1
|
Orzelska-Górka J, Dos Santos Szewczyk K, Gawrońska-Grzywacz M, Herbet M, Lesniak A, Bielenica A, Bujalska-Zadrożny M, Biała G. Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals (Basel) 2023; 16:1691. [PMID: 38139817 PMCID: PMC10747003 DOI: 10.3390/ph16121691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Two polyphenols-hyperoside (HYP) and protocatechuic acid (PCA) were reported to exert antidepressant activity in rodents after acute treatment. Our previous study also showed that this activity might have been influenced by the monoaminergic system and the upregulation of the brain-derived neurotropic factor (BDNF) level. A very long-term pharmacological therapy is required for the treatment of a patient with depression. The repetitive use of antidepressants is recognized to impact the brain structures responsible for regulating both emotional and cognitive behaviors. Thus, we investigated the antidepressant, anxiolytic, and procognitive effects of HYP and PCA in mice after acute and prolonged treatment (14 days). Both polyphenols induced an anxiogenic-like effect after acute treatment, whereas an anxiolytic effect occurred after repetitive administration. PCA and HYP showed procognitive effects when they were administered acutely and chronically, but it seems that their influence on long-term memory was stronger than on short-term memory. In addition, the preset study showed that the dose of 7.5 mg/kg of PCA and HYP was effective in counteracting the effects of co-administered scopolamine in the long-term memory impairment model induced by scopolamine. Our experiments revealed the compounds have no affinity for 5-HT1A and 5-HT2A receptors, whereas a significant increase in serum serotonin level after prolonged administration of PCA and HYP at a dose of 3.75 mg/kg was observed. Thus, it supports the involvement of the serotonergic system in the polyphenol mechanisms. These findings led us to hypothesize that the polyphenols isolated from Impatiens glandulifera can hold promise in treating mental disorders with cognitive dysfunction. Consequently, extended studies are necessary to delve into their pharmacological profile.
Collapse
Affiliation(s)
- Jolanta Orzelska-Górka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Anna Lesniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Smith ALW, Harmer CJ, Cowen PJ, Murphy SE. The Serotonin 1A (5-HT 1A) Receptor as a Pharmacological Target in Depression. CNS Drugs 2023; 37:571-585. [PMID: 37386328 DOI: 10.1007/s40263-023-01014-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Clinical depression is a common, debilitating and heterogenous disorder. Existing treatments for depression are inadequate for a significant minority of patients and new approaches are urgently needed. A wealth of evidence implicates the serotonin 1A (5-HT1A) receptor in the pathophysiology of depression. Stimulation of the 5-HT1A receptor is an existing therapeutic target for treating depression and anxiety, using drugs such as buspirone and tandospirone. However, activation of 5-HT1A raphe autoreceptors has also been suggested to be responsible for the delay in the therapeutic action of conventional antidepressants such as selective serotonin reuptake inhibitors (SSRIs). This narrative review provides a brief overview of the 5-HT1A receptor, the evidence implicating it in depression and in the effects of conventional antidepressant treatment. We highlight that pre- and post-synaptic 5-HT1A receptors may have divergent roles in the pathophysiology and treatment of depression. To date, developing this understanding to progress therapeutic discovery has been limited, partly due to a paucity of specific pharmacological probes suitable for use in humans. The development of 5-HT1A 'biased agonism', using compounds such as NLX-101, offers the opportunity to further elucidate the roles of pre- and post-synaptic 5-HT1A receptors. We describe how experimental medicine approaches can be helpful in profiling the effects of 5-HT1A receptor modulation on the different clinical domains of depression, and outline some potential neurocognitive models that could be used to test the effects of 5-HT1A biased agonists.
Collapse
Affiliation(s)
- Alexander L W Smith
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Susannah E Murphy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
3
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Bektas N, Arslan R, Alyu F. The anxiolytic effect of perampanel and possible mechanisms mediating its anxiolytic effect in mice. Life Sci 2020; 261:118359. [PMID: 32861795 DOI: 10.1016/j.lfs.2020.118359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023]
Abstract
AIMS The aim of this study is to investigate the anxiolytic activity of perampanel, a non-competitive antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors, which is approved for partial-onset seizures in patients with epilepsy, and its mechanism of action. MAIN METHODS The anxiolytic activity of perampanel at the doses of 0.25, 0.5, 1, 2, and 4 mg/kg intraperitoneally (i.p.) was investigated in mice using elevated plus-maze, hole-board, and open-field tests. The findings were compared to the anxiolytic activity of gamma-aminobutyric acid type A benzodiazepine (GABAA/BZ) receptor allosteric modulator diazepam (1 mg/kg, i.p.) and AMPA antagonist GYKI-53655 (5 mg/kg, i.p.). The mechanisms of action of perampanel were evaluated by pre-treatment with GABAA/BZ receptor antagonist flumazenil (3 mg/kg, i.p.), serotonin 5-hydroxytryptamine 1A (5-HT1A) antagonist WAY-100635 (1 mg/kg, i.p.), and α2-adrenoreceptor antagonist yohimbine (5 mg/kg, i.p.). KEY FINDINGS In the elevated plus-maze and open-field tests, perampanel at the dose of 0.5 mg/kg, and in the hole-board test, at the doses of 0.25, 0.5, and 1 mg/kg demonstrated an anxiolytic effect without altering the locomotor activity. The effect of perampanel was comparable to the effect of diazepam. Stimulation of GABAA/BZ and α2-adrenergic receptors contributed to the anxiolytic effect of perampanel, since significant antagonisms were determined in various behavioral parameters by the antagonist pre-treatments. SIGNIFICANCE AMPA antagonism is believed to provide the determined anxiolytic activity of perampanel. Increased GABAergic tonus induced by AMPA receptor antagonism along with other systems, especially the noradrenergic system, might be involved in the anxiolytic activity.
Collapse
Affiliation(s)
- Nurcan Bektas
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey.
| | - Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Feyza Alyu
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
5
|
Role of 5-HT1A Receptor in the Anxiolytic-Relaxant Effects of Bergamot Essential Oil in Rodent. Int J Mol Sci 2020; 21:ijms21072597. [PMID: 32283606 PMCID: PMC7177770 DOI: 10.3390/ijms21072597] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
The essential oil obtained by the fresh fruit of Citrus bergamia Risso et Poiteau is used worldwide in aromatherapy to reduce pain, facilitate sleep induction, and/or minimize the effects of stress-induced anxiety. Preclinical pharmacological data demonstrate that bergamot essential oil (BEO) modulates specific neurotransmissions and shows an anxiolytic-relaxant effect not superimposable to that of the benzodiazepine diazepam, suggesting that neurotransmissions, other than GABAergic, could be involved. Several studies on essential oils indicate a role for serotonergic (5-HT) neurotransmission in anxiety. Interestingly, among serotonergic receptors, the 5-HT1A subtype seems to play a key role in the control of anxiety. Here, we report that modulation of the 5-HT1A receptor by selective agonist ((±)8-OH-DPAT) or antagonist (WAY-100635) may influence some of the anxiolytic-relaxant effects of BEO in Open Field and Elevated Plus Maze tests.
Collapse
|
6
|
Blanchard D, Meyza K. Risk assessment and serotonin: Animal models and human psychopathologies. Behav Brain Res 2019; 357-358:9-17. [DOI: 10.1016/j.bbr.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/19/2017] [Accepted: 07/07/2017] [Indexed: 02/08/2023]
|
7
|
Zagórska A, Partyka A, Bucki A, Kołaczkowski M, Jastrzębska‐Więsek M, Czopek A, Siwek A, Głuch‐Lutwin M, Bednarski M, Bajda M, Jończyk J, Piska K, Koczurkiewicz P, Wesołowska A, Pawłowski M. Characteristics of metabolic stability and the cell permeability of 2‐pyrimidinyl‐piperazinyl‐alkyl derivatives of 1H‐imidazo[2,1
‐f
]purine‐2,4(3
H
,8
H
)‐dione with antidepressant‐ and anxiolytic‐like activities. Chem Biol Drug Des 2018; 93:511-521. [DOI: 10.1111/cbdd.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Anna Partyka
- Department of Clinical PharmacyJagiellonian University Medical College Kraków Poland
| | - Adam Bucki
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Marcin Kołaczkowski
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | | | - Anna Czopek
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Agata Siwek
- Department of PharmacobiologyJagiellonian University Medical College Kraków Poland
| | - Monika Głuch‐Lutwin
- Department of PharmacodynamicsJagiellonian University Medical College Kraków Poland
| | - Marek Bednarski
- Department of PharmacodynamicsJagiellonian University Medical College Kraków Poland
| | - Marek Bajda
- Department of Physicochemical Drug AnalysisJagiellonian University Medical College Kraków Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug AnalysisJagiellonian University Medical College Kraków Poland
| | - Kamil Piska
- Department of Pharmaceutical BiochemistryJagiellonian University Medical College Kraków Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical BiochemistryJagiellonian University Medical College Kraków Poland
| | - Anna Wesołowska
- Department of Clinical PharmacyJagiellonian University Medical College Kraków Poland
| | - Maciej Pawłowski
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| |
Collapse
|
8
|
Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)– New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system. Biomed Pharmacother 2018; 103:546-552. [DOI: 10.1016/j.biopha.2018.04.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/22/2023] Open
|
9
|
Fiorino F, Ciano A, Magli E, Severino B, Corvino A, Perissutti E, Frecentese F, Di Vaio P, Izzo AA, Capasso R, Massarelli P, Nencini C, Rossi I, Kędzierska E, Orzelska-Gòrka J, Bielenica A, Santagada V, Caliendo G. Synthesis, in vitro and in vivo pharmacological evaluation of serotoninergic ligands containing an isonicotinic nucleus. Eur J Med Chem 2016; 110:133-50. [PMID: 26820556 DOI: 10.1016/j.ejmech.2016.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
Isonicotinamide derivatives, linked to an arylpiperazine moiety, were prepared and their affinity to 5-HT1A, 5-HT2A and 5-HT2C receptors were evaluated. The combination of structural elements (heterocyclic nucleus, alkyl chain and 4-substituted piperazine) known to play critical roles in affinity for serotoninergic receptors and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. In binding studies, several molecules showed high affinity in nanomolar and subnanomolar range at 5-HT1A, 5-HT2A and 5-HT2C receptors and moderate or no affinity for other relevant receptors (D1, D2, α1 and α2). N-(3-(4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)propyl)isonicotinamide (4s) with Ki = 0.130 nM, was the most active and selective derivative for the 5-HT1A receptor compared to other serotoninergic, dopaminergic and adrenergic receptors. Compound 4o, instead, showed 5-HT2A affinity values in subnamolar range. Moreover, the compounds having better affinity and selectivity binding profile towards 5-HT1A and 5-HT2A receptors were selected in order to be tested by in vitro and in vivo assays to determine their functional activity.
Collapse
Affiliation(s)
- Ferdinando Fiorino
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy.
| | - Antonio Ciano
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Elisa Magli
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Beatrice Severino
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Angela Corvino
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Elisa Perissutti
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Francesco Frecentese
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Paola Di Vaio
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Angelo A Izzo
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Raffaele Capasso
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Paola Massarelli
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze Università di Siena, Via delle Scotte, 6, 53100, Siena, Italy
| | - Cristina Nencini
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze Università di Siena, Via delle Scotte, 6, 53100, Siena, Italy
| | - Ilaria Rossi
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze Università di Siena, Via delle Scotte, 6, 53100, Siena, Italy
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jolanta Orzelska-Gòrka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Vincenzo Santagada
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| |
Collapse
|
10
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
11
|
Maximino C, Puty B, Benzecry R, Araújo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 2013; 71:83-97. [DOI: 10.1016/j.neuropharm.2013.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
12
|
Zoratto F, Berry A, Anzidei F, Fiore M, Alleva E, Laviola G, Macrì S. Effects of maternal L-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1479-92. [PMID: 21356262 DOI: 10.1016/j.pnpbp.2011.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 02/02/2023]
Abstract
Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development of animal models with increased external and construct validity. Furthermore, the observation that, compared to adult subjects, adolescent mice display an opposite profile suggests that peri-pubertal developmental processes may interact with neonatal predispositions to calibrate the adult abnormal phenotype.
Collapse
Affiliation(s)
- Francesca Zoratto
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Vinkers CH, van Oorschot R, Korte SM, Olivier B, Groenink L. 5-HT1A receptor blockade reverses GABA(A) receptor alpha3 subunit-mediated anxiolytic effects on stress-induced hyperthermia. Psychopharmacology (Berl) 2010; 211:123-30. [PMID: 20535452 PMCID: PMC2892061 DOI: 10.1007/s00213-010-1895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/04/2010] [Indexed: 01/21/2023]
Abstract
RATIONALE Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABA(A) and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. OBJECTIVES The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective alpha subunit GABA(A) receptor agonists could be reversed with 5-HT(1A) receptor blockade using the stress-induced hyperthermia (SIH) paradigm. RESULTS The 5-HT(1A) receptor antagonist WAY-100635 (0.1-1 mg/kg) reversed the SIH-reducing effects of the non-alpha-subunit selective GABA(A) receptor agonist diazepam (1-4 mg/kg) and the GABA(A) receptor alpha(3)-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential alpha(1)-subunit GABA(A) receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. CONCLUSIONS The present study suggests an interaction between GABA(A) receptor alpha-subunits and 5-HT(1A) receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABA(A) receptor alpha(3)-subunits. Further understanding of the interactions between the GABA(A) and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584CA, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Vinkers CH, Oosting RS, van Bogaert MJV, Olivier B, Groenink L. Early-life blockade of 5-HT(1A) receptors alters adult anxiety behavior and benzodiazepine sensitivity. Biol Psychiatry 2010; 67:309-16. [PMID: 19811773 DOI: 10.1016/j.biopsych.2009.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/12/2009] [Accepted: 08/16/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Early-life stress may affect 5-HT(1A) receptor circuitry, which could result in increased anxiety in later life. An increased anxiety phenotype in 5-HT(1A) receptor KO mice (1AKO) mice has been ascribed to 5-HT(1A) receptor absence during the early postnatal period. Thus, subtle and transient serotonergic changes during the early postnatal period may lead to an increased risk for developing stress-related disorders during adulthood. METHODS Wildtype and 1AKO mice on a Swiss-Webster (SW) background were treated during the early postnatal period with vehicle or the 5-HT(1A) receptor antagonist WAY-100,635. RESULTS Pharmacologic 5-HT(1A) receptor blockade during the early postnatal period induced long-lasting effects on anxiety and benzodiazepine sensitivity in adolescent and adult mice on a Swiss-Webster background and resembles the SW 1AKO phenotype. Furthermore, WAY-100,635-treated mice had increased cortical gamma-aminobutyric acid-A receptor (GABA(A)R) alpha(1) and alpha(3) subunit levels and increased hippocampal GABA(A)R alpha(2) subunit levels. CONCLUSIONS Absence of 5-HT(1A)R signaling during early stages of brain maturation predisposes an organism to affective dysfunction later in life. Because early-life treatment with WAY-100,635 in Swiss-Webster mice reduced diazepam sensitivity and increased GABA(A)R alpha subunit levels in the prefrontal cortex and hippocampus, our data suggest a putative link between early-life disruption of the serotonergic system and the emergence of increased anxiety and decreased benzodiazepine responsivity at adult age. Moreover, early-life 5-HT(1A) receptor functionality appears to be essential for the development of normal GABA(A)R functionality. This study may have clinical implications for psychoactive drug use during pregnancy and for the pharmacogenetic background of benzodiazepine sensitivity.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neurosciences, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Lalonde R, Strazielle C. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents. Fundam Clin Pharmacol 2009; 24:365-76. [PMID: 19735300 DOI: 10.1111/j.1472-8206.2009.00772.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two 5HT(1A) receptor agonists and chlordiazepoxide were examined in open-field, elevated plus maze, and emergence tests. At doses with no effect in the open-field, chlordiazepoxide increased open and open/total arm visits as well as open arm duration in the elevated plus maze, whereas 5HT(1A) receptor agonists showed an anxiolytic response on a single measure. The anxiolytic action of chlordiazepoxide was limited to the less active BALB/c strain. Unlike the 5HT(1A) receptor agonists, chlordiazepoxide was also anxiolytic in the emergence test, once again only in BALB/c and not C57BL/6J mice. Significant correlations were found between emergence latencies and specific indicators of anxiety in the elevated plus-maze in chlordiazepoxide-treated but not in mice treated with buspirone and 8-OH-DPAT. These results indicate that elevated plus-maze and emergence tests depend on benzodiazepine receptors. In contrast, 5HT(1A) receptor agonists were ineffective in the emergence test and no correlation was found between emergence latencies and specific indicators of anxiety in the elevated plus-maze. Though superficially similar, the emergence test seems to tap into a partially separate facet of anxiety.
Collapse
Affiliation(s)
- Robert Lalonde
- Centre Hospitalier de l'Université de Montréal/St-Luc, Unité de Recherche en Sciences Neurologiques, Montréal, Québec, Canada H2X 3J4.
| | | |
Collapse
|
16
|
Hibino T, Yuzurihara M, Kanno H, Kase Y, Takeda A. Goshuyuto, a Traditional Japanese Medicine, and Aqueous Extracts of Evodiae Fructus Constrict Isolated Rat Aorta via Adrenergic and/or Serotonergic Receptors. Biol Pharm Bull 2009; 32:237-41. [DOI: 10.1248/bpb.32.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
17
|
Calabrese EJ. An Assessment of Anxiolytic Drug Screening Tests: Hormetic Dose Responses Predominate. Crit Rev Toxicol 2008; 38:489-542. [DOI: 10.1080/10408440802014238] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Delesalle C, van Acker N, Claes P, Deprez P, de Smet I, Dewulf J, Lefebvre RA. Contractile effects of 5-hydroxytryptamine (5-HT) in the equine jejunum circular muscle: functional and immunohistochemical identification of a 5-HT1A-like receptor. Equine Vet J 2008; 40:313-20. [PMID: 18267888 DOI: 10.2746/042516408x278193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Prokinetic drugs used to treat gastrointestinal ileus in man have equivocal results in horses. In man, prokinetic drugs have 5-hydroxytryptamine4(5-HT4) receptors as their target, but little is known about the 5-HT-receptor subtypes in the equine small intestine. OBJECTIVE Functional and immunohistochemical identification of the serotonin receptor subtype(s) responsible for the 5-HT induced contractile response in the equine circular jejunum. METHODS Isometric organ-bath recordings were carried out to assess spontaneous and drug-evoked contractile activity of equine circular jejunum. Histological investigations by immunofluorescence analyses were performed to check for presence and localisation of this functionally identified 5-HT receptor subtype. RESULTS Tonic contractions were induced by 5-HT in horse jejunal circular muscle. Tetrodotoxin, atropine and NG-nitro L-arginine did not modify this response. A set of 5-HT receptor subtype selective antagonists excluded interaction with 5-HT1B, 1D, 2A, 3, 4 and 7 receptors. The selective 5-HT1A receptor antagonists WAY 100635 and NAN 190 caused a clear rightward shift of the concentration-response curve to 5-HT. The contractile effect of 5-CT, that can interact with 5-HT1A, 1B, 1D, 5 and 7 receptors was also antagonised by WAY 100635, identifying the targeted 5-HT receptor as a 5-HT1A-like receptor. Immunohistology performed with rabbit polyclonal anti-5-HT1A receptor antibodies confirmed the presence of muscular 5-HT1A receptors in the muscularis mucosae, and both longitudinal and circular smooth muscle layers of the equine jejunum. CONCLUSIONS Contractile responses in equine jejunal circular smooth muscle induced by 5-HT involves 5-HT1A-like receptors.
Collapse
Affiliation(s)
- C Delesalle
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
Guimarães FS, Carobrez AP, Graeff FG. Chapter 4.3 Modulation of anxiety behaviors by 5-HT-interacting drugs. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog Neurobiol 2007; 81:133-78. [PMID: 17316955 DOI: 10.1016/j.pneurobio.2007.01.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/03/2023]
Abstract
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.
Collapse
Affiliation(s)
- Christian P Müller
- Institute of Physiological Psychology I, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
21
|
Delesalle C, Deprez P, Schuurkes JAJ, Lefebvre RA. Contractile effects of 5-hydroxytryptamine and 5-carboxamidotryptamine in the equine jejunum. Br J Pharmacol 2006; 147:23-35. [PMID: 16230998 PMCID: PMC1615837 DOI: 10.1038/sj.bjp.0706431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The use of human prokinetic drugs in colic horses leads to inconsistent results. This might be related to differences in gastrointestinal receptor populations. The motor effects of 5-hydroxytryptamine (5-HT; serotonin) on the equine mid-jejunum were therefore studied. Longitudinal muscle preparations were set up for isotonic measurement. 5-HT induced tonic contractions with superimposed phasic activity; these responses were not influenced by tetrodotoxin and atropine, suggesting a non-neurogenic, non-cholinergic pathway. The 5-HT receptor antagonists GR 127935 (5-HT(1B,D)), ketanserin (5-HT(2A)), SB 204741 (5-HT(2B)), RS 102221 (5-HT(2C)), granisetron (5-HT(3)), GR 113808 (5-HT(4)) and SB 269970 (5-HT(7)) had no influence on the 5-HT-induced response; the 5-HT(1A) receptor antagonists NAN 190 (pK(b)=8.13+/-0.06) and WAY 100635 (pK(b)=8.69+/-0.07), and the 5-HT(1,2,5,6,7) receptor antagonist methysergide concentration-dependently inhibited the 5-HT-induced contractile response. The 5-HT(1,7) receptor agonist 5-carboxamidotryptamine (5-CT) induced a contractile response similar to that of 5-HT; its effect was not influenced by tetrodotoxin and atropine, and SB 269970, but antagonised by WAY 100635. 8-OHDPAT, buspiron and flesinoxan, which are active at rat and human 5-HT(1A) receptors, had no contractile influence. These results suggest that the contractile effect of 5-HT in equine jejunal longitudinal muscle is due to interaction with muscular 5-HT receptors, which cannot be characterised between the actually known classes of 5-HT receptors.
Collapse
Affiliation(s)
- Cathérine Delesalle
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
22
|
Clénet F, Bouyon E, Hascoët M, Bourin M. Light/dark cycle manipulation influences mice behaviour in the elevated plus maze. Behav Brain Res 2006; 166:140-9. [PMID: 16165231 DOI: 10.1016/j.bbr.2005.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/20/2022]
Abstract
The sensitization of animal models of anxiety is of great importance to detect potential anxiolytic drugs. Our goal was to evaluate the influence of manipulations of the light/dark cycle on the basal anxious behaviour of mice and the efficacy of two anxiolytic treatments in the mouse elevated plus maze (EPM). Male Swiss mice were exposed to different conditions of illumination for one week prior to testing. In the first experiment of the study, we evaluated the anxiolytic effects of diazepam, at the dose of 1 mg/kg, intraperitoneally (i.p.) administered 30 min before the test. In the second experiment, we examined the effects of WAY 100635, a 5-HT(1A) receptor antagonist, at the doses of 0.03 and 2 mg/kg, i.p. administered 30 min before the test. The locomotor activity of control mice and the anxiolytic efficacy of diazepam in the EPM were not affected by manipulation of the light/dark cycle. Conversely, the effects of WAY 100635, which were qualitatively different from those of diazepam, seemed to be influenced by the illumination conditions imposed before the test. We can conclude that diazepam's effect, which is characterized by a strong "disinhibition", was more robust than the 5-HT(1A) antagonist's effect, which was more anxioselective. Moreover, the light conditions imposed on mice before the test may be an important factor in the variability of the response to serotonergic but not to benzodiazepine treatments.
Collapse
Affiliation(s)
- Florence Clénet
- EA 3256 Neurobiologie de l'anxiété et de la Dépression, Faculté de Médecine, BP 53508, 1 rue Gaston Veil, 44035 Nantes Cedex 01, France
| | | | | | | |
Collapse
|
23
|
Clénet F, Hascoët M, Fillion G, Galons H, Bourin M. Anxiolytic profile of HG1, a 5-HT-moduline antagonist, in three mouse models of anxiety. Eur Neuropsychopharmacol 2004; 14:449-56. [PMID: 15589384 DOI: 10.1016/j.euroneuro.2003.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 12/09/2003] [Accepted: 12/16/2003] [Indexed: 11/23/2022]
Abstract
HG1 is a new 5-HT-moduline antagonist which is itself an endogenous tetrapeptide specifically acting as an antagonist of 5-HT(1B) auto- and heteroreceptors. Blockade of endogenous 5-HT-moduline might provoke anxiolysis, so it could be a new therapeutic target in anxiety disorders. The aim of our study was to examine the effects of HG1 in three mouse models of anxiety: the four plates test (FPT), the black and white (B&W) model and the elevated plus maze (EPM). Male Swiss mice were intraperitoneally and acutely administered HG1 at the doses of 8, 16, 32 and 64 mg/kg. In these three tests, HG1 exhibited an anxiolytic profile similar to that of diazepam, the referential benzodiazepine compound, without affecting locomotor activity. In the three models used, HG1 was as efficient as benzodiazepine and may consequently exert its anxiolytic effects via the GABA-ergic system. We cannot exclude that it might also act through 5-HT receptors and rather have the profile of a selective serotonin reuptake inhibitor.
Collapse
Affiliation(s)
- Florence Clénet
- EA 3256 Neurobiologie de l'anxiété et de la dépression, Faculté de Médecine, BP 53508, 1 rue Gaston Veil, 44035 Nantes cedex 01, France
| | | | | | | | | |
Collapse
|
24
|
Haddjeri N, Lavoie N, Blier P. Electrophysiological evidence for the tonic activation of 5-HT(1A) autoreceptors in the rat dorsal raphe nucleus. Neuropsychopharmacology 2004; 29:1800-6. [PMID: 15127086 DOI: 10.1038/sj.npp.1300489] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and norepinephine (NE) neurons have reciprocal connections. These may thus interfere with anticipated effects of selective pharmacological agents targeting these neurons. The main goal of the present study was to assess whether the somatodendritic 5-HT(1A) autoreceptor is tonically activated by endogenous 5-HT in anesthetised rats, using in vivo extracellular unitary recordings. In rats with their NE neurons lesioned using 6-hydroxydopamine (6-OHDA) and in controls administered the NE reuptake inhibitor desipramine to suppress NE neuronal firing, the alpha2-adrenoceptor agonist clonidine no longer inhibited 5-HT neuron firing, therefore indicating the important modulation of the firing activity of 5-HT neurons by NE neurons. In control rats, the administration of the potent and selective 5-HT(1A) receptor antagonist WAY 100,635 ((N-[2-[4(2-methoxyphenyl)-1-piperazinyl]ethy]-N-(2-pyridinyl)cyclohexanecarboxamide trihydroxychloride) (100 microg/kg, i.v.) did not modify the spontaneous firing activity of 5-HT neurons, but in NE-lesioned rats using either 6-OHDA or DSP-4, WAY 100,635 produced a mean firing increase of 80 and 69%, respectively. When desipramine and D-amphetamine were used in control rats to prevent alterations in the availability of NE in the dorsal raphe, again WAY 100,635 produced a significant disinhibition of the firing of 5-HT neurons (83 and 53%, respectively). These data support the notion that the NE system tonically activates the firing activity of 5-HT neurons. When the fluctuations of the function of NE neurons normally produced by WAY 100,635 were prevented, a tonic activation of 5-HT(1A) autoreceptors by endogenous 5-HT was unmasked.
Collapse
Affiliation(s)
- Nasser Haddjeri
- Laboratory of Neuropharmacology and Neurochemistry INSERM U512, University Claude Bernard, Avenue Rockfeller, Lyon, France
| | | | | |
Collapse
|
25
|
Burmeister JJ, Lungren EM, Kirschner KF, Neisewander JL. Differential roles of 5-HT receptor subtypes in cue and cocaine reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology 2004; 29:660-8. [PMID: 14627998 DOI: 10.1038/sj.npp.1300346] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 5-HT indirect agonist, d-fenfluramine, attenuates cue reinstatement of extinguished cocaine-seeking behavior. To investigate the role of 5-HT receptor subtypes in this effect, we examined whether the attenuation is reversed by either a 5-HT(1A), 5-HT(2A/C), or 5-HT(2C) receptor antagonist. We also examined the effects of the antagonists alone on both cue and cocaine-primed reinstatement. Rats that had been trained to press a lever for cocaine (0.75 mg/kg/0.1 ml, i.v.) paired with light and tone cues underwent daily extinction sessions during which responding had no consequences. We then examined the effects of WAY 100635 (0-1.0 mg/kg, s.c.), ketanserin (0-10.0 mg/kg, i.p.), or SB 242,084 (0-1.0 mg/kg, i.p.) with and without d-fenfluramine (1.0 mg/kg, i.p.) pretreatment on cue reinstatement. Subsequently, we examined the effects of the antagonists on cocaine-primed (7.5 or 15.0 mg/kg, i.p.) reinstatement. The 5-HT(1A) antagonist, WAY 100635, failed to alter cue reinstatement, but attenuated cocaine reinstatement. Conversely, the 5-HT(2A/C) antagonist, ketanserin, attenuated cue reinstatement, but failed to alter cocaine reinstatement. The 5-HT(2C)-selective antagonist, SB 242,084, did not alter cue or cocaine reinstatement, but was the only drug that reversed the d-fenfluramine-induced attenuation of cue reinstatement. The findings suggest that stimulation of 5-HT(1A) receptors plays a critical role in cocaine-primed, but not cue, reinstatement. Furthermore, 5-HT(2A) and 5-HT(2C) receptors may play oppositional roles in cue reinstatement. The SB 242,084 reversal of the d-fenfluramine attenuation suggests that stimulation of 5-HT(2C) receptors inhibits cue reinstatement, whereas the ketanserin-induced attenuation of cue reinstatement suggests that decreased stimulation of 5-HT(2A) receptors inhibits this behavior.
Collapse
|
26
|
Majercsik E, Haller J, Leveleki C, Baranyi J, Halász J, Rodgers RJ. The effect of social factors on the anxiolytic efficacy of buspirone in male rats, male mice, and men. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:1187-99. [PMID: 14659474 DOI: 10.1016/j.pnpbp.2003.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Earlier findings suggest that housing conditions in laboratory animals and life events in humans influence the efficacy of anxiolytic drugs. Here we report on the impact of social isolation on buspirone efficacy in male mice and rats as assessed by the elevated plus-maze. In addition, the impact of social support on buspirone efficacy was assessed in male patients. When administered 30 min before testing and irrespective of housing conditions, buspirone significantly suppressed locomotor activity both in mice (6 mg/kg) and rats (10 mg/kg) and, as such, other behavioral changes observed at this time point must be seen as behaviorally nonselective. However, these locomotor disruptive effects of buspirone were not evident in either species at longer injection-test intervals (2 and 4 h). When given 2 h prior to testing, a low (3 mg/kg) but not high (10 mg/kg) dose of buspirone increased the frequency of open arm exploration in rats (but not mice) irrespective of housing conditions. At the longest injection-test interval used (4 h), buspirone increased the duration of open arm exploration in individually housed, but not group-housed, rats. Similar, though somewhat less robust, effects were observed in male mice at this time. In a double-blind placebo-controlled study with male patients, chronic buspirone treatment (3 x 10 mg daily for 6 weeks) produced a highly significant reduction in scores on the Hamilton Rating Scale for Anxiety (HAM-A). Multiple regression analysis of social support received by patients indicated that the support of nonrelatives (but not of family or other relatives) was a strong positive predictor of buspirone efficacy. Taken together, our data support the hypothesis that social conditions affect the anxiolytic efficacy of buspirone. Results are discussed in relation to differences in the social organization of the three species investigated.
Collapse
|
27
|
Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL. Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 2003; 28:2077-88. [PMID: 12968128 DOI: 10.1038/sj.npp.1300266] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The serotonin transporter (5-HTT) regulates serotonergic neurotransmission via clearance of extracellular serotonin. Abnormalities in 5-HTT expression or function are found in mood and anxiety disorders, and the 5-HTT is a major target for antidepressants and anxiolytics. The 5-HTT is further implicated in the pathophysiology of these disorders by evidence that genetic variation in the promoter region of the HTT (SLC6A4) is associated with individual differences in anxiety and neural responses to fear. To further evaluate the role of the 5-HTT in anxiety, we employed a mouse model in which the 5-HTT gene (htt) was constitutively inactivated. 5-HTT -/- mice were characterized for anxiety-related behaviors using a battery of tests (elevated plus maze, light<-->dark exploration test, emergence test, and open field test). Male and female 5-HTT -/- mice showed robust phenotypic abnormalities as compared to +/+ littermates, suggestive of increased anxiety-like behavior and inhibited exploratory locomotion. The selective 5-HT(1A) receptor antagonist, WAY 100635 (0.05-0.3 mg/kg), produced a significant anxiolytic-like effect in the elevated plus maze in 5-HTT -/- mice, but not +/+ controls. The present findings demonstrate abnormal behavioral phenotypes in 5-HTT null mutant mice in tests for anxiety-like and exploratory behavior, and suggest a role for the 5-HT(1A) receptor in mediating these abnormalities. 5-HTT null mutant mice provide a model to investigate the role of the 5-HTT in mood and anxiety disorders.
Collapse
MESH Headings
- Animals
- Anxiety/genetics
- Anxiety/physiopathology
- Behavior, Animal
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Darkness
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Exploratory Behavior/drug effects
- Female
- Habituation, Psychophysiologic/drug effects
- Light
- Locomotion/drug effects
- Male
- Maze Learning/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Motor Activity/drug effects
- Nerve Tissue Proteins
- Piperazines/pharmacology
- Pyridines/pharmacology
- Reaction Time
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins
- Sex Factors
- Time Factors
Collapse
Affiliation(s)
- Andrew Holmes
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
28
|
Barros M, Mello EL, Maior RS, Müller CP, de Souza Silva MA, Carey RJ, Huston JP, Tomaz C. Anxiolytic-like effects of the selective 5-HT1A receptor antagonist WAY 100635 in non-human primates. Eur J Pharmacol 2003; 482:197-203. [PMID: 14660023 DOI: 10.1016/j.ejphar.2003.09.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-human primates provide important insights into the potential use of 5-HT(1A) receptor antagonists in treating human anxiety disorders and as research tools, given the existent inconsistencies in rodent tests. This study investigated the effects of the selective silent 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane-carboxamide trihydrochloride (WAY 100635), administered systemically, in an ethologically based fear/anxiety test in marmoset monkeys (Callithrix penicillata). Subjects were tested using a figure-eight maze and a taxidermized wild cat as 'predator' stimulus. After seven 30-min maze habituations in the absence of the 'predator', each animal was submitted to four pseudo-randomly assigned 30-min treatment trials in the presence of the 'predator': three WAY 100635 (0.2, 0.4 and 0.8 mg/kg, i.p.) sessions and a saline control trial. The 'predator' stimulus caused a significant fear-induced avoidance of the maze sections closest to where it was presented, indicating an anxiogenic effect. However, WAY 100635 treatment reversed, significantly and dose-dependently, this fear-induced avoidance behavior, while increasing maze exploration. Sedation was not observed. This is the first study to suggest an anxiolytic-like effect of the selective silent 5-HT(1A) receptor antagonist WAY 100635 in non-human primates, indicating its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Marilia Barros
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, CEP 70910-900 Brasilia, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wesołowska A, Paluchowska M, Chojnacka-Wójcik E. Involvement of presynaptic 5-HT(1A) and benzodiazepine receptors in the anticonflict activity of 5-HT(1A) receptor antagonists. Eur J Pharmacol 2003; 471:27-34. [PMID: 12809949 DOI: 10.1016/s0014-2999(03)01814-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present paper, we examined the effect of lesions of 5-hydroxytryptamine (5-HT) neurons, produced by p-chloroamphetamine (p-CA; 2 x 10 mg/kg), and the influence of flumazenil (Ro 15-1788, 10 mg/kg), a benzodiazepine receptor antagonist, on the anticonflict activity of N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635) and trans-1-(2-methoxy-phenyl)-4-[4-succinimidocyclohexyl]piperazine (MP 349), pre- and postsynaptic 5-HT(1A) receptor antagonists, and 1-(2-methoxyphenyl)-4-(4-succinimidobutyl)piperazine (MM 77), a postsynaptic 5-HT(1A) receptor antagonist, in the Vogel conflict drinking test in rats. Diazepam was used as a reference compound. WAY 100635 (0.5-1 mg/kg), MP 349 (0.25-0.5 mg/kg), MM 77 (0.03-0.25 mg/kg) and diazepam (2.5-5 mg/kg) significantly increased the number of shocks accepted during experimental sessions in the conflict drinking test. In p-chloroamphetamine-pretreated rats, neither WAY 100635 (1 mg/kg) nor MP 349 (0.25 mg/kg) induced an anticonflict effect, whereas MM 77 (0.06 mg/kg) did produce it. Flumazenil fully blocked the anticonflict effects of WAY 100635 (1 mg/kg) and diazepam (5 mg/kg), and it partly but significantly reduced the anticonflict effects of MP 349 (0.25 mg/kg) and MM 77 (0.06 mg/kg). p-Chloroamphetamine and flumazenil alone were inactive in the conflict drinking test. The present results suggest that, first, the anticonflict effect of the 5-HT(1A) receptor antagonists, WAY 100635 and MP 349, but not MM 77, is linked to the presynaptically located 5-HT(1A) receptors, and second, benzodiazepine receptors are indirectly involved in such effects of WAY 100635, MP 349 and MM 77, due maybe to a possible interaction between the 5-HT and the gamma-aminobutyric acid (GABA)/benzodiazepine systems.
Collapse
Affiliation(s)
- Anna Wesołowska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland
| | | | | |
Collapse
|
30
|
Wesołowska A, Paluchowska MH, Gołembiowska K, Chojnacka-Wójcik E. Pharmacological characterization of MP349, a novel 5-HT1A-receptor antagonist with anxiolytic-like activity, in mice and rats. J Pharm Pharmacol 2003; 55:533-43. [PMID: 12803776 DOI: 10.1211/0022357021017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The purpose of this study was to further characterize the pharmacological effects of MP349 (trans-1-(2-methoxyphenyl)-4-(4-succinimidocyclohexyl)piperazine), a new serotonin 5-HT(1A) postsynaptic receptor antagonist, using several biochemical and behavioural assays. The silent 5-HT(1A)-receptor antagonist WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide) was used as a reference compound in in-vivo tests, and diazepam served as standard anxiolytic drug in animal models of anxiety. In this study we showed that MP349 bound with moderate affinity (K(i) = 234 nM) for alpha(1)-adrenoceptors, and with very low affinity (K(i) > 2600 nM) for 5-HT(2A), dopamine D(1), D(2) and benzodiazepine receptors. The effects of MP349 on presynaptic 5-HT(1A) receptors were studied in two models (mice and rats). Like WAY 100635, MP349 antagonized the hypothermia induced by the 5-HT(1A)-receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin(8-OH-DPAT) in mice. Neither MP349 nor WAY 100635 administered alone induced hypothermia. In a rat microdialysis study, MP349 (like WAY 100635) did not affect 5-HT dialysate level in the prefrontal cortex; however, when given before 8-OH-DPAT, it inhibited the decrease in 5-HT release induced by the 5-HT(1A )agonist. The data demonstrated that MP349 behaved like a functional antagonist of presynaptic 5-HT(1A) receptors. The potential anxiolytic activity of MP349 and reference drugs was examined in a conflict drinking test in rats, a plus-maze test in rats and a four-plate test in mice. MP349 and WAY 100635 produced anxiolytic-like effects, though somewhat weaker than those induced by diazepam, and only in the case of diazepam the anxiolytic-like effects were dose-dependent. Moreover, MP349 administered in doses inducing anxiolytic-like effects did not disturb the locomotor activity (open field test) or locomotor coordination (rota-rod test) of rats. These and earlier results indicated that MP349 was an antagonist of 5-HT(1A) receptors which exhibited anxiolytic-like activity in an animal model of anxiety.
Collapse
Affiliation(s)
- Anna Wesołowska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smetna 12, Poland
| | | | | | | |
Collapse
|
31
|
Blanchard DC, Griebel G, Blanchard RJ. The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 2003; 463:97-116. [PMID: 12600704 DOI: 10.1016/s0014-2999(03)01276-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Mouse Defense Test Battery was developed from tests of defensive behaviors in rats, reflecting earlier studies of both acute and chronic responses of laboratory and wild rodents to threatening stimuli and situations. It measures flight, freezing, defensive threat and attack, and risk assessment in response to an unconditioned predator stimulus, as well as pretest activity and postthreat (conditioned) defensiveness to the test context. Factor analyses of these indicate four factors relating to cognitive and emotional aspects of defense, flight, and defensiveness to the test context. In the Mouse Defense Test Battery, GABA(A)-benzodiazepine anxiolytics produce consistent reductions in defensive threat/attack and risk assessment, while panicolytic and panicogenic drugs selectively reduce and enhance, respectively, flight. Effects of GABA(A)-benzodiazepine, serotonin, and neuropeptide ligands in the Mouse Defense Test Battery are reviewed. This review suggests that the Mouse Defense Test Battery is a sensitive and appropriate tool for preclinical evaluation of drugs potentially effective against defense-related disorders such as anxiety and panic.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biomedical Research Center, University of Hawaii, 1993 East-West Road, Honolulu 96822, USA.
| | | | | |
Collapse
|
32
|
Janssen P, Prins NH, Meulemans AL, Lefebvre RA. Smooth muscle 5-HT2A receptors mediating contraction of porcine isolated proximal stomach strips. Br J Pharmacol 2002; 137:1217-24. [PMID: 12466231 PMCID: PMC1573616 DOI: 10.1038/sj.bjp.0704992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The aim of this study was to characterize the 5-HT receptors involved in the 5-HT-induced contraction of longitudinal muscle (LM) strips of porcine proximal stomach. This was done in a classical organ bath set-up for isotonic measurement. 2. The concentration-contraction curve to 5-HT was not modified by 5-HT(3) and 5-HT(4) receptor antagonism. Methysergide, ketanserin and mesulergine antagonized the curve to 5-HT. Concomitantly, increasing concentrations of ketanserin and mesulergine progressively revealed a biphasic nature of the 5-HT curve. Ketanserin antagonized the low-affinity receptor while it did not modify the high-affinity receptor. 3. Tetrodotoxin did not influence the concentration-contraction curve to 5-HT neither in the absence nor presence of ketanserin, indicating that nerves are not involved. 4. Ketanserin competitively antagonized the monophasic concentration-response curve to alpha-Methyl-5-HT, yielding a Schild slope that was not significantly different from unity. After constraining the Schild slope to unity, a pK(B) estimate of 8.23+/-0.90 was obtained. This affinity estimate of ketanserin closely approximates previously reported affinities at 5-HT(2A) receptors. 5. In the presence of ketanserin (0.1 microM; exposing the high-affinity receptor), a wide range of 5-HT receptor antagonists covering all 5-HT receptors known, was tested. Only methysergide and ritanserin inhibited the response to 5-HT, thus expressing affinity for the high-affinity receptor. This did not reveal the identity of the receptor involved. 6 It can be concluded that 5-HT induces pig proximal stomach (LM) contraction via 5-HT(2A) receptors located on smooth muscle. A ketanserin-insensitive phase of contractions could not be characterized between the actually known classes of 5-HT receptors with the pharmacological tools that were used.
Collapse
Affiliation(s)
- P Janssen
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
- Author for correspondence:
| | - N H Prins
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - A L Meulemans
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - R A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Bojarski AJ, Kowalski P, Kowalska T, Duszyńska B, Charakchieva-Minol S, Tatarczyńska E, Kłodzińska A, Chojnacka-Wójcik E. Synthesis and pharmacological evaluation of new arylpiperazines. 3-[4-[4-(3-chlorophenyl)-1-piperazinyl]butyl]-quinazolidin-4-one - a dual serotonin 5-HT(1A)/5-HT(2A) receptor ligand with an anxiolytic-like activity. Bioorg Med Chem 2002; 10:3817-27. [PMID: 12413835 DOI: 10.1016/s0968-0896(02)00349-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
On the basis of systematic studies on the structure-activity relationships in arylpiperazine group of serotonin ligands, 12 new derivatives containing quinazolidin-4(3H)-one (1-4), 2-phenyl-2,3-dihydrophthalazine-1,4-dione (5-8) or 1-phenyl-1,2-dihydropyridazine-3,6-dione (9-12) fragments were synthesized. The majority of the tested compounds (2, 4, 7, 8 and 10-12) showed a high affinity for 5-HT(1A) receptors (K(i)=11-54 nM) and two (1, 2) were found active at 5-HT(2A) sites (16 and 68 nM, respectively). All the new 5-HT(1A) ligands tested in vivo revealed an antagonistic activity at postsynaptic 5-HT(1A) receptors, and three of them behaved as agonists at presynaptic ones. Additionally, both the meta-chlorophenylpiperazine derivatives containing quinazolidin-4-one fragment showed features of 5-HT(2A) receptor antagonists. The dual 5-HT(1A)/5-HT(2A) receptor ligand (2) was further tested for its potential psychotropic activity. It showed a distinct anxiolytic-like activity in a conflict drinking test in rats and the observed effect was more potent in terms of the active dose, than that produced by diazepam (used as a reference drug).
Collapse
Affiliation(s)
- Andrzej J Bojarski
- Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rodgers RJ, Boullier E, Chatzimichalaki P, Cooper GD, Shorten A. Contrasting phenotypes of C57BL/6JOlaHsd, 129S2/SvHsd and 129/SvEv mice in two exploration-based tests of anxiety-related behaviour. Physiol Behav 2002; 77:301-10. [PMID: 12419406 DOI: 10.1016/s0031-9384(02)00856-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Knockout mice are typically generated on a mixed genetic background and, as such, detailed behavioural characterisation of these background strains is essential to the valid interpretation of mutant phenotypes. In this context, recent research has revealed significant differences in anxiety-like behaviour among the most commonly used background strains (C57BL/6J and various 129 substrains), leading to the possibility that at least certain mutant phenotypes may not after all be due to the targeted mutation. However, these findings derive largely from behavioural test batteries in which there may well be an experiential confound, while the widely reported hypolocomotor profile of most 129 substrains may compromise the principal indices of anxiety-like behaviour. In the present study, we have compared the behavioural profiles of three commonly used background strains (C57BL/6JOlaHsd, 129/SvEv and 129S2/SvHsd) in two of the most popular animal models of anxiety-the elevated plus-maze (EPM) and light/dark exploration (LDE) tests. Naive animals were used for each procedure, ethological scoring methods were employed throughout, and the inbred phenotypes were also compared with that of an outbred strain (Swiss-Webster) widely employed in test validation and behavioural pharmacology. Our results show that, despite their hypolocomotor profile, both 129 substrains display higher levels of anxiety-like behaviour (conventional and/or ethological measures) relative to the C57BL/6JOlaHsd strain. Furthermore, all three inbred strains were less active in both tests when compared with the outbred Swiss-Webster strain. However, whereas C57BL/6JOlaHsd mice displayed lower levels of anxiety-like behaviour than their Swiss-Webster counterparts (both tests), 129S2/SvHsd (but not 129/SvEv) mice exhibited evidence of higher anxiety, particularly in the LDE test. The implications of these findings are discussed in relation to both the behavioural and pharmacological phenotyping of mutant mice.
Collapse
Affiliation(s)
- R J Rodgers
- Behavioural Pharmacology Laboratory, School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
35
|
Risk taking during exploration of a plus-maze is greater in adolescent than in juvenile or adult mice. Anim Behav 2002. [DOI: 10.1006/anbe.2002.4004] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Carola V, D'Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 2002; 134:49-57. [PMID: 12191791 DOI: 10.1016/s0166-4328(01)00452-1] [Citation(s) in RCA: 501] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The elevated plus-maze test (PM) and open-field test (OF) are routinely used to study anxiety-related behaviour in mouse. However, the data obtained with these tests have often been contradictory, probably because of differences between laboratories in the selection and analysis of behavioural parameters. We have characterised the pattern of mouse anxiety by analysing a number of behavioural parameters with both PM and OF in BALB/c and C57BL/6 mice, two behaviourally distant mouse strains. Twenty-eight variables (15 analysed with PM and 13 with OF) were selected by correlation analysis from those initially recorded with both tests. The scores of the selected variables were first analysed by MANOVAs, and then by principal component analysis (PCA). PCA extracted five factors for PM and four factors for OF. These factors were subjected to a correlation analysis, which showed significant correlation between four of them. The factorial scores of BALB/c and C57BL/6 mice were analysed by MANOVAs, which showed significant effects of both the strain and test used. Our results confirm the multidimensional structure of mouse anxiety-related behaviour as regards both simple components and functional interactions, and comprehensively represent strain- and test-specific features of mouse anxiety-related behaviour.
Collapse
Affiliation(s)
- Valeria Carola
- Department of Psychology, University of Rome La Sapienza, Via dei Marsi 78, I-00185 Rome, Italy.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Emx1 is a mammalian homolog of the Drosophila gap gene empty spiracles (ems). Although it has been implicated in the formation of the mouse forebrain, the neuronal functions of this homeobox gene remain unknown. The restricted expression of Emx1 to the cerebral cortex and hippocampus suggests that it might play a role in emotional and other behavioral processes. The present study examined the phenotypes of Emx1-deficient mice generated by gene targeting technology in a battery of behavioral tests with a fixed inter-trial interval of 7 days. Compared with their wild-type littermates, the Emx1 homozygous mutant mice displayed markedly lowered anxiety-like behaviors in the elevated plus maze and dark/light exploration tests. Moreover, they exhibited less depressive-like response as indicated by the reduced duration of immobility in the forced swimming paradigm. There was a trend toward reduction in prepulse inhibition of acoustic startle in the homozygotes. No significant alterations in locomotor activity and susceptibility to pentylenetetrazol-induced seizure were found. This behavioral profile indicates an involvement of Emx1 in the emotional responses of mice.
Collapse
Affiliation(s)
- Bo-Jin Cao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
38
|
Janssen P, Prins NH, Meulemans AL, Lefebvre RA. Pharmacological characterization of the 5-HT receptors mediating contraction and relaxation of canine isolated proximal stomach smooth muscle. Br J Pharmacol 2002; 136:321-9. [PMID: 12010782 PMCID: PMC1573351 DOI: 10.1038/sj.bjp.0704716] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We aimed to characterize 5-HT receptors mediating contraction and relaxation to 5-HT in dog proximal stomach longitudinal muscle (LM) strips. 2. Of the tryptamine analogues tested, 5-HT was the most potent contractile agent at basal length, while 5-CT was the most potent relaxant of PGF(2alpha)-induced contraction. Neither the contractions to 5-HT, nor the relaxations to 5-CT were influenced by tetrodotoxin, illustrating that action potential propagation is not involved. 3. The 5-HT-induced contraction was antagonized by mesulergine (0.03 to 0.3 microM) and ketanserin (2 - 20 nM), but the antagonism was not of a simple competitive nature, indicating multiple receptor involvement. Ketanserin (3 to 30 nM) and mesulergine (30 nM) competitively antagonized the alpha-Me-5-HT-induced contraction (pK(B): 8.83+/-0.09 and pA(2): 8.25+/-0.06 respectively). These affinity values are in line with literature affinities of ketanserin and mesulergine at 5-HT(2A) receptors in various bioassays. 4. The 5-CT-induced inhibition of PGF(2alpha)-induced contraction was competitively antagonized by mesulergine (pK(B) estimate: 8.52+/-0.12) and by the selective 5-HT(7) receptor antagonist SB-269970 (pK(B) estimate: 9.36+/-0.14). Both pK(B) estimates are in line with literature affinities of these compounds for 5-HT(7) receptors. Mesulergine (30 nM) and SB-269970 (10 nM) shifted the relaxant curve to 5-HT parallel to the right in the presence of ketanserin (0.3 microM) (pA(2) estimates of 8.08+/-0.10 and 8.75+/-0.14 respectively), indicative of 5-HT(7) receptor involvement. 5. It is concluded that 5-HT induces dog proximal stomach (LM) contraction via smooth muscle 5-HT(2A) receptors and relaxation via smooth muscle 5-HT(7) receptors.
Collapse
Affiliation(s)
- P Janssen
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium.
| | | | | | | |
Collapse
|
39
|
Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 2002; 416:396-400. [PMID: 11919622 DOI: 10.1038/416396a] [Citation(s) in RCA: 651] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Serotonin is implicated in mood regulation, and drugs acting via the serotonergic system are effective in treating anxiety and depression. Specifically, agonists of the serotonin1A receptor have anxiolytic properties, and knockout mice lacking this receptor show increased anxiety-like behaviour. Here we use a tissue-specific, conditional rescue strategy to show that expression of the serotonin1A receptor primarily in the hippocampus and cortex, but not in the raphe nuclei, is sufficient to rescue the behavioural phenotype of the knockout mice. Furthermore, using the conditional nature of these transgenic mice, we suggest that receptor expression during the early postnatal period, but not in the adult, is necessary for this behavioural rescue. These findings show that postnatal developmental processes help to establish adult anxiety-like behaviour. In addition, the normal role of the serotonin1A receptor during development may be different from its function when this receptor is activated by therapeutic intervention in adulthood.
Collapse
Affiliation(s)
- Cornelius Gross
- Center for Neurobiology and Behavior, Columbia University, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Canto-de-Souza A, Luiz Nunes-de-Souza R, Rodgers RJ. Anxiolytic-like effect of way-100635 microinfusions into the median (but not dorsal) raphe nucleus in mice exposed to the plus-maze: influence of prior test experience. Brain Res 2002; 928:50-9. [PMID: 11844471 DOI: 10.1016/s0006-8993(01)03354-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT(1A) receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT(1A) somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 microg in 0.1 microl) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience, the effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 microg) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT(1A) autoreceptor blockade in the MRN cannot be accounted for by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT(1A) receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects of 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense.
Collapse
Affiliation(s)
- Azair Canto-de-Souza
- Department Psicologia, Universidade Federal de São Carlos-UFSCar, São Carlos, SP, Brazil
| | | | | |
Collapse
|
41
|
Nunes-de-Souza RL, Canto-de-Souza A, Rodgers RJ. Effects of intra-hippocampal infusion of WAY-100635 on plus-maze behavior in mice. Influence of site of injection and prior test experience. Brain Res 2002; 927:87-96. [PMID: 11814435 DOI: 10.1016/s0006-8993(01)03335-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The positive profile of systemically-administered 5-HT(1A) receptor antagonists in several rodent models of anxiolytic activity suggests an important role for postsynaptic 5-HT(1A) receptor mechanisms in anxiety. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 0.1, 1.0 or 3.0 microg in 0.2 microl) into the dorsal (DH) or ventral (VH) hippocampus on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As prior experience is known to modify pharmacological responses in this test, the effects of intra-hippocampal infusions were examined both in maze-naïve and maze-experienced subjects. Test videotapes were scored for conventional indices of anxiety (% open arm entries/time) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naïve mice, intra-VH (but not intra-DH) infusions of WAY-100635 (3.0 microg but not lower doses) increased open arm exploration and reduced risk assessment. These effects were observed in the absence of significant changes in locomotor activity. In contrast, neither intra-VH nor intra-DH infusions of WAY-100635 altered the behaviour of maze-experienced mice. These findings suggest that postsynaptic 5-HT(1A) receptors in the ventral (but not dorsal) hippocampus play a significant role both in the mediation of plus-maze anxiety in mice and in experientially-induced alterations in responses to this test.
Collapse
|
42
|
Olivier B, Pattij T, Wood SJ, Oosting R, Sarnyai Z, Toth M. The 5-HT(1A) receptor knockout mouse and anxiety. Behav Pharmacol 2001; 12:439-50. [PMID: 11742137 DOI: 10.1097/00008877-200111000-00004] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 5-HT(1A) receptor has been implicated in the modulation of anxiety processes, mainly via pharmacological experiments. The recent production, in three independent research groups, of 5-HT(1A) receptor knockout (R KO) mice in three different genetic backgrounds (C57BL/6J, 129/Sv, Swiss-Webster) led to the intriguing finding that all mice, independent from the genetic background strain from which the null mutants were made, showed an "anxious" phenotype compared to corresponding wild-type mice. The present paper reviews the behavioral findings in these three KO lines and focuses on new findings in the 129/Sv-KO mice. These mice were more anxious or stress-prone only under specific conditions (high stress) and not as broadly as suggested from the initial studies. The 5-HT(1A) R KO made in the Swiss-Webster background displays disturbances in the GABA(A)-benzodiazepine (BZ) receptor system in the brain, including downregulation of GABA(A) alpha1 and alpha2 subunits in the amygdala. In contrast, the GABA(A)-BZ receptor system seems to function normally in the 5-HT(1A) R KO in the 129/Sv background suggesting that changes in the GABA(A)-BZ receptor system may not be a prerequisite for anxiety but rather could have a modifying effect on this phenotype. It can be concluded that the constitutive absence of the 5-HT(1A) receptor gene and receptor leads to a more "anxious" mouse, dependent on the stress level but independent from the strain. Depending on the genetic background, this null mutation may be associated with changes in GABA(A)-ergic neurotransmission. It is as yet unclear which mechanisms are involved in this intriguing differentiation.
Collapse
Affiliation(s)
- B Olivier
- Department of Psychopharmacology, Faculty of Pharmacy, Utrecht University, Sorbonnelaan 16, 3584CA Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
43
|
Belzung C, Le Guisquet AM, Barreau S, Calatayud F. An investigation of the mechanisms responsible for acute fluoxetine-induced anxiogenic-like effects in mice. Behav Pharmacol 2001; 12:151-62. [PMID: 11485052 DOI: 10.1097/00008877-200105000-00001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although selective 5-hydroxytryptamine (5-HT) reuptake inhibitors (SSRIs) are widely used in the chronic treatment of several anxiety disorders, increased anxiety has been observed in some patients at the beginning of treatment with these compounds. Similar increases in anxiety-related behaviors have been observed in animal studies following a single injection with SSRIs. The mechanism underlying this effect is unclear. The aim of the present study was to investigate the effects of a variety of psychoactive compounds on the anxiogenic-like activity of fluoxetine. The drugs used included the benzodiazepine diazepam, the 5-HT1A receptor partial agonist buspirone, the 5-HT1A receptor antagonists pindolol and WAY-100635, the non-selective 5-HT2 receptor antagonists methiothepin, mianserin and ritanserin, the non-selective dopamine (DA) receptor antagonist haloperidol, the D1 antagonist SCH23390, the selective D2 antagonist raclopride, the D2/3 agonist quinelorane, the cholecystokininB (CCK(B)) receptor antagonist LY 288513, and the corticotropin-releasing factor1 (CRF1) receptor antagonist CP-154,526. Experiments were performed in the free-exploration test. This model is based on the strong neophobic reactions exhibited by BALB/c mice when confronted simultaneously with a familiar and a novel environment. When administered alone, diazepam (1 and 2 mg/kg), buspirone (1 mg/kg) and mianserin (0.3 mg/kg) produced anxiolytic-like effects as they significantly increased exploratory activity of the novel compartment. In contrast, fluoxetine (20 mg/kg) almost completely suppressed exploration of the novel area. Diazepam reversed the anxiogenic-like as well as the locomotor impairment induced by fluoxetine, while quinelorane blocked only the anxiogenic action of fluoxetine. None of the other compounds was able to counteract this effect. Taken together, these results suggest that dopaminergic mechanisms may underlie, at least in part, the behavioral effects of fluoxetine in the free-exploration test, whereas 5-HT1A 5-HT2, CCK(B) and CRF1 receptors may not be involved primarily in these effects.
Collapse
Affiliation(s)
- C Belzung
- EA 3248 Psychobiologie des émotions, UFR Sciences et Techniques, Tours, France.
| | | | | | | |
Collapse
|
44
|
Griebel G, Rodgers RJ, Perrault G, Sanger DJ. The effects of compounds varying in selectivity as 5-HT(1A) receptor antagonists in three rat models of anxiety. Neuropharmacology 2000; 39:1848-57. [PMID: 10884565 DOI: 10.1016/s0028-3908(00)00074-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Compounds varying in selectivity as 5-HT(1A) receptor antagonists have recently been reported to produce benzodiazepine-like antianxiety effects in mice. To assess the cross-species generality of these findings, the present experiments compared the effects of diazepam (0.625-5 mg/kg) with those of several non-selective (MM-77, 0.03-1 mg/kg and pindobind-5-HT(1A), 0.1-5 mg/kg) and selective (WAY100635, 0.01-10 mg/kg, p-MPPI, 0.01-3 mg/kg and SL88.0338, 0.3-10 mg/kg) 5-HT(1A) receptor antagonists in three well-validated anxiolytic screening tests in rats: punished lever-pressing, punished drinking, and the elevated plus-maze. In the punished lever-pressing conflict test, none of the 5-HT(1A) receptor antagonists modified rates of punished responding, whereas in the punished drinking test, WAY100635 (0.3-1 mg/kg), SL88.0338 (3-10 mg/kg), p-MPPI (1 mg/kg), MM-77 (0.03-0.3 mg/kg), but not pindobind-5-HT(1A), produced clear anticonflict activity. However, the increase in punished responding with the 5-HT(1A) compounds was smaller than that produced by diazepam, indicating weaker anxiolytic-like activity. In the elevated plus-maze test, WAY100635 (0.1-0.3 mg/kg), SL88.0338 (0.3-10 mg/kg), MM-77 (0.01-3 mg/kg), pindobind-5-HT(1A) (0.1-3 mg/kg), but not p-MPPI, showed anxiolytic-like activity on traditional behavioral indices, increasing the percentage of time spent in open arms and the percentage of open arm entries. As was the case in the punished drinking test, the magnitude of the positive effects of the 5-HT(1A) compounds was generally smaller than that of diazepam. Of the ethological measures recorded in the plus-maze, all compounds markedly decreased risk assessment (i.e. attempts) over the entire dose-range, but only diazepam clearly increased directed exploration (i.e. head-dipping). Although the present results demonstrate that 5-HT(1A) receptor antagonists elicit anxiolytic-like effects in rats, this action appears to be test-specific and, unlike previous findings in mice, smaller than that observed with benzodiazepines. The data are discussed in relation to the possible relevance of species differences in 5-HT(1A) receptor function and the nature of the anxiety response studied.
Collapse
Affiliation(s)
- G Griebel
- Sanofi-Synthélabo, 31 Avenue Paul Vaillant-Couturier, 92220, Bagneux, France.
| | | | | | | |
Collapse
|
45
|
Bell R, Lynch K, Mitchell P. Lack of effect of the 5-HT(1A) receptor antagonist WAY-100635 on murine agonistic behaviour. Pharmacol Biochem Behav 1999; 64:549-54. [PMID: 10548270 DOI: 10.1016/s0091-3057(99)00105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study examined the influences of the selective 5-HT1A receptor antagonist, WAY-100635, on the social and agonistic behavior exhibited by male resident mice during encounters with unfamiliar intruder conspecifics. Acute administration of WAY-100635 (0.01-1.0 mg/kg sc) dose dependently enhanced the duration of resident maintenance behavior, reaching statistical significance at 1.0 mg/kg. The duration of resident attend/approach behavior was reduced at 0.01 mg/kg. Drug-free intruder animals showed a reduction in the frequency and duration of attend/approach behavior when the resident mice were treated with 0.01 mg/kg WAY-100635. No other significant effects on behavior were detected for WAY-100635. A previous investigation reported that WAY-100635 induced anxiolytic-like effects in the mouse light/dark box test. In the present study, however, the level of defensive behavior of the saline-treated resident mice was too low for any further anxiolytic-like attenuation of this behavior to be observed. Therefore, no conclusions regarding the potential anxiolytic activity of WAY-100635 may be drawn from the data presented here. Current results are consistent with data for the lack of effect of WAY-100635 on rat agonistic behavior but contrast with findings for the effects of the 5-HT1A receptor antagonists (+)-WAY-100135 and SDZ 216-525 on mouse agonistic behavior.
Collapse
Affiliation(s)
- R Bell
- School of Psychology, The Queen's University of Belfast, Ireland, UK
| | | | | |
Collapse
|
46
|
Dalvi A, Rodgers RJ. Behavioral effects of diazepam in the murine plus-maze: flumazenil antagonism of enhanced head dipping but not the disinhibition of open-arm avoidance. Pharmacol Biochem Behav 1999; 62:727-34. [PMID: 10208379 DOI: 10.1016/s0091-3057(98)00220-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although it is widely believed that benzodiazepines reduce anxiety through positive allosteric modulation of the GABA(A)-chloride channel complex, this is not the only mechanism through which agents of this class can modify CNS function. Furthermore, a significant number of reports of apparent flumazenil blockade of diazepam anxiolysis in animal models have paid limited attention to possible intrinsic behavioral actions of the antagonist per se. In the present study, ethological methods were employed to assess in detail the effects of diazepam, flumazenil, and their combination on the behavior of male DBA/2 mice in the elevated plus-maze paradigm. In two experiments, diazepam (1.5 mg/kg) alone reduced open-arm avoidance and increased head dipping, whereas flumazenil (10-40 mg/kg) alone was without significant behavioral effect. However, with the sole exception of head dipping, prior administration of flumazenil (10 and 40 mg/kg) failed to block the behavioral effects of diazepam under present test conditions. These findings imply that the anxiolytic effects of diazepam in the mouse plus-maze are not mediated through flumazenil-sensitive benzodiazepine receptors and that alternate mechanisms must be considered.
Collapse
Affiliation(s)
- A Dalvi
- Ethopharmacology Laboratory, School of Psychology, University of Leeds, UK
| | | |
Collapse
|
47
|
Cao BJ, Rodgers RJ. Tolerance to acute anxiolysis but no withdrawal anxiogenesis in mice treated chronically with 5-HT1A receptor antagonist, WAY 100635. Neurosci Biobehav Rev 1999; 23:247-57. [PMID: 9884117 DOI: 10.1016/s0149-7634(98)00025-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anxiolytic-like activity in the mouse elevated plus-maze has recently been demonstrated for a range of compounds varying in degree of selectivity as 5-HT1A receptor antagonists. As tolerance and dependence liability are among the major clinical disadvantages of benzodiazepine therapy, the present study examined the effects of acute drug challenge on the plus-maze profiles of mice following daily treatment for 20 days with saline, chlordiazepoxide (CDP; 10.0 mg/kg) or the selective 5-HT1A receptor antagonist, WAY 100635 (0.1-1.0 mg/kg). To assess the development of physical dependence (withdrawal anxiogenesis), the study incorporated independent groups of animals tested on the maze 24 h after the final dose. Challenge with CDP or WAY 100635 produced behavioural changes indicative of anxiety reduction in mice that had received daily handling/saline for 20 days, thereby demonstrating that the chronic injection regimen per se had not compromised the acute efficacy of either agent. The absence of a similar response to acute drug challenge in mice treated chronically with CDP or WAY 100635 suggested the development of tolerance to the acute anxiolytic effects of both compounds under present test conditions. Despite these observations, however, no signs of enhanced anxiety were evident 24 h following discontinuation of chronic treatment with either compound. In a further experiment, the absence of withdrawal anxiogenesis at 24 h was replicated and extended to discontinuation periods of 36 and 48 h for both drugs. Although present results show that tolerance develops to the acute anxiolytic effects of CDP and WAY 100635 in the murine plus-maze, they also suggest that enhanced anxiety is not an inevitable consequence of abrupt cessation of chronic treatment with either compound.
Collapse
Affiliation(s)
- B J Cao
- Ethopharmacology Laboratory, School of Psychology, University of Leeds, UK
| | | |
Collapse
|
48
|
Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A 1998; 95:15049-54. [PMID: 9844013 PMCID: PMC24573 DOI: 10.1073/pnas.95.25.15049] [Citation(s) in RCA: 501] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.
Collapse
Affiliation(s)
- L K Heisler
- Department of Psychiatry and Center for Neurobiology and Psychiatry, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143-0984, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Negri L, Lattanzi R, Tabacco F, Melchiorri P. Respiratory and cardiovascular effects of the mu-opioid receptor agonist [Lys7]dermorphin in awake rats. Br J Pharmacol 1998; 124:345-55. [PMID: 9641552 PMCID: PMC1565382 DOI: 10.1038/sj.bjp.0701823] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Changes in respiratory variables, arterial blood pressure and heart rate were studied in awake rats after injection of the opioid peptide [Lys7]dermorphin and its main metabolites, [1-5]dermorphin and [1-4]dermorphin. 2. Fifteen minutes after injection, doses of [Lys7]dermorphin producing antinociception (i.c.v., 36-120 nmol; s.c., 0.12-4.7 micromol kg(-1)) significantly increased respiratory frequency and minute volume of rats breathing air or hypoxic inspirates. This respiratory stimulation was reversed to depression by the 5-HT receptor antagonist ritanserin (2 mg kg(-1), s.c.), was blocked by naloxone (0.1 mg kg(-1), s.c.), significantly reduced by the mu1 opioid receptor antagonist naloxonazine (10 mg kg(-1), s.c., 24 h before) but unaffected by peripherally acting opioid antagonist naloxone methyl bromide (3 mg kg(-1), s.c.). Forty five minutes after injection, doses of the peptide producing catalepsy (s.c., 8.3-14.2 micromol kg(-1), i.c.v., 360 nmol) significantly reduced respiratory frequency and volume of rats breathing air and blocked the hypercapnic ventilator response of rats breathing from 4% to 10% CO2. I.c.v. administration of [1-5]dermorphin and [1-4]dermorphin (from 36 to 360 nmol) never stimulated respiration but significantly reduced basal and CO2-stimulated ventilation. Opioid respiratory depression was only antagonized by naloxone. 3. In awake rats, [Lys7]dermorphin (0.1-1 mg kg(-1), s.c.) decreased blood pressure. This hypotensive response was abolished by naloxone, reduced by naloxone methyl bromide and unaffected by naloxonazine. 4. In conclusion, the present study indicates that analgesic doses of [Lys7]dermorphin stimulate respiration by activating central mu1 opioid receptors and this respiratory stimulation involves a forebrain 5-hydroxytryptaminergic excitatory pathway.
Collapse
Affiliation(s)
- L Negri
- Institute of Medical Pharmacology, University La Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
50
|
Cao BJ, Rodgers RJ. Influence of 5-HT1A receptor antagonism on plus-maze behaviour in mice. I. Pindolol enantiomers and pindobind 5-HT1A. Pharmacol Biochem Behav 1997; 58:583-91. [PMID: 9300623 DOI: 10.1016/s0091-3057(97)00280-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies on the behavioural effects of 5-hydroxytryptamine receptor subtype 1A (5-HT1A) antagonists may provide important clues to the precise role of 5-HT1A receptor mechanisms in anxiety. In the first of a series of experiments designed to address this issue, the effects of mixed 5-HT1A and beta-adrenergic receptor antagonists pindolol enantiomers and pindobind 5-HT1A and of metoprolol and ICI 118,551 (selective beta1- and beta2-adrenoceptor antagonists, respectively) were assessed in the mouse elevated plus-maze using ethological techniques. Results showed that, at lower doses, (-)pindolol (0.1-1.6 mg/kg) and pindobind 5-HT1A (0.1-0.5 mg/kg) produced changes in both conventional and ethological measures (increased percentage of open arm time and reduced risk assessment) indicative of anxiety reduction. However, these anxiolyticlike actions were less evident at higher doses. In contrast, (+)pindolol (0.1-6.4 mg/kg), metoprolol (2.0-18.0 mg/kg) and ICI 118,551 (1.0-9.0 mg/kg) were behaviourally inert under present test conditions. These data suggest that antagonist actions at 5-HT1A receptors (but not beta-adrenoceptors) are involved in the anxiolyticlike effects of (-)pindolol and pindobind 5-HT1A in the murine elevated plus-maze test.
Collapse
Affiliation(s)
- B J Cao
- Department of Psychology, University of Leeds, West Yorkshire, United Kingdom
| | | |
Collapse
|