1
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Xue Y, Song T, Ke J, Lin S, Zhang J, Chen Y, Wang J, Fan Q, Chen F. MG53 protects against Coxsackievirus B3-induced acute viral myocarditis in mice by inhibiting NLRP3 inflammasome-mediated pyroptosis via the NF-κB signaling pathway. Biochem Pharmacol 2024; 223:116173. [PMID: 38552849 DOI: 10.1016/j.bcp.2024.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Pyroptosis, a novel programmed cell death mediated by NOD-like receptor protein 3 (NLRP3) inflammasome, is a critical pathogenic process in acute viral myocarditis (AVMC). Mitsugumin 53 (MG53) is predominantly expressed in myocardial tissues and has been reported to exert cardioprotective effects through multiple pathways. Herein, we aimed to investigate the biological function of MG53 in AVMC and its underlying regulatory mechanism in pyroptosis. BALB/c mice and HL-1 cells were infected with Coxsackievirus B3 (CVB3) to establish animal and cellular models of AVMC. As inflammation progressed in the myocardium, we found a progressive decrease in myocardial MG53 expression, accompanied by a significant enhancement of cardiomyocyte pyroptosis. MG53 overexpression significantly alleviated myocardial inflammation, apoptosis, fibrosis, and mitochondrial damage, thereby improving cardiac dysfunction in AVMC mice. Moreover, MG53 overexpression inhibited NLRP3 inflammasome-mediated pyroptosis, reduced pro-inflammatory cytokines (IL-1β/18) release, and suppressed NF-κB signaling pathway activation both in vivo and in vitro. Conversely, MG53 knockdown reduced cell viability, facilitated cell pyroptosis, and increased pro-inflammatory cytokines release in CVB3-infected HL-1 cells by promoting NF-κB activation. These effects were partially reversed by applying the NF-κB inhibitor BAY 11-7082. In conclusion, our results suggest that MG53 acts as a negative regulator of NLRP3 inflammasome-mediated pyroptosis in CVB3-induced AVMC, partially by inhibiting the NF-κB signaling pathway. MG53 is a promising candidate for clinical applications in AVMC treatment.
Collapse
Affiliation(s)
- Yimin Xue
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Fourth Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Tianjiao Song
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Shirong Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Jiuyun Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Yimei Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Junyi Wang
- Department of Intensive Care Unit, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Qiaolian Fan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Fourth Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China
| | - Feng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Minckley TF, Salvagio LA, Fudge DH, Verhey K, Markus SM, Qin Y. Zn2+ decoration of microtubules arrests axonal transport and displaces tau, doublecortin, and MAP2C. J Cell Biol 2023; 222:e202208121. [PMID: 37326602 PMCID: PMC10276529 DOI: 10.1083/jcb.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Intracellular Zn2+ concentrations increase via depolarization-mediated influx or intracellular release, but the immediate effects of Zn2+ signals on neuron function are not fully understood. By simultaneous recording of cytosolic Zn2+ and organelle motility, we find that elevated Zn2+ (IC50 ≈ 5-10 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. Using live-cell confocal microscopy and in vitro single-molecule TIRF imaging, we reveal that Zn2+ inhibits activity of motor proteins (kinesin and dynein) without disrupting their microtubule binding. Instead, Zn2+ directly binds to microtubules and selectively promotes detachment of tau, DCX, and MAP2C, but not MAP1B, MAP4, MAP7, MAP9, or p150glued. Bioinformatic predictions and structural modeling show that the Zn2+ binding sites on microtubules partially overlap with the microtubule binding sites of tau, DCX, dynein, and kinesin. Our results reveal that intraneuronal Zn2+ regulates axonal transport and microtubule-based processes by interacting with microtubules.
Collapse
Affiliation(s)
- Taylor F. Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | | - Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kristen Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
4
|
Verbeke J, Fayt Y, Martin L, Yilmaz O, Sedzicki J, Reboul A, Jadot M, Renard P, Dehio C, Renard H, Letesson J, De Bolle X, Arnould T. Host cell egress of Brucella abortus requires BNIP3L-mediated mitophagy. EMBO J 2023; 42:e112817. [PMID: 37232029 PMCID: PMC10350838 DOI: 10.15252/embj.2022112817] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Youri Fayt
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Lisa Martin
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Oya Yilmaz
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Angéline Reboul
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Michel Jadot
- Research Unit in Molecular Physiology (URPhyM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Patricia Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Henri‐François Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Jean‐Jacques Letesson
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Thierry Arnould
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| |
Collapse
|
5
|
Leukert L, Tietgen M, Krause FF, Schultze TG, Fuhrmann DC, Debruyne C, Salcedo SP, Visekruna A, Wittig L, Göttig S. Infection of Endothelial Cells with Acinetobacter baumannii Reveals Remodelling of Mitochondrial Protein Complexes. Microbiol Spectr 2023; 11:e0517422. [PMID: 37052493 PMCID: PMC10269660 DOI: 10.1128/spectrum.05174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Acinetobacter baumannii is an antibiotic-resistant, Gram-negative pathogen that causes a multitude of nosocomial infections. However, pathogenicity mechanisms and the host cell response during infection remain unclear. In this study, we determined virulence traits of A. baumannii clinical isolates belonging to the most widely disseminated international clonal lineage, international cluster 2 (IC2), in vitro and in vivo. Complexome profiling of primary human endothelial cells with A. baumannii revealed that mitochondria, and in particular complexes of the electron transport chain, are important host cell targets. Infection with highly virulent A. baumannii remodelled assembly of mitochondrial protein complexes and led to metabolic adaptation. These were characterized by reduced mitochondrial respiration and glycolysis in contrast to those observed in infection with low-pathogenicity A. baumannii. Perturbation of oxidative phosphorylation, destabilization of mitochondrial ribosomes, and interference with mitochondrial metabolic pathways were identified as important pathogenicity mechanisms. Understanding the interaction of human host cells with the current global A. baumannii clone is the basis to identify novel therapeutic targets. IMPORTANCE Virulence traits of Acinetobacter baumannii isolates of the worldwide most prevalent international clonal lineage, IC2, remain largely unknown. In our study, multidrug-resistant IC2 clinical isolates differed substantially in their virulence potential despite their close genetic relatedness. Our data suggest that, at least for some isolates, mitochondria are important target organelles during infection of primary human endothelial cells. Complexes of the respiratory chain were extensively remodelled after infection with a highly virulent A. baumannii strain, leading to metabolic adaptation characterized by severely reduced respiration and glycolysis. Perturbations of both mitochondrial morphology and mitoribosomes were identified as important pathogenicity mechanisms. Our data might help to further decipher the molecular mechanisms of A. baumannii and host mitochondrial interaction during infection.
Collapse
Affiliation(s)
- Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - Felix F. Krause
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Tilman G. Schultze
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Charline Debruyne
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P. Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - llka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Chang YW, Tony Yang T, Chen MC, Liaw YG, Yin CF, Lin-Yan XQ, Huang TY, Hou JT, Hung YH, Hsu CL, Huang HC, Juan HF. Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface. Commun Biol 2023; 6:427. [PMID: 37072500 PMCID: PMC10113393 DOI: 10.1038/s42003-023-04785-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to anchor ATP syntheses on the cell surface using super-resolution imaging and real-time fusion assay in live cells. Our results provide a blueprint of eATP synthase trafficking and contribute to the understanding of the dynamics of tumor progression.
Collapse
Grants
- 109-2221-E-010-012-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2221-E-010-011-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2327-B-006-004 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2320-B-002-017-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2221-E-002-161-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NTU-110L8808 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-CC-109L104702-2 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-110L7103 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-111L7107 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-CC-112L892102 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
Collapse
Affiliation(s)
- Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - T Tony Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Min-Chun Chen
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Y-Geh Liaw
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chieh-Fan Yin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xiu-Qi Lin-Yan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Ting-Yu Huang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Jen-Tzu Hou
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Hsuan Hung
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.
- Center for Computational and Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
7
|
Yokota S, Shah SH, Huie EL, Wen RR, Luo Z, Goldberg JL. Kif5a Regulates Mitochondrial Transport in Developing Retinal Ganglion Cells In Vitro. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 36862119 PMCID: PMC9983700 DOI: 10.1167/iovs.64.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Purpose Axon transport of organelles and neurotrophic factors is necessary for maintaining cellular function and survival of retinal ganglion cells (RGCs). However, it is not clear how trafficking of mitochondria, essential for RGC growth and maturation, changes during RGC development. The purpose of this study was to understand the dynamics and regulation of mitochondrial transport during RGC maturation using acutely purified RGCs as a model system. Methods Primary RGCs were immunopanned from rats of either sex during three stages of development. MitoTracker dye and live-cell imaging were used to quantify mitochondrial motility. Analysis of single-cell RNA sequencing was used to identify Kinesin family member 5A (Kif5a) as a relevant motor candidate for mitochondrial transport. Kif5a expression was manipulated with either short hairpin RNA (shRNA) or exogenous expression adeno-associated virus viral vectors. Results Anterograde and retrograde mitochondrial trafficking and motility decreased through RGC development. Similarly, the expression of Kif5a, a motor protein that transports mitochondria, also decreased during development. Kif5a knockdown decreased anterograde mitochondrial transport, while Kif5a expression increased general mitochondrial motility and anterograde mitochondrial transport. Conclusions Our results suggested that Kif5a directly regulates mitochondrial axonal transport in developing RGCs. Future work exploring the role of Kif5a in vivo in RGCs is indicated.
Collapse
Affiliation(s)
- Satoshi Yokota
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Sahil H Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Emma Lee Huie
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Runxia Rain Wen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| |
Collapse
|
8
|
Bauer CS, Webster CP, Shaw AC, Kok JR, Castelli LM, Lin YH, Smith EF, Illanes-Álvarez F, Higginbottom A, Shaw PJ, Azzouz M, Ferraiuolo L, Hautbergue GM, Grierson AJ, De Vos KJ. Loss of TMEM106B exacerbates C9ALS/FTD DPR pathology by disrupting autophagosome maturation. Front Cell Neurosci 2022; 16:1061559. [PMID: 36619668 PMCID: PMC9812496 DOI: 10.3389/fncel.2022.1061559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Disruption to protein homeostasis caused by lysosomal dysfunction and associated impairment of autophagy is a prominent pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The most common genetic cause of ALS/FTD is a G4C2 hexanucleotide repeat expansion in C9orf72 (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 repeat transcripts gives rise to dipeptide repeat (DPR) proteins that have been shown to be toxic and may contribute to disease etiology. Genetic variants in TMEM106B have been associated with frontotemporal lobar degeneration with TDP-43 pathology and disease progression in C9ALS/FTD. TMEM106B encodes a lysosomal transmembrane protein of unknown function that is involved in various aspects of lysosomal biology. How TMEM106B variants affect C9ALS/FTD is not well understood but has been linked to changes in TMEM106B protein levels. Here, we investigated TMEM106B function in the context of C9ALS/FTD DPR pathology. We report that knockdown of TMEM106B expression exacerbates the accumulation of C9ALS/FTD-associated cytotoxic DPR proteins in cell models expressing RAN-translated or AUG-driven DPRs as well as in C9ALS/FTD-derived iAstrocytes with an endogenous G4C2 expansion by impairing autophagy. Loss of TMEM106B caused a block late in autophagy by disrupting autophagosome to autolysosome maturation which coincided with impaired lysosomal acidification, reduced cathepsin activity, and juxtanuclear clustering of lysosomes. Lysosomal clustering required Rab7A and coincided with reduced Arl8b-mediated anterograde transport of lysosomes to the cell periphery. Increasing Arl8b activity in TMEM106B-deficient cells not only restored the distribution of lysosomes, but also fully rescued autophagy and DPR protein accumulation. Thus, we identified a novel function of TMEM106B in autophagosome maturation via Arl8b. Our findings indicate that TMEM106B variants may modify C9ALS/FTD by regulating autophagic clearance of DPR proteins. Caution should therefore be taken when considering modifying TMEM106B expression levels as a therapeutic approach in ALS/FTD.
Collapse
Affiliation(s)
- Claudia S. Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Christopher P. Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Allan C. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Jannigje R. Kok
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Lydia M. Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Emma F. Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Francisco Illanes-Álvarez
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J. Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Kurt J. De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Green A, Hossain T, Eckmann DM. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol 2022; 10:1010232. [PMID: 36340034 PMCID: PMC9626967 DOI: 10.3389/fcell.2022.1010232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are cell organelles that play pivotal roles in maintaining cell survival, cellular metabolic homeostasis, and cell death. Mitochondria are highly dynamic entities which undergo fusion and fission, and have been shown to be very motile in vivo in neurons and in vitro in multiple cell lines. Fusion and fission are essential for maintaining mitochondrial homeostasis through control of morphology, content exchange, inheritance of mitochondria, maintenance of mitochondrial DNA, and removal of damaged mitochondria by autophagy. Mitochondrial motility occurs through mechanical and molecular mechanisms which translocate mitochondria to sites of high energy demand. Motility also plays an important role in intracellular signaling. Here, we review key features that mediate mitochondrial dynamics and explore methods to advance the study of mitochondrial motility as well as mitochondrial dynamics-related diseases and mitochondrial-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Green
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - David M. Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
- Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH, United States
- *Correspondence: David M. Eckmann,
| |
Collapse
|
10
|
Falconer J, Pucino V, Clayton SA, Marshall JL, Raizada S, Adams H, Philp A, Clark AR, Filer A, Raza K, Young SP, Buckley CD. Spontaneously Resolving Joint Inflammation Is Characterised by Metabolic Agility of Fibroblast-Like Synoviocytes. Front Immunol 2021; 12:725641. [PMID: 34512657 PMCID: PMC8426599 DOI: 10.3389/fimmu.2021.725641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Fibroblast-like synoviocytes (FLS) play an important role in maintaining joint homeostasis and orchestrating local inflammatory processes. When activated during injury or inflammation, FLS undergo transiently increased bioenergetic and biosynthetic demand. We aimed to identify metabolic changes which occur early in inflammatory disease pathogenesis which might support sustained cellular activation in persistent inflammation. We took primary human FLS from synovial biopsies of patients with very early rheumatoid arthritis (veRA) or resolving synovitis, and compared them with uninflamed control samples from the synovium of people without arthritis. Metabotypes were compared using NMR spectroscopy-based metabolomics and correlated with serum C-reactive protein levels. We measured glycolysis and oxidative phosphorylation by Seahorse analysis and assessed mitochondrial morphology by immunofluorescence. We demonstrate differences in FLS metabolism measurable after ex vivo culture, suggesting that disease-associated metabolic changes are long-lasting. We term this phenomenon 'metabolic memory'. We identify changes in cell metabolism after acute TNFα stimulation across disease groups. When compared to FLS from patients with early rheumatoid arthritis, FLS from patients with resolving synovitis have significantly elevated mitochondrial respiratory capacity in the resting state, and less fragmented mitochondrial morphology after TNFα treatment. Our findings indicate the potential to restore cell metabotypes by modulating mitochondrial function at sites of inflammation, with implications for treatment of RA and related inflammatory conditions in which fibroblasts play a role.
Collapse
Affiliation(s)
- Jane Falconer
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,School of Medicine, Institute of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Valentina Pucino
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Sally A Clayton
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer L Marshall
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Sabrina Raizada
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Holly Adams
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Andrew Philp
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew R Clark
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Karim Raza
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, United Kingdom
| | - Stephen P Young
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Christopher D Buckley
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Khan S, Raj D, Jaiswal K, Lahiri A. Modulation of host mitochondrial dynamics during bacterial infection. Mitochondrion 2020; 53:140-149. [PMID: 32470613 DOI: 10.1016/j.mito.2020.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria is a dynamic organelle of the cell that can regulate and maintain cellular ATP level, ROS production, calcium signaling and immune response. In order to retain their shape and distribution, mitochondria go through coordinated cycles of fission and fusion. Further, dysfunctional mitochondria are selectively eliminated from the cell via mitophagy to synchronize mitochondrial quality control and cellular homeostasis. In addition, mitochondria when in close proximity with the endoplasmic reticulum can alter the signaling pathways and some recent findings also reveal a direct correlation between the mitochondrial localization in the cell to the immune response elicited against the invading pathogen. These modulations in the mitochondrial network are collectively termed as 'mitochondrial dynamics'. Diverse bacteria, virus and parasitic pathogens upon infecting a cell can alter the host mitochondrial dynamics in favor of their multiplication and this in turn can be a major determinant of the disease outcome. Pharmacological perturbations in these pathways thus could lead to generation of additional therapeutic opportunities. This review will focus on the pathogenic modulation of the host mitochondrial dynamics, specifically during the bacterial infections and describes how dysregulated mitochondrial dynamics facilitates the pathogen's ability to establish efficient infection.
Collapse
Affiliation(s)
- Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Kritika Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
12
|
Mou Y, Mukte S, Chai E, Dein J, Li XJ. Analyzing Mitochondrial Transport and Morphology in Human Induced Pluripotent Stem Cell-Derived Neurons in Hereditary Spastic Paraplegia. J Vis Exp 2020. [PMID: 32090993 DOI: 10.3791/60548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurons have intense demands for high energy in order to support their functions. Impaired mitochondrial transport along axons has been observed in human neurons, which may contribute to neurodegeneration in various disease states. Although it is challenging to examine mitochondrial dynamics in live human nerves, such paradigms are critical for studying the role of mitochondria in neurodegeneration. Described here is a protocol for analyzing mitochondrial transport and mitochondrial morphology in forebrain neuron axons derived from human induced pluripotent stem cells (iPSCs). The iPSCs are differentiated into telencephalic glutamatergic neurons using well-established methods. Mitochondria of the neurons are stained with MitoTracker CMXRos, and mitochondrial movement within the axons are captured using a live-cell imaging microscope equipped with an incubator for cell culture. Time-lapse images are analyzed using software with "MultiKymograph", "Bioformat importer", and "Macros" plugins. Kymographs of mitochondrial transport are generated, and average mitochondrial velocity in the anterograde and retrograde directions is read from the kymograph. Regarding mitochondrial morphology analysis, mitochondrial length, area, and aspect ratio are obtained using the ImageJ. In summary, this protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology to facilitate studies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford; Department of Bioengineering, University of Illinois at Chicago
| | - Sukhada Mukte
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford
| | - Joshua Dein
- MD Program, University of Illinois College of Medicine Rockford
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford; Department of Bioengineering, University of Illinois at Chicago;
| |
Collapse
|
13
|
Liao PC, Higuchi-Sanabria R, Swayne TC, Sing CN, Pon LA. Live-cell imaging of mitochondrial motility and interactions in Drosophila neurons and yeast. Methods Cell Biol 2019; 155:519-544. [PMID: 32183975 DOI: 10.1016/bs.mcb.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo directed movement and anchorage, which in turn are critical for calcium buffering and energy mobilization at specific regions within cells or at sites of contact with other organelles. Physical and functional interactions between mitochondria and other organelles also impact processes, including phospholipid biogenesis and calcium homeostasis. Indeed, mitochondrial motility, localization, and interaction with other organelles are compromised in many neurodegenerative diseases. Here, we describe methods to visualize and carry out quantitative analysis of mitochondrial movement in two genetically-manipulatable, widely-used model systems: Drosophila neurons and the budding yeast, Saccharomyces cerevisiae. We also describe approaches for multi-color imaging in living yeast cells that may be used to visualize colocalization of proteins within mitochondria, as well as interactions of mitochondria with other organelles.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Cierra N Sing
- Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States; Institute of Human Nutrition, Columbia University, New York, NY, United States.
| |
Collapse
|
14
|
Puertas-Frías G, Del Arco A, Pardo B, Satrústegui J, Contreras L. Mitochondrial movement in Aralar/Slc25a12/AGC1 deficient cortical neurons. Neurochem Int 2019; 131:104541. [PMID: 31472174 DOI: 10.1016/j.neuint.2019.104541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/25/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The elevated energy demands in the brain are fulfilled mainly by glucose catabolism. In highly polarized neurons, about 10-50% of mitochondria are transported along microtubules using mitochondrial-born ATP to locations with high energy requirements. In this report, we have investigated the impact of Aralar deficiency on mitochondrial transport in cultured cortical neurons. Aralar/slc25a12/AGC1 is the neuronal isoform of the aspartate-glutamate mitochondrial carrier, a component of the malate-aspartate shuttle (MAS) which plays an important role in redox balance, which is essential to maintain glycolytic pyruvate supply to neuronal mitochondria. Using live imaging microscopy we observed that the lack of Aralar does not affect the number of moving mitochondria nor the Ca2+-induced stop, the only difference being a 10% increase in mitochondrial velocity in Aralar deficient neurons. Therefore, we evaluated the possible fuels used in each case by studying the relative contribution of oxidative phosphorylation and glycolysis to mitochondrial movement using specific inhibitors. We found that the ATP synthase inhibitor oligomycin caused a smaller inhibition of mitochondrial movement in Aralar-KO than control neurons, whereas the glycolysis inhibitor iodoacetate had similar effects in neurons from both genotypes. In line with these findings, the decrease in cytosolic ATP/ADP ratio caused by oligomycin was more pronounced in control than in Aralar-KO neurons, but no differences were observed with iodoacetate. Oligomycin effect was reverted by aralar re-expression in knock out cultures. As mitochondrial movement is not reduced in Aralar-KO neurons, these results suggest that these neurons may use an additional pathway for mitochondria movement and ATP/ADP ratio maintenance.
Collapse
Affiliation(s)
- Guillermo Puertas-Frías
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Araceli Del Arco
- Facultad de Ciencias Ambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla La Mancha, 45071, Toledo, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain.
| |
Collapse
|
15
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
16
|
Rumora AE, LoGrasso G, Hayes JM, Mendelson FE, Tabbey MA, Haidar JA, Lentz SI, Feldman EL. The Divergent Roles of Dietary Saturated and Monounsaturated Fatty Acids on Nerve Function in Murine Models of Obesity. J Neurosci 2019; 39:3770-3781. [PMID: 30886017 PMCID: PMC6510336 DOI: 10.1523/jneurosci.3173-18.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathy is the most common complication of prediabetes and diabetes and presents as distal-to-proximal loss of peripheral nerve function in the lower extremities. Neuropathy progression and disease severity in prediabetes and diabetes correlates with dyslipidemia in man and murine models of disease. Dyslipidemia is characterized by elevated levels of circulating saturated fatty acids (SFAs) that associate with the progression of neuropathy. Increased intake of monounsaturated fatty acid (MUFA)-rich diets confers metabolic health benefits; however, the impact of fatty acid saturation in neuropathy is unknown. This study examines the differential effect of SFAs and MUFAs on the development of neuropathy and the molecular mechanisms underlying the progression of the complication. Male mice Mus musculus fed a high-fat diet rich in SFAs developed robust peripheral neuropathy. This neuropathy was completely reversed by switching the mice from the SFA-rich high-fat diet to a MUFA-rich high-fat diet; nerve conduction velocities and intraepidermal nerve fiber density were restored. A MUFA oleate also prevented the impairment of mitochondrial transport and protected mitochondrial membrane potential in cultured sensory neurons treated with mixtures of oleate and the SFA palmitate. Moreover, oleate also preserved intracellular ATP levels, prevented apoptosis induced by palmitate treatment, and promoted lipid droplet formation in sensory neurons, suggesting that lipid droplets protect sensory neurons from lipotoxicity. Together, these results suggest that MUFAs reverse the progression of neuropathy by protecting mitochondrial function and transport through the formation of intracellular lipid droplets in sensory neurons.SIGNIFICANCE STATEMENT There is a global epidemic of prediabetes and diabetes, disorders that represent a continuum of metabolic disturbances in lipid and glucose metabolism. In the United States, 80 million individuals have prediabetes and 30 million have diabetes. Neuropathy is the most common complication of both disorders, carries a high morbidity, and, despite its prevalence, has no treatments. We report that dietary intervention with monounsaturated fatty acids reverses the progression of neuropathy and restores nerve function in high-fat diet-fed murine models of peripheral neuropathy. Furthermore, the addition of the monounsaturated fatty acid oleate to sensory neurons cultured under diabetic conditions shows that oleate prevents impairment of mitochondrial transport and mitochondrial dysfunction through a mechanism involving formation of axonal lipid droplets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen I Lentz
- Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
17
|
Son T, Lee D, Lee C, Moon G, Ha GE, Lee H, Kwak H, Cheong E, Kim D. Superlocalized Three-Dimensional Live Imaging of Mitochondrial Dynamics in Neurons Using Plasmonic Nanohole Arrays. ACS NANO 2019; 13:3063-3074. [PMID: 30802028 DOI: 10.1021/acsnano.8b08178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the transport of neuronal mitochondria using superlocalized near-fields with plasmonic nanohole arrays (PNAs). Compared to traditional imaging techniques, PNAs create a massive array of superlocalized light beams and allow 3D mitochondrial dynamics to be sampled and extracted almost in real time. In this work, mitochondrial fluorescence excited by the PNAs was captured by an optical microscope using dual objective lenses, which produced superlocalized dynamics while minimizing light scattering by the plasmonic substrate. It was found that mitochondria move with an average velocity 0.33 ± 0.26 μm/s, a significant part of which, by almost 50%, was contributed by the movement along the depth axis ( z-axis). Mitochondrial positions were acquired with superlocalized precision (σ x = 5.7 nm and σ y = 11.8 nm) in the lateral plane and σ z = 78.7 nm in the z-axis, which presents an enhancement by 12.7-fold in resolution compared to confocal fluorescence microscopy. The approach is expected to serve as a way to provide 3D information on molecular dynamics in real time.
Collapse
|
18
|
Denton K, Mou Y, Xu CC, Shah D, Chang J, Blackstone C, Li XJ. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet 2019; 27:2517-2530. [PMID: 29726929 DOI: 10.1093/hmg/ddy156] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.
Collapse
Affiliation(s)
- Kyle Denton
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong-Chong Xu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Shah
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Jaerak Chang
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Departments of Biomedical Science, Brain Science, and Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Rumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 2018; 60:58-70. [PMID: 30442656 DOI: 10.1194/jlr.m086843] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dyslipidemia associated with T2D leads to diabetic neuropathy, a complication characterized by sensory neuronal dysfunction and peripheral nerve damage. Sensory dorsal root ganglion (DRG) neurons are dependent on axonal mitochondrial energy production facilitated by mitochondrial transport mechanisms that distribute mitochondria throughout the axon. Because long-chain saturated FAs (SFAs) damage DRG neurons and medium-chain SFAs are reported to improve neuronal function, we evaluated the impact of SFA chain length on mitochondrial trafficking, mitochondrial function, and apoptosis. DRG neurons were exposed to SFAs with C12:0-C18:0 chain lengths and evaluated for changes in mitochondrial trafficking, mitochondrial polarization, and apoptosis. DRG neurons treated with C16:0 and C18:0 SFAs showed a significant decrease in the percentage of motile mitochondria and velocity of mitochondrial trafficking, whereas C12:0 and C14:0 SFAs had no impact on motility. Treatment with C16:0 and C18:0 SFAs exhibited mitochondrial depolarization correlating with impaired mitochondrial motility; the C12:0- and C14:0-treated neurons retained mitochondrial polarization. The reduction in mitochondrial trafficking and function in C16:0- and C18:0-treated DRG neurons correlated with apoptosis that was blocked in C12:0 and C14:0 SFA treatments. These results suggest that SFA chain length plays an important role in regulating axonal mitochondrial trafficking and function in DRG neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Giovanni LoGrasso
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Julia A Haidar
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Justin J Dolkowski
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Stephen I Lentz
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Analysis of mitochondrial shape dynamics using large deformation diffeomorphic metric curve matching. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:4062-4065. [PMID: 29060789 DOI: 10.1109/embc.2017.8037748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial shape changes are essential to mitochondrial functions. Quantification of mitochondrial shape changes is essential to understanding related physiology and disease mechanisms. In this study, we proposed a new automated pipeline for quantifying the shape changing patterns of mitochondria in the framework of large deformation diffeomorphic metric mapping for curve. We validated the accuracy of our pipeline on 32 mitochondria data, each having 6 sequential time-lapse frames. The contour of each mitochondrion is modeled by a curve consisting of a set of landmark points ranging from 39 to 358, with the moving distance between every two consecutive frames quantified for each localized point. The sensitivity of the proposed pipeline, with respect to different curve discretization, was investigated, with high robustness established. In addition, we quantified the uncertainty level of the proposed pipeline using 10 fixed mitochondria data with 6 time frames as well, with the mean between-frame moving distance found to be smaller than 28 nm for a majority of the 10 fixed mitochondria data. This indicates that the proposed pipeline has a very low level of uncertainty. The encouraging results from this work suggest that the proposed pipeline is potentially a powerful tool for quantifying shape dynamics, both globally and locally, of a variety of cellular components.
Collapse
|
21
|
Mitochondrial fragmentation affects neither the sensitivity to TNFα-induced apoptosis of Brucella-infected cells nor the intracellular replication of the bacteria. Sci Rep 2018; 8:5173. [PMID: 29581535 PMCID: PMC5979954 DOI: 10.1038/s41598-018-23483-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/13/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are complex organelles that participate in many cellular functions, ranging from ATP production to immune responses against viruses and bacteria. This integration of a plethora of functions within a single organelle makes mitochondria a very attractive target to manipulate for intracellular pathogens. We characterised the crosstalk that exists between Brucella abortus, the causative agent of brucellosis, and the mitochondria of infected cells. Brucella replicates in a compartment derived from the endoplasmic reticulum (ER) and modulates ER functionality by activating the unfolded protein response. However, the impact of Brucella on the mitochondrial population of infected cells still requires a systematic study. We observed physical contacts between Brucella containing vacuoles and mitochondria. We also found that B. abortus replication is independent of mitochondrial oxidative phosphorylation and that mitochondrial reactive oxygen species do not participate to the control of B. abortus infection in vitro. We demonstrated that B. abortus and B. melitensis induce a drastic mitochondrial fragmentation at 48 hours post-infection in different cell types, including myeloid and non-myeloid cells. This fragmentation is DRP1-independent and might be caused by a deficit of mitochondrial fusion. However, mitochondrial fragmentation does not change neither Brucella replication efficiency, nor the susceptibility of infected cells to TNFα-induced apoptosis.
Collapse
|
22
|
Rumora AE, Lentz SI, Hinder LM, Jackson SW, Valesano A, Levinson GE, Feldman EL. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J 2018; 32:195-207. [PMID: 28904018 PMCID: PMC6191072 DOI: 10.1096/fj.201700206r] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
Mitochondrial trafficking plays a central role in dorsal root ganglion (DRG) neuronal cell survival and neurotransmission by transporting mitochondria from the neuronal cell body throughout the bundles of DRG axons. In type 2 diabetes (T2DM), dyslipidemia and hyperglycemia damage DRG neurons and induce mitochondrial dysfunction; however, the impact of free fatty acids and glucose on mitochondrial trafficking in DRG neurons remains unknown. To evaluate the impact of free fatty acids compared to hyperglycemia on mitochondrial transport, primary adult mouse DRG neuron cultures were treated with physiologic concentrations of palmitate and glucose and assessed for alterations in mitochondrial trafficking, mitochondrial membrane potential, and mitochondrial bioenergetics. Palmitate treatment significantly reduced the number of motile mitochondria in DRG axons, but physiologic concentrations of glucose did not impair mitochondrial trafficking dynamics. Palmitate-treated DRG neurons also exhibited a reduction in mitochondrial velocity, and impaired mitochondrial trafficking correlated with mitochondrial depolarization in palmitate-treated DRG neurons. Finally, we found differential bioenergetic effects of palmitate and glucose on resting and energetically challenged mitochondria in DRG neurons. Together, these results suggest that palmitate induces DRG neuron mitochondrial depolarization, inhibiting axonal mitochondrial trafficking and altering mitochondrial bioenergetic capacity.-Rumora, A. E., Lentz, S. I., Hinder, L. M., Jackson, S. W., Valesano, A., Levinson, G. E., Feldman, E. L. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen I Lentz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel W Jackson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Valesano
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gideon E Levinson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
23
|
Moller A, Bauer CS, Cohen RN, Webster CP, De Vos KJ. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum Mol Genet 2017; 26:4668-4679. [PMID: 28973175 PMCID: PMC5886184 DOI: 10.1093/hmg/ddx348] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
Defective axonal transport is an early neuropathological feature of amyotrophic lateral sclerosis (ALS). We have previously shown that ALS-associated mutations in Cu/Zn superoxide dismutase 1 (SOD1) impair axonal transport of mitochondria in motor neurons isolated from SOD1 G93A transgenic mice and in ALS mutant SOD1 transfected cortical neurons, but the underlying mechanisms remained unresolved. The outer mitochondrial membrane protein mitochondrial Rho GTPase 1 (Miro1) is a master regulator of mitochondrial axonal transport in response to cytosolic calcium (Ca2+) levels ([Ca2+]c) and mitochondrial damage. Ca2+ binding to Miro1 halts mitochondrial transport by modifying its interaction with kinesin-1 whereas mitochondrial damage induces Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1) and Parkin-dependent degradation of Miro1 and consequently stops transport. To identify the mechanism underlying impaired axonal transport of mitochondria in mutant SOD1-related ALS we investigated [Ca2+]c and Miro1 levels in ALS mutant SOD1 expressing neurons. We found that expression of ALS mutant SOD1 reduced the level of endogenous Miro1 but did not affect [Ca2+]c. ALS mutant SOD1 induced reductions in Miro1 levels were Parkin dependent. Moreover, both overexpression of Miro1 and ablation of PINK1 rescued the mitochondrial axonal transport deficit in ALS mutant SOD1-expressing cortical and motor neurons. Together these results provide evidence that ALS mutant SOD1 inhibits axonal transport of mitochondria by inducing PINK1/Parkin-dependent Miro1 degradation.
Collapse
Affiliation(s)
- Annekathrin Moller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rebecca N Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
24
|
Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18122507. [PMID: 29168786 PMCID: PMC5751110 DOI: 10.3390/ijms18122507] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Zhengqing Wan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Yongyi Zou
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Henok Kessete Afewerky
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Tongmei Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
25
|
Alsina A, Lai WM, Wong WK, Qin X, Zhang M, Park H. Real-time subpixel-accuracy tracking of single mitochondria in neurons reveals heterogeneous mitochondrial motion. Biochem Biophys Res Commun 2017; 493:776-782. [DOI: 10.1016/j.bbrc.2017.08.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022]
|
26
|
Melser S, Pagano Zottola AC, Serrat R, Puente N, Grandes P, Marsicano G, Hebert-Chatelain E. Functional Analysis of Mitochondrial CB1 Cannabinoid Receptors (mtCB1) in the Brain. Methods Enzymol 2017; 593:143-174. [PMID: 28750801 DOI: 10.1016/bs.mie.2017.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence indicates that, besides its canonical localization at cell plasma membranes, the type-1 cannabinoid receptor, CB1 is functionally present at brain and muscle mitochondrial membranes (mtCB1). Through mtCB1 receptors, cannabinoids can directly regulate intramitochondrial signaling and respiration. This new and surprising discovery paves the way to new potential fields of research, dealing with the direct impact of G protein-coupled receptors on bioenergetic processes and its functional implications. In this chapter, we summarize some key experimental approaches established in our laboratories to identify anatomical, biochemical, and functional features of mtCB1 receptors in the brain. In particular, we describe the procedures to obtain reliable and controlled detection of mtCB1 receptors by immunogold electromicroscopy and by immunoblotting methods. Then, we address the study of direct cannabinoid effects on the electron transport system and oxidative phosphorylation. Finally, we present a functional example of the impact of mtCB1 receptors on mitochondrial mobility in cultured neurons. Considering the youth of the field, these methodological approaches will very likely be improved and refined in the future, but this chapter aims at presenting the methods that are currently used and, in particular, at underlining the need of rigorous controls to obtain reliable results. We hope that this chapter might help scientists becoming interested in this new and exciting field of research.
Collapse
Affiliation(s)
- Su Melser
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Antonio C Pagano Zottola
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Roman Serrat
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Nagore Puente
- Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain; University of Victoria, Victoria, BC, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France.
| | | |
Collapse
|
27
|
Xue F, Shi C, Chen Q, Hang W, Xia L, Wu Y, Tao SZ, Zhou J, Shi A, Chen J. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance. Front Mol Neurosci 2017; 10:49. [PMID: 28293167 PMCID: PMC5329003 DOI: 10.3389/fnmol.2017.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Kainic acid (KA)-induced neuronal death is linked to mitochondrial dysfunction and ER stress. Melatonin is known to protect hippocampal neurons from KA-induced apoptosis, but the exact mechanisms underlying melatonin protective effects against neuronal mitochondria disorder and ER stress remain uncertain. In this study, we investigated the sheltering roles of melatonin during KA-induced apoptosis by focusing on mitochondrial dysfunction and ER stress mediated signal pathways. KA causes mitochondrial dynamic disorder and dysfunction through calpain activation, leading to neuronal apoptosis. Ca2+ chelator BAPTA-AM and calpain inhibitor calpeptin can significantly restore mitochondrial morphology and function. ER stress can also be induced by KA treatment. ER stress inhibitor 4-phenylbutyric acid (PBA) attenuates ER stress-mediated apoptosis and mitochondrial disorder. It is worth noting that calpain activation was also inhibited under PBA administration. Thus, we concluded that melatonin effectively inhibits KA-induced calpain upregulation/activation and mitochondrial deterioration by alleviating Ca2+ overload and ER stress.
Collapse
Affiliation(s)
- Feixiao Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Department of Clinical Laboratory, Xi'an Third HospitalXi'an, China
| | - Cai Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Sophia Z Tao
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara CA, USA
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Institute for Brain Research, Huazhong University of Science and TechnologyWuhan, China; Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Institute for Brain Research, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
28
|
Zhao F, Wang W, Wang C, Siedlak SL, Fujioka H, Tang B, Zhu X. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1359-1370. [PMID: 28215578 DOI: 10.1016/j.bbadis.2017.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial dynamics and quality control play a critical role in the maintenance of mitochondrial homeostasis and function. Pathogenic mutations of many genes associated with familial Parkinson's disease (PD) caused abnormal mitochondrial dynamics, suggesting a likely involvement of disturbed mitochondrial fission/fusion in the pathogenesis of PD. In this study, we focused on the potential role of mitochondrial fission/fusion in idiopathic PD patients and in neuronal cells and animals exposed to paraquat (PQ), a commonly used herbicide and PD-related neurotoxin, as models for idiopathic PD. Significantly increased expression of dynamin-like protein 1 (DLP1) and a trend towards reduced expression of Mfn1 and Mfn2 were noted in the substantia nigra tissues from idiopathic PD cases. Interestingly, PQ treatment led to similar changes in the expression of fission/fusion proteins both in vitro and in vivo which was accompanied by extensive mitochondrial fragmentation and mitochondrial dysfunction. Blockage of PQ-induced mitochondrial fragmentation by Mfn2 overexpression protected neurons against PQ-induced mitochondrial dysfunction in vitro. More importantly, PQ-induced oxidative damage and stress signaling as well as selective loss of dopaminergic (DA) neurons in the substantia nigra and axonal terminals in striatum was also inhibited in transgenic mice overexpressing hMfn2. Overall, our study demonstrated that disturbed mitochondrial dynamics mediates PQ-induced mitochondrial dysfunction and neurotoxicity both in vitro and in vivo and is also likely involved in the pathogenesis of idiopathic PD which make them a promising therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chunyu Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurology, The second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Kulkarni A, Khan Y, Ray K. Heterotrimeric kinesin-2, together with kinesin-1, steers vesicular acetylcholinesterase movements toward the synapse. FASEB J 2016; 31:965-974. [PMID: 27920150 DOI: 10.1096/fj.201600759rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
Acetylcholinesterase (AChE), which is implicated in the pathophysiology of neurological disorders, is distributed along the axon and enriched at the presynaptic basal lamina. It hydrolyses the neurotransmitter acetylcholine, which inhibits synaptic transmission. Aberrant AChE activity and ectopic axonal accumulation of the enzyme are associated with neurodegenerative disorders, such as Alzheimer's disease. The molecular mechanism that underlies AChE transport is still unclear. Here, we show that expression of Drosophila AChE tagged with photoactivatable green fluorescent protein and m-Cherry (GPAC) in cholinergic neurons compensates for the RNA interference-mediated knockdown of endogenous AChE activity. GPAC-AChE, which is enriched in the neuropil region of the brain, moves in the apparently vesicular form in axons with an anterograde bias in Drosophila larvae. Two anterograde motors, kinesin-1 and -2, propel distinct aspects of GPAC-AChE movements. Total loss of kinesin-2 reduces the density of anterograde traffic and increases bidirectional movements of GPAC-AChE vesicles without altering their speed. A partial loss of kinesin-1 reduces both the density and speed of anterograde GPAC-AChE traffic and enhances the pool of stationary vesicles. Together, these results suggest that combining activity of a relatively weak kinesin-2 with that of a stronger kinesin-1 motor could steer AChE-containing vesicles toward synapse, and provides a molecular basis for the observed subcellular distribution of the enzyme.-Kulkarni, A., Khan, Y., Ray, K. Heterotrimeric kinesin-2, together with kinesin-1, steers vesicular acetylcholinesterase movements toward the synapse.
Collapse
Affiliation(s)
- Anuttama Kulkarni
- Sophia College, Mumbai, India.,Tata Institute of Fundamental Research, Mumbai, India
| | | | - Krishanu Ray
- Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
30
|
A cannabinoid link between mitochondria and memory. Nature 2016; 539:555-559. [PMID: 27828947 DOI: 10.1038/nature20127] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.
Collapse
|
31
|
Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A, Walsh MJ, Whitworth AJ, Kaspar BK, Meyer K, Shaw PJ, Grierson AJ, De Vos KJ. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 2016; 35:1656-76. [PMID: 27334615 PMCID: PMC4969571 DOI: 10.15252/embj.201694401] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc‐51‐like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a‐dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62‐positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient‐derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD‐associated p62 pathology.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Annekathrin Moller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Monika A Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Matthew J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | | | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Pagliuso A, Tham TN, Stevens JK, Lagache T, Persson R, Salles A, Olivo-Marin JC, Oddos S, Spang A, Cossart P, Stavru F. A role for septin 2 in Drp1-mediated mitochondrial fission. EMBO Rep 2016; 17:858-73. [PMID: 27215606 PMCID: PMC5278612 DOI: 10.15252/embr.201541612] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin-like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1-dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP-induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France U604 Inserm, Paris, France USC2020 INRA, Paris, France
| | - To Nam Tham
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France U604 Inserm, Paris, France USC2020 INRA, Paris, France
| | | | - Thibault Lagache
- Unité d'Analyse d'Images Biologiques Institut Pasteur, Paris, France CNRS UMR 3691, Paris, France
| | | | | | | | | | - Anne Spang
- Biozentrum University of Basel, Basel, Switzerland
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France U604 Inserm, Paris, France USC2020 INRA, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France U604 Inserm, Paris, France USC2020 INRA, Paris, France
| |
Collapse
|
33
|
Bao FX, Shi HY, Long Q, Yang L, Wu Y, Ying ZF, Qin DJ, Zhang J, Guo YP, Li HM, Liu XG. Mitochondrial Membrane Potential-dependent Endoplasmic Reticulum Fragmentation is an Important Step in Neuritic Degeneration. CNS Neurosci Ther 2016; 22:648-60. [PMID: 27080255 DOI: 10.1111/cns.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuritic degeneration is an important early pathological step in neurodegeneration. AIM The purpose of this study was to explore the mechanisms connecting neuritic degeneration to the functional and morphological remodeling of endoplasmic reticulum (ER) and mitochondria. METHODS Here, we set up neuritic degeneration models by neurite cutting-induced neural degeneration in human-induced pluripotent stem cell-derived neurons. RESULTS We found that neuritic ER becomes fragmented and forms complexes with mitochondria, which induces IP3R-dependent mitochondrial Ca(2+) elevation and dysfunction during neuritic degeneration. Furthermore, mitochondrial membrane potential is required for ER fragmentation and mitochondrial Ca(2+) elevation during neuritic degeneration. Mechanically, tightening of the ER-mitochondria associations by expression of a short "synthetic linker" and ER Ca(2+) releasing together could promote mitochondrial Ca(2+) elevation, dysfunction, and reactive oxygen species generation. CONCLUSION Our study reveals a dynamic remodeling of the ER-mitochondria interface underlying neuritic degeneration.
Collapse
Affiliation(s)
- Fei-Xiang Bao
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hong-Yan Shi
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Qi Long
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Yang
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhong-Fu Ying
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Da-Jiang Qin
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jian Zhang
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi-Ping Guo
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hong-Mei Li
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xing-Guo Liu
- University of Science and Technology of China, Hefei, Anhui, China.,Key Laboratory of Regenerative Biology, Guangdong provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
34
|
Vevea JD, Garcia EJ, Chan RB, Zhou B, Schultz M, Di Paolo G, McCaffery JM, Pon LA. Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast. Dev Cell 2016; 35:584-599. [PMID: 26651293 DOI: 10.1016/j.devcel.2015.11.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near-wild-type levels. We confirmed that the unfolded protein response is activated by this lipid stress and find that Hsp104p is recruited to ER aggregates. We also find that LDs form at ER aggregates, contain polyubiquitinated proteins and an ER chaperone, and are degraded in the vacuole by a process resembling microautophagy. This process, microlipophagy, is required for restoration of organelle morphology and cell growth during adaptation to lipid stress. Microlipophagy does not require ATG7 but does requires ESCRT components and a newly identified class E VPS protein that localizes to ER and is upregulated by lipid imbalance.
Collapse
Affiliation(s)
- Jason D Vevea
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Enrique J Garcia
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Mei Schultz
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
35
|
Vannuvel K, Van Steenbrugge M, Demazy C, Ninane N, Fattaccioli A, Fransolet M, Renard P, Raes M, Arnould T. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. J Cell Physiol 2016; 231:1913-31. [PMID: 26680008 DOI: 10.1002/jcp.25292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Noëlle Ninane
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
36
|
Higuchi-Sanabria R, Swayne TC, Boldogh IR, Pon LA. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast. Methods Mol Biol 2016; 1365:25-62. [PMID: 26498778 DOI: 10.1007/978-1-4939-3124-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA
| | - Theresa C Swayne
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA. .,Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Xu CC, Denton KR, Wang ZB, Zhang X, Li XJ. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis Model Mech 2016; 9:39-49. [PMID: 26586529 PMCID: PMC4728333 DOI: 10.1242/dmm.021766] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA), characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1) gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs) and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC) mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.
Collapse
Affiliation(s)
- Chong-Chong Xu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kyle R Denton
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Zhi-Bo Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Xiaoqing Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Xue-Jun Li
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA Stem Cell Institute, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
38
|
Abstract
Impaired axonal development and degeneration are implicated in many debilitating disorders, such as hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and periphery neuropathy. Human pluripotent stem cells (hPSCs) have provided researchers with an excellent resource for modeling human neuropathologic processes including axonal defects in vitro. There are a number of steps that are crucial when developing an hPSC-based model of a human disease, including generating induced pluripotent stem cells (iPSCs), differentiating those cells to affected cell types, and identifying disease-relevant phenotypes. Here, we describe these steps in detail, focusing on the neurodegenerative disorder HSP.
Collapse
Affiliation(s)
- Kyle R Denton
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Chong-Chong Xu
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Xue-Jun Li
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
- The Stem Cell Institute, University of Connecticut Health Center, Farmington, CT, 06032, USA.
| |
Collapse
|
39
|
Allen SP, Duffy LM, Shaw PJ, Grierson AJ. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 2015; 36:2893-903. [DOI: 10.1016/j.neurobiolaging.2015.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/19/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
|
40
|
Gibbs KL, Kalmar B, Sleigh JN, Greensmith L, Schiavo G. In vivo imaging of axonal transport in murine motor and sensory neurons. J Neurosci Methods 2015; 257:26-33. [PMID: 26424507 PMCID: PMC4666412 DOI: 10.1016/j.jneumeth.2015.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Axonal transport is essential for neuronal function and survival. Defects in axonal transport have been identified as an early pathological feature in several disorders of the nervous system. The visualisation and quantitative analysis of axonal transport in vivo in rodent models of neurological disease is therefore crucial to improve our understanding of disease pathogenesis and for the identification of novel therapeutics. NEW METHOD Here, we describe a method for the in vivo imaging of axonal transport of signalling endosomes in the sciatic nerve of live, anaesthetised mice. RESULTS This method allows the multiparametric, quantitative analysis of in vivo axonal transport in motor and sensory neurons of adult mice in control conditions and during disease progression. COMPARISON WITH EXISTING METHODS Previous in vivo imaging of the axonal transport of signalling endosomes has been limited to studies in nerve explant preparations or non-invasive approaches using magnetic resonance imaging; techniques that are hampered by major drawbacks such as tissue damage and low temporal and spatial resolution. This new method allows live imaging of the axonal transport of single endosomes in the sciatic nerve in situ and a more sensitive analysis of axonal transport kinetics than previous approaches. CONCLUSIONS The method described in this paper allows an in-depth analysis of the characteristics of axonal transport in both motor and sensory neurons in vivo. It enables the detailed study of alterations in axonal transport in rodent models of neurological diseases and can be used to identify novel pharmacological modifiers of axonal transport.
Collapse
Affiliation(s)
- Katherine L Gibbs
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London WC1 N 3BG, UK.
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London WC1 N 3BG, UK.
| | - James N Sleigh
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London WC1 N 3BG, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London WC1 N 3BG, UK.
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London WC1 N 3BG, UK.
| |
Collapse
|
41
|
Gan KJ, Silverman MA. Imaging organelle transport in primary hippocampal neurons treated with amyloid-β oligomers. Methods Cell Biol 2015; 131:425-51. [PMID: 26794527 DOI: 10.1016/bs.mcb.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a strategy for fluorescent imaging of organelle transport in primary hippocampal neurons treated with amyloid-β (Aβ) peptides that cause Alzheimer's disease (AD). This method enables careful, rigorous analyses of axonal transport defects, which are implicated in AD and other neurodegenerative diseases. Moreover, we present and emphasize guidelines for investigating Aβ-induced mechanisms of axonal transport disruption in the absence of nonspecific, irreversible cellular toxicity. This approach should be accessible to most laboratories equipped with cell culture facilities and a standard fluorescent microscope and may be adapted to other cell types.
Collapse
Affiliation(s)
- Kathlyn J Gan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michael A Silverman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Sládková J, Spáčilová J, Čapek M, Tesařová M, Hansíková H, Honzík T, Martínek J, Zámečník J, Kostková O, Zeman J. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders. Ultrastruct Pathol 2015. [DOI: 10.3109/01913123.2015.1054013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Kandel J, Chou P, Eckmann DM. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity. Biotechnol Bioeng 2015; 112:1395-405. [PMID: 25678368 DOI: 10.1002/bit.25563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/10/2023]
Abstract
Current methodologies used for mitochondrial motility analysis tend to either overlook individual mitochondrial tracks or analyze only peripheral mitochondria instead of mitochondria in all regions of the cell. Furthermore, motility analysis of an individual mitochondrion is usually quantified by establishing an arbitrary threshold for "directed" motion. In this work, we created a custom, publicly available computational algorithm based on a previously published approach (Giedt et al., 2012. Ann Biomed Eng 40:1903-1916) in order to characterize the distribution of mitochondrial movements at the whole-cell level, while still preserving information about single mitochondria. Our technique is easy to use, robust, and computationally inexpensive. Images are first pre-processed for increased resolution, and then individual mitochondria are tracked based on object connectivity in space and time. When our method is applied to microscopy fields encompassing entire cells, we reveal that the mitochondrial net distances in fibroblasts follow a lognormal distribution within a given cell or group of cells. The ability to model whole-cell mitochondrial motility as a lognormal distribution provides a new quantitative paradigm for comparing mitochondrial motility in naïve and treated cells. We further demonstrate that microtubule and microfilament depolymerization shift the lognormal distribution in directions which indicate decreased and increased mitochondrial movement, respectively. These findings advance earlier work on neuronal axons (Morris and Hollenbeck, 1993. J Cell Sci 104:917-927) by relating them to a different cell type, applying them on a global scale, and automating measurement of mitochondrial motility in general.
Collapse
Affiliation(s)
- Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Philip Chou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104. .,Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania. .,Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
44
|
Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CCJ, Whitworth AJ, De Vos KJ. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 2014; 5:5245. [PMID: 25316291 PMCID: PMC4208097 DOI: 10.1038/ncomms6245] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 12/23/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson's disease.
Collapse
Affiliation(s)
- Vinay K Godena
- 1] Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK [2] The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK [3] Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, UK
| | - Nicholas Brookes-Hocking
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Annekathrin Moller
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Gary Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew Oswald
- 1] Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK [2] The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Rosa M Sancho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Alexander J Whitworth
- 1] Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK [2] The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK [3] Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, UK
| | - Kurt J De Vos
- 1] Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, UK [2] Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
45
|
Bruton J, Jeffries GDM, Westerblad H. Usage of a localised microflow device to show that mitochondrial networks are not extensive in skeletal muscle fibres. PLoS One 2014; 9:e108601. [PMID: 25259575 PMCID: PMC4178183 DOI: 10.1371/journal.pone.0108601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/31/2014] [Indexed: 11/18/2022] Open
Abstract
In cells, such as neurones and immune cells, mitochondria can form dynamic and extensive networks that change over the minute timescale. In contrast, mitochondria in adult mammalian skeletal muscle fibres show little motility over several hours. Here, we use a novel three channelled microflow device, the multifunctional pipette, to test whether mitochondria in mouse skeletal muscle connect to each other. The central channel in the pipette delivers compounds to a restricted region of the sarcolemma, typically 30 µm in diameter. Two channels on either side of the central channel use suction to create a hydrodynamically confined flow zone and remove compounds completely from the bulk solution to internal waste compartments. Compounds were delivered locally to the end or side of single adult mouse skeletal muscle fibres to test whether changes in mitochondrial membrane potential were transmitted to more distant located mitochondria. Mitochondrial membrane potential was monitored with tetramethylrhodamine ethyl ester (TMRE). Cytosolic free [Ca2+] was monitored with fluo-3. A pulse of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 100 µM) applied to a small area of the muscle fibre (30 µm in diameter) produced a rapid decrease in the mitochondrial TMRE signal (indicative of depolarization) to 38% of its initial value. After washout of FCCP, the TMRE signal partially recovered. At distances greater than 50 µm away from the site of FCCP application, the mitochondrial TMRE signal was unchanged. Similar results were observed when two sites along the fibre were pulsed sequentially with FCCP. After a pulse of FCCP, cytosolic [Ca2+] was unchanged and fibres contracted in response to electrical stimulation. In conclusion, our results indicate that extensive networks of interconnected mitochondria do not exist in skeletal muscle. Furthermore, the limited and reversible effects of targeted FCCP application with the multifunctional pipette highlight its advantages over bulk application of compounds to isolated cells.
Collapse
Affiliation(s)
- Joseph Bruton
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| | - Gavin D. M. Jeffries
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
46
|
Denton KR, Lei L, Grenier J, Rodionov V, Blackstone C, Li XJ. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells 2014; 32:414-23. [PMID: 24123785 DOI: 10.1002/stem.1569] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/14/2013] [Indexed: 12/11/2022]
Abstract
Human neuronal models of hereditary spastic paraplegias (HSP) that recapitulate disease-specific axonal pathology hold the key to understanding why certain axons degenerate in patients and to developing therapies. SPG4, the most common form of HSP, is caused by autosomal dominant mutations in the SPAST gene, which encodes the microtubule-severing ATPase spastin. Here, we have generated a human neuronal model of SPG4 by establishing induced pluripotent stem cells (iPSCs) from an SPG4 patient and differentiating these cells into telencephalic glutamatergic neurons. The SPG4 neurons displayed a significant increase in axonal swellings, which stained strongly for mitochondria and tau, indicating the accumulation of axonal transport cargoes. In addition, mitochondrial transport was decreased in SPG4 neurons, revealing that these patient iPSC-derived neurons recapitulate disease-specific axonal phenotypes. Interestingly, spastin protein levels were significantly decreased in SPG4 neurons, supporting a haploinsufficiency mechanism. Furthermore, cortical neurons derived from spastin-knockdown human embryonic stem cells (hESCs) exhibited similar axonal swellings, confirming that the axonal defects can be caused by loss of spastin function. These spastin-knockdown hESCs serve as an additional model for studying HSP. Finally, levels of stabilized acetylated-tubulin were significantly increased in SPG4 neurons. Vinblastine, a microtubule-destabilizing drug, rescued this axonal swelling phenotype in neurons derived from both SPG4 iPSCs and spastin-knockdown hESCs. Thus, this study demonstrates the successful establishment of human pluripotent stem cell-based neuronal models of SPG4, which will be valuable for dissecting the pathogenic cellular mechanisms and screening compounds to rescue the axonal degeneration in HSP.
Collapse
Affiliation(s)
- Kyle R Denton
- Department of Neuroscience, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
47
|
Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 2014; 158:54-68. [PMID: 24995978 DOI: 10.1016/j.cell.2014.06.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 02/20/2014] [Accepted: 04/28/2014] [Indexed: 01/17/2023]
Abstract
Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University, Stanford, CA 94304, USA
| | - Dong Kong
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas L Schwarz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Wanet A, Remacle N, Najar M, Sokal E, Arnould T, Najimi M, Renard P. Mitochondrial remodeling in hepatic differentiation and dedifferentiation. Int J Biochem Cell Biol 2014; 54:174-85. [PMID: 25084555 DOI: 10.1016/j.biocel.2014.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/20/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023]
Abstract
Mitochondrial biogenesis and metabolism have recently emerged as important actors of stemness and differentiation. On the one hand, the differentiation of stem cells is associated with an induction of mitochondrial biogenesis and a shift from glycolysis toward oxidative phosphorylations (OXPHOS). In addition, interfering with mitochondrial biogenesis or function impacts stem cell differentiation. On the other hand, some inverse changes in mitochondrial abundance and function are observed during the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Yet although great promises in cell therapy might generate better knowledge of the mechanisms regulating the stemness and differentiation of somatic stem cells (SSCs)-which are preferred over embryonic stem cells (ESCs) and iPSCs because of ethical and safety considerations-little interest was given to the study of their mitochondria. This study provides a detailed characterization of the mitochondrial biogenesis occurring during the hepatogenic differentiation of bone marrow-mesenchymal stem cells (BM-MSCs). During the hepatogenic differentiation of BM-MSCs, an increased abundance of mitochondrial DNA (mtDNA) is observed, as well as an increased expression of several mitochondrial proteins and biogenesis regulators, concomitant with increased OXPHOS activity, capacity, and efficiency. In addition, opposite changes in mitochondrial morphology and in the abundance of several OXPHOS subunits were found during the spontaneous dedifferentiation of primary hepatocytes. These data support reverse mitochondrial changes in a different context from genetically-engineered reprogramming. They argue in favor of a mitochondrial involvement in hepatic differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Noémie Remacle
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Etienne Sokal
- Université Catholique de Louvain, Institut de Recherche Clinique et Expérimentale (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Mustapha Najimi
- Université Catholique de Louvain, Institut de Recherche Clinique et Expérimentale (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
49
|
Zhu PP, Denton KR, Pierson TM, Li XJ, Blackstone C. Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet 2014; 23:5638-48. [PMID: 24908668 DOI: 10.1093/hmg/ddu280] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegias are a large, diverse group of neurological disorders (SPG1-71) with the unifying feature of prominent lower extremity spasticity, owing to a length-dependent axonopathy of corticospinal motor neurons. The most common early-onset form of pure, autosomal dominant hereditary spastic paraplegia is caused by mutation in the ATL1 gene encoding the atlastin-1 GTPase, which mediates homotypic fusion of ER tubules to form the polygonal ER network. We have identified a p.Pro342Ser mutation in a young girl with pure SPG3A. This residue is in a critical hinge region of atlastin-1 between its GTPase and assembly domains, and it is conserved in all known eukaryotic atlastin orthologs. We produced induced pluripotent stem cells from skin fibroblasts and differentiated these into forebrain neurons to generate a human neuronal model for SPG3A. Axons of these SPG3A neurons showed impaired growth, recapitulating axonal defects in atlastin-1-depleted rat cortical neurons and impaired root hair growth in loss-of-function mutants of the ATL1 ortholog rhd3 in the plant Arabidopsis. Both the microtubule cytoskeleton and tubular ER are important for mitochondrial distribution and function within cells, and SPG3A neurons showed alterations in mitochondrial motility. Even so, it is not clear whether this change is involved in disease pathogenesis. The SPG3A axon growth defects could be rescued with microtubule-binding agents, emphasizing the importance of tubular ER interactions with the microtubule cytoskeleton in hereditary spastic paraplegia pathogenesis. The prominent alterations in axon growth in SPG3A neurons may represent a particularly attractive target for suppression in screens for novel pharmacologic agents.
Collapse
Affiliation(s)
- Peng-Peng Zhu
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tyler Mark Pierson
- Departments of Pediatrics and Neurology and the Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue-Jun Li
- Department of Neuroscience and The Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA and
| | - Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Serrat R, Mirra S, Figueiro-Silva J, Navas-Pérez E, Quevedo M, López-Doménech G, Podlesniy P, Ulloa F, Garcia-Fernàndez J, Trullas R, Soriano E. The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation. Cell Death Dis 2014; 5:e1163. [PMID: 24722288 PMCID: PMC5424104 DOI: 10.1038/cddis.2014.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents Aβ-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against Aβ-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.
Collapse
Affiliation(s)
- R Serrat
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - S Mirra
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - J Figueiro-Silva
- 1] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [2] Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - E Navas-Pérez
- Department of Genetics, University of Barcelona, Barcelona E-08028, Spain
| | - M Quevedo
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - G López-Doménech
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - P Podlesniy
- 1] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [2] Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - F Ulloa
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain
| | - J Garcia-Fernàndez
- Department of Genetics, University of Barcelona, Barcelona E-08028, Spain
| | - R Trullas
- 1] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [2] Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona E-08036, Spain
| | - E Soriano
- 1] Department of Cell Biology, University of Barcelona, Barcelona E-08028, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona E-08028, Spain [3] Fundación CIEN, Vallecas E-28031, Madrid, Spain [4] Vall d'Hebron Institut de Recerca, Barcelona E-08035, Spain
| |
Collapse
|