1
|
Aggarwal S, Cheng MH, Salvino JM, Bahar I, Mortensen OV. Functional Characterization of the Dopaminergic Psychostimulant Sydnocarb as an Allosteric Modulator of the Human Dopamine Transporter. Biomedicines 2021; 9:634. [PMID: 34199621 PMCID: PMC8227285 DOI: 10.3390/biomedicines9060634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
The dopamine transporter (DAT) serves a critical role in controlling dopamine (DA)-mediated neurotransmission by regulating the clearance of DA from the synapse and extrasynaptic regions and thereby modulating DA action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DATs to alter their actions resulting in an enhancement in extracellular DA concentrations. We previously identified a novel allosteric site in the DAT and the related human serotonin transporter that lies outside the central orthosteric substrate- and cocaine-binding pocket. Here, we demonstrate that the dopaminergic psychostimulant sydnocarb is a ligand of this novel allosteric site. We identified the molecular determinants of the interaction between sydnocarb and DAT at the allosteric site using molecular dynamics simulations. Biochemical-substituted cysteine scanning accessibility experiments have supported the computational predictions by demonstrating the occurrence of specific interactions between sydnocarb and amino acids within the allosteric site. Functional dopamine uptake studies have further shown that sydnocarb is a noncompetitive inhibitor of DAT in accord with the involvement of a site different from the orthosteric site in binding this psychostimulant. Finally, DA uptake studies also demonstrate that sydnocarb affects the interaction of DAT with both cocaine and amphetamine. In summary, these studies further strengthen the prospect that allosteric modulation of DAT activity could have therapeutic potential.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.H.C.); (I.B.)
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.H.C.); (I.B.)
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| |
Collapse
|
2
|
Felmer AC, Janson MT, Summers KE, Wallace LJ. Extracellular dopamine kinetic parameters consistent with amphetamine effects. Synapse 2019; 73:e22129. [DOI: 10.1002/syn.22129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Anna C. Felmer
- Division of Pharmacology College of Pharmacy The Ohio State University Columbus Ohio
| | - Marnie T. Janson
- Division of Pharmacology College of Pharmacy The Ohio State University Columbus Ohio
| | - Katherine E. Summers
- Division of Pharmacology College of Pharmacy The Ohio State University Columbus Ohio
| | - Lane J. Wallace
- Division of Pharmacology College of Pharmacy The Ohio State University Columbus Ohio
| |
Collapse
|
3
|
Bashkatova V, Philippu A. Role of nitric oxide in psychostimulant-induced neurotoxicity. AIMS Neurosci 2019; 6:191-203. [PMID: 32341976 PMCID: PMC7179361 DOI: 10.3934/neuroscience.2019.3.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
In recent decades, consumption of psychostimulants has been significantly increased all over the world, while exact mechanisms of neurochemical effects of psychomotor stimulants remained unclear. It is assumed that the neuronal messenger nitric oxide (NO) may be involved in mechanisms of neurotoxicity evoked by psychomotor stimulants. However, possible participation of NO in various pathological states is supported mainly by indirect evidence because of its short half-life in tissues. Aim of this review is to describe the involvement of NO and the contribution of lipid peroxidation (LPO) and acetylcholine (ACH) release in neurotoxic effects of psychostimulant drugs. NO was directly determined in brain structures by electron paramagnetic resonance (EPR). Both NO generation and LPO products as well as release of ACH were increased in brain structures following four injections of amphetamine (AMPH). Pretreatment of rats with the non-selective inhibitor of NO-synthase (NOS) N-nitro-L-arginine or the neuronal NOS inhibitor 7-nitroindazole significantly reduced increase of NO generation as well as the rise of ACH release induced by AMPH. Both NOS inhibitors injected prior to AMPH had no effect on enhanced levels of LPO products. Administration of the noncompetitive NMDA receptor antagonist dizocilpine abolished increase of both NO content and concentration of LPO products induced by of the psychostimulant drug. Dizocilpine also eliminated the influence of AMPH on the ACH release. Moreover, the neurochemical and neurotoxic effects of the psychostimulant drug sydnocarb were compared with those of AMPH. Single injection of AMPH showed a more pronounced increase in NO and TBARS levels than after an equimolar concentration of sydnocarb. The findings demonstrate the crucial role of NO in the development of neurotoxicity elicited by psychostimulants and underline the key role of NOS in AMPH-induced neurotoxicity.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Laboratory of physiology of reinforcement, P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Athineos Philippu
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| |
Collapse
|
4
|
Wallace LJ. Effects of amphetamine on subcellular distribution of dopamine and DOPAC. Synapse 2012; 66:592-607. [PMID: 22314940 DOI: 10.1002/syn.21546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/03/2012] [Indexed: 02/02/2023]
Abstract
Amphetamine effects on distribution of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and amphetamine in vesicular, cytosolic, and extracellular compartments associated with a striatal varicosity were estimated through use of a computer simulation model. In addition, contribution to overall effects of amphetamine by each of five actions--transport by dopamine transporter (DAT), transport by vesicular monoamine transporter, stimulation of reverse transport, inhibition of monoamine oxidase (MAO), and slowing of dopamine cell firing rate--were evaluated. Amphetamine enters a varicosity almost entirely by DAT and accumulates to very high levels within the varicosity. Both reverse transport by DAT and passive diffusion contribute to continual amphetamine egress across the plasma membrane. Amphetamine enters storage vesicles by both transport and diffusion. The transport portion competes with dopamine storage, resulting in redistribution of approximately half of dopamine from vesicles to cytosol. The high concentration of amphetamine in the cytosol inhibits MAO, protecting cytosolic dopamine. A very small fraction of cytosolic dopamine is moved to extracellular compartment via reverse transport by DAT. The amount of dopamine moved by reverse transport is limited because of competition by very high cytosolic levels of amphetamine. In the presence of amphetamine, rate of dopamine transfer to extracellular compartment is less than control; however, high levels of extracellular dopamine are maintained because amphetamine occupies the DAT, thus limiting dopamine reuptake. Simulation output from a model using exchange-diffusion mechanism of reverse transport does not match all published data that were simulated, suggesting that inward transport of a substrate is not required to initiate reverse transport.
Collapse
Affiliation(s)
- Lane J Wallace
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
5
|
Gruner JA, Mathiasen JR, Flood DG, Gasior M. Characterization of pharmacological and wake-promoting properties of the dopaminergic stimulant sydnocarb in rats. J Pharmacol Exp Ther 2011; 337:380-90. [PMID: 21300706 DOI: 10.1124/jpet.111.178947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Sydnocarb is a psychomotor stimulant structurally similar to d-amphetamine (D-AMPH) and is used in Russia for the treatment of a variety of neuropsychiatric comorbidities. The nature of sydnocarb-induced facilitation of dopamine (DA) neurotransmission [DA release versus DA transporter (DAT) inhibition] is not clear. The present study characterized the pharmacological actions and behavioral effects of intraperitoneal sydnocarb in male Sprague-Dawley rats. Where relevant, comparisons were made with intraperitoneal D-AMPH. Unlike D-AMPH, which causes release of DA from rat synaptosomes (EC(50) = 0.10 μM; 95% confidence limits, 0.06-0.18), sydnocarb (up to 100 μM) did not. Sydnocarb potently (K(i) = 8.3 ± 0.7 nM) blocked recombinant human DAT expressed in Chinese hamster ovary-K1 cells and less potently blocked the norepinephrine transporter (K(i) = 10.1 ± 1.5 μM). Sydnocarb at 10 μM did not bind to 64 other targets. In rats, 10 and 30 mg/kg sydnocarb showed a 2-fold longer half-life in plasma and brain and a 5-fold lower brain-to-plasma ratio compared with 0.3 and 1 mg/kg D-AMPH. In the Irwin assay, sydnocarb was well tolerated up to 30 mg/kg; D-AMPH-like stereotypic behaviors were evident at 100 mg/kg. Behavioral effects of 30 mg/kg sydnocarb and 0.3 mg/kg D-AMPH were comparable. In a sleep/wake assay, 10 mg/kg sydnocarb and 1 mg/kg D-AMPH increased wakefulness comparably; however, sydnocarb (up to 30 mg/kg) did not induce D-AMPH-like rebound hypersomnolence (RHS). Like D-AMPH, sydnocarb enhanced theta power, an electrophysiological measure of cognitive function. In conclusion, sydnocarb is a selective and potent DAT inhibitor that produces robust increases in the wake state without RHS, and with potential cognitive-enhancing properties.
Collapse
Affiliation(s)
- John A Gruner
- CNS Biology, Worldwide Discovery Research, Cephalon, Inc., West Chester, Pennsylvania, USA
| | | | | | | |
Collapse
|
6
|
Aluf Y, Vaya J, Khatib S, Finberg JPM. Alterations in striatal oxidative stress level produced by pharmacological manipulation of dopamine as shown by a novel synthetic marker molecule. Neuropharmacology 2011; 61:87-94. [PMID: 21414328 DOI: 10.1016/j.neuropharm.2011.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/18/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
Oxidative stress (OS) is thought to participate in neurodegenerative diseases such as Parkinson's disease, but the contribution of dopamine metabolism and auto-oxidation to OS in Parkinson's and other diseases is not clear. Oxidative stress in rat striatum was measured by microdialysis using a novel synthetic compound composed of tyrosine and linoleic acid (LT), and determination of the oxidation products LT-OOH and LT-epoxy by HPLC-MS. Since LT is non-diffusible through the microdialysis membrane, the oxidized products formed in microdialyzate reflect oxidation state in the extracellular compartment. The extracellular oxidative stress (OS(ec)) was compared with intracellular oxidative stress (OS(ic)) as measured by tissue levels of oxidized and reduced glutathione and 7-ketocholesterol. Reserpinization caused an increase in OS(ic) but a reduction in OS(ec). Inhibition of both subtypes of monoamine oxidase (MAO-A and MAO-B) with tranylcypromine caused a reduction in both OS(ic) and OS(ec) whereas selective inhibition of MAO-A with clorgyline caused a reduction in Os(ic) but no change in OS(ec). A high dose (10 mg/kg) of amphetamine caused an increase in OS(ec) whereas a smaller dose (4 mg/kg) caused a reduction in OS(ec). Both doses of amphetamine reduced OS(ic). The present findings are consistent with a role of monoamine oxidase as well as dopamine auto-oxidation in production of striatal OS.
Collapse
Affiliation(s)
- Y Aluf
- Department of Molecular Pharmacology, Rappaport Medical Faculty, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
7
|
Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). Br J Pharmacol 2008; 154:606-22. [PMID: 18500382 DOI: 10.1038/bjp.2008.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review examines the pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). Stimulants that increase alertness/reduce fatigue or activate the cardiovascular system can include drugs like ephedrine available in many over-the-counter medicines. Others such as amphetamines, cocaine and hallucinogenic drugs, available on prescription or illegally, can modify mood. A total of 62 stimulants (61 chemical entities) are listed in the WADA List, prohibited in competition. Athletes may have stimulants in their body for one of three main reasons: inadvertent consumption in a propriety medicine; deliberate consumption for misuse as a recreational drug and deliberate consumption to enhance performance. The majority of stimulants on the list act on the monoaminergic systems: adrenergic (sympathetic, transmitter noradrenaline), dopaminergic (transmitter dopamine) and serotonergic (transmitter serotonin, 5-HT). Sympathomimetic describes agents, which mimic sympathetic responses, and dopaminomimetic and serotoninomimetic can be used to describe actions on the dopamine and serotonin systems. However, many agents act to mimic more than one of these monoamines, so that a collective term of monoaminomimetic may be useful. Monoaminomimietic actions of stimulants can include blockade of re-uptake of neurotransmitter, indirect release of neurotransmitter, direct activation of monoaminergic receptors. Many of the stimulants are amphetamines or amphetamine derivatives, including agents with abuse potential as recreational drugs. A number of agents are metabolized to amphetamine or metamphetamine. In addition to the monoaminomimetic agents, a small number of agents with different modes of action are on the list. A number of commonly used stimulants are not considered as Prohibited Substances.
Collapse
|
8
|
Eremin KO, Kudrin VS, Saransaari P, Oja SS, Grivennikov IA, Myasoedov NF, Rayevsky KS. Semax, an ACTH(4-10) analogue with nootropic properties, activates dopaminergic and serotoninergic brain systems in rodents. Neurochem Res 2006; 30:1493-500. [PMID: 16362768 DOI: 10.1007/s11064-005-8826-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Corticotrophin (ACTH) and its analogues, particularly Semax (Met-Glu-His-Phe-Pro-Gly-Pro), demonstrate nootropic activity. Close functional and anatomical links have been established between melanocortinergic and monoaminergic brain systems. The aim of present work was to investigate the effects of Semax on neurochemical parameters of dopaminergic- and serotonergic systems in rodents. The tissue content of 5-hydroxyindoleacetic acid (5-HIAA) in the striatum was significantly increased (+25%) 2 h after Semax administration. The extracellular striatal level of 5-HIAA gradually increased up to 180% within 1-4 h after Semax (0.15 mg/kg, ip) administration. This peptide alone failed to alter the tissue and extracellular concentrations of dopamine and its metabolites. Semax injected 20 min prior D: -amphetamine dramatically enhanced the effects of the latter on the extracellular level of dopamine and on the locomotor activity of animals. Our results reveal the positive modulatory effect of Semax on the striatal serotonergic system and the ability of Semax to enhance both the striatal release of dopamine and locomotor behavior elicited by D-amphetamine.
Collapse
Affiliation(s)
- Kirill O Eremin
- V.V. Zakusov's Research Institute of Pharmacology RAMS, Baltyskaya Str., 8, 125315, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Anderzhanova E, Rayevsky KS, Saransaari P, Oja SS. Effect of sulpiride on the amphetamine-induced changes in extracellular dopamine, DOPAC, and hydroxyl radical generation in the rat striatum. Neurochem Res 2003; 28:1241-8. [PMID: 12834265 DOI: 10.1023/a:1024240814923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neurotoxic effects of psychostimulants are mediated by several mechanisms, which together lead to neuronal damage. These mechanisms include an increase in the extracellular content of dopamine, stimulation of dopamine oxidation, accumulation of extracellular glutamate, and an increase in body temperature. In the present study, the dopamine receptor antagonist sulpiride proved able to prevent the delayed loss of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) and depressed the gradual generation of hydroxyl radicals induced in the rat striatum by D-amphetamine. However, sulpiride at a dose of 75 mg/kg x 2, coadministered with D-amphetamine (7.5 mg/kg x 4), potentiated the increase in extracellular dopamine and initially slightly enhanced D-amphetamine-induced stereotypy. The gradual increase in hydroxyl radical generation predicts the depletion of dopamine and DOPAC in the rat striatum after D-amphetamine administration, but the increase in extracellular dopamine is not a pivotal factor in the enhanced production of hydroxyl radicals.
Collapse
|