1
|
Doss MK, de Wit H, Gallo DA. The acute effects of psychoactive drugs on emotional episodic memory encoding, consolidation, and retrieval: A comprehensive review. Neurosci Biobehav Rev 2023; 150:105188. [PMID: 37085021 PMCID: PMC10247427 DOI: 10.1016/j.neubiorev.2023.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Psychoactive drugs modulate learning and emotional processes in ways that could impact their recreational and medical use. Recent work has revealed how drugs impact different stages of processing emotional episodic memories, specifically encoding (forming memories), consolidation (stabilizing memories), and retrieval (accessing memories). Drugs administered before encoding may preferentially impair (e.g., GABAA sedatives including alcohol and benzodiazepines, Δ9-tetrahydrocannabinol or THC, ketamine), enhance (e.g., dextroamphetamine and dextromethamphetamine), or both impair and enhance (i.e., ± 3,4-methylenedioxymethylamphetamine or MDMA) emotionally negative and positive compared to neutral memories. GABAA sedatives administered immediately post-encoding (during consolidation) can preferentially enhance emotional memories, though this selectivity may decline or even reverse (i.e., preferential enhancement of neutral memories) as the delay between encoding and retrieval increases. Finally, retrieving memories under the effects of THC, dextroamphetamine, MDMA, and perhaps GABAA sedatives distorts memory, with potentially greater selectively for emotional (especially positive) memories. We review these effects, propose neural mechanisms, discuss methodological considerations for future work, and speculate how drug effects on emotional episodic memory may contribute to drug use and abuse.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic & Consciousness Research, USA.
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, USA
| | - David A Gallo
- Department of Psychology, University of Chicago, USA
| |
Collapse
|
2
|
Zhao Y, Rütgen M, Zhang L, Lamm C. Pharmacological fMRI provides evidence for opioidergic modulation of discrimination of facial pain expressions. Psychophysiology 2020; 58:e13717. [PMID: 33140886 PMCID: PMC7816233 DOI: 10.1111/psyp.13717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
The endogenous opioid system is strongly involved in the modulation of pain. However, the potential role of this system in perceiving painful facial expressions from others has not been sufficiently explored as of yet. To elucidate the contribution of the opioid system to the perception of painful facial expressions, we conducted a double‐blind, within‐subjects pharmacological functional magnetic resonance imaging (fMRI) study, in which 42 participants engaged in an emotion discrimination task (pain vs. disgust expressions) in two experimental sessions, receiving either the opioid receptor antagonist naltrexone or an inert substance (placebo). On the behavioral level, participants less frequently judged an expression as pain under naltrexone as compared to placebo. On the neural level, parametric modulation of activation in the (putative) right fusiform face area (FFA), which was correlated with increased pain intensity, was higher under naltrexone than placebo. Regression analyses revealed that brain activity in the right FFA significantly predicted behavioral performance in disambiguating pain from disgust, both under naltrexone and placebo. These findings suggest that reducing opioid system activity decreased participants' sensitivity for facial expressions of pain, and that this was linked to possibly compensatory engagement of processes related to visual perception, rather than to higher level affective processes, and pain regulation. The behavioral and neural findings of this psychopharmacological fMRI study shed light on a causal role of the opioid system in the discrimination of painful facial expressions, paving the way for further exploration of clinical implications in the domains of pain diagnosis and treatment, on the one hand, and future research on the relationship between basic socio‐perceptual processing and empathy, on the other.
Collapse
Affiliation(s)
- Yili Zhao
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.,Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zarrindast MR, Issazadeh Y, Rezaei N, Khakpai F. Possible involvement of the opioidergic system in the modulation of body temperature, jumping behavior and memory process in cholestatic and addicted mice. EXCLI JOURNAL 2020; 19:311-322. [PMID: 32256271 PMCID: PMC7105937 DOI: 10.17179/excli2019-2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 11/10/2022]
Abstract
Cholestasis is related to an increased plasma level of endogenous opioid levels. Naloxone-induced withdrawal syndrome has been reported in a mouse model of cholestasis. Moreover, studies revealed that the memory process is affected by cholestasis. Thus, we aimed at determining whether pharmacological manipulation of the opioidergic system is involved in signs of cholestasis disease such as hypothermia and withdrawal behaviors such as jumping behavior as well as memory process in mice. Cholestasis was induced by bile duct resection in mice and physical dependence was induced by administration of morphine and/or tramadol three times daily (8, 12 and 16 h) at the doses of 25, 50 and 75 mg/kg during three consecutive days. The memory process was assessed by a step-down passive avoidance test. Our results indicated that cholestatic mice showed hypothermia whereas cholestatic- and drug dependent mice indicated hyperthermia. Moreover, administration of morphine (50 mg/kg) and/or tramadol (50 mg/kg) on the 4th day, 2 h before naloxone injection significantly decreased latency to first jumping but increased the number of jumping and rearing behavior as well as locomotor activity in BDL-vs. sham-operated mice. In addition, the latency time of the step-down test decreased in BDL-vs. sham-operated group, showing impairment of memory in BDL mice. The results of this study support the evidence that (1) the opioidergic system involved in thermoregulation of cholestasis mice, (2) μ-opioid receptors play an important role in withdrawal behaviors, and (3) memory process is affected by cholestasis and addiction in mice.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Issazadeh
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rezaei
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
5
|
McKinnon MC, Boyd JE, Frewen PA, Lanius UF, Jetly R, Richardson JD, Lanius RA. A review of the relation between dissociation, memory, executive functioning and social cognition in military members and civilians with neuropsychiatric conditions. Neuropsychologia 2016; 90:210-34. [DOI: 10.1016/j.neuropsychologia.2016.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/16/2016] [Accepted: 07/16/2016] [Indexed: 01/01/2023]
|
6
|
Arida RM, Gomes da Silva S, de Almeida AA, Cavalheiro EA, Zavala-Tecuapetla C, Brand S, Rocha L. Differential effects of exercise on brain opioid receptor binding and activation in rats. J Neurochem 2014; 132:206-17. [PMID: 25330347 DOI: 10.1111/jnc.12976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/06/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022]
Abstract
Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms.
Collapse
Affiliation(s)
- Ricardo Mario Arida
- Departamento de Fisiologia, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Nava-Mesa MO, Lamprea MR, Múnera A. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation. Neurobiol Learn Mem 2013; 106:185-92. [DOI: 10.1016/j.nlm.2013.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022]
|
8
|
Porchet RI, Boekhoudt L, Studer B, Gandamaneni PK, Rani N, Binnamangala S, Müller U, Clark L. Opioidergic and dopaminergic manipulation of gambling tendencies: a preliminary study in male recreational gamblers. Front Behav Neurosci 2013; 7:138. [PMID: 24109443 PMCID: PMC3791382 DOI: 10.3389/fnbeh.2013.00138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/16/2013] [Indexed: 02/02/2023] Open
Abstract
Gambling is characterized by cognitive distortions in the processing of chance and skill that are exacerbated in pathological gambling. Opioid and dopamine dysregulation is implicated in pathological gambling, but it is unclear whether these neurotransmitters modulate gambling distortions. The objective of the current study was to assess the effects of the opioid receptor antagonist naltrexone and the dopamine D2 receptor antagonist haloperidol on gambling behavior. Male recreational gamblers (n = 62) were assigned to receive single oral doses of naltrexone 50 mg, haloperidol 2 mg or placebo, in a parallel-groups design. At 2.5 h post-dosing, participants completed a slot machine task to elicit monetary wins, "near-misses," and a manipulation of personal choice, and a roulette game to elicit two biases in sequential processing, the gambler's fallacy and the hot hand belief. Psychophysiological responses (electrodermal activity and heart rate) were taken during the slot machine task, and plasma prolactin increase was assessed. The tasks successfully induced the gambling effects of interest. Some of these effects differed across treatment groups, although the direction of effect was not in line with our predictions. Differences were driven by the naltrexone group, which displayed a greater physiological response to wins, and marginally higher confidence ratings on winning streaks. Prolactin levels increased in the naltrexone group, but did not differ between haloperidol and placebo, implying that naltrexone but not haloperidol may have been functionally active at these doses. Our results support opioid modulation of cognition during gambling-like tasks, but did not support the more specific hypothesis that naltrexone may act to ameliorate cognitive distortions.
Collapse
Affiliation(s)
- Roseline I. Porchet
- Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| | - Linde Boekhoudt
- Department of Psychology, University of CambridgeCambridge, UK
| | - Bettina Studer
- Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
- Institute of Cognitive Neuroscience, University College LondonLondon, UK
| | - Praveen K. Gandamaneni
- Department of Psychiatry, University of CambridgeCambridge, UK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridge, UK
| | - Nisha Rani
- Department of Psychiatry, University of CambridgeCambridge, UK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridge, UK
| | - Somashekar Binnamangala
- Department of Psychiatry, University of CambridgeCambridge, UK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridge, UK
| | - Ulrich Müller
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| | - Luke Clark
- Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| |
Collapse
|
9
|
Effects of acamprosate on cognition in a treatment study of patients with schizophrenia spectrum disorders and comorbid alcohol dependence. J Nerv Ment Dis 2011; 199:499-505. [PMID: 21716064 DOI: 10.1097/nmd.0b013e3182214297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Problems with memory and attention are common to both schizophrenia and alcohol dependence. The objectives of this study were to examine the effect of acamprosate treatment on cognition and to assess whether the changes in drinking patterns or psychotic symptoms were related to changes in cognitive functioning. Outpatients with schizophrenia spectrum disorders and alcohol dependence (n = 23) were randomized (double-blind) to either acamprosate or placebo treatment for 12 weeks. Assessments (baseline and week 12) included alcohol use, symptoms of psychosis, memory, and attention. The results showed that acamprosate had no effect on cognitive functioning and that there was no relationship between change in alcohol consumption or psychotic symptoms and change in cognitive functioning in this sample of patients. The finding that acamprosate had no negative effects on cognition is clinically relevant and reinforces previous reports that acamprosate can be used safely for alcohol reduction in this group of patients.
Collapse
|
10
|
Stern J, Candia V, Porchet RI, Krummenacher P, Folkers G, Schedlowski M, Ettlin DA, Schönbächler G. Placebo-mediated, Naloxone-sensitive suggestibility of short-term memory performance. Neurobiol Learn Mem 2011; 95:326-34. [DOI: 10.1016/j.nlm.2011.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 12/02/2010] [Accepted: 01/12/2011] [Indexed: 12/22/2022]
|
11
|
He X, Bao Y, Li Y, Sui N. The effects of morphine at different embryonic ages on memory consolidation and rewarding properties of morphine in day-old chicks. Neurosci Lett 2010; 482:12-6. [DOI: 10.1016/j.neulet.2010.06.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/23/2010] [Accepted: 06/27/2010] [Indexed: 10/19/2022]
|
12
|
Tuon L, Comim CM, Petronilho F, Barichello T, Izquierdo I, Quevedo J, Dal-Pizzol F. Memory-enhancing treatments reverse the impairment of inhibitory avoidance retention in sepsis-surviving rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R133. [PMID: 18957125 PMCID: PMC2592772 DOI: 10.1186/cc7103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/06/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
Abstract
Introduction Survivors from sepsis have presented with long-term cognitive impairment, including alterations in memory, attention, concentration, and global loss of cognitive function. Thus, we evaluated the effects of memory enhancers in sepsis-surviving rats. Methods The rats underwent cecal ligation and perforation (CLP) (sepsis group) with 'basic support' (saline at 50 mL/kg immediately and 12 hours after CLP plus ceftriaxone at 30 mg/kg and clindamycin at 25 mg/kg 6, 12, and 18 hours after CLP) or sham-operated (control group). After 10 or 30 days, rats were submitted to an inhibitory avoidance task. After task training, animals received injections of saline, epinephrine, naloxone, dexamethasone, or glucose. Twenty-four hours afterwards, animals were submitted to the inhibitory avoidance test. Results We demonstrated that memory enhancers reversed impairment in the sepsis group 10 and 30 days after sepsis induction. This effect was of lower magnitude when compared with sham animals 10 days, but not 30 days, after sepsis. Conclusions Using different pharmacologic approaches, we conclude that the adrenergic memory formation pathways are responsive in sepsis-surviving animals.
Collapse
Affiliation(s)
- Lisiane Tuon
- Laboratório de Neurociências, Programa de Pós-Graduação Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000 Criciúma, SC, Brasil
| | | | | | | | | | | | | |
Collapse
|
13
|
Roth-Deri I, Green-Sadan T, Yadid G. Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol 2008; 86:1-21. [PMID: 18602444 DOI: 10.1016/j.pneurobio.2008.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/11/2008] [Indexed: 01/13/2023]
Abstract
Although drugs of abuse have different acute mechanisms of action, their brain pathways of reward exhibit common functional effects upon both acute and chronic administration. Long known for its analgesic effect, the opioid beta-endorphin is now shown to induce euphoria, and to have rewarding and reinforcing properties. In this review, we will summarize the present neurobiological and behavioral evidences that support involvement of beta-endorphin in drug-induced reward and reinforcement. Currently, evidence supports a prominent role for beta-endorphin in the reward pathways of cocaine and alcohol. The existing information indicating the importance of beta-endorphin neurotransmission in mediating the reward pathways of nicotine and THC, is thus far circumstantial. The studies described herein employed diverse techniques, such as biochemical measurements of beta-endorphin in various brain sites and plasma, and behavioral measurements, conducted following elimination (via administration of anti-beta-endorphin antibodies or using mutant mice) or augmentation (by intracerebral administration) of beta-endorphin. We suggest that the reward pathways for different addictive drugs converge to a common pathway in which beta-endorphin is a modulating element. Beta-endorphin is involved also with distress. However, reviewing the data collected so far implies a discrete role, beyond that of a stress response, for beta-endorphin in mediating the substance of abuse reward pathway. This may occur via interacting with the mesolimbic dopaminergic system and also by its interesting effects on learning and memory. The functional meaning of beta-endorphin in the process of drug-seeking behavior is discussed.
Collapse
Affiliation(s)
- Ilana Roth-Deri
- Neuropharmacology Section, The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
14
|
Rodefer JS, Nguyen TN. Naltrexone reverses age-induced cognitive deficits in rats. Neurobiol Aging 2006; 29:309-13. [PMID: 17098330 DOI: 10.1016/j.neurobiolaging.2006.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 09/08/2006] [Accepted: 10/04/2006] [Indexed: 11/25/2022]
Abstract
We evaluated young (3-4 months) and aged (22-24 months) male Sprague-Dawley rats in an attentional set-shifting procedure that assessed reversal, intradimensional shift (IDS), and extradimensional shift (EDS) discrimination learning tasks within one test session. These aspects of discrimination learning are sensitive to damage to distinct regions of frontal cortex. Compared to young animals, aged rats were significantly impaired on the EDS task and did not demonstrate significant impairment on the reversal or IDS tasks. The opioid antagonist naltrexone (2mg/kg, ip) was administered to young and aged rats prior to testing to assess possible improvements in aged-related cognitive impairments. Naltrexone (2mg/kg) attenuated the impairments in cognitive function in the EDS task for aged animals, but did not alter any task performance in the younger group. These results suggest that normal aging in rats is associated with impaired medial frontal cortex function as assessed by this attentional set-shifting procedure and opioid mediated mechanisms may represent a therapeutic target for drugs to improve cognitive deficits associated with aging.
Collapse
Affiliation(s)
- Joshua S Rodefer
- Department of Psychology, University of Iowa, E11 Seashore Hall, Iowa, City, IA 52242-1407, USA.
| | | |
Collapse
|
15
|
Smith YR, Stohler CS, Nichols TE, Bueller JA, Koeppe RA, Zubieta JK. Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J Neurosci 2006; 26:5777-85. [PMID: 16723535 PMCID: PMC1808228 DOI: 10.1523/jneurosci.5223-05.2006] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prominent interindividual and sex-dependent differences have been described in responses to sustained pain and other stressful stimuli. Variations in mu-opioid receptor-mediated endogenous opioid neurotransmission may underlie some of these processes. We examined both baseline mu-opioid receptor levels and the activation of this neurotransmitter system during sustained pain using positron emission tomography in a sample of young healthy men and women. Women were studied twice, during low and high estrogen states. The high-estrogen state was associated with regional increases in baseline mu-opioid receptor availability in vivo and a greater activation of endogenous opioid neurotransmission during the pain stressor. The latter did not differ from that obtained in males. During the low estrogen condition, however, significant reductions in endogenous opioid tone were observed at the level of thalamus, nucleus accumbens, and amygdala, which were associated with hyperalgesic responses. Estrogen-associated variations in the activity of mu-opioid neurotransmission correlated with individual ratings of the sensory and affective perceptions of the pain and the subsequent recall of that experience. These data demonstrate a significant role of estrogen in modulating endogenous opioid neurotransmission and associated psychophysical responses to a pain stressor in humans.
Collapse
|
16
|
Zhao H, Xu H, Xu X. Effects of naloxone on the long-term potentiation of EPSPs from the pathway of Schaffer collateral to CA1 region of hippocampus in aged rats with declined memory. Brain Res 2004; 996:111-6. [PMID: 14670637 DOI: 10.1016/j.brainres.2003.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Morris water maze (MWM) was employed to distinguish the aged rats with declined memory to investigate the effect of naloxone on the synaptic plasticity of hippocampus in declined memory aged rats. After administration with naloxone for 7 days, LTP of excitatory post-synaptic potentials (EPSPs) from Schaffer collateral to CA1 region was recorded. The results showed that the maintenance of LTP of EPSPs from Schaffer collateral to CA1 subfield in isolate hippocampal brain slice was prolonged by naloxone with improved Morris water maze performance and reduced threshold of EPSPs. It is suggested that naloxone can improve learning and memory through enhancement of the synaptic plasticity of hippocampus in aged rats with declined memory.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Forensic Medicine, Medical College, Shantou University, 22 Rd. Xinlin, Shantou, 515031, Guangdong, PR China.
| | | | | |
Collapse
|
17
|
Lee MH, Kim H, Lim BV, Chang HK, Lee TH, Jang MH, Shin MC, Lee J, Shin MS, Kim CJ. Naloxone potentiates treadmill running-induced increase in c-Fos expression in rat hippocampus. Life Sci 2003; 73:3139-47. [PMID: 14550853 DOI: 10.1016/j.lfs.2003.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The expression of c-Fos is induced by a variety of stimuli and is sometimes used as a marker for increased neuronal activity. In the present study, the effect of treadmill running on c-Fos expression in the hippocampus and the involvement of opioid receptors were investigated via c-Fos immunohistochemistry. It was shown that c-Fos expression in the CA1 region, the CA2 and CA3 regions, and the dentate gyrus of the hippocampus was significantly increased by treadmill running and naloxone, a nonselective opioid receptors antagonist, treatment enhanced treadmill exercise-induced increase of hippocampal c-Fos expression. Base on the present results, it can be suggested that treadmill running increases hippocampal neuronal activity and that endogenous opioids curtail the exercise-induced increase.
Collapse
Affiliation(s)
- Myoung-Hwa Lee
- Research Institute of Sports Science, Korea University, #1 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Prediger RDS, Takahashi RN. Ethanol improves short-term social memory in rats. Involvement of opioid and muscarinic receptors. Eur J Pharmacol 2003; 462:115-23. [PMID: 12591103 DOI: 10.1016/s0014-2999(03)01300-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Some human and animal studies have demonstrated enhancement of memory processes when ethanol was administered immediately after training and subjects were later tested in the drug-free state. The aim of this study was to evaluate the effect of acute ethanol administration (0.5, 1.0 and 2.0 g/kg) by intraperitoneal (i.p.) and oral route on short-term memory, using the social recognition test in rats. The actions of scopolamine (0.06 and 0.5 mg/kg, i.p.) and naloxone (1.0 mg/kg, i.p.) and their interaction with ethanol in relation to short-term memory were also studied. The doses of ethanol used did not show any sedative effect, which was assessed by measuring locomotor activity. The results indicate that acute low doses of ethanol (0.5 and 1.0 g/kg, i.p.) improve the short-term olfactory memory in rats in a specific and time-dependent manner, and that this action is, at least in part, related to opioid, but not to muscarinic receptors. In addition, these findings confirm that the social recognition test in rats is a useful and reliable model to investigate short-term memory affected by ethanol.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Rua Ferreira Lima 82, 88015-420 Florianópolis SC, Brazil
| | | |
Collapse
|
19
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|