1
|
Krupa H, Gearhardt AN, Lewandowski A, Avena NM. Food Addiction. Brain Sci 2024; 14:952. [PMID: 39451967 PMCID: PMC11506718 DOI: 10.3390/brainsci14100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we aim to draw a connection between drug addiction and overconsumption of highly palatable food (OHPF) by discussing common behaviors and neurochemical pathways shared by these two states. OHPF can stimulate reward pathways in the brain that parallel those triggered by drug use, increasing the risk of dependency. Behavioral similarities between food and drug addiction can be addressed by tracking their stages: loss of control when eating (bingeing), withdrawal, craving, sensitization, and cross-sensitization. The brain adapts to addiction by way of the mesolimbic dopamine system, endogenous opioids and receptors, acetylcholine and dopamine balance, and adaptations of serotonin in neuroanatomy. Studies from the current literature are reviewed to determine how various neurological chemicals contribute to the reinforcement of drug addiction and OHPF. Finally, protocols for treating food addiction are discussed, including both clinical and pharmacological modalities. There is consistent evidence that OHPF changes brain chemistry and leads to addiction in similar ways to drugs. However, more long-term research is needed on food addiction, binge eating, and their neurobiological effects.
Collapse
Affiliation(s)
- Haley Krupa
- Marian Regional Medical Center, Santa Maria, CA 93454, USA;
| | | | | | - Nicole M. Avena
- Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
2
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
3
|
Dopamine D1 receptor signalling in the lateral shell of the nucleus accumbens controls dietary fat intake in male rats. Appetite 2021; 167:105597. [PMID: 34273421 DOI: 10.1016/j.appet.2021.105597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
Central dopamine signaling regulates reward-related aspects of feeding behavior, and during diet-induced obesity dopamine receptor signaling is altered. Yet, the influence of dopamine signaling on the consumption of specific dietary components remains to be elucidated. We have previously shown that 6-hydroxydopamine-mediated lesions of dopamine neuron terminals in the lateral shell of the nucleus accumbens promotes fat intake in rats fed a multi-component free-choice high-fat high-sugar (fcHFHS) diet. It is however not yet determined which dopamine receptors are responsible for this shift towards fat preference. In this study, we assess the effects of D1-or D2 receptor acute inhibition in the lateral shell of the nucleus accumbens on fcHFHS diet consumption. We report that infusion of the D1 receptor antagonist SCH2 3390, but not the D2 receptor antagonist raclopride, promotes dietary fat consumption in male Sprague Dawley rats on a fcHFHS diet during 2 h after infusion. Furthermore, anatomical analysis of infusion sites revealed that the rostral region, but not the caudal region, of the lateral shell of the nucleus accumbens is sensitive to the D1 receptor inhibition effects on fat consumption. Our data highlight a role for D1 receptors in the rostral region of the lateral shell of the nucleus accumbens to control dietary fat consumption.
Collapse
|
4
|
Joshi A, Faivre F, la Fleur SE, Barrot M. Midbrain and Lateral Nucleus Accumbens Dopamine Depletion Affects Free-choice High-fat high-sugar Diet Preference in Male Rats. Neuroscience 2021; 467:171-184. [PMID: 34048800 DOI: 10.1016/j.neuroscience.2021.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Dopamine influences food intake behavior. Reciprocally, food intake, especially of palatable dietary items, can modulate dopamine-related brain circuitries. Among these reciprocal impacts, it has been observed that an increased intake of dietary fat results in blunted dopamine signaling and, to compensate this lowered dopamine function, caloric intake may subsequently increase. To determine how dopamine regulates food preference we performed 6-hydroxydopamine (6-OHDA) lesions, depleting dopamine in specific brain regions in male Sprague Dawley rats. Food preference was assessed by providing the rats with free choice access to control diet, fat, 20% sucrose and tap water. Rats with midbrain lesions targeting the substantia nigra (which is also a model of Parkinson's disease) consumed fewer calories, as reflected by a decrease in control diet intake, but they surprisingly displayed an increase in fat intake, without change in the sucrose solution intake compared to sham animals. To determine which of the midbrain dopamine projections may contribute to this effect, we next compared the impact of 6-OHDA lesions of terminal fields, targeting the dorsal striatum, the lateral nucleus accumbens and the medial nucleus accumbens. We found that 6-OHDA lesion of the lateral nucleus accumbens, but not of the dorsal striatum or the medial nucleus accumbens, led to increased fat intake. These findings indicate a role for lateral nucleus accumbens dopamine in regulating food preference, in particular the intake of fat.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Fanny Faivre
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
5
|
Deer EM, Welch B, Hernandez LL, Seeley RJ, Grayson BE. Nutrient and hormone composition of milk is altered in rodent dams post-bariatric surgery. J Dev Orig Health Dis 2020; 11:71-77. [PMID: 31397254 PMCID: PMC6934892 DOI: 10.1017/s2040174419000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although bariatric surgery is approved for a woman of child-bearing age with an interest in subsequent pregnancy, reports of in utero growth issues during pregnancy have garnered a closer look at the impact of maternal surgical weight loss on the pre- and postpartum periods. Offspring of dams having received vertical sleeve gastrectomy (VSG) are born small-for-gestational age and have increased risk for metabolic syndrome later in life. Here, we aimed to determine whether the postnatal catch-up growth trajectory of bariatric offspring may be affected by milk composition. Milk samples were collected at postnatal day 15/16 from dams having received VSG surgery and fed a high-fat diet (HFD) (H-VSG), Sham surgery and fed chow (C-Sham), or Sham surgery and fed HFD (H-Sham). Milk obtained from H-VSG dams had elevated glucose (P < 0.05) and significantly reduced triglyceride content (P < 0.01). Milk from H-Sham dams had the lowest amount of milk protein (P < 0.05). Fatty acid composition measured by fractionation was largely not affected by surgery but rather maternal diet. No difference was observed in milk leptin levels; however, insulin, adiponectin, and growth hormone levels were significantly increased in milk from H-VSG animals. H-Sham had the lowest level of immunoglobulin (Ig)A, whereas IgG was significantly reduced in H-VSG. Taken together, the quality of milk from H-VSG dams suggests that milk composition could be a factor in reducing the rate of growth during the lactation period.
Collapse
Affiliation(s)
- Evangeline M. Deer
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS
| | - Bradley Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS
| | - Laura L. Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Bernadette E. Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
6
|
Spann RA, Lawson WJ, Bidwell GL, Zamarripa CA, Maranon RO, Bandyopadhyay S, Taylor ER, Reckelhoff JF, Garrett MR, Grayson BE. Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development. Clin Sci (Lond) 2018; 132:295-312. [PMID: 29167317 PMCID: PMC5989318 DOI: 10.1042/cs20171416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
Bariatric surgery is increasingly employed to improve fertility and reduce obesity-related co-morbidities in obese women. Surgical weight loss not only improves the chance of conception but reduces the risk of pregnancy complications including pre-eclampsia, gestational diabetes, and macrosomia. However, bariatric procedures increase the incidence of intrauterine growth restriction (IUGR), fetal demise, thromboembolism, and other gestational disorders. Using our rodent model of vertical sleeve gastrectomy (VSG), we tested the hypothesis that VSG in diet-induced, obese dams would cause immune and placental structural abnormalities that may be responsible for fetal demise during pregnancy. VSG dams studied on gestational day (G) 19 had reduced circulating T-cell (CD3+ and CD8+) populations compared with lean or obese controls. Further, local interleukin (IL) 1β and IL 1 receptor antagonist (il1rn) cmRNA were increased in placenta of VSG dams. Placental barrier function was also affected, with increased transplacental permeability to small molecules, increased matrix metalloproteinase 9 expression, and increased apoptosis in VSG. Furthermore, we identified increased placental mTOR signaling that may contribute to preserving the body weight of the fetuses during gestation. These changes occurred in the absence of a macronutrient deficit or gestational hypertension in the VSG dams. In summary, previous VSG in dams may contribute to fetal demise by affecting maternal immune system activity and compromise placental integrity.
Collapse
Affiliation(s)
- Redin A Spann
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - William J Lawson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - C Austin Zamarripa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Rodrigo O Maranon
- Department of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Sibali Bandyopadhyay
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin R Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Jane F Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A.
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A.
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
7
|
Kraft TT, Huang D, LaMagna S, Warshaw D, Natanova E, Sclafani A, Bodnar RJ. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. Eur J Pharmacol 2017; 799:26-32. [PMID: 28132914 DOI: 10.1016/j.ejphar.2017.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains.
Collapse
Affiliation(s)
- Tamar T Kraft
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Anthony Sclafani
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Brooklyn College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Queens College, CUNY, New York, NY, USA.
| |
Collapse
|
8
|
Dela Cruz JAD, Coke T, Bodnar RJ. Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats. J Vis Exp 2016:53897. [PMID: 27583636 PMCID: PMC5091945 DOI: 10.3791/53897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents.
Collapse
Affiliation(s)
- Julie A D Dela Cruz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, CUNY, New York, NY
| | - Tricia Coke
- Department of Psychology, Queens College, CUNY, Flushing, NY
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, Flushing, NY; Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, CUNY, Flushing, NY;
| |
Collapse
|
9
|
Kraft TT, Huang D, Natanova E, Lolier M, Yakubov Y, La Magna S, Warshaw D, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacol Biochem Behav 2015; 131:13-8. [DOI: 10.1016/j.pbb.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
|
10
|
Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 2014; 265:132-41. [DOI: 10.1016/j.bbr.2014.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/17/2014] [Accepted: 02/18/2014] [Indexed: 01/16/2023]
|
11
|
Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Gundlach AL. Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res 2014; 268:117-26. [PMID: 24681162 DOI: 10.1016/j.bbr.2014.03.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/10/2023]
Abstract
Behavioural arousal in mammals is regulated by various interacting central monoamine- and peptide-neurotransmitter/receptor systems, which function to maintain awake, alert and active states required for performance of goal-directed activities essential for survival, including food seeking. Existing anatomical and functional evidence suggests the highly-conserved neuropeptide, relaxin-3, which signals via its cognate Gi/o-protein coupled receptor, RXFP3, contributes to behavioural arousal and feeding behaviour in rodents. In studies to investigate this possibility further, adult male C57BL/6J mice were treated with the selective RXFP3 antagonist peptides, R3(B1-22)R/I5(A) and R3(B1-22)R, and motivated food seeking and consumption was assessed as a reflective output of behavioural arousal. Compared to vehicle treatment, intracerebroventricular (icv) injection of RXFP3 antagonists reduced: (i) food anticipatory activity before meal time during food restriction; (ii) consumption of highly palatable food; (iii) consumption of regular chow during the initial dark phase, and; (iv) consumption of regular chow after mild (∼4-h) food deprivation. Effects were not due to sedation and appeared to be specifically mediated via antagonism of relaxin-3/RXFP3 signalling, as RXFP3 antagonist treatment did not alter locomotor activity in wild-type mice or reduce palatable food intake in relaxin-3 deficient (knock-out) mice. Notably, in contrast to similar studies in the rat, icv injection of RXFP3 agonists and infusion into the paraventricular hypothalamic nucleus did not increase food consumption in mice, suggesting species differences in relaxin-3/RXFP3-related signalling networks. Together, our data provide evidence that endogenous relaxin-3/RXFP3 signalling promotes motivated food seeking and consumption, and in light of the established biological and translational importance of other arousal systems, relaxin-3/RXFP3 networks warrant further experimental investigation.
Collapse
Affiliation(s)
- Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew W Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - David Hawkes
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammad Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Peña CJ, Neugut YD, Calarco CA, Champagne FA. Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur J Neurosci 2014; 39:946-956. [DOI: 10.1111/ejn.12479] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/12/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Catherine Jensen Peña
- Department of Neuroscience and Friedman Brain Institute; Mount Sinai School of Medicine; New York NY USA
| | - Yael D. Neugut
- Department of Psychology; Columbia University; 406 Schermerhorn Hall, 1190 Amsterdam Avenue New York NY 10027 USA
| | | | - Frances A. Champagne
- Department of Psychology; Columbia University; 406 Schermerhorn Hall, 1190 Amsterdam Avenue New York NY 10027 USA
| |
Collapse
|
13
|
Kraft TT, Yakubov Y, Huang D, Fitzgerald G, Acosta V, Natanova E, Touzani K, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonism effects on the acquisition and expression of fat-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2013; 110:127-36. [DOI: 10.1016/j.pbb.2013.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/19/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022]
|
14
|
Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology (Berl) 2013; 229:275-83. [PMID: 23624808 DOI: 10.1007/s00213-013-3096-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Recent evidence suggests that ghrelin, a peptidic hormone stimulating food intake, interacts with the dopamine signaling. This interaction has been demonstrated to modulate several effects of ghrelin, such as locomotor activity, memory, and food intake. Ghrelin increases dopamine levels in the shell of the nucleus accumbens stimulating food intake, while ablation of the ghrelin receptor attenuates the hypophagia caused by the activation of dopamine receptor 2. However, it is not known whether the orexigenic action of ghrelin is due to changes in central dopamine receptors. MATERIALS AND METHODS We used Sprague-Dawley rats injected with different dopamine receptor agonists, antagonists, and ghrelin. RESULTS We demonstrate that the specific central blockade of dopamine receptor 1, 2, and 3 (D1, D2, and D3, respectively) reduces the orexigenic action of ghrelin. Similarly, specific central stimulation, either singly of dopamine receptor 1 or dopamine receptors 2 and 3 simultaneously, causes a significant decrease in ghrelin-induced food intake. Co-stimulation of all three receptors (D1, D2, and D3) also led to a marked attenuation in ghrelin-induced food intake. Importantly, the reduction in ghrelin-induced feeding was not caused by malaise or any type of behavioral alteration. CONCLUSION Taken together, these data indicate that dopamine receptors play an important role in acute stimulation of feeding behavior induced by central injection of ghrelin.
Collapse
|
15
|
Dela Cruz JAD, Icaza-Cukali D, Tayabali H, Sampson C, Galanopoulos V, Bamshad D, Touzani K, Sclafani A, Bodnar RJ. Roles of dopamine D1 and D2 receptors in the acquisition and expression of fat-conditioned flavor preferences in rats. Neurobiol Learn Mem 2012; 97:332-7. [PMID: 22390857 DOI: 10.1016/j.nlm.2012.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/08/2011] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Abstract
Sugars and fats elicit innate and learned flavor preferences with the latter mediated by flavor-flavor (orosensory) and flavor-nutrient (post-ingestive) processes. Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC), but not opioid antagonists blocked the acquisition and expression of flavor-flavor preferences conditioned by sugars. In addition, systemic D1, but not D2 or opioid antagonists blocked the acquisition of flavor-nutrient preferences conditioned by intragastric (IG) sugar infusions. Given that DA antagonists reduce fat intake, the present study examined whether systemic D1 or D2 antagonists altered the acquisition and/or expression of conditioned flavor preferences (CFP) produced by pairing one novel flavor (CS+, e.g., cherry) with a 3.5% corn oil (CO: fat) solution relative to another flavor (CS-, e.g., grape) paired with a 0.9% CO solution. In an expression study, food-restricted rats were trained to drink either flavored 3.5% or 0.9% CO solutions on alternate days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 0.9% CO solutions occurred 0.5h after systemic administration of vehicle (VEH), SCH (50-800 nmol/kg) or RAC (50-800 nmol/kg). The rats displayed a robust CS+ preference following VEH treatment (87-88%) the expression of which was attenuated by treatment with moderate doses of RAC, and to a lesser degree, SCH. In an acquisition study, six groups of rats received VEH, SCH (25, 50, 200 nmol/kg) or RAC (50, 200 nmol/kg) 0.5 h prior to 1-bottle training trials with CS+ flavored 3.5% and CS- flavored 0.9% (CS-) CO solutions. A seventh Limited VEH group was trained with its training intakes limited to that of the SCH and RAC groups. Subsequent two-bottle tests were conducted with the CS+ and CS- flavors presented in 0.9% CO without injections. Significant and persistent CS+ preferences were observed in VEH (75-82%), Limited VEH (70-88%), SCH25 (75-84%), SCH50 (64-87%), SCH200 (78-91%) and RAC200 (74-91%) groups. In contrast, the group trained with RAC50 displayed a significant initial CS+ preference (76%) which declined over testing to 61%. These data indicate limited DA D1 and D2 receptor signaling involvement in the expression and acquisition of a fat-CFP relative to previous robust effects for sugar-CFP.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Genetic variance contributes to dopamine and opioid receptor antagonist-induced inhibition of intralipid (fat) intake in inbred and outbred mouse strains. Brain Res 2009; 1316:51-61. [PMID: 20026311 DOI: 10.1016/j.brainres.2009.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/02/2009] [Accepted: 12/08/2009] [Indexed: 01/09/2023]
Abstract
Preference for and intake of solid and emulsified fat (intralipid) solutions vary across different mouse strains. Fat intake in rodents is inhibited by dopamine and opioid receptor antagonists, but any variation in these responses as a function of genetic background is unknown. Therefore, the present study compared the ability of dopamine D1-like (SCH23390) and general opioid (naltrexone) receptor antagonism to alter intake of fat emulsions (intralipid) in mice. Two-hour intakes of 5% intralipid were measured (5-120 min) in seven inbred (BALB/c, C57BL/6, C57BL/10, DBA/2, SJL, SWR, 129P3) and one outbred (CD-1) mouse strains following treatment with vehicle, SCH23390 (50-1600 nmol/kg, ip) and naltrexone (0.001-5 mg/kg, sc). SCH23390 significantly, dose-dependently and differentially reduced intralipid intake at all five (DBA/2, SWR, CD-1), four (SJL, C57BL/6), three (129P3) and one (C57BL/10) of the doses tested, but failed to affect intralipid intake in BALB/c mice. Naltrexone significantly, dose-dependently and differentially reduced intralipid intake at all four (DBA/2), three (SWR, SJL), two (CD-1, C57BL/10) and one (C57BL/6, 129P3) of the doses tested, and also failed to affect intralipid intake in BALB/cJ mice. SCH23390 and naltrexone were respectively 13.3-fold and 9.3-fold more potent in inhibiting intralipid intake in the most sensitive (DBA/2) relative to the least sensitive (BALB/c) mouse strains. A strong positive relationship (r=0.91) was observed for the abilities of SCH23390 and naltrexone to inhibit intralipid intake across strains. These findings indicate that dopaminergic and opioid signaling mechanisms differentially control intralipid intake across different mouse strains, suggesting important genetic and pharmacological interactions in the short-term control of rewarding and post-ingestive consequences of fat intake.
Collapse
|
17
|
Baclofen, raclopride, and naltrexone differentially affect intake of fat and sucrose under limited access conditions. Behav Pharmacol 2009; 20:537-48. [PMID: 19724193 DOI: 10.1097/fbp.0b013e3283313168] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gamma-aminobutyric acid (GABA), dopamine, and opioids are implicated in impulse control, addiction and binge eating. Recent evidence suggests that sucrose alters the effects of GABAergic, dopaminergic, and opioid receptor ligands on consumption of a fatty food in a rat limited-access binge protocol. This study determined the independent effects of fat and sucrose on the efficacy of these ligands under limited-access conditions. Nonfood-deprived male Sprague-Dawley rats had 1 h access to fat (vegetable shortening) or sucrose (3.2, 10, or 32% w/v). Half had intermittent access (Monday, Wednesday, Friday) and half had daily access. Effects of baclofen (GABAB agonist), SCH 23390 (D1 antagonist), raclopride (D2 antagonist), and naltrexone (opioid antagonist) were assessed. Baclofen and naltrexone reduced fat intake regardless of the access schedule. Baclofen had no effect on sucrose intake; naltrexone reduced sucrose intake at higher doses than were required to reduce fat intake. Raclopride stimulated fat intake in intermittent-access rats and had no effect in daily-access rats; raclopride reduced sucrose intake in all groups. SCH 23390 reduced intake in a nonspecific manner. The results indicate the involvement of GABAB receptors in fat but not sucrose intake, and of D2 receptor dysfunction in rats with a history of bingeing on fat.
Collapse
|
18
|
Wong KJ, Wojnicki FHW, Corwin RLW. Baclofen, raclopride, and naltrexone differentially affect intake of fat/sucrose mixtures under limited access conditions. Pharmacol Biochem Behav 2009; 92:528-36. [PMID: 19217918 PMCID: PMC2841009 DOI: 10.1016/j.pbb.2009.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 01/28/2009] [Accepted: 02/07/2009] [Indexed: 01/15/2023]
Abstract
This study assessed the effects of the opioid antagonist naltrexone, the dopamine 2-like (D2) antagonist raclopride, and the GABA(B) agonist baclofen on consumption of fat/sucrose mixtures (FSM) using a limited access protocol. Sixty male Sprague-Dawley rats were grouped according to two schedules of access (Daily [D] or Intermittent [I]) to an optional FSM. Each FSM was created by whipping 3.2% (L), 10% (M), or 32% (H) powdered sugar into 100% vegetable shortening in a w/w manner (n=10 per group). One-hour intakes of the IL and IM groups were significantly greater than intakes of the respective DL and DM groups, thus fulfilling our operational definition of binge-type eating in these groups. Baclofen reduced intakes of the L and M mixtures regardless of access schedule, but failed to reduce intake of the H mixture. Naltrexone reduced intake in all groups, but potency was greater in IL rats than in DL rats. Furthermore, potency was attenuated in Intermittent rats, but enhanced in Daily rats, at higher sucrose concentrations. Raclopride reduced intake in the DL and stimulated intake in the IL groups, reduced intake in both M groups, and was without effect in both H groups. These results indicate that fat/sucrose mixtures containing relatively low concentrations of sucrose allow distinctions to be made between: 1) intakes stimulated by different access schedules and 2) opioid and dopaminergic modulation of those intakes. These results also suggest that brief bouts of food consumption involving fatty, sugar-rich foods may prove to be particularly resistant to pharmacological intervention.
Collapse
Affiliation(s)
- K J Wong
- The Pennsylvania State University, Nutritional Sciences Dept., 110 Chandlee Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
19
|
Rao RE, Wojnicki FHE, Coupland J, Ghosh S, Corwin RLW. Baclofen, raclopride, and naltrexone differentially reduce solid fat emulsion intake under limited access conditions. Pharmacol Biochem Behav 2008; 89:581-90. [PMID: 18353432 DOI: 10.1016/j.pbb.2008.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 01/02/2008] [Accepted: 02/11/2008] [Indexed: 01/07/2023]
Abstract
Previous work in rats has demonstrated that an Intermittent (Monday, Wednesday, Friday) schedule of access promotes binge-type consumption of 100% vegetable shortening during a 1-h period of availability. The present study used novel shortening-derived stable solid emulsions of various fat concentrations. These emulsions were the consistency of pudding and did not demonstrate oil and water phase separation previously reported with oil-based liquid emulsions. Male Sprague-Dawley rats were grouped according to schedule of access (Daily or Intermittent) to one of three concentrations (18%, 32%, 56%) of solid fat emulsion. There were no significant Intermittent vs. Daily differences in amount consumed, due to high intakes in all groups. This indicated the acceptability of the emulsions. Baclofen (GABA(B) agonist) and raclopride (D2-like antagonist) both significantly reduced emulsion intake in all Daily groups, but only in the 56% fat Intermittent group. Naltrexone (opioid antagonist), in contrast, significantly reduced 32% and 56% fat emulsion intake in the Intermittent, as well as the Daily groups. These results indicate that the fat intake-reducing effects of GABA(B) activation and D(2) blockade depend upon fat concentration and schedule of fat access, while the fat intake-reducing effects of opioid blockade depend upon fat concentration but not schedule of access.
Collapse
Affiliation(s)
- R E Rao
- The Pennsylvania State University, Nutritional Sciences Department, University Park, PA 16801, United States
| | | | | | | | | |
Collapse
|
20
|
Hajnal A, De Jonghe BC, Covasa M. Dopamine D2 receptors contribute to increased avidity for sucrose in obese rats lacking CCK-1 receptors. Neuroscience 2007; 148:584-92. [PMID: 17681694 PMCID: PMC2098697 DOI: 10.1016/j.neuroscience.2007.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 11/20/2022]
Abstract
Accumulating evidence has indicated a link between dopamine signaling and obesity in both animals and humans. We have recently demonstrated heightened avidity to sapid sweet solutions in the obese cholecystokinin (CCK)-1 receptor deficient Otsuka Long Evans Tokushima fatty (OLETF) rat. To investigate the dopamine dependence and the respective contribution of D1 and D2 receptor subtypes in this phenomenon, real and sham intake of 0.3 M sucrose solution was compared between prediabetic, obese OLETF and age-matched lean Long-Evans Tokushima Otsuka (LETO) cohorts following peripheral (i.p.) administration of equimolar doses (50-800 nmol/kg) of the D1 (R-(+) 7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, SCH23390) and D2 (raclopride) selective receptor antagonists. Both antagonists were potent in reducing sucrose intake in both strains with both drugs suppressing sham intake starting at lower doses than real intake (200 nmol/kg vs. 400 nmol/kg for SCH23390, and 400 nmol/kg vs. 600 nmol/kg for raclopride, respectively). Furthermore, when percent suppression of intake, a measure that controlled for the higher baseline sucrose intake by obese rats was analyzed, OLETF rats expressed an increased sensitivity to raclopride in reducing ingestion of sucrose with a 1.7- and 2.9-fold lower inhibitory dose threshold (ID50) for real and sham intake conditions, respectively, compared with LETO controls. In contrast, SCH23390 caused no differential strain effect with respect to dosage whether sucrose was real or sham fed. These findings demonstrate that D2 receptors are involved in heightened increased consumption of sucrose observed in the OLETF obese rat.
Collapse
Affiliation(s)
- A Hajnal
- Department of Neural and Behavioral Sciences H181, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
21
|
Suzuki A, Yamane T, Fushiki T. Inhibition of fatty acid β-oxidation attenuates the reinforcing effects and palatability to fat. Nutrition 2006; 22:401-7. [PMID: 16457991 DOI: 10.1016/j.nut.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/05/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We investigated the effects of the energy signal on the reinforcing effects and palatability to fat in mice. METHODS To examine the effects of postingestive energy signal, mice were injected with 400 micromol/kg body mass of mercaptoacetate, a beta-oxidation blocker or with saline (control group). Reinforcing effects and palatability response were examined with the conditioned place preference and one-bottle tests, respectively. RESULTS In conditioned place preference tests, the mercaptoacetate group exhibited reinforcing effects when offered a 40% sucrose solution, which is not metabolized by the beta-oxidation pathway, but not when offered 100% corn oil. The control group exhibited reinforcing effects when offered the sucrose solution and when offered corn oil. In one-bottle tests, the control group exhibited palatability to corn oil, but the mercaptoacetate group did not. Consumption of sucrose solution was identical for both groups. CONCLUSIONS These results suggest that postingestive energy signal influences the reinforcing effects and palatability of fat.
Collapse
Affiliation(s)
- Ayako Suzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
22
|
Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav 2005; 83:645-51. [PMID: 15621070 DOI: 10.1016/j.physbeh.2004.07.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
Fatty acid oxidation is thought to play a role in the control of food intake, and a low postprandial oxidation of ingested fat may contribute to the overeating on a high-fat diet. Evidence for a role of fatty acid oxidation in control of food intake is mainly derived from the stimulation of feeding in response to administration of the acyl-CoA-dehydrogenase inhibitor mercaptoacetate (MA) and other inhibitors of fatty acid oxidation in different species (rat, mouse, man). Denervation studies suggest that this "lipoprivic feeding" is related to changes in hepatic fatty acid oxidation. In contrast to the strong case for a feeding stimulatory effect of an inhibition of fatty acid oxidation, the evidence for a feeding suppressive effect of a stimulation of fatty acid oxidation is inconsistent and comparatively weak. Ingestion of medium-chain fatty acids (MCFA) and peripheral administration of substances known to increase fatty acid oxidation, such as the fatty acid synthase inhibitor C75 and beta3-adrenergic agonists, decrease feeding. Yet, these substances also reduce the rats' usual preference for saccharin solution, indicating that the feeding suppressive effect is not only due to a stimulation of fatty acid oxidation. A possible approach to answer the question of whether a stimulation of hepatic fatty acid oxidation enhances satiety is to selectively increase expression and activity of the enzyme CPT 1alpha in the liver. CPT 1alpha transfers long-chain fatty acids in the cytosol from CoA to carnitine, which is the precondition for the entry of long-chain fatty acids into mitochondria and the rate-controlling step in mitochondrial fatty acid oxidation. The generation of rats with inducible, liver-specific overexpression of CPT 1alpha should permit to critically examine the putative contribution of hepatic fatty acid oxidation to the control of food intake.
Collapse
Affiliation(s)
- Monika Leonhardt
- Institute of Animal Sciences, Swiss Federal Institute of Technology, Schorenstr. 16, CH-8603 Schwerzenbach, Switzerland.
| | | |
Collapse
|
23
|
Farmer-Dougan V, Dougan JD, Rokosik S, Lewis J, Garris PA. Locomotion induced by non-contingent intracranial stimulation: comparison to psychomotor stimulant. Behav Processes 2004; 67:245-61. [PMID: 15497258 DOI: 10.1016/j.beproc.2004.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-contingent experimenter-applied stimulation (nEAS) to the ventral mesencephalon, unlike contingent intracranial self-stimulation (ICSS), elicits high rates of general locomotion. This locomotion may be due to the nature of the presentation of stimulation, in that nEAS is non-contingent, while ICSS depends on a specific and focused response (e.g., bar pressing). Psychomotor stimulants also elicit high amounts of general locomotion, with the locomotion attributed to increased dopamine release. Interestingly, dopamine release decreases or is absent with repeated ICSS, but not nEAS. This suggests that the locomotion elicited by nEAS may be the result of DA release similar to that observed with psychomotor stimulants. To determine the relationship between locomotion induced by nEAS and psychomotor stimulants, locomotion elicited by nEAS was directly compared to that produced by cocaine, a psychomotor stimulant and indirect DA agonist. Six groups of rats were examined: (1) DA+ group: rats were implanted with a stimulating electrode in the ventral mesencephalon and activation of DA neurons was verified during surgery by monitoring DA release in the striatum; (2) DA- group: rats were also implanted with stimulating electrodes, but the location in the ventral mesencephalon did not elicit DA release; (3) 10-mg/kg cocaine group: rats were exposed to a low dose (10 mg/kg) of cocaine; (4) 40-mg/kg cocaine group: rats were exposed to a high dose (40 mg/kg) of cocaine; (5) saline group: rats were injected with saline; and (6) naive group: rats received no treatment. The topography of behavior was assessed in all rats during four periods: a pre-treatment baseline, treatment, early post-treatment, and a late post-treatment end point. The results suggest that locomotion elicited by nEAS was stereotypic, dependent upon DA release and similar, but not identical, to psychomotor stimulant-induced locomotion.
Collapse
Affiliation(s)
- Valeri Farmer-Dougan
- Departments of Psychology and Biological Sciences, Illinois State University, Normal, IL 61790-4620, USA.
| | | | | | | | | |
Collapse
|
24
|
Benoit SC, McQuade JA, Clegg DJ, Xu M, Rushing PA, Woods SC, Seeley RJ. Altered feeding responses in mice with targeted disruption of the dopamine-3 receptor gene. Behav Neurosci 2003; 117:46-54. [PMID: 12619907 DOI: 10.1037/0735-7044.117.1.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine signaling has been implicated in the control of food intake and body weight. In particular, dopamine is important in the control of meal size and number and is thought to mediate the response to metabolic deprivation states. In the present experiments, the authors assessed the role of the dopamine-3 receptor (D3R) in the feeding responses to 2-deoxy-D-glucose, mercaptoacetate, and peripheral insulin. All 3 compounds increased food intake in wild-type mice, but the hyperphagic responses were blunted in D3R-/- mice. In other experiments, D3R-/- mice were hyperresponsive to the administration of amylin and leptin relative to wild-type mice. These results support the hypothesis that D3Rs chronically inhibit the effects of adiposity hormones, thereby contributing to a net anabolic state.
Collapse
Affiliation(s)
- Stephen C Benoit
- Department of Psychiatry, University of Cincinnati, Ohio 45267-0559, USA.
| | | | | | | | | | | | | |
Collapse
|