1
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
2
|
Abdolmaleki A, Ghasemi JB. Inhibition activity prediction for a dataset of candidates' drug by combining fuzzy logic with MLR/ANN QSAR models. Chem Biol Drug Des 2019; 93:1139-1157. [PMID: 31343121 DOI: 10.1111/cbdd.13511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 11/28/2022]
Abstract
A hybrid of artificial intelligence simple and low computational cost QSAR was used. Approximately 90 pyridinylimidazole-based drug candidates with a range of potencies against p38R MAP kinase were investigated. To obtain more flexibility and effective capability of handling and processing information about the real world, in this case, the fuzzy set theory was introduced into the QSAR. An integration of multiple linear regression and artificial neural network with adaptive neuro-fuzzy inference systems (ANFIS) was developed to predict the inhibition activity. The algorithm of ANFIS was applied to identify the suitable variables and then to find the optimal descriptors. The gradient descent with momentum backpropagation ANN was used to establish the nonlinear multivariate relationships between the chemical structural parameters and biological response. A comparison between the result of the proposed linear and nonlinear regression showed the superiority of QSAR modeling by ANFIS-ANN method over the MLR. The results demonstrated that the ANFIS could be applied successfully as a feature selection. The appearance of Diam, Homo, and LogP descriptors in the model showed the importance of the steric, electronic, and thermodynamic interactions between a drug and its target site in the distribution of a compound within a biosystem and its interaction with competing for binding sites.
Collapse
Affiliation(s)
- Azizeh Abdolmaleki
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Jahan B Ghasemi
- Drug Design in Silico Lab., Chemistry Faculty, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Li M, Wang M, Wang W, Wang L, Liu Z, Sun J, Wang K, Song L. The immunomodulatory function of invertebrate specific neuropeptide FMRFamide in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 88:480-488. [PMID: 30877062 DOI: 10.1016/j.fsi.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
As one of the most important neuropeptides identified only in invertebrates of Mollusca, Annelida and Arthropoda, FMRFamide (Phe-Met-Arg-Phe-NH2) involves in multiple physiological processes, such as mediating cardiac frequency and contraction of somatic and visceral muscles. However, its modulatory role in the immune defense has not been well understood. In the present study, an FMRFamide precursor (designed as CgFMRFamide) was identified in oyster Crassostrea gigas, which could be processed into nineteen FMRFamide peptides. Phylogenetic analysis revealed that CgFMRFamide shared high similarity with other identified FMRFamides in mollusks. The mRNA of CgFMRFamide was mainly concentrated in the tissues of visceral ganglia, hepatopancreas and hemocytes, and a consistent distribution of FMRFamide peptide was confirmed by immunohistochemistry and immunocytochemistry assays. The mRNA expression level of CgFMRFamide in hemocytes was significantly up-regulated after immune stimulation with lipopolysaccharide (LPS). After the concentration of FMRFamide was increased by exogenous injection, the in vivo expressions of pro-inflammatory cytokine CgIL17-5, as well as the apoptosis-related CgCaspase-1 and CgCaspase-3 in hemocytes were promptly increased (p < 0.05), but the concentration of signal molecule nitric oxide (NO) was significantly down-regulated (p < 0.05). Meanwhile, an increased phosphorylation of p38 MAP kinase in hemocytes was also detected after the FMRFamide injection. These results collectively demonstrated that the conserved FMRFamide could not only respond to immune stimulation, but also regulate the expression of immune effectors and apoptosis-related genes, which might be mediated by p38 MAP kinase pathway, thereby effectively involved in clearing pathogens and maintaining homeostasis in oysters.
Collapse
Affiliation(s)
- Meijia Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
You W, Tang Z, Chang CEA. Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed? J Chem Theory Comput 2019; 15:2433-2443. [PMID: 30811931 PMCID: PMC6456367 DOI: 10.1021/acs.jctc.8b01142] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in free energy provide valuable information for molecular recognition, including both ligand-receptor binding thermodynamics and kinetics. Umbrella sampling (US), a widely used free energy calculation method, has long been used to explore the dissociation process of ligand-receptor systems and compute binding free energy. In existing publications, the binding free energy computed from the potential of mean force (PMF) with US simulation mostly yielded "ball park" values with experimental data. However, the computed PMF values are highly influenced by factors such as initial conformations and/or trajectories provided, the reaction coordinate, and sampling of conformational space in each US window. These critical factors have rarely been carefully studied. Here we used US to study the guest aspirin and 1-butanol dissociation processes of β-cyclodextrin (β-CD) and an inhibitor SB2 dissociation from a p38α mitogen-activated protein kinase (MAPK) complex. For β-CD, we used three different β-CD conformations to generate the dissociation path with US windows. For p38α, we generated the dissociation pathway by using accelerated molecular dynamics followed by conformational relaxing with short conventional MD, steered MD, and manual pulling. We found that, even for small β-CD complexes, different β-CD conformations altered the height of the PMF, but the pattern of PMF was not affected if the MD sampling in each US window was well-converged. Because changing the macrocyclic ring conformation needs to rotate dihedral angles in the ring, a bound ligand largely restrains the motion of cyclodextrin. Therefore, once a guest is in the binding site, cyclodextrin cannot freely change its initial conformation, resulting in different absolute heights of the PMF, which cannot be overcome by running excessively long MD simulations for each US window. Moreover, if the US simulations were not converged, the important barrier and minimum were missed. For ligand-protein systems, our studies also suggest that the dissociation trajectories modeled by an enhanced sampling method must maintain a natural molecular movement to avoid biased PMF plots when using US simulations.
Collapse
Affiliation(s)
- Wanli You
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiye Tang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Zhang HF, Wang YL, Gao C, Gu YT, Huang J, Wang JH, Wang JH, Zhang Z. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin 2018; 39:1855-1864. [PMID: 29795135 PMCID: PMC6289371 DOI: 10.1038/s41401-018-0026-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
Salvianolic acid A (SAA) is a minor phenolic carboxylic acid extracted from Salviae miltiorrhizae Bunge (Danshen). SAA exhibits a variety of pharmacological activities, such as antioxidative, anti-thrombotic, neuroprotective, and anti-fibrotic effects, as well as protection from myocardial ischemia and prevention of diabetes and other diseases. Furthermore, SAA has shown renal-protective effects in doxorubicin-induced nephropathy. However, there has been limited research regarding the effects of SAA and underlying mechanisms in chronic kidney disease (CKD). Here, we examined the effects and molecular mechanisms of SAA in an established animal model of 5/6 nephrectomized (5/6Nx) rats. The rats were injected with SAA (2.5, 5, and 10 mg/kg per day, intraperitoneally (ip)) for 28 days. SAA dose-dependently lowered the levels of urine protein, blood urea nitrogen, serum creatinine, plasma total cholesterol, and plasma triglycerides in 5/6Nx rats. Histological examination revealed that SAA dose-dependently attenuated renal pathological lesions, evidenced by reduced renal tubulointerstitial fibrosis by decreasing the expression levels of tumor growth factor-β1 and α-smooth muscle actin in 5/6Nx rats. Moreover, SAA dose-dependently inhibited the activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, subsequently attenuating the secretion of tumor necrosis factor-α and interleukin-1β and inhibiting the expression of monocyte chemotactic protein-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in kidneys of 5/6Nx rats. The above results were consistent with those obtained in lipopolysaccharide-induced HK-2 cells in vitro (a recognized in vitro inflammatory model). In conclusion, our results demonstrated that SAA effectively attenuates kidney injury in 5/6Nx rats. The therapeutic effects of SAA on kidney injury can be attributed to its anti-inflammatory activities through inhibition of the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Hong-Feng Zhang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan-Li Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Cheng Gao
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan-Ting Gu
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jin-Hui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Hong Wang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhou Zhang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Kessal K, Liang H, Rabut G, Daull P, Garrigue JS, Docquier M, Melik Parsadaniantz S, Baudouin C, Brignole-Baudouin F. Conjunctival Inflammatory Gene Expression Profiling in Dry Eye Disease: Correlations With HLA-DRA and HLA-DRB1. Front Immunol 2018; 9:2271. [PMID: 30374345 PMCID: PMC6196257 DOI: 10.3389/fimmu.2018.02271] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Purpose: In several multicenter clinical trials, HLA-DR was found to be a potential biomarker of dry eye disease (DED)'s severity and prognosis. Given the fact that HLA-DR receptor is a heterodimer consisting in an alpha and a beta chain, we intended to investigate the correlation of inflammatory targets with the corresponding transcripts, HLA-DRA and HLA-DRB1, to characterize specific targets closely related to HLA-DR expressed in conjunctival cells from patients suffering from DED of various etiologies. Methods: A prospective study was conducted in 88 patients with different forms of DED. Ocular symptom scores, ocular-staining grades, tear breakup time (TBUT) and Schirmer test were evaluated. Superficial conjunctival cells were collected by impression cytology and total RNAs were extracted for analyses using the new NanoString® nCounter technology based on an inflammatory human code set containing 249 inflammatory genes. Results: Two hundred transcripts were reliably detected in conjunctival specimens at various levels ranging from 1 to 222,546 RNA copies. Overall, from the 88 samples, 21 target genes showed a highly significant correlation (R > 0.8) with HLA-DRA and HLA-DRB1, HLA-DRA and B1 presenting the highest correlation (R = 0.9). These selected targets belonged to eight family groups, namely interferon and interferon-stimulated genes, tumor necrosis factor superfamily and related factors, Toll-like receptors and related factors, complement system factors, chemokines/cytokines, the RIPK enzyme family, and transduction signals such as the STAT and MAPK families. Conclusions: We have identified a profile of 21 transcripts correlated with HLA-DR expression, suggesting closely regulated signaling pathways and possible direct or indirect interactions between them. The NanoString® nCounter technology in conjunctival imprints could constitute a reliable tool in the future for wider screening of inflammatory biomarkers in DED, usable in very small samples. Broader combinations of biomarkers associated with HLA-DR could be analyzed to develop new diagnostic approaches, identify tighter pathophysiological gene signatures and personalize DED therapies more efficiently.
Collapse
Affiliation(s)
- Karima Kessal
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Hong Liang
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Ghislaine Rabut
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Mylene Docquier
- iGE3 Genomics Platform University of Geneva, Geneva, Switzerland
| | | | - Christophe Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, APHP, University of Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Paris Cité Université Paris Descartes, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
7
|
You W, Chang CEA. Role of Molecular Interactions and Protein Rearrangement in the Dissociation Kinetics of p38α MAP Kinase Type-I/II/III Inhibitors. J Chem Inf Model 2018; 58:968-981. [PMID: 29620886 PMCID: PMC5975198 DOI: 10.1021/acs.jcim.7b00640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the governing factors of fast or slow inhibitor binding/unbinding assists in developing drugs with preferred kinetic properties. For inhibitors with the same binding affinity targeting different binding sites of the same protein, the kinetic behavior can profoundly differ. In this study, we investigated unbinding kinetics and mechanisms of fast (type-I) and slow (type-II/III) binders of p38α mitogen-activated protein kinase, where the crystal structures showed that type-I and type-II/III inhibitors bind to pockets with different conformations of the Asp-Phe-Gly (DFG) motif. The work used methods that combine conventional molecular dynamics (MD), accelerated molecular dynamics (AMD) simulations, and the newly developed pathway search guided by internal motions (PSIM) method to find dissociation pathways. The study focuses on revealing key interactions and molecular rearrangements that hinder ligand dissociation by using umbrella sampling and post-MD processing to examine changes in free energy during ligand unbinding. As anticipated, the initial dissociation steps all require breaking interactions that appeared in crystal structures of the bound complexes. Interestingly, for type-I inhibitors such as SB2, p38α keeps barrier-free conformational fluctuation in the ligand-bound complex and during ligand dissociation. In contrast, with a type-II/III inhibitor such as BIRB796, with the rearrangements of p38α in its bound state, ligand unbinding features energetically unfavorable protein-ligand concerted movement. Our results also show that the type-II/III inhibitors preferred dissociation pathways through the allosteric channel, which is consistent with an existing publication. The study suggests that the level of required protein rearrangement is one major determining factor of drug binding kinetics in p38α systems, providing useful information for development of inhibitors.
Collapse
Affiliation(s)
- Wanli You
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
8
|
Settem RP, Honma K, Shankar M, Li M, LaMonte M, Xu D, Genco RJ, Browne RW, Sharma A. Tannerella forsythia-produced methylglyoxal causes accumulation of advanced glycation endproducts to trigger cytokine secretion in human monocytes. Mol Oral Microbiol 2018; 33:292-299. [PMID: 29573211 DOI: 10.1111/omi.12224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
Abstract
The periodontal pathogen Tannerella forsythia has the unique ability to produce methylglyoxal (MGO), an electrophilic compound which can covalently modify amino acid side chains and generate inflammatory adducts known as advanced glycation endproducts (AGEs). In periodontitis, concentrations of MGO in gingival-crevicular fluid are increased and are correlated with the T. forsythia load. However, the source of MGO and the extent to which MGO may contribute to periodontal inflammation has not been fully explored. In this study we identified a functional homolog of the enzyme methylglyoxal synthase (MgsA) involved in the production of MGO in T. forsythia. While wild-type T.forsythia produced a significant amount of MGO in the medium, a mutant lacking this homolog produced little to no MGO. Furthermore, compared with the spent medium of the T. forsythia parental strain, the spent medium of the T. forsythia mgsA-deletion strain induced significantly lower nuclear factor-kappa B activity as well as proinflammogenic and pro-osteoclastogenic cytokines from THP-1 monocytes. The ability of T. forsythia to induce protein glycation endproducts via MGO was confirmed by an electrophoresis-based collagen chain mobility shift assay. Together these data demonstrated that T. forsythia produces MGO, which may contribute to inflammation via the generation of AGEs and thus act as a potential virulence factor of the bacterium.
Collapse
Affiliation(s)
- R P Settem
- Department of Oral Biology, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - K Honma
- Department of Oral Biology, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - M Shankar
- Department of Biotechnical and Clinical Laboratory Sciences, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - M Li
- Department of Oral Biology, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - M LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - D Xu
- Department of Oral Biology, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - R J Genco
- Department of Oral Biology, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - R W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| | - A Sharma
- Department of Oral Biology, School of Public Health and Health Related Professions, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
Abozaid OAR, Moawed FSM, Farrag MA, Abdel Aziz AAA. 4-(4-Hydroxy-3-methoxyphenyl)-2-butanone modulates redox signal in gamma-irradiation-induced nephrotoxicity in rats. Free Radic Res 2017; 51:943-953. [DOI: 10.1080/10715762.2017.1395025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Omayma A. R. Abozaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Fatma S. M. Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A. Farrag
- Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | |
Collapse
|
10
|
Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases. Int J Biochem Cell Biol 2016; 78:106-115. [PMID: 27394658 DOI: 10.1016/j.biocel.2016.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
The Cry1Ac toxin from Bacillus thuringiensis is used commercially as a bio-insecticide and is expressed in transgenic plants that are used for human and animal consumption. Although it was originally considered innocuous for mammals, the Cry1Ac toxin is not inert and has the ability to induce mucosal and systemic immunogenicity. Herein, we examined whether the Cry1Ac toxin promotes macrophage activation and explored the signalling pathways that may mediate this effect. Treatment of primary and RAW264.7 macrophages with the Cry1Ac toxin resulted in upregulation of the costimulatory molecules CD80, CD86 and ICOS-L and enhanced production of nitric oxide, the chemokine MCP-1 and the proinflammatory cytokines TNF-α and IL-6. Remarkably, the Cry1Ac toxin induced phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK1/2, JNK and p38 and promoted nuclear translocation of nuclear factor-kappa B (NF-κB) p50 and p65. p38 and ERK1/2 MAPKs were involved in this effect, as indicated by the Cry1Ac-induced upregulation of CD80 and IL-6 and TNF-α abrogation by the p38 MAPK inhibitor SB203580. Furthermore, treatment the MEK1/2 kinase inhibitor PD98059 blocked increases in MCP-1 secretion and augmented Cry1Ac-induced ICOS-L upregulation. These data demonstrate the capacity of the Cry1Ac toxin to induce macrophage activation via the MAPK and NF-κB pathways.
Collapse
|
11
|
Luo M, Luo P, Zhang Z, Payne K, Watson S, Wu H, Tan Y, Ding Y, Sun W, Yin X, Zhang X, Liu G, Wintergerst K, Miao L, Cai L. Zinc delays the progression of obesity-related glomerulopathy in mice via down-regulating P38 MAPK-mediated inflammation. Obesity (Silver Spring) 2016; 24:1244-56. [PMID: 27028368 PMCID: PMC7218660 DOI: 10.1002/oby.21463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/14/2015] [Accepted: 01/02/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Obesity, particularly child obesity, is one of the most common public health problems in the world and raises the risk of end-stage renal disease. Zinc (Zn) is essential for multiple organs in terms of normal structure and function; however, effects of Zn deficiency or supplementation among young individuals with obesity have not been well studied. METHODS Weaned mice were fed high-fat diets (HFD) with varied contents of Zn (Zn deficient, adequate, and supplemented) for 3 or 6 months. This study examined associations between renal pathogenesis and dietary Zn levels, specifically assessing inflammatory pathways by utilizing P38 MAPK inhibitor SB203580. RESULTS HFD feeding induced typical syndromes of obesity-related renal disorders, which worsened by Zn marginal deficiency. The progression of obesity-related renal disorders was delayed by Zn supplementation. HFD induced renal inflammation, reflected by increased P38 MAPK phosphorylation along with increases of inflammatory cytokines MCP-1, IL-1β, IL-6, and TNF-α. P38 MAPK inhibition prevented renal pathological changes in mice fed with HFD and HFD/Zn deficiency. CONCLUSIONS P38 MAPK mediated the renal inflammatory responses, which played a central role in the pathogenesis of HFD-induced renal disorders. Zn could delay the progression of obesity-related kidney disease by down-regulating P38 MAPK-mediated inflammation.
Collapse
Affiliation(s)
- Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, The University of Louisville, Kentucky, USA
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiguo Zhang
- Department of Pediatrics, The University of Louisville, Kentucky, USA
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kristen Payne
- Department of Pediatrics, The University of Louisville, Kentucky, USA
- Department of Internal Medicine, The Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Sara Watson
- Department of Pediatrics, The University of Louisville, Kentucky, USA
- Wendy L. Novak Diabetes Care Center, The University of Louisville School of Medicine, Kentucky, USA
| | - Hao Wu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, The University of Louisville, Kentucky, USA
| | - Yi Tan
- Department of Pediatrics, The University of Louisville, Kentucky, USA
| | - Yushuang Ding
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Pediatrics, The University of Louisville, Kentucky, USA
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinmin Yin
- Department of Chemistry, The University of Louisville, Kentucky, USA
| | - Xiang Zhang
- Department of Chemistry, The University of Louisville, Kentucky, USA
| | - Gilbert Liu
- Department of Pediatrics, The University of Louisville, Kentucky, USA
| | - Kupper Wintergerst
- Department of Pediatrics, The University of Louisville, Kentucky, USA
- Wendy L. Novak Diabetes Care Center, The University of Louisville School of Medicine, Kentucky, USA
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Department of Pediatrics, The University of Louisville, Kentucky, USA
- Wendy L. Novak Diabetes Care Center, The University of Louisville School of Medicine, Kentucky, USA
| |
Collapse
|
12
|
Niimi A, Chung KF. Evidence for neuropathic processes in chronic cough. Pulm Pharmacol Ther 2015; 35:100-4. [PMID: 26474678 DOI: 10.1016/j.pupt.2015.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
Chronic cough is a very common symptom for which patients seek medical attention but can often be difficult to manage, because associated causes may remain elusive and treatment of any associated causes does not always provide adequate relief. Current antitussives have limited efficacy and undesirable side-effects. Patients with chronic cough typically describe sensory symptoms suggestive of upper airway and laryngeal neural dysfunction. They often report cough triggered by low-level physical and chemical stimuli supporting the recently emerging concept of 'cough hypersensitivity syndrome'. Chronic cough is a neuropathic condition that could be secondary to sensory nerve damage caused by inflammatory, infective and allergic factors. Mechanisms underlying peripheral and central augmentation of the afferent cough pathways have been identified. Successful treatment of chronic cough with agents used for treating neuropathic pain, such as gabapentin and amitriptyline, would also support this concept. Further research of neuropathic cough may lead to the discovery of more effective antitussives in the future.
Collapse
Affiliation(s)
- Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Kian Fan Chung
- Experimental Studies, National Heart and Lung Institute, Imperial College London, UK; Royal Brompton NIHR Biomedical Research Unit, London, UK
| |
Collapse
|
13
|
Liu C, Lin J, Hynes J, Wu H, Wrobleski ST, Lin S, Dhar TGM, Vrudhula VM, Sun JH, Chao S, Zhao R, Wang B, Chen BC, Everlof G, Gesenberg C, Zhang H, Marathe PH, McIntyre KW, Taylor TL, Gillooly K, Shuster DJ, McKinnon M, Dodd JH, Barrish JC, Schieven GL, Leftheris K. Discovery of ((4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methylpyrrolo[1,2-f][1,2,4]triazine-6-carbonyl)(propyl)carbamoyloxy)methyl-2-(4-(phosphonooxy)phenyl)acetate (BMS-751324), a Clinical Prodrug of p38α MAP Kinase Inhibitor. J Med Chem 2015; 58:7775-84. [PMID: 26359680 DOI: 10.1021/acs.jmedchem.5b00839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In search for prodrugs to address the issue of pH-dependent solubility and exposure associated with 1 (BMS-582949), a previously disclosed phase II clinical p38α MAP kinase inhibitor, a structurally novel clinical prodrug, 2 (BMS-751324), featuring a carbamoylmethylene linked promoiety containing hydroxyphenyl acetic acid (HPA) derived ester and phosphate functionalities, was identified. Prodrug 2 was not only stable but also water-soluble under both acidic and neutral conditions. It was effectively bioconverted into parent drug 1 in vivo by alkaline phosphatase and esterase in a stepwise manner, providing higher exposure of 1 compared to its direct administration, especially within higher dose ranges. In a rat LPS-induced TNFα pharmacodynamic model and a rat adjuvant arthritis model, 2 demonstrated similar efficacy to 1. Most importantly, it was shown in clinical studies that prodrug 2 was indeed effective in addressing the pH-dependent absorption issue associated with 1.
Collapse
Affiliation(s)
- Chunjian Liu
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - James Lin
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - John Hynes
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Hong Wu
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Stephen T Wrobleski
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Shuqun Lin
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - T G Murali Dhar
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Vivekananda M Vrudhula
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Jung-Hui Sun
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Sam Chao
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Rulin Zhao
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Bei Wang
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Bang-Chi Chen
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Gerry Everlof
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Christoph Gesenberg
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Hongjian Zhang
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Punit H Marathe
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Kim W McIntyre
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Tracy L Taylor
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Kathleen Gillooly
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - David J Shuster
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Murray McKinnon
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - John H Dodd
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Joel C Barrish
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Gary L Schieven
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| | - Katerina Leftheris
- Research and Development, Bristol-Myers Squibb , Princeton, New Jersey 08543, United States
| |
Collapse
|
14
|
Jnawali HN, Park YG, Jeon D, Lee E, Kim Y. Anti-Inflammatory Activities of Biapigenin Mediated by Actions on p38 MAPK Pathway. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hum Nath Jnawali
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center; Konkuk University; Seoul 143-701 Korea
| | - Young-Guen Park
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center; Konkuk University; Seoul 143-701 Korea
| | - Dasom Jeon
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center; Konkuk University; Seoul 143-701 Korea
| | - Eunjung Lee
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center; Konkuk University; Seoul 143-701 Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center; Konkuk University; Seoul 143-701 Korea
| |
Collapse
|
15
|
Sherif IO, Al-Mutabagani LA, Alnakhli AM, Sobh MA, Mohammed HE. Renoprotective effects of angiotensin receptor blocker and stem cells in acute kidney injury: Involvement of inflammatory and apoptotic markers. Exp Biol Med (Maywood) 2015; 240:1572-9. [PMID: 25825359 DOI: 10.1177/1535370215577582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
Cisplatin, Cis-diamminedichloroplatinum (CDDP), is a platinum-based chemotherapy drug, and its chemotherapeutic use is restricted by nephrotoxicity. Inflammatory and apoptotic mechanisms play a central role in the pathogenesis of CDDP-induced acute kidney injury (AKI). The aim of this study was to compare the therapeutic potential of candesartan, angiotensin II receptor blocker, versus bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model of CDDP-induced nephrotoxicity. Adult male Wistar rats (n = 40) were divided into four groups; Normal control: received saline injection, CDPP group: received CDDP injection (6 mg/kg single dose), Candesartan group: received candesartan (10 mg/kg/day) for 10 days + CDDP at day 3, and Stem cells group: received CDDP + BM-MSCs intravenously one day after CDDP injection. The rats were sacrificed seven days after CDDP injection. Significant elevation in serum creatinine and urea, renal levels of tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1, renal expressions of nuclear factor kappa B (NF-κB), p38-mitogen-activated protein kinase (MAPK), caspase-3 and Bcl-2-associated x protein (Bax) were found in CDDP-injected rats when compared to normal rats. Both candesartan and BM-MSCs ameliorated renal function and reduced significantly the inflammatory markers (TNF-α , NF-κB, p38-MAPK and MCP-1) and apoptotic markers (caspase-3 and Bax) in renal tissue after CDDP injection. Candesartan as well as BM-MSCs have anti-inflammatory and anti-apoptotic actions and they can be used as nephroprotective agents against CDDP-induced nephrotoxicity. BM-MSCs is more effective than candesartan in amelioration of AKI induced by CDDP.
Collapse
Affiliation(s)
- Iman O Sherif
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Kingdom of Saudi Arabia
| | - Laila A Al-Mutabagani
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Kingdom of Saudi Arabia
| | - Anwar M Alnakhli
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Kingdom of Saudi Arabia
| | - Mohamed A Sobh
- Zoology Department, College of Science, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Hoda E Mohammed
- Biochemistry Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Li WH, Zhang L, Lyte P, Rodriguez K, Cavender D, Southall MD. p38 MAP Kinase Inhibition Reduces Propionibacterium acnes-Induced Inflammation in Vitro. Dermatol Ther (Heidelb) 2015; 5:53-66. [PMID: 25749612 PMCID: PMC4374066 DOI: 10.1007/s13555-015-0072-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
Introduction Propionibacterium acnes, a ubiquitous skin bacterium, stimulates keratinocytes to produce a number of proinflammatory cytokines and may contribute to inflammatory acne. The aim of the study was to investigate whether P. acnes-induced proinflammatory cytokine release is mediated by P. acnes-induced activation of p38 mitogen-activated protein kinase (p38 MAPK or p38) in human keratinocytes. Methods Immunohistochemistry was used to evaluate p38 phosphorylation in human skin samples with or without acne. Primary human keratinocytes and epidermal skin equivalents were exposed to viable P. acnes. Phosphorylation of MAPKs without or with p38 inhibitors was examined by Western blot and cytokine secretion was detected by Enzyme-Linked Immunosorbent Assay (ELISA). Results Increased levels of phospho-p38 were observed in human acne lesions, predominantly in follicular and perifollicular keratinocytes. Exposure of cultured human keratinocytes to viable P. acnes resulted in phosphorylation of multiple members of the MAPK family, including rapid and transient activation of p38 and extracellular signal-related kinase (ERK1/2) and relatively slow but sustained activation of c-Jun N-terminal kinases (JNK1/2). Viable P. acnes induced the secretion of interleukin-1α (IL-1α), tumor necrosis factor-α (TNF-α), and IL-8 from human keratinocytes. The phosphorylation of p38 (phospho-p38) and the secretion of cytokines induced by P. acnes in cultured keratinocytes were inhibited by SB203580, a p38α/β inhibitor. Furthermore, SCIO-469, a selective inhibitor of p38α, showed similar effects in cultured keratinocytes. Topical treatment of SCIO-469 inhibited the P. acnes-induced phospho-p38 and cytokine secretion in human epidermal equivalents. Conclusion The data demonstrate that P. acnes induces p38-dependent inflammatory responses in keratinocytes, and suggest that p38 may play an important role in the pathogenesis of inflammatory acne. Funding Johnson & Johnson. Electronic supplementary material The online version of this article (doi:10.1007/s13555-015-0072-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Hwa Li
- Department of Skin Biology and Pharmacology, The Johnson & Johnson Skin Research Center, Johnson & Johnson Consumer and Personal Products Worldwide, Division of Johnson and Johnson Consumer Companies, Inc., 199 Grandview Road, Skillman, NJ, 08558, USA,
| | | | | | | | | | | |
Collapse
|
17
|
Souza CD. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis. Vet Immunol Immunopathol 2015; 164:1-9. [DOI: 10.1016/j.vetimm.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 01/26/2015] [Indexed: 01/04/2023]
|
18
|
Synthesis of 5-cyanopyrazolo[1,5-a]pyridine derivatives via tandem reaction and their optical properties. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Feng J, Wu Y, Yang Y, Jiang W, Hu S, Li Y, Yang Y. Humulus scandens Exhibits Immunosuppressive Effects in Vitro and in Vivo by Suppressing CD4+ T Cell Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:921-34. [DOI: 10.1142/s0192415x1450058x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4+ T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinjin Feng
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yang Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Weiqi Jiang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shaoping Hu
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yifu Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
20
|
Jeong YH, Kim Y, Song H, Chung YS, Park SB, Kim HS. Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: involvement of the p38 MAPK signaling pathway. PLoS One 2014; 9:e87030. [PMID: 24523867 PMCID: PMC3921125 DOI: 10.1371/journal.pone.0087030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022] Open
Abstract
Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized α-galactosylceramide (α-GalCer) analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 α-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-α production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1β, and IL-6 at the mRNA level and the expression of TNF-α at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-κB and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-α production but also on the DNA binding activities of NF-κB and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-κB and AP-1 activities.
Collapse
Affiliation(s)
- Yeon-Hui Jeong
- Department of Molecular Medicine and Global Top5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul, Republic of Korea
| | - Yongju Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Heebum Song
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Young Sun Chung
- Department of Counseling Psychology, Korea Soongsil Cyber University, Seoul, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Department of Biophysics and Chemical Biology/Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail: (SBP); (HSK)
| | - Hee-Sun Kim
- Department of Molecular Medicine and Global Top5 Research Program, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul, Republic of Korea
- * E-mail: (SBP); (HSK)
| |
Collapse
|
21
|
Alveolar macrophage innate response to Mycobacterium immunogenum, the etiological agent of hypersensitivity pneumonitis: role of JNK and p38 MAPK pathways. PLoS One 2013; 8:e83172. [PMID: 24349452 PMCID: PMC3859638 DOI: 10.1371/journal.pone.0083172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium immunogenum is an emerging pathogen of the immune-mediated lung disease hypersensitivity pneumonitis (HP) reported in machinists occupationally exposed to contaminated metal working fluid (MWF). However, the mechanism of its interaction with the host lung is unclear. Considering that alveolar macrophages play a central role in host defense in the exposed lung, understanding their interaction with the pathogen could provide initial insights into the underlying immunopathogenesis events and mechanisms. In the current study, M. immunogenum 700506, a predominant genotype isolated from HP-linked fluids, was shown to multiply intracellularly, induce proinflammatory mediators (TNF-α, IL-1α, IL-1β, IL-6, GM-CSF, NO) and cause cytotoxicity/cell death in the cultured murine alveolar macrophage cell line MH-S in a dose- and time-dependent manner. The responses were detected as early as 3h post-infection. Comparison of this and four additional genotypes of M. immunogenum (MJY-3, MJY-4, MJY-12, MJY-14) using an effective dose-time combination (100 MOI for 24h) showed these macrophage responses in the following order (albeit with some variations for individual response indicators). Inflammatory: MJY-3 ≥ 700506 > MJY-4 ≥ MJY-14 ≥ MJY-12; Cytotoxic: 700506 ≥ MJY-3 > MJY-4 ≥ MJY-12 ≥ MJY-14. In general, 700506 and MJY-3 showed a more aggressive response than other genotypes. Chemical blocking of either p38 or JNK inhibited the induction of proinflammatory mediators (cytokines, NO) by 700506. However, the cellular responses showed a somewhat opposite effect. This is the first report on M. immunogenum interactions with alveolar macrophages and on the identification of JNK- and p38- mediated signaling and its role in mediating the proinflammatory responses during these interactions.
Collapse
|
22
|
Pourbasheer E, Bazl R, Amanlou M. Molecular docking and 3D-QSAR studies on the MAPKAP-K2 inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0820-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Araújo AA, Lopes de Souza G, Souza TO, de Castro Brito GA, Sabóia Aragão K, Xavier de Medeiros CA, Lourenço Y, do Socorro Costa Feitosa Alves M, Fernandes de Araújo R. Olmesartan decreases IL-1β and TNF-α levels; downregulates MMP-2, MMP-9, COX-2, and RANKL; and upregulates OPG in experimental periodontitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:875-84. [DOI: 10.1007/s00210-013-0886-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
|
24
|
Uraz A, Ayhan E, Yildirim B, Bariş E, Pehlivan S, Eren K. Immunoexpression of p38 Mitogen-Activated Proteinkinase in Patients with Aggressive and Chronic Periodontitis. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The influence of p38 mitogen-activated proteinkinase (MAPK) expression in the development and progression of periodontal disease is currently under investigation. The aim of the present study is to investigate whether the p38 MAPK expression in gingival tissues correlates with IL-1β levels in gingival crevicular fluid (GCF). Twenty patients with generalized aggressive periodontitis (GAgP), 15 patients with generalized chronic periodontitis (GCP) and 10 healthy subjects (H) were enrolled in the study. Clinical data, gingival tissue biopsies and GCF samples were collected. The expression of p38 was investigated by immunohistochemistry. The levels of IL-1β in GCF were measured using ELISA. Mean clinical parameters and GCF volumes were statistically higher in patients with GAgP and GCP compared to H subjects. Higher levels of IL-1β were found in both periodontitis groups. The p38 expression was significantly increased in inflamed gingival tissues. There were no statistically significant differences in levels of IL-1β and p38 expression between subjects with GAgP and GCP. Our data support the hypothesis that MAPK signaling pathway is an additional player in the pathogenesis of periodontitis. This is the first report to evaluate the involvement of p38 MAPK in patients with GAgP and GCP which might be, in part, considered of value in understanding disease mechanisms.
Collapse
Affiliation(s)
- A. Uraz
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - E. Ayhan
- Department of Periodontology, Faculty of Dentistry, Yüzüncüyil University, Van, Turkey
| | - B. Yildirim
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - E. Bariş
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - S. Pehlivan
- Department of Biostatistics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - K. Eren
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
25
|
Ostenfeld T, Krishen A, Lai RY, Bullman J, Baines AJ, Green J, Anand P, Kelly M. Analgesic efficacy and safety of the novel p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain following peripheral nerve injury: a double-blind, placebo-controlled study. Eur J Pain 2012; 17:844-57. [PMID: 23239139 DOI: 10.1002/j.1532-2149.2012.00256.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inhibitors of p38 mitogen-activated protein kinase are undergoing evaluation as a novel class of anti-rheumatic drugs, by virtue of their ability to suppress the production of pro-inflammatory cytokines. Emerging data suggests that they may also attenuate peripheral or central sensitization in neuropathic pain. A double-blind, placebo-controlled study was undertaken to evaluate the analgesic efficacy of losmapimod (GW856553), a novel p38α/β inhibitor, in subjects with neuropathic pain following traumatic peripheral nerve injury. METHODS One hundred and sixty-eight subjects with pain of at least moderate intensity (average daily score ≥4 on an 11-point pain intensity numeric rating scale; PI-NRS) at baseline were randomized to receive oral losmapimod, 7.5 mg BID or placebo for 28 days. Efficacy and safety assessments were undertaken at weekly clinic visits. RESULTS The mean treatment difference for the change in average daily pain score from baseline to week 4 of treatment based on the PI-NRS was -0.22 (95% CI -0.73, 0.28) in favour of losmapimod over placebo (p = 0.39). There were no statistically significant or clinically meaningful differences between the treatment groups over the 4-week dosing period for either the primary or secondary efficacy variables. There were no unexpected safety or tolerability findings following dosing with losmapimod. CONCLUSIONS Losmapimod could not be differentiated from placebo in terms of a primary analgesia response in patients with pain following peripheral nerve injury. The lack of response could reflect inadequate exposure at central sites of action or differences between rodent and human with respect to the target or neuropathic pain mechanisms.
Collapse
Affiliation(s)
- T Ostenfeld
- Neurosciences Discovery Medicine Unit, GlaxoSmithKline R&D, Harlow, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Su Y, Lei X, Wu L, Liu L. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal. Immunology 2012; 137:65-79. [PMID: 22681228 DOI: 10.1111/j.1365-2567.2012.03608.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4.0-5.5 hr, with 84-92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
27
|
Asano T, Yamazaki H, Kasahara C, Kubota H, Kontani T, Harayama Y, Ohno K, Mizuhara H, Yokomoto M, Misumi K, Kinoshita T, Ohta M, Takeuchi M. Identification, synthesis, and biological evaluation of 6-[(6R)-2-(4-fluorophenyl)-6-(hydroxymethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidin-3-yl]-2-(2-methylphenyl)pyridazin-3(2H)-one (AS1940477), a potent p38 MAP kinase inhibitor. J Med Chem 2012; 55:7772-85. [PMID: 22905713 DOI: 10.1021/jm3008008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several p38 MAPK inhibitors have been shown to effectively block the production of cytokines such as IL-1β, TNFα, and IL-6. Inhibitors of p38 MAP kinase therefore have significant therapeutic potential for the treatment of autoimmune disease. Compound 2a was identified as a potent TNFα production inhibitor in vitro but suffered from poor oral bioavailability. Structural modification of 2a led to the discovery of tetrahydropyrazolopyrimidine derivatives, exemplified by compound 3, with an improved pharmacokinetic profile. We found that blocking metabolism at the methyl group of the amine and constructing the tetrahydropyrimidine core were important to obtaining compounds with good biological profiles and oral bioavailability. Pursuing the structure-activity relationships of this series led to the discovery of AS1940477 (3f), with excellent cellular activity and a favorable pharmacokinetic profile. This compound represents a highly potent inhibitor of p38 MAP kinase with regard to in vivo activity in an adjuvant-induced arthritis model.
Collapse
Affiliation(s)
- Toru Asano
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Flick J, Tristram F, Wenzel W. Modeling loop backbone flexibility in receptor-ligand docking simulations. J Comput Chem 2012; 33:2504-15. [DOI: 10.1002/jcc.23087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/15/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022]
|
29
|
Kosugi T, Mitchell DR, Fujino A, Imai M, Kambe M, Kobayashi S, Makino H, Matsueda Y, Oue Y, Komatsu K, Imaizumi K, Sakai Y, Sugiura S, Takenouchi O, Unoki G, Yamakoshi Y, Cunliffe V, Frearson J, Gordon R, Harris CJ, Kalloo-Hosein H, Le J, Patel G, Simpson DJ, Sherborne B, Thomas PS, Suzuki N, Takimoto-Kamimura M, Kataoka KI. Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) as an antiinflammatory target: discovery and in vivo activity of selective pyrazolo[1,5-a]pyrimidine inhibitors using a focused library and structure-based optimization approach. J Med Chem 2012; 55:6700-15. [PMID: 22746295 DOI: 10.1021/jm300411k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel class of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) inhibitors was discovered through screening a kinase-focused library. A homology model of MAPKAP-K2 was generated and used to guide the initial SAR studies and to rationalize the observed selectivity over CDK2. An X-ray crystal structure of a compound from the active series bound to crystalline MAPKAP-K2 confirmed the predicted binding mode. This has enabled the discovery of a series of pyrazolo[1,5-a]pyrimidine derivatives showing good in vitro cellular potency as anti-TNF-α agents and in vivo efficacy in a mouse model of endotoxin shock.
Collapse
Affiliation(s)
- Tomomi Kosugi
- Teijin Institute for Bio-medical Research, Teijin Pharma Ltd. , Hino, Tokyo 191-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Banerjee A, Koziol-White C, Panettieri R. p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD. Curr Opin Pharmacol 2012; 12:287-92. [PMID: 22365729 DOI: 10.1016/j.coph.2012.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/13/2023]
Abstract
COPD represents a major respiratory disorder, causing significant morbidity and mortality throughout the world. While therapies exist for COPD, they are not always effective, and many patients experience exacerbations and morbidity despite current therapies. Study of the molecular mechanisms involved in the underlying physiological manifestations of COPD has yielded multiple new targets for therapeutic intervention. In this review, we discuss signaling pathways involved in COPD pathogenesis and review clinical studies of p38 MAPK inhibitors, TNFα inhibitors, and IKK2 inhibitors as potential COPD therapies.
Collapse
Affiliation(s)
- Audreesh Banerjee
- Department of Medicine, Airways Biology Initiative, Division of Pulmonary, Allergy and Critical Care Medicine, Hospital of University of Pennsylvania, Philadelphia, PA, United States.
| | | | | |
Collapse
|
31
|
Bogdanovska L, Kukeska S, Popovska M, Petkovska R, Goracinova K. Therapeutic strategies in the treatment of periodontitis. MAKEDONSKO FARMACEVTSKI BILTEN 2012. [DOI: 10.33320/maced.pharm.bull.2012.58.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periodontitis is a chronic inflammatory process which affects the tooth - supporting structures of the teeth. The disease is initiated by subgingival periopathogenic bacteria in susceptible periodontal sites. The host immune response towards periodontal pathogens helps to sustain periodontal disease and eventual alveolar bone loss. Although scaling and root planing is the standard treatment modality for periodontitis, it suffers from several drawbacks such as the inability to reach the base of deep pockets and doesn’t arrest migration of periodontal pathogens from other sites in the oral cavity. In order to overcome the limitations of scaling and root planning, adjunctive chemotherapeutics and host modulatory agents to the treatment are used. These therapeutic agents show substantial beneficial effects when compared to scaling and root planning alone. This review will cover an update on chemotherapeutic and past and future host immune modulatory agents used adjunctively to treat and manage periodontal diseases.
Collapse
|
32
|
Ambure PS, Gangwal RP, Sangamwar AT. 3D-QSAR and molecular docking analysis of biphenyl amide derivatives as p38α mitogen-activated protein kinase inhibitors. Mol Divers 2012; 16:377-88. [DOI: 10.1007/s11030-011-9353-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
|
33
|
Charlton MH, Brotherton DH, Owen J, Clark VL, Testar RJ, Davies SJ, Moffat DFC. Monocyte and macrophage selective anti-inflammatory kinase inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Yilmaz H, Guzel Y, Onal Z, Altiparmak G, Kocakaya SO. 4D-QSAR Study of p56IckProtein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MCET Method. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.12.4352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Computation of pharmacophore models for the prediction of mitogen-activated protein kinase activated protein kinase-2 inhibitory activity of pyrrolopyridines. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9910-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Duffy JP, Harrington EM, Salituro FG, Cochran JE, Green J, Gao H, Bemis GW, Evindar G, Galullo VP, Ford PJ, Germann UA, Wilson KP, Bellon SF, Chen G, Taslimi P, Jones P, Huang C, Pazhanisamy S, Wang YM, Murcko MA, Su MS. The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor. ACS Med Chem Lett 2011; 2:758-63. [PMID: 24900264 DOI: 10.1021/ml2001455] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/28/2011] [Indexed: 01/24/2023] Open
Abstract
The synthesis of novel, selective, orally active 2,5-disubstituted 6H-pyrimido[1,6-b]pyridazin-6-one p38α inhibitors is described. Application of structural information from enzyme-ligand complexes guided the selection of screening compounds, leading to the identification of a novel class of p38α inhibitors containing a previously unreported bicyclic heterocycle core. Advancing the SAR of this series led to the eventual discovery of 5-(2,6-dichlorophenyl)-2-(2,4-difluorophenylthio)-6H-pyrimido[1,6-b]pyridazin-6-one (VX-745). VX-745 displays excellent enzyme activity and selectivity, has a favorable pharmacokinetic profile, and demonstrates good in vivo activity in models of inflammation.
Collapse
Affiliation(s)
- John P. Duffy
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | | | - John E. Cochran
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Jeremy Green
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Huai Gao
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Guy W. Bemis
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | | | - Pamella J. Ford
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Ursula A. Germann
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | | | | | | | - Peter Jones
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Cassey Huang
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - S. Pazhanisamy
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | - Mark A. Murcko
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | |
Collapse
|
37
|
Oxytocin inhibits NADPH oxidase and P38 MAPK in cisplatin-induced nephrotoxicity. Biomed Pharmacother 2011; 65:474-80. [DOI: 10.1016/j.biopha.2011.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/11/2011] [Indexed: 12/11/2022] Open
|
38
|
Sepsis: Something old, something new, and a systems view. J Crit Care 2011; 27:314.e1-11. [PMID: 21798705 DOI: 10.1016/j.jcrc.2011.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/08/2011] [Accepted: 05/19/2011] [Indexed: 01/01/2023]
Abstract
Sepsis is a clinical syndrome characterized by a multisystem response to a microbial pathogenic insult consisting of a mosaic of interconnected biochemical, cellular, and organ-organ interaction networks. A central thread that connects these responses is inflammation that, while attempting to defend the body and prevent further harm, causes further damage through the feed-forward, proinflammatory effects of damage-associated molecular pattern molecules. In this review, we address the epidemiology and current definitions of sepsis and focus specifically on the biologic cascades that comprise the inflammatory response to sepsis. We suggest that attempts to improve clinical outcomes by targeting specific components of this network have been unsuccessful due to the lack of an integrative, predictive, and individualized systems-based approach to define the time-varying, multidimensional state of the patient. We highlight the translational impact of computational modeling and other complex systems approaches as applied to sepsis, including in silico clinical trials, patient-specific models, and complexity-based assessments of physiology.
Collapse
|
39
|
Waykole YP, Doiphode SS, Rakhewar PS, Mhaske M. Anticytokine therapy for periodontal diseases: Where are we now? J Indian Soc Periodontol 2011; 13:64-8. [PMID: 20407652 PMCID: PMC2847126 DOI: 10.4103/0972-124x.55837] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 08/11/2009] [Indexed: 12/31/2022] Open
Abstract
Periodontal destruction is initiated by bacteria that stimulate host responses leading to excess production of cytokines. Anticytokine therapy for periodontal diseases especially targets proinflammatory cytokines, that is, TNF-α, IL-1, and IL-6, because these are essential for the initiation of the inflammatory immune reaction and are produced for prolonged periods in periodontitis. This therapy aims to bind the cytokines with the receptors present on target cells such as the fibroblasts. The three basic treatment strategies are: (1) neutralization of cytokines, (2) blockage of cytokine receptors, and (3) activation of anti-inflammatory pathways, such as, immune-suppressive pathways. This new therapy can act as a host response modulator in the control of inflammatory diseases of gums and may provide the basis for new molecular therapeutic approaches to the treatment of periodontitis.
Collapse
Affiliation(s)
- Yogesh Prakash Waykole
- Post-graduate Student, Department of Periodontology, C.S.M.S.S Dental College and Hospital, Kanchanwadi, Aurangabad - 431 002, India
| | | | | | | |
Collapse
|
40
|
Histone deacetylase inhibitor treatment attenuates MAP kinase pathway activation and pulmonary inflammation following hemorrhagic shock in a rodent model. J Surg Res 2011; 176:185-94. [PMID: 21816439 DOI: 10.1016/j.jss.2011.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hemorrhagic shock activates cellular stress signals and can lead to systemic inflammatory response, organ injury, and death. We have previously shown that treatment with histone deacetylase inhibitors (HDACIs) significantly improves survival in lethal models (60% blood loss) of hemorrhage. The aim of the current study was to examine whether these protective effects were due to attenuation of mitogen activated protein kinase (MAPK) signaling pathways, which are known to promote inflammation and apoptosis. METHODS Wistar-Kyoto rats (250-300 g) were subjected to 40% blood loss and randomized to treatment with: (1) HDACI valproic acid (VPA 300 mg/kg i.v.; volume = 0.75 mL/kg), or (2) vehicle control (0.75 mL/kg of 0.9% saline). Animals were sacrificed at 1, 4, and 20 h (n = 3-4/group/timepoint), and lung samples were analyzed by Western blotting for expression of active (phosphorylated) and inactive forms of c-Jun N-terminal Kinase (JNK) and p38 MAPK. Myeloperoxidase (MPO) activity was measured in lung tissue 20 h after hemorrhage as a marker of neutrophil infiltration. Normal animals (n = 3) served as shams. RESULTS Hemorrhaged animals demonstrated significant increases in phosphorylated p38 at 1 h, phosphorylated JNK at 4 h, and increased MPO activity at 20 h (P < 0.05 compared with sham). VPA treatment significantly (P < 0.05) attenuated all of these changes. CONCLUSIONS Hemorrhagic shock activates pro-inflammatory MAPK signaling pathways and promotes pulmonary neutrophil infiltration, affects that are significantly attenuated by VPA treatment. This may represent a key mechanism through which HDACIs decrease organ damage and promote survival in hemorrhagic shock.
Collapse
|
41
|
Discovery of pyrrolo[2,1-f][1,2,4]triazine C6-ketones as potent, orally active p38α MAP kinase inhibitors. Bioorg Med Chem Lett 2011; 21:4633-7. [PMID: 21705217 DOI: 10.1016/j.bmcl.2011.05.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/23/2022]
Abstract
Pyrrolo[2,1-f][1,2,4]triazine based inhibitors of p38α have been prepared exploring functional group modifications at the C6 position. Incorporation of aryl and heteroaryl ketones at this position led to potent inhibitors with efficacy in in vivo models of acute and chronic inflammation.
Collapse
|
42
|
Selness SR, Devraj RV, Devadas B, Walker JK, Boehm TL, Durley RC, Shieh H, Xing L, Rucker PV, Jerome KD, Benson AG, Marrufo LD, Madsen HM, Hitchcock J, Owen TJ, Christie L, Promo MA, Hickory BS, Alvira E, Naing W, Blevis-Bal R, Messing D, Yang J, Mao MK, Yalamanchili G, Vonder Embse R, Hirsch J, Saabye M, Bonar S, Webb E, Anderson G, Monahan JB. Discovery of PH-797804, a highly selective and potent inhibitor of p38 MAP kinase. Bioorg Med Chem Lett 2011; 21:4066-71. [PMID: 21641211 DOI: 10.1016/j.bmcl.2011.04.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 01/15/2023]
Abstract
The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (-)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (-)-4a are described.
Collapse
Affiliation(s)
- Shaun R Selness
- Department of Medicinal Chemistry, Pfizer Corporation, 700 Chesterfield Parkway West, Chesterfield, MO 63017, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Substituted N-aryl-6-pyrimidinones: a new class of potent, selective, and orally active p38 MAP kinase inhibitors. Bioorg Med Chem Lett 2011; 21:3856-60. [PMID: 21620699 DOI: 10.1016/j.bmcl.2011.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 11/21/2022]
Abstract
A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-α in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.
Collapse
|
44
|
Parthasarathy S, Dhayaparan D, Jayanthi V, Devaraj SN, Devaraj H. Aberrant expression of epidermal growth factor receptor and its interaction with protein kinase C δ in inflammation associated neoplastic transformation of human esophageal epithelium in high risk populations. J Gastroenterol Hepatol 2011; 26:382-90. [PMID: 21155880 DOI: 10.1111/j.1440-1746.2010.06526.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIM Esophageal cancer is the second most common cancer among Indian males and is mostly associated with tobacco smoking and alcohol consumption. Epidermal growth factor receptor (EGFR) is a member of Type I tyrosine kinases. Its activation causes the docking of various proteins in its cytosolic tail. In the present study we have analyzed the expression pattern of EGFR, protein kinase C δ (PKCδ), tumor necrosis factor-α (TNF-α), nuclear factor κB (NFκB) and the interactions between EGFR and PKCδ in various pathological conditions. METHODS Human esophageal biopsies were obtained from 93 patients with a past history of smoking and alcohol consumption: 20 showed normal mucosa, 40 with dysplasia and 33 squamous cell carcinoma (SCC). These pathological conditions were analyzed immunohistochemically for the presence of EGFR expression and then subsequently analyzed using immunoblot and immunoprecipitation. RESULTS A statistically significant difference of EGFR overexpression was found between low- and high-grade dysplasia and carcinoma (χ² = 3.3, χ² = 3.42: P = 0.07, 0.33). A statistical significance was observed between dysplasia and SCC and in all histopathological types (χ² = 4, χ² = 4.9; P < 0.05, P = 0.18 and χ² = 26.3, 26.6; P < 0.001). EGFR tyrosine phosphorylation and its association with PKCδ was significantly higher in all histopathological types with χ² = 7.965; P < 0.05 and 4.0830; P = 0.2530. CONCLUSION Altogether, our findings reveal that the activation of EGFR and its subsequent interaction with PKCδ under inflammatory conditions might positively be attributed to the transformation of normal esophageal epithelia to SCC, which could explain ongoing inflammation in normal mucosa in a population prone to smoking and alcoholism.
Collapse
|
45
|
Probst GD, Bowers S, Sealy JM, Truong AP, Hom RK, Galemmo RA, Konradi AW, Sham HL, Quincy DA, Pan H, Yao N, Lin M, Tóth G, Artis DR, Zmolek W, Wong K, Qin A, Lorentzen C, Nakamura DF, Quinn KP, Sauer JM, Powell K, Ruslim L, Wright S, Chereau D, Ren Z, Anderson JP, Bard F, Yednock TA, Griswold-Prenner I. Highly selective c-Jun N-terminal kinase (JNK) 2 and 3 inhibitors with in vitro CNS-like pharmacokinetic properties prevent neurodegeneration. Bioorg Med Chem Lett 2011; 21:315-9. [DOI: 10.1016/j.bmcl.2010.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
|
46
|
Venkatesha SH, Berman BM, Moudgil KD. Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis. Bioorg Med Chem 2011; 19:21-9. [PMID: 21115252 PMCID: PMC3020797 DOI: 10.1016/j.bmc.2010.10.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating disease characterized by synovial inflammation, damage to cartilage and bone, and deformities of the joints. Several drugs possessing anti-inflammatory and immunomodulatory properties are being used in the conventional (allopathic) system of medicine to treat RA. However, the long-term use of these drugs is associated with harmful side effects. Therefore, newer drugs with low or no toxicity for the treatment of RA are actively being sought. Interestingly, several herbs demonstrate anti-inflammatory and anti-arthritic activity. In this review, we describe the role of the major biochemical and molecular mediators in the pathogenesis of RA, and highlight the sites of action of herbal medicinal products that have anti-arthritic activity. With the rapidly increasing use of CAM products by patients with RA and other inflammation-related disorders, our review presents timely information validating the scientific rationale for the use of natural therapeutic products.
Collapse
Affiliation(s)
- Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Brian M. Berman
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
47
|
Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol Ther 2010; 19:567-75. [PMID: 21179008 DOI: 10.1038/mt.2010.282] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A major hurdle for harnessing small interfering RNA (siRNA) for therapeutic application is an effective and safe delivery of siRNA to target tissues and cells via systemic administration. While lipid nanoparticles (LNPs) composed of a cationic lipid, poly-(ethylene glycol) lipid and cholesterol, are effective in delivering siRNA to hepatocytes via systemic administration, they may induce multi-faceted toxicities in a dose-dependent manner, independently of target silencing. To understand the underlying mechanism of toxicities, pharmacological probes including anti-inflammation drugs and specific inhibitors blocking different pathways of innate immunity were evaluated for their abilities to mitigate LNP-siRNA-induced toxicities in rodents. Three categories of rescue effects were observed: (i) pretreatment with a Janus kinase (Jak) inhibitor or dexamethasone abrogated LNP-siRNA-mediated lethality and toxicities including cytokine induction, organ impairments, thrombocytopenia and coagulopathy without affecting siRNA-mediated gene silencing; (ii) inhibitors of PI3K, mammalian target of rapamycin (mTOR), p38 and IκB kinase (IKK)1/2 exhibited a partial alleviative effect; (iii) FK506 and etoricoxib displayed no protection. Furthermore, knockout of Jak3, tumor necrosis factor receptors (Tnfr)p55/p75, interleukin 6 (IL-6) or interferon (IFN)-γ alone was insufficient to alleviate LNP-siRNA-associated toxicities in mice. These indicate that activation of innate immune response is a primary trigger of systemic toxicities and that multiple innate immune pathways and cytokines can mediate toxic responses. Jak inhibitors are effective in mitigating LNP-siRNA-induced toxicities.
Collapse
|
48
|
Liu C, Lin J, Wrobleski ST, Lin S, Hynes J, Wu H, Dyckman AJ, Li T, Wityak J, Gillooly KM, Pitt S, Shen DR, Zhang RF, McIntyre KW, Salter-Cid L, Shuster DJ, Zhang H, Marathe PH, Doweyko AM, Sack JS, Kiefer SE, Kish KF, Newitt JA, McKinnon M, Dodd JH, Barrish JC, Schieven GL, Leftheris K. Discovery of 4-(5-(cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a clinical p38α MAP kinase inhibitor for the treatment of inflammatory diseases. J Med Chem 2010; 53:6629-39. [PMID: 20804198 DOI: 10.1021/jm100540x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery and characterization of 7k (BMS-582949), a highly selective p38α MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38α inhibitor. Unlike alkyl and other cycloalkyls, the sp(2) character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38α enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38α was confirmed by X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Chunjian Liu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lin S, Wrobleski ST, Hynes J, Pitt S, Zhang R, Fan Y, Doweyko AM, Kish KF, Sack JS, Malley MF, Kiefer SE, Newitt JA, McKinnon M, Trzaskos J, Barrish JC, Dodd JH, Schieven GL, Leftheris K. Utilization of a nitrogen–sulfur nonbonding interaction in the design of new 2-aminothiazol-5-yl-pyrimidines as p38α MAP kinase inhibitors. Bioorg Med Chem Lett 2010; 20:5864-8. [DOI: 10.1016/j.bmcl.2010.07.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 11/28/2022]
|
50
|
Optimization of α-ketoamide based p38 inhibitors through modifications to the region that binds to the allosteric site. Bioorg Med Chem Lett 2010; 20:4819-24. [DOI: 10.1016/j.bmcl.2010.06.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022]
|