 26736443 DOI: 10.1109/embc.2015.7318543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Monash Vision Group is developing a bionic vision system based on implanting several small tiles in the V1 region of the visual cortex. This cortical approach could benefit a greater proportion of people with total blindness than other approaches, as it bypasses the eyes and optic nerve. Each tile has 43 active electrodes on its base, and a wirelessly powered electronic system to decode control signals and drive the electrodes with biphasic pulses. The tiles are fed with power and data using a common transmitting coil at the back of the patient's head. Sophisticated image processing, described in a companion paper, ensures that the user experiences maximum benefit from the small number of electrodes. This paper describes key features of this system.
Collapse
|
26
|
Born RT, Trott AR, Hartmann TS. Cortical magnification plus cortical plasticity equals vision? Vision Res 2014; 111:161-9. [PMID: 25449335 DOI: 10.1016/j.visres.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Most approaches to visual prostheses have focused on the retina, and for good reasons. The earlier that one introduces signals into the visual system, the more one can take advantage of its prodigious computational abilities. For methods that make use of microelectrodes to introduce electrical signals, however, the limited density and volume occupying nature of the electrodes place severe limits on the image resolution that can be provided to the brain. In this regard, non-retinal areas in general, and the primary visual cortex in particular, possess one large advantage: "magnification factor" (MF)-a value that represents the distance across a sheet of neurons that represents a given angle of the visual field. In the foveal representation of primate primary visual cortex, the MF is enormous-on the order of 15-20 mm/deg in monkeys and humans, whereas on the retina, the MF is limited by the optical design of the eye to around 0.3m m/deg. This means that, for an electrode array of a given density, a much higher-resolution image can be introduced into V1 than onto the retina (or any other visual structure). In addition to this tremendous advantage in resolution, visual cortex is plastic at many different levels ranging from a very local ability to learn to better detect electrical stimulation to higher levels of learning that permit human observers to adapt to radical changes to their visual inputs. We argue that the combination of the large magnification factor and the impressive ability of the cerebral cortex to learn to recognize arbitrary patterns, might outweigh the disadvantages of bypassing earlier processing stages and makes V1 a viable option for the restoration of vision.
Collapse
Affiliation(s)
- Richard T Born
- Dept. of Neurobiology, Harvard Medical School, United States; Center for Brain Science, Harvard University, United States.
| | - Alexander R Trott
- Dept. of Neurobiology, Harvard Medical School, United States; Harvard PhD Program in Neuroscience, United States.
| | - Till S Hartmann
- Dept. of Neurobiology, Harvard Medical School, United States.
| |
Collapse
|
27
|
Opris I, Ferrera VP. Modifying cognition and behavior with electrical microstimulation: implications for cognitive prostheses. Neurosci Biobehav Rev 2014; 47:321-35. [PMID: 25242103 DOI: 10.1016/j.neubiorev.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022]
Abstract
A fundamental goal of cognitive neuroscience is to understand how brain activity generates complex mental states and behaviors. While neuronal activity may predict or correlate with behavioral responses in a cognitive task, the use of electrical microstimulation presents the possibility to augment such correlational findings with direct evidence for causal relationships. Although microstimulation has been used for many years as a tool for mapping sensory and motor function, its role in learning, memory and decision-making has emerged only recently. Focal microstimulation of higher cortical areas can produce complex mental states and sequences of action. However, the relationship between the locus of stimulation and the percepts or actions evoked is often stereotyped and inflexible. The challenge is to develop stimulation systems that do not have fixed output but can flexibly contribute to complex cognitive and behavioral tasks. We discuss how microstimulation has been instrumental in manipulating a wide spectrum of cognitive functions including working memory, perceptual decisions and executive control by enhancing attention, re-ordering temporal sequence of saccades, improving associative learning or cognitive performance. For example, stimulation in prefrontal, parietal and sensory cortices may establish causal effects on decision-making, while microstimulation of inferotemporal cortex or caudate nucleus enhances associative learning. Building cognitive prosthetics based on the insights gleaned from such studies may depend on the development of multiple-input, multiple-output (MIMO) devices that allow subjects to control stimulation with their own thoughts in a closed-loop system.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | - Vincent P Ferrera
- Departments of Neuroscience and Psychiatry, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Opris I, Ferrera VP. WITHDRAWN: Manipulating Cognition and Behavior with Microstimulation, Implications for Cognitive Prostheses. Neurosci Biobehav Rev 2014; 42:303. [DOI: 10.1016/j.neubiorev.2013.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/23/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
29
|
Teo L, Bourne JA. A reproducible and translatable model of focal ischemia in the visual cortex of infant and adult marmoset monkeys. Brain Pathol 2014; 24:459-74. [PMID: 25469561 DOI: 10.1111/bpa.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Models of ischemic brain injury in the nonhuman primate (NHP) are advantageous for investigating mechanisms of central nervous system (CNS) injuries and testing of new therapeutic strategies. However, issues of reproducibility and survivability persist in NHP models of CNS injuries. Furthermore, there are currently no pediatric NHP models of ischemic brain injury. Therefore, we have developed a NHP model of cortical focal ischemia that is highly reproducible throughout life to enable better understanding of downstream consequences of injury. Posterior cerebral arterial occlusion was induced through intracortical injections of endothelin-1 in adult (n = 5) and neonatal (n = 3) marmosets, followed by magnetic resonance imaging (MRI), histology and immunohistochemistry. MRI revealed tissue hyperintensity at the lesion site at 1-7 days followed by isointensity at 14-21 days. Peripheral macrophage and serum albumin infiltration was detected at 1 day, persisting at 21 days. The proportional loss of total V1 as a result of infarction was consistent in adults and neonates. Minor hemorrhagic transformation was detected at 21 days at the lesion core, while neovascularization was detected in neonates, but not in adults. We have developed a highly reproducible and survivable model of focal ischemia in the adult and neonatal marmoset primary visual cortex, demonstrating similar downstream anatomical and cellular pathology to those observed in post-ischemic humans.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
30
|
Hayashida Y, Takeuchi K, Ishikawa N, Okazaki Y, Tamas F, Tanaka H, Yagi T. Voltage-sensitive dye imaging of the visual cortices responding to electrical pulses at different intervals in mice in vivo. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:402-405. [PMID: 25569981 DOI: 10.1109/embc.2014.6943613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Properties of the neural responses to electrical stimulus pulses delivered at various inter-pulse intervals were examined in the visual cortices of mice in vivo, with utilizing the voltage-sensitive dye imaging technique. Our experimental results provided the relationships between the inter-pulse intervals and the stimulus-evoked transient depolarizations, which may offer insight into the design of effective and efficient stimulation for cortical visual prostheses.
Collapse
|
31
|
Bari BA, Ollerenshaw DR, Millard DC, Wang Q, Stanley GB. Behavioral and electrophysiological effects of cortical microstimulation parameters. PLoS One 2013; 8:e82170. [PMID: 24340002 PMCID: PMC3855396 DOI: 10.1371/journal.pone.0082170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022] Open
Abstract
Electrical microstimulation has been widely used to artificially activate neural circuits on fast time scales. Despite the ubiquity of its use, little is known about precisely how it activates neural pathways. Current is typically delivered to neural tissue in a manner that provides a locally balanced injection of positive and negative charge, resulting in negligible net charge delivery to avoid the neurotoxic effects of charge accumulation. Modeling studies have suggested that the most common approach, using a temporally symmetric current pulse waveform as the base unit of stimulation, results in preferential activation of axons, causing diffuse activation of neurons relative to the stimulation site. Altering waveform shape and using an asymmetric current pulse waveform theoretically reverses this bias and preferentially activates cell bodies, providing increased specificity. In separate studies, measurements of downstream cortical activation from sub-cortical microstimulation are consistent with this hypothesis, as are recent measurements of behavioral detection threshold currents from cortical microstimulation. Here, we compared the behavioral and electrophysiological effects of symmetric vs. asymmetric current waveform shape in cortical microstimulation. Using a go/no-go behavioral task, we found that microstimulation waveform shape significantly shifts psychometric performance, where a larger current pulse was necessary when applying an asymmetric waveform to elicit the same behavioral response, across a large range of behaviorally relevant current amplitudes. Using voltage-sensitive dye imaging of cortex in anesthetized animals with simultaneous cortical microstimulation, we found that altering microstimulation waveform shape shifted the cortical activation in a manner that mirrored the behavioral results. Taken together, these results are consistent with the hypothesis that asymmetric stimulation preferentially activates cell bodies, albeit at a higher threshold, as compared to symmetric stimulation. These findings demonstrate the sensitivity of the pathway to varying electrical stimulation parameters and underscore the importance of designing electrical stimuli for optimal activation of neural circuits.
Collapse
Affiliation(s)
- Bilal A. Bari
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Douglas R. Ollerenshaw
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Daniel C. Millard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Qi Wang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Garrett B. Stanley
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Orsborn AL, Carmena JM. Creating new functional circuits for action via brain-machine interfaces. Front Comput Neurosci 2013; 7:157. [PMID: 24204342 PMCID: PMC3817362 DOI: 10.3389/fncom.2013.00157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 10/20/2013] [Indexed: 11/29/2022] Open
Abstract
Brain-machine interfaces (BMIs) are an emerging technology with great promise for developing restorative therapies for those with disabilities. BMIs also create novel, well-defined functional circuits for action that are distinct from the natural sensorimotor apparatus. Closed-loop control of BMI systems can also actively engage learning and adaptation. These properties make BMIs uniquely suited to study learning of motor and non-physical, abstract skills. Recent work used motor BMIs to shed light on the neural representations of skill formation and motor adaptation. Emerging work in sensory BMIs, and other novel interface systems, also highlight the promise of using BMI systems to study fundamental questions in learning and sensorimotor control. This paper outlines the interpretation of BMIs as novel closed-loop systems and the benefits of these systems for studying learning. We review BMI learning studies, their relation to motor control, and propose future directions for this nascent field. Understanding learning in BMIs may both elucidate mechanisms of natural motor and abstract skill learning, and aid in developing the next generation of neuroprostheses.
Collapse
Affiliation(s)
- Amy L Orsborn
- 1UC Berkeley - UCSF Joint Graduate Program in Bioengineering, University of California Berkeley Berkeley, CA, USA
| | | |
Collapse
|
33
|
Tehovnik E, Slocum W. Two-photon imaging and the activation of cortical neurons. Neuroscience 2013; 245:12-25. [DOI: 10.1016/j.neuroscience.2013.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/22/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
34
|
Tehovnik EJ, Slocum WM. Electrical induction of vision. Neurosci Biobehav Rev 2013; 37:803-18. [PMID: 23535445 DOI: 10.1016/j.neubiorev.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/28/2013] [Accepted: 03/17/2013] [Indexed: 11/26/2022]
Abstract
We assess what monkeys see during electrical stimulation of primary visual cortex (area V1) and relate the findings to visual percepts evoked electrically from human V1. Discussed are: (1) the electrical, cytoarchitectonic, and visuo-behavioural factors that affect the ability of monkeys to detect currents in V1; (2) the methods used to ascertain what monkeys see when electrical stimulation is delivered to V1; (3) a corticofugal mechanism for the induction of visual percepts; and (4) the quantity of information transferred to V1 by electrical stimulation. Experiments are proposed that should advance our understanding of how electrical stimulation affects macaque and human V1. This work contributes to the development of a cortical visual prosthesis for the blind. We dedicate this work to the late Robert W. Doty.
Collapse
|
35
|
Eiber CD, Lovell NH, Suaning GJ. Attaining higher resolution visual prosthetics: a review of the factors and limitations. J Neural Eng 2013; 10:011002. [PMID: 23337266 DOI: 10.1088/1741-2560/10/1/011002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Visual prosthetics is an expanding subfield of functional electrical stimulation which has gained increased interest recently in light of new advances in treatments and technology. These treatments and technology represent a major improvement over prior art, but are still subject to a host of limitations which are dependent on the manner in which one approaches the topic of visual prosthetics. These limitations pose new research challenges whose solutions are directly applicable to the well-being of blind individuals everywhere. In this review, we will outline and critically compare major current approaches to visual prosthetics, and in particular retinal prosthetics. Then, we will engage in an in-depth discussion of the limitations imposed by current technology, physics, and the underlying biology of the retina to highlight several of the challenges currently facing researchers.
Collapse
Affiliation(s)
- Calvin D Eiber
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
36
|
Rattay F, Paredes L, Leao R. Strength-duration relationship for intra- versus extracellular stimulation with microelectrodes. Neuroscience 2012; 214:1-13. [PMID: 22516015 PMCID: PMC3401985 DOI: 10.1016/j.neuroscience.2012.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/06/2012] [Accepted: 04/05/2012] [Indexed: 12/04/2022]
Abstract
Chronaxie, a historically introduced excitability time parameter for electrical stimulation, has been assumed to be closely related to the time constant of the cell membrane. Therefore, it is perplexing that significantly larger chronaxies have been found for intracellular than for extracellular stimulation. Using compartmental model analysis, this controversy is explained on the basis that extracellular stimulation also generates hyperpolarized regions of the cell membrane hindering a steady excitation as seen in the intracellular case. The largest inside/outside chronaxie ratio for microelectrode stimulation is found in close vicinity of the cell. In the case of monophasic cathodic stimulation, the length of the primarily excited zone which is situated between the hyperpolarized regions increases with electrode-cell distance. For distant electrodes this results in an excitation process comparable to the temporal behavior of intracellular stimulation. Chronaxie also varies along the neural axis, being small for electrode positions at the nodes of Ranvier and axon initial segment and larger at the soma and dendrites. As spike initiation site can change for short and long pulses, in some cases strength-duration curves have a bimodal shape, and thus, they deviate from a classical monotonic curve as described by the formulas of Lapicque or Weiss.
Collapse
Affiliation(s)
- F. Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, A-1040 Vienna, Austria
| | - L.P. Paredes
- Institute for Analysis and Scientific Computing, Vienna University of Technology, A-1040 Vienna, Austria
| | - R.N. Leao
- Neurodynamics Laboratory, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Brain Institute, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| |
Collapse
|
37
|
Wijman CAC, Smirnakis SM, Vespa P, Szigeti K, Ziai WC, Ning MM, Rosand J, Hanley DF, Geocadin R, Hall C, Le Roux PD, Suarez JI, Zaidat OO. Research and technology in neurocritical care. Neurocrit Care 2012; 16:42-54. [PMID: 21796494 DOI: 10.1007/s12028-011-9609-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The daily practice of neurointensivists focuses on the recognition of subtle changes in the neurological examination, interactions between the brain and systemic derangements, and brain physiology. Common alterations such as fever, hyperglycemia, and hypotension have different consequences in patients with brain insults compared with patients of general medical illness. Various technologies have become available or are currently being developed. The session on "research and technology" of the first neurocritical care research conference held in Houston in September of 2009 was devoted to the discussion of the current status, and the research role of state-of-the art technologies in neurocritical patients including multi-modality neuromonitoring, biomarkers, neuroimaging, and "omics" research (proteomix, genomics, and metabolomics). We have summarized the topics discussed in this session. We have provided a brief overview of the current status of these technologies, and put forward recommendations for future research applications in the field of neurocritical care.
Collapse
Affiliation(s)
- C A C Wijman
- Department of Neurology, Stanford University, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang Q, Millard DC, Zheng HJ, Stanley GB. Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters. J Neural Eng 2012; 9:026008. [PMID: 22327024 PMCID: PMC3371357 DOI: 10.1088/1741-2560/9/2/026008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Voltage-sensitive dye imaging was used to quantify in vivo, network level spatiotemporal cortical activation in response to electrical microstimulation of the thalamus in the rat vibrissa pathway. Thalamic microstimulation evoked a distinctly different cortical response than natural sensory stimulation, with response to microstimulation spreading over a larger area of cortex and being topographically misaligned with the cortical column to which the stimulated thalamic region projects. Electrical stimulation with cathode-leading asymmetric waveforms reduced this topographic misalignment while simultaneously increasing the spatial specificity of the cortical activation. Systematically increasing the asymmetry of the microstimulation pulses revealed a continuum between symmetric and asymmetric stimulation that gradually reduced the topographic bias. These data strongly support the hypothesis that manipulation of the electrical stimulation waveform can be used to selectively activate specific neural elements. Specifically, our results are consistent with the prediction that cathode-leading asymmetric waveforms preferentially stimulate cell bodies over axons, while symmetric waveforms preferentially activate axons over cell bodies. The findings here provide some initial steps toward the design and optimization of microstimulation of neural circuitry, and open the door to more sophisticated engineering tools, such as nonlinear system identification techniques, to develop technologies for more effective control of activity in the nervous system.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biomedical Engineering, Georgia Institute of Technology /Emory University, Atlanta, Georgia 30332, USA
| | - Daniel C. Millard
- Department of Biomedical Engineering, Georgia Institute of Technology /Emory University, Atlanta, Georgia 30332, USA
| | - He J.V. Zheng
- Department of Biomedical Engineering, Georgia Institute of Technology /Emory University, Atlanta, Georgia 30332, USA
| | - Garrett B. Stanley
- Department of Biomedical Engineering, Georgia Institute of Technology /Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
39
|
Histed MH, Ni AM, Maunsell JHR. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol 2012; 103:115-30. [PMID: 22307059 DOI: 10.1016/j.pneurobio.2012.01.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 11/15/2022]
Abstract
Even the simplest behaviors depend on a large number of neurons that are distributed across many brain regions. Because electrical microstimulation can change the activity of localized subsets of neurons, it has provided valuable evidence that specific neurons contribute to particular behaviors. Here we review what has been learned about cortical function from behavioral studies using microstimulation in animals and humans. Experiments that examine how microstimulation affects the perception of stimuli have shown that the effects of microstimulation are usually highly specific and can be related to the stimuli preferred by neurons at the stimulated site. Experiments that ask subjects to detect cortical microstimulation in the absence of other stimuli have provided further insights. Although subjects typically can detect microstimulation of primary sensory or motor cortex, they are generally unable to detect stimulation of most of cortex without extensive practice. With practice, however, stimulation of any part of cortex can become detected. These training effects suggest that some patterns of cortical activity cannot be readily accessed to guide behavior, but that the adult brain retains enough plasticity to learn to process novel patterns of neuronal activity arising anywhere in cortex.
Collapse
Affiliation(s)
- Mark H Histed
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated. Proc Natl Acad Sci U S A 2011; 108:17809-14. [PMID: 21987821 DOI: 10.1073/pnas.1108337108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Creating a prosthetic device for the blind is a central future task. Our research examines the feasibility of producing a prosthetic device based on electrical stimulation of primary visual cortex (area V1), an area that remains intact for many years after loss of vision attributable to damage to the eyes. As an initial step in this effort, we believe that the research should be carried out in animals, as it has been in the creation of the highly successful cochlear implant. We chose the rhesus monkey, whose visual system is similar to that of man. We trained monkeys on two tasks to assess the size, contrast, and color of the percepts created when single sites in area V1 are stimulated through microelectrodes. Here, we report that electrical stimulation within the central 5° of the visual field representation creates a small spot that is between 9 and 26 min of arc in diameter and has a contrast ranging between 2.6% and 10%. The dot generated by the stimulation in the majority of cases was darker than the background viewed by the animal and was composed of a variety of low-contrast colors. These findings can be used as inputs to models of electrical stimulation in area V1. On the basis of these findings, we derive what kinds of images would be expected when implanted arrays of electrodes are stimulated through a camera attached to the head whose images are converted into electrical stimulation using appropriate algorithms.
Collapse
|
41
|
Abstract
Visual prostheses including artificial retinal devices are a novel and revolutionary approach to the treatment of profound visual loss. The development of the field of visual prosthesis began with cortical prosthetic devices but since then, a variety of devices which target different sites along the visual pathway have been developed with the retinal prosthesis being the most advanced. We present a review of the history of these devices, an update on the current state of play and future prospects of this field.
Collapse
Affiliation(s)
- Jong Min Ong
- National Institute of Health Research, Biomedical Research Centre, Moorfields Eye Hospital, London, UK.
| | | |
Collapse
|
42
|
Panetsos F, Sanchez-Jimenez A, Rodrigo-Diaz E, Diaz-Guemes I, Sanchez FM. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 2011; 5:84. [PMID: 21779233 PMCID: PMC3132634 DOI: 10.3389/fnins.2011.00084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Accepted: 06/10/2011] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED Most work on visual prostheses has centered on developing retinal or cortical devices. However, when retinal implants are not feasible, neuroprostheses could be implanted in the lateral geniculate nucleus (LGN) of the thalamus, the intermediate relay station of visual information from the retina to the visual cortex (V1). The objective of the present study was to determine the types of artificial stimuli that when delivered to the visual thalamus can generate reliable responses of the cortical neurons similar to those obtained when the eye perceives a visual image. Visual stimuli {S(i)} were presented to one eye of an experimental animal and both, the thalamic {RTh(i)} and cortical responses {RV1(i)} to such stimuli were recorded. Electrical patterns {RTh(i)*} resembling {RTh(i)} were then injected into the visual thalamus to obtain cortical responses {RV1(i)*} similar to {RV1(i)}. Visually- and electrically generated V1 responses were compared. RESULTS During the course of this work we: (i) characterized the response of V1 neurons to visual stimuli according to response magnitude, duration, spiking rate, and the distribution of interspike intervals; (ii) experimentally tested the dependence of V1 responses on stimulation parameters such as intensity, frequency, duration, etc., and determined the ranges of these parameters generating the desired cortical activity; (iii) identified similarities between responses of V1 useful to compare the naturally and artificially generated neuronal activity of V1; and (iv) by modifying the stimulation parameters, we generated artificial V1 responses similar to those elicited by visual stimuli. Generation of predictable and consistent phosphenes by means of artificial stimulation of the LGN is important for the feasibility of visual prostheses. Here we proved that electrical stimuli to the LGN can generate V1 neural responses that resemble those elicited by natural visual stimuli.
Collapse
Affiliation(s)
- Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of MadridMadrid, Spain
- School of Optics, Complutense University of MadridMadrid, Spain
| | - Abel Sanchez-Jimenez
- Neurocomputing and Neurorobotics Research Group, Complutense University of MadridMadrid, Spain
- Faculty of Biology, Complutense University of MadridMadrid, Spain
| | - Elena Rodrigo-Diaz
- Neurocomputing and Neurorobotics Research Group, Complutense University of MadridMadrid, Spain
- School of Optics, Complutense University of MadridMadrid, Spain
| | - Idoia Diaz-Guemes
- Applied Research, “Jesus Uson” Minimally Invasive Surgery CentreCaceres, Spain
| | | |
Collapse
|
43
|
Venkatraman S, Carmena JM. Active sensing of target location encoded by cortical microstimulation. IEEE Trans Neural Syst Rehabil Eng 2011; 19:317-24. [PMID: 21382769 DOI: 10.1109/tnsre.2011.2117441] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cortical microstimulation has been proposed as a method to deliver sensory percepts to circumvent damaged sensory receptors or pathways. However, much of perception involves the active movement of sensory organs and the integration of information across sensory and motor modalities. The efficacy of cortical microstimulation in such an active sensing paradigm has not been demonstrated. We report a novel behavioral paradigm which delivers microstimulation in real-time based on a rat's movements and show that rats can perform sensorimotor integration with electrically delivered stimuli. Using a real-time whisker tracking system, we delivered microstimulation in barrel cortex of actively whisking rats when their whisker crossed a particular spatial location which defined the target. Rats learned to integrate microstimulation cues with their knowledge of whisker position to infer target location along the rostro-caudal axis in less than 200 ms. In a separate experiment, we found that rats trained to respond to cortical microstimulation responded similarly to whisker deflections while ignoring auditory distracters, suggesting that barrel cortex stimulation may be perceptually similar to somatosensory stimuli. This ability to deliver sensory percepts using cortical microstimulation in an active sensing system might have significant implications for the development of sensorimotor neuroprostheses.
Collapse
|
44
|
Abstract
Once the topic of folklore and science fiction, the notion of restoring vision to the blind is now approaching a tractable reality. Technological advances have inspired numerous multidisciplinary groups worldwide to develop visual neuroprosthetic devices that could potentially provide useful vision and improve the quality of life of profoundly blind individuals. While a variety of approaches and designs are being pursued, they all share a common principle of creating visual percepts through the stimulation of visual neural elements using appropriate patterns of electrical stimulation. Human clinical trials are now well underway and initial results have been met with a balance of excitement and cautious optimism. As remaining technical and surgical challenges continue to be solved and clinical trials move forward, we now enter a phase of development that requires careful consideration of a new set of issues. Establishing appropriate patient selection criteria, methods of evaluating long-term performance and effectiveness, and strategies to rehabilitate implanted patients will all need to be considered in order to achieve optimal outcomes and establish these devices as viable therapeutic options.
Collapse
|